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Throughout this appendix, we use the notations of the main paper (2). In order
to distinguish references within the appendix from references to the main paper,
we denote the former ones by (1) or 1, and the latter ones by (1) or 1.

Following the ordering of (2), we first complete Sect. 4.3 with other alterna-
tive assumptions to Thm. 1 (Sect. 1). Then, we state some approximation theory
results for histogram models that give sufficient condition for assumption (Ap)
on the bias of the models (Sect. 2). In Sect. 3 the additional simulation studies
mentioned in Sect. 5. An extensive simulation experiment is provided in Sect. 3.
Finally, some concentration inequalities stated or used in Sect. 9.9 are proven
in Sect. 4, and the technical lemmas of Sect. 9.10 are proven in Sect. 4.

1. Other assumption sets for oracle inequalities for RP

In this section, we consider alternative assumption sets for the results of Sect. 4
about Resampling Penalization. Since Thm. 1 relies on a general result (Lemma 7),
giving alternative assumptions for Thm. 1 remains to give sufficient conditions
for (Bg) or (Ug).

1.1. Bounded case

We already suggested one way of removing (An) in Sect. 4. It is actually possible
to replace it in the assumptions of Thm. 1 by

0
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1. (Agauss) the noise is sub-gaussian
and (ArX

u
) the partition is “upper-regular” for L(X), i.e. Dm maxλ∈Λm

pλ ≤
cX
r,u.

2. X ⊂ R
k, (Agauss) the noise is sub-gaussian,

(Aru) the partition is “upper-regular” for Leb: Dm maxλ∈Λm
Leb(Iλ) ≤

cr,u Leb(X )
and the density of X w.r.t. Leb is bounded from above (Adu)

∀I ⊂ X , P(X ∈ I) ≤ cmax
X

Leb(I)

Leb(X )
.

Proof. Following the proof given in App. 9.4, we only have to give a lower bound

on Q
(p)
m := D−1

m

∑
λ∈Λm

σ2
λ.

In the first case, we have

Q(p)
m ≥ 1

Dm

∑

λ∈Λm

(σr
λ )2 =

∑

λ∈Λm

pλ (σr
λ )

2

Dmpλ

≥
∑

λ∈Λm

pλ (σr
λ )2

maxλ∈Λm
{Dmpλ }

≥ ‖σ(X)‖2
2

cX
r,u

.

The second case is a consequence of the first one since

max
λ∈Λm

{pλ } ≤ cmax
X max

λ∈Λm

{
Leb(Iλ)

Leb(X )

}
≤ cmax

X cr,uD
−1
m .

Moreover, in all the assumption sets above and in those of Sect. 4, the sub-
gaussian assumption on the noise (Agauss) can be replaced by a general moment
inequality:

(Aǫ) Pointwise moment inequality for the noise: there exists P pt growing as
some power of q such that

∀q ≥ 2, ∀x ∈ X , E [ |ǫ|q | X = x ]
1/q ≤ P pt(q)σ(x) .

For instance, when P pt(q) ≤ cq for every q ≥ 2 for some constant c, this means
that ǫ is sub-poissonian.

1.2. Unbounded case

In Sect. 4, we also give a set of assumptions for Thm. 1 in the unbounded case.
One can actually remove both (Ab) and the lower bound on the noise (An)
from the assumptions of Thm. 1, at the price of adding
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(Agauss) The noise is sub-gaussian: there exists cgauss > 0 such that

∀q ≥ 2, ∀x ∈ X , E [ |ǫ|q | X = x ]
1/q ≤ cgauss

√
qσ(x) .

(Aδ) Global moment assumption for the bias: there is a constant cg
∆,m > 0 such

that, for every m ∈ Mn of dimension Dm ≥ D0,

‖s − sm‖∞ ≤ cg
∆,m ‖s(X) − sm(X)‖2

(Aσmax) Noise-level bounded from above: σ2(X) ≤ σ2
max < +∞ a.s.

(Asmax) Bound on the target function: ‖s‖∞ ≤ A.

and one among the following

1. (ArXu ) the partition is “upper-regular” for L(X), i.e. Dm maxλ∈Λm
pλ ≤

cX
r,u.

2. X ⊂ R
k,

(Aru) the partition is “upper-regular” for Leb: Dm maxλ∈Λm
Leb(Iλ) ≤

cr,u Leb(X )
and the density of X w.r.t. Leb is bounded from above (Adu):

∀I ⊂ X , P(X ∈ I) ≤ cmax
X

Leb(I)

Leb(X )
.

3. X ⊂ R
k is bounded, equipped with ‖·‖∞,

(Ard
u
) the partition is “upper-regular”: maxλ∈Λm

{diam(Iλ)} ≤ cd
r,uD−αd

m diam(X)
(Aru) the partition is “upper-regular” for Leb: maxλ∈Λm

{Leb(Iλ)} ≤
cr,uD−1

m Leb(X)
and (Aσ) σ is piecewise Kσ-Lipschitz with at most Jσ jumps.

Proof. In Sect. 9.4, we made this proof with (An) as last additional assumption.

It is actually only used to give a lower bound on Q
(p)
m . The two first cases

thus follows from the proof given in Sect. 1.1 above. The last one follows from
Lemma 16.

As in the bounded case, the sub-gaussian assumption on the noise (Agauss)
can be replaced everywhere by the more general moment assumption (Aǫ).

Sufficient conditions for (Aδ) can be derived either from Lemma 17 or from
Lemma 1 below.

1.3. An alternative to Lemma 17

In Sect. 9.10, we give a sufficient condition for (Aδ) that relies on the regularity
of s, a lower bound on the density of X w.r.t. Leb and the regularity of the
partition (Lemma 17). We state below a lemma which gives a more accurate
estimation of the constant cg

∆,m when X ⊂ R is bounded.
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Lemma 1. Let s be a CLip-Lipschitz fuction on X ⊂ R and µ a probability
measure on X . We assume that µ and Leb are mutually absolutely continuous.

Let
(

(Iλ)λ∈Λmk

)

k∈N

be a sequence of partitions of X . We assume that their

sizes Dmk
are going to infinity and (Ardu):

max
λ∈Λm

{diam(Iλ )} ≤ cd
r,uD−1

m diam(X ) .

Then, there exists a constant cg
∆,m (depending on s, µ and cd

r,u) such that for
every k ∈ N,

‖s − sm‖∞ ≤ cg
∆,m ‖s − sm‖L2(µ) .

Proof. If s is constant, the result is obvious. Otherwise, both ‖s − sm‖∞ and
‖s − sm‖2 are positive.

Since s is Lipschitz, with constant CLip, we have

‖s − sm‖∞ ≤ CLip max
λ∈Λm

{diam (Iλ )} ≤ D−1
m diam(X )cd

r,uCLip .

On the other hand, ‖s − smk
‖2

L2(µ) is equivalent to
‖s′‖2

L2(µ)

12D2
mk

as long as the

Riemann sums of s′ are converging. The result follows.

Remark 1. If one assumes further regularity conditions on s, then the difference
between ‖s − smk

‖2
L2(µ) and its limit when k → ∞ can be controlled. Then,

the constant cg
∆,m only depends on s through ‖s′‖2

L2(µ) and these regularity
conditions, at least for k ≥ k0 for some k0 depending on the same conditions.

2. Approximation properties of histograms

In Thm. 1, we use the following assumption:

(Ap) Polynomial decreasing of the bias: there exists β1 ≥ β2 > 0 and C+
b , C−

b >
0 such that

C−
b D−β1

m ≤ ‖s − sm‖L2(µ) ≤ C+
b D−β2

m .

where µ = L(X) and sm is the L2(µ) projection onto some histogram model
(Sm)m∈M. It is somehow unintuitive, since it assumes that s is not too well
approximated by histograms. For instance, it excludes the case of constant func-
tions, which are both α-hölderian (for any α) and histogram functions. Lemma
2 below shows that it is the only excluded function among the hölderian ones.
On approximation theory, we refer to the book of DeVore and Lorentz (5). All
the proofs of the following results can be found in Chap. 8.10 of (1), where they
were initially stated.

Let (X , d) be a metric space. For every α ∈ (0; 1], δ, ǫ, R > 0, we define
Hδ,ǫ(α, R) the set of α-hölderian functions f on X , i.e.:

∀x, y ∈ [0; 1], |s(x) − s(y)| ≤ Rd(x, y)α
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such that there exists x1, x2 ∈ X such that

d(x1, x2) ≤ δ and |s(x1) − s(x2)| ≥ ǫ .

When X is bounded, we also define

Hǫ(α, R) := Hdiam(X ),ǫ(α, R) .

2.1. Regular histograms in [0;1]

We first investigate the simplest case, where (X , d) = ([0; 1], ‖·‖∞) and regular
histograms.

Lemma 2. Let α ∈ (0; 1], δ, ǫ, R > 0 and s ∈ Hδ,ǫ(α, R).
For every D ∈ N, denote by sD the L2(Leb) projection of s on the space of

regular histograms with D pieces. Then, there exists a constant

C1 = L(α)R−α−1

ǫ2+α−1 |x1 − x2|−1−α−1

> 0

and C2 = R2 β1 = 1 +
1

α
β2 = 2α

such that for all D > 0,

C1

Dβ1
≤ ‖s − sD‖2

L2(Leb) ≤
C2

Dβ2
. (1)

Remark 2. The upper bound holds with any probability measure µ on X instead
of Leb, since

ℓ (s, sm ) ≤ ‖s − sm‖2
∞ ≤ R2D−2α

m .

If (Adℓ) holds, then

ℓ (s, sm ) ≥ cX
min Leb(X )−1 ‖s − sm‖2

L2(Leb) ≥ c ‖s − sDm
‖2

L2(Leb)

and thus the lower bound is still valid.

Remark 3. The lower bound in (1) cannot be improved, as shown in Sect. 2.3:
for every α, R, δ, ǫ > 0, there exists C′

1 such that for every D,

inf
s∈Hδ,ǫ(α,R)

{
‖s − sD‖2

L2(Leb)

}
≤ C′

1

D1+α−1 .

2.2. Regular histograms in dimension k

We now generalize the previous result to subsets of R
k. For the sake of sim-

plicity, we assume that X is a ball of (Rk, ‖·‖∞). Otherwise, if
o

X is connex
and non-empty, any non-constant continuous function s on X is non-constant
on some ball B(s) ⊂ X . Then, we can apply Lemma 3 on B(s) in order to
derive (Ap). The constants δ, ǫ > 0 have to take into account the restriction
x1, x2 ∈ B(s) ⊂ X in the definition of Hδ,ǫ(α, R). When X is a ball, this condi-
tion is automatically satisfied.
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Lemma 3. Let X be a non-empty closed ball of (Rk, ‖·‖∞) and s ∈ Hδ,ǫ(α, R).
Let D > 0 and consider a “regular” partition1 (Iλ) of X of pace D−1. Let sD

be the piecewise constant function, defined on each piece Iλ of this partition by

sD ≡ 1

Leb(Iλ)

∫

Iλ

s(t)dt .

Then,

∫

X

(s(t) − sD )2 dt ≥ Lk,αǫ2+kα−1

δ−1−kα−1

R1−k(1+α−1)

×
(
D ∨ δ−1

)−1−kα−1+(k−1)α
.

(2)

Remark 4. 1. The number of pieces in the partition is not D but (approxima-
tively, depending on the shape of X ) Leb(X )Dk. Then, if X has a lower
bounded density w.r.t. Leb on X , under the assumptions of Lemma 3,
(Ap) is satisfied with β1 = k−1 + α−1 − (k − 1)k−1α.

2. The following upper bound on the bias is straightforward:

1

Leb(X )

∫

X

(s(t) − sD )
2
dt ≤ ‖s − sD‖2

∞ ≤ R2D−2α .

3. When X is not a ball of R
k, we can use a general argument assuming

only that for every x1, x2 ∈
o

X , there is a path from x1 to x2 that has an
η-enlargement in X for some η > 0. We then obtain a weaker lower bound
than (2), but which still implies (Ap).

2.3. Optimality of the lower bound in [0;1]

When X is a non-empty compact interval of R, the exponent 1+α−1 in Lemma 2
is unimprovable in the following sense. Without any loss of generality, we assume
that X = [0; 1].

Lemma 4. Let X = [0; 1], R > 0, α ∈ (0; 1], 1 ≥ δ ≥ (1 + η)D−1 (for some
η > 0) and L(α)R⌊Dδ⌋D−1 ≥ ǫ > 0.

inf
s∈Hδ,ǫ(α,R)

{∫

X

(s(t) − sD(t) )
2
dt

}
≤ L(α, η)R−α−1

ǫ2+α−1

δ−1−α−1

D−1−α−1

.

Remark 5. If D ≥ 2δ−1, one can replace η by 1 and this upper bound is (up to
some factor L(α)) the same as the lower bound in Lemma 2.

1When X = [0, 1]k (which is equivalent to any closed ball, up to a translation and an

homothety of Rk), it is the partition

(∏k

i=1

[
ji
D

; ji+1

D

))

0≤j1,...,jk≤D−1

. For more general

X , it can be defined as the collection of non-empty intersections between X and the family(∏k

i=1
[ ji
D

; ji+1

D
)

)

j1,...,jk∈Z

.
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Thus, the exponent β1 = 1 + α−1 cannot be improved as long as we look for
a uniform bound on Hδ,ǫ(α, R). However, this does not mean that there exists a

function s ∈ H(α, R) approximated by regular histograms at the rate D−1−α−1

.
To our knowledge, this question remains unsolved. Some references about this
problem (and the equivalent one when the knots of the partition are no longer
fixed) may be found in Burchard and Hale (4). See also the book of DeVore and
Lorentz (5), in particular Chap. 12.

3. Simulation study

We consider in this section eight experiments (called S1000, S
√

0.1, S0.1, Svar2,
Sqrt, His6, DopReg and Dop2bin) in which we have compared the same proce-
dures as in Sect. 4, with the same benchmarks, but with only N = 250 samples
for each experiment.

Data are generated according to

Yi = s(Xi) + σ(Xi)ǫi

with Xi i.i.d. uniform on X = [0; 1] and ǫi ∼ N (0, 1) independent from Xi. The
experiments differ from

• the regression function s:

– S1000, S
√

0.1, S0.1 and Svar2 have the same smooth function as S1
and S2, see Fig. 1.

– Sqrt has s(x) =
√

x, which is smooth except around 0, see Fig. 6.

– His6 has a regular histogram with 5 jumps (hence it belongs to the
regular histogram model of dimension 6), see Fig. 8.

– DopReg and Dop2bin have the Doppler function, as defined by Donoho
and Johnstone (6), see Fig. 10.

• the noise level σ:

– σ(x) = 1 for S1000, Sqrt, His6, DopReg and Dop2bin.

– σ(x) =
√

0.1 for S
√

0.1.

– σ(x) = 0.1 for S0.1.

– σ(x) = 1x≥1/2 for Svar2.

• the sample size n:

– n = 200 for S
√

0.1, S0.1, Svar2, Sqrt and His6.

– n = 1000 for S1000.

– n = 2048 for DopReg and Dop2bin.

• the family of models: with the notations introduced in Sect. 4,

– for S1000, S
√

0.1, S0.1, Sqrt and His6, we use the “regular” collection,
as for S1:

Mn =

{
1, . . . ,

⌊
n

ln(n)

⌋}
.
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Fig 1. s(x) = sin(πx)
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Fig 2. Data sample for S1000
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Fig 3. Data sample for S
√

0.1

– for Svar2, we use the “regular with two bin sizes” collection, as for
S2:

Mn = {1} ∪
{

1, . . . ,

⌊
n

2 ln(n)

⌋}2

.

– for DopReg, we use the “regular dyadic” collection, as for HSd1:

Mn =
{

2k s.t. 0 ≤ k ≤ ln2(n) − 1
}

.

– for Dop2bin, we use the “regular dyadic with two bin sizes” collection,
as for HSd2:

Mn = {1} ∪
{

2k s.t. 0 ≤ k ≤ ln2(n) − 2
}2

.

Notice that contrary to HSd2, Dop2bin is an homoscedastic problem. The in-
terest of considering two bin sizes for it is that the smoothness of the Doppler
function is quite different for small x and for x ≥ 1/2.

Instances of data sets for each experiment are given in Fig. 2–5, 7, 9 and 11.

Compared to S1, S2, HSd1 and HSd2, these eight experiments consider larger
signal-to-noise ratio data (S1000, S

√
0.1, S0.1), another kind of heteroscedastic-

ity (Svar2) and other regression functions, with different kinds of unsmoothness
(Sqrt, His6, DopReg and Dop2bin).
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Fig 4. Data sample for S0.1
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Fig 5. Data sample for Svar2
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Fig 6. s(x) =
√

x
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Fig 7. Data sample for Sqrt
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Fig 8. s(x) = His6(x)
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Fig 9. Data sample for His6

imsart-ejs ver. 2007/12/10 file: RP_appendix.tex date: March 5, 2008



Arlot, S./Technical appendix 9

0     0.5     1
−5

 

 

 

 

0

 

 

 

 

5

Fig 10. s(x) = Doppler(x) (see (6))
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Fig 11. Data sample for DopReg and
Dop2bin

We consider for each of these experiments the same algorithms as in Sect. 4,
and we added to them:

1. Mal⋆, which is Mallows’ Cp penalty with the true value of the variance:
pen(m) = 2E

[
σ2(X)

]
Dmn−1. Although it can not be used on real data

sets, it is an interesting point of comparison, which does not have possible
weaknesses coming from the variance estimator σ̂2.

2. penPoi, which is the Poisson (1) penalty, with C = CW = 1.
3. for each of the exchangeable penalties (except penLoo), we also considered

Monte-Carlo approximations of their exact values, drawing 20 resampling
weights at random. These procedures are denoted by a (20) following the
shortened names.

4. penV -F, for V ∈ {2, 5, 10, 20}, which are the V -fold subsampling version
of Algorithm. 2. The corresponding results come from (3), where these
penalties are properly defined and studied.

In the case of Mal⋆, penPoi and penVF, we also tested overpenalization by
multiplying these penalties by 5/4. The corresponding algorithms are denoted
by a + sign, as in the main paper.

Our estimates of Cor (and uncertainties for these estimates) for the procedures
we consider are reported in Tab. 1 to 3 (we report here again the results for
S1, S2, HSd1 and HSd2 to make comparisons easier). On the last line of these
Tables, we also report

E [ infm∈Mn
ℓ (s, ŝm ) ]

infm∈Mn
{E [ℓ (s, ŝm ) ]} =

C′
or

Cor
where C′

or :=
E
[
ℓ
(
s, ŝ

m̂

)]

infm∈Mn
{E [ℓ (s, ŝm ) ]}

is the leading constant which appear in most of the classical oracle inequalities.
Notice that C′

or is always smaller than Cor.

The comparison between Mallows’, VFCV and Resampling Penalization is
quite the same: in “easy” homoscedastic frameworks (S1000, S

√
0.1, S0.1),

their performances are similar. A harder problem such as Svar2 (which is het-
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eroscedastic but different from S2) make Mallows’ fail whereas the two others
only get a bit worse.

As expected, taking n larger (S1000) or σ smaller (S
√

0.1 and S0.1) make the
constant Cor closer to 1. Notice also that overpenalization often improves the
quality of the algorithm (but not always: see DopReg and S0.1). We have for
instance Cor(penLoo) < Cor(penRho) < Cor(penRho+) in S0.1 (with only small
differences), although penLoo may slightly underpenalize. This also shows that
the factor 5/4 is not optimal in general (actually, it is certainly not optimal for
all these 12 experiments, it was fixed arbitrarily and a priori).

We can also compare the exact exchangeable resampling penalties with their
Monte-Carlo approximations, or with non-exchangeable ones (with V -fold penal-
ties). Exact formulas with exchangeable schemes (Rad, Rho) are better than the
other ones in most of the experiments (and sometimes significantly, for instance
in S2 or HSd1). But the difference is not so large, making e.g. penLoo worse than
penRad(20) for HSd1. The extreme case is Sqrt where penRad(20) performs (un-
significantly) better than penRad! This shows that such an approximation could
be used in practice without loosing too much (actually, choosing the right over-
penalization factor is much more important than making exact computations).
On the other hand, it is quite unclear whether one should prefer Monte-Carlo
approximations or V -fold subsampling schemes (taking V = 20 to make com-
plexities comparable). According to the experiments, pen20-F can be better
(S2), worse (HSd1) or not significantly2 different (S1,HSd2) from penRad(20).

To conclude, these eight experiments confirm the strenghts of RP already
pointed out in Sect. 5, and show that the assumptions of Thm. 1 (or even the
ones of Lemma 7 are not necessary for the resampling penalties to be efficient.

For the sake of completeness, we also reported the results for the twelve
experiments in terms of the other benchmark

Cpath−or := E

[
ℓ
(
s, ŝ

m̂

)

infm∈Mn
ℓ (s, ŝm )

]

in Tab. 4 to Tab. 6. They are indeed quite similar to the previous ones.

4. Complete proofs of concentration inequalities

We here given complete proofs and key results of our concentration inequalities,
most of them coming from (1).

complete proof of Prop. 12. According to the explicit expressions (46)and (47),
p̃1(m) and p2(m) are both U-statistics of order 2 conditionally to (1Xi∈Iλ

)(i,λ).

2Given the number of experiments made here, we should also mention that we do not take
into account multiplicity when we say that we have found “significant” differences. Then, the
situation observed between pen20-F and penRad(20) is typically the one of two procedures
which have exactly the same performance.
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Table 1

Accuracy indexes Cor for experiments S1, S2, HSd1 and HSd2 (N = 1000). Uncertainties

reported are empirical standard deviations divided by
√

N . In each column, the more
accurate data-dependent algorithms (taking the uncertainty into account) are bolded, as well

as E [ penid ] and E [ penid ] + when they have better or comparable performances.

Experiment S1 S2 HSd1 HSd2

s sin(π·) sin(π·) HeaviSine HeaviSine
σ(x) 1 x 1 x
n (sample size) 200 200 2048 2048
Mn regular 2 bin sizes dyadic, regular dyadic, 2 bin sizes

Mal 1.928 ± 0.04 3.687 ± 0.07 1.015 ± 0.003 1.373 ± 0.010
Mal+ 1.800± 0.03 3.173 ± 0.07 1.002± 0.003 1.411 ± 0.008
Mal⋆ 2.028 ± 0.04 2.657 ± 0.06 1.044 ± 0.004 1.513 ± 0.005
Mal⋆+ 1.827± 0.03 2.437 ± 0.05 1.004± 0.003 1.548 ± 0.003
E [ penid ] 1.919 ± 0.03 2.296 ± 0.05 1.028 ± 0.004 1.102± 0.004

E [ penid ]+ 1.792± 0.03 2.028± 0.04 1.003± 0.003 1.089± 0.004

2-FCV 2.078 ± 0.04 2.542 ± 0.05 1.002± 0.003 1.184 ± 0.004
5-FCV 2.137 ± 0.04 2.582 ± 0.06 1.014 ± 0.003 1.115 ± 0.005
10-FCV 2.097 ± 0.04 2.603 ± 0.06 1.021 ± 0.003 1.109 ± 0.004
20-FCV 2.088 ± 0.04 2.578 ± 0.06 1.029 ± 0.004 1.105 ± 0.004
LOO 2.077 ± 0.04 2.593 ± 0.06 1.034 ± 0.004 1.105 ± 0.004

penRad 1.973 ± 0.04 2.485 ± 0.06 1.018 ± 0.003 1.102± 0.004

penRho 1.982 ± 0.04 2.502 ± 0.06 1.018 ± 0.003 1.103± 0.004

penLoo 2.080 ± 0.04 2.593 ± 0.06 1.034 ± 0.004 1.105 ± 0.004
penEfr 2.597 ± 0.07 3.152 ± 0.07 1.067 ± 0.005 1.114 ± 0.005
penPoi 2.650 ± 0.07 3.191 ± 0.07 1.067 ± 0.005 1.115 ± 0.005

penRad(20) 2.027 ± 0.04 2.762 ± 0.06 1.021 ± 0.003 1.107 ± 0.004
penRho(20) 2.039 ± 0.04 2.706 ± 0.06 1.020 ± 0.004 1.107 ± 0.004
penEfr(20) 2.688 ± 0.07 3.339 ± 0.07 1.065 ± 0.005 1.119 ± 0.006
penPoi(20) 2.627 ± 0.07 3.405 ± 0.07 1.067 ± 0.005 1.120 ± 0.006

pen2-F 2.578 ± 0.06 3.061 ± 0.07 1.038 ± 0.004 1.103± 0.004

pen5-F 2.219 ± 0.05 2.750 ± 0.06 1.037 ± 0.004 1.104 ± 0.004
pen10-F 2.121 ± 0.04 2.653 ± 0.06 1.034 ± 0.004 1.104 ± 0.004
pen20-F 2.085 ± 0.04 2.639 ± 0.06 1.034 ± 0.004 1.105 ± 0.004

penRad+ 1.799± 0.03 2.137± 0.05 1.002± 0.003 1.095± 0.004

penRho+ 1.798± 0.03 2.142± 0.05 1.002± 0.003 1.095± 0.004

penLoo+ 1.844± 0.03 2.215± 0.05 1.004± 0.003 1.096± 0.004

penEfr+ 2.016 ± 0.05 2.605 ± 0.06 1.011 ± 0.003 1.097± 0.004

penPoi+ 2.039 ± 0.05 2.620 ± 0.06 1.011 ± 0.003 1.097± 0.004

pen2-F+ 2.175 ± 0.05 2.748 ± 0.06 1.011 ± 0.003 1.106 ± 0.004
pen5-F+ 1.913 ± 0.03 2.378 ± 0.05 1.006± 0.003 1.102± 0.004

pen10-F+ 1.872 ± 0.03 2.285 ± 0.05 1.005± 0.003 1.098± 0.004

pen20-F+ 1.898 ± 0.03 2.254 ± 0.05 1.004± 0.003 1.098± 0.004

C′
or/Cor 0.768 0.753 0.999 0.854
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Table 2

Accuracy indexes Cor for experiments S1000, S
√

0.1, S0.1 and Svar2 (N = 250).

Uncertainties reported are empirical standard deviations divided by
√

N . In each column, the
more accurate data-dependent algorithms (taking the uncertainty into account) are bolded,
as well as E [ penid ] and E [ penid ] + when they have better or comparable performances.

Experiment S1000 S
√

0.1 S0.1 Svar2

s sin(π·) sin(π·) sin(π·) sin(π·)
σ(x) 1

√
0.1 0.1 1x≥1/2

n (sample size) 1000 200 200 200
Mn regular regular regular 2 bin sizes

Mal 1.667± 0.04 1.611± 0.03 1.400± 0.02 5.643 ± 0.22
Mal+ 1.619± 0.03 1.593± 0.03 1.426 ± 0.02 4.647 ± 0.22
Mal⋆ 1.745 ± 0.05 1.925 ± 0.03 3.204 ± 0.05 4.481 ± 0.21
Mal⋆+ 1.617± 0.03 2.073 ± 0.04 3.641 ± 0.07 3.544 ± 0.17
E [ penid ] 1.745 ± 0.05 1.571± 0.03 1.373± 0.02 2.409± 0.13

E [ penid ]+ 1.617± 0.03 1.554± 0.03 1.392± 0.02 2.005± 0.10

2-FCV 1.668± 0.04 1.663 ± 0.04 1.394± 0.02 2.960 ± 0.15
5-FCV 1.756 ± 0.07 1.693 ± 0.04 1.393± 0.02 2.950 ± 0.16
10-FCV 1.746 ± 0.04 1.684 ± 0.04 1.385± 0.02 2.681 ± 0.14
20-FCV 1.774 ± 0.05 1.645 ± 0.03 1.382± 0.02 2.742 ± 0.16
LOO 1.768 ± 0.05 1.639 ± 0.04 1.379± 0.02 2.641 ± 0.15

penRad 1.748 ± 0.05 1.609± 0.03 1.405± 0.02 2.510 ± 0.15
penRho 1.748 ± 0.05 1.619± 0.03 1.404± 0.02 2.518 ± 0.15
penLoo 1.776 ± 0.05 1.641 ± 0.04 1.379± 0.02 2.656 ± 0.15
penEfr 1.813 ± 0.05 1.888 ± 0.05 1.417 ± 0.02 3.451 ± 0.20
penPoi 1.813 ± 0.05 1.922 ± 0.05 1.419 ± 0.02 3.548 ± 0.21

penRad(20) 1.794 ± 0.05 1.636± 0.04 1.415 ± 0.02 2.966 ± 0.17
penRho(20) 1.725 ± 0.05 1.641 ± 0.04 1.397± 0.02 2.961 ± 0.17
penEfr(20) 1.808 ± 0.05 1.875 ± 0.05 1.410 ± 0.02 3.974 ± 0.22
penPoi(20) 1.868 ± 0.06 1.908 ± 0.05 1.414 ± 0.02 3.866 ± 0.21

pen2-F 2.066 ± 0.08 1.809 ± 0.05 1.390± 0.02 3.209 ± 0.18
pen5-F 1.816 ± 0.05 1.638± 0.04 1.400± 0.02 2.749 ± 0.15
pen10-F 1.783 ± 0.05 1.706 ± 0.04 1.374± 0.02 2.598 ± 0.15
pen20-F 1.801 ± 0.05 1.657 ± 0.03 1.385± 0.02 2.684 ± 0.15

penRad+ 1.619± 0.03 1.574± 0.03 1.417 ± 0.02 2.232± 0.12

penRho+ 1.619± 0.03 1.578± 0.03 1.417 ± 0.02 2.243± 0.12

penLoo+ 1.626± 0.03 1.587± 0.03 1.401± 0.02 2.349± 0.13

penEfr+ 1.636± 0.03 1.670 ± 0.04 1.407± 0.02 2.614 ± 0.16
penPoi+ 1.636± 0.03 1.669 ± 0.04 1.420 ± 0.02 2.668 ± 0.17

pen2-F+ 1.809 ± 0.05 1.714 ± 0.04 1.416 ± 0.02 2.808 ± 0.16
pen5-F+ 1.683± 0.04 1.616± 0.03 1.399± 0.02 2.460± 0.14

pen10-F+ 1.627± 0.04 1.613± 0.03 1.385± 0.02 2.398± 0.14

pen20-F+ 1.644± 0.04 1.583± 0.03 1.390± 0.02 2.316± 0.13

C′
or/Cor 0.8 0.801 0.816 0.779
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Table 3

Accuracy indexes Cor for experiments Sqrt, His6, DopReg and Dop2bin (N = 250).

Uncertainties reported are empirical standard deviations divided by
√

N . In each column, the
more accurate data-dependent algorithms (taking the uncertainty into account) are bolded,
as well as E [ penid ] and E [ penid ] + when they have better or comparable performances.

Experiment Sqrt His6 DopReg Dop2bin

s
√
· His6 Doppler Doppler

σ(x) 1 1 1 1
n (sample size) 200 200 2048 2048
Mn regular regular dyadic, regular dyadic, 2 bin sizes

Mal 2.295 ± 0.11 1.969 ± 0.11 1.039 ± 0.01 1.052± 0.01

Mal+ 1.989± 0.08 1.799± 0.09 1.090 ± 0.00 1.047± 0.01

Mal⋆ 2.483 ± 0.12 2.021 ± 0.11 1.013± 0.01 1.061 ± 0.01
Mal⋆+ 2.075± 0.09 1.836± 0.10 1.070 ± 0.00 1.041± 0.01

E [ penid ] 2.365 ± 0.11 1.805± 0.10 1.025 ± 0.01 1.056 ± 0.01
E [ penid ]+ 2.012± 0.09 1.632± 0.08 1.083 ± 0.00 1.040± 0.01

2-FCV 2.489 ± 0.12 2.788 ± 0.13 1.097 ± 0.00 1.165 ± 0.01
5-FCV 2.777 ± 0.16 2.316 ± 0.12 1.064 ± 0.01 1.049± 0.01

10-FCV 2.571 ± 0.13 2.074 ± 0.11 1.043 ± 0.01 1.051± 0.01

20-FCV 2.561 ± 0.12 2.071 ± 0.11 1.034 ± 0.01 1.053 ± 0.01
LOO 2.695 ± 0.14 2.059 ± 0.11 1.026 ± 0.01 1.058 ± 0.01

penRad 2.396 ± 0.11 1.884± 0.10 1.043 ± 0.01 1.055 ± 0.01
penRho 2.448 ± 0.12 1.907± 0.11 1.043 ± 0.01 1.055 ± 0.01
penLoo 2.695 ± 0.14 2.063 ± 0.12 1.026 ± 0.01 1.058 ± 0.01
penEfr 3.468 ± 0.22 2.721 ± 0.16 1.030 ± 0.01 1.064 ± 0.01
penPoi 3.525 ± 0.22 2.878 ± 0.18 1.040 ± 0.01 1.064 ± 0.01

penRad(20) 2.361 ± 0.10 2.083 ± 0.11 1.044 ± 0.01 1.058 ± 0.01
penRho(20) 2.499 ± 0.12 2.039 ± 0.11 1.046 ± 0.01 1.057 ± 0.01
penEfr(20) 3.558 ± 0.22 2.928 ± 0.16 1.036 ± 0.01 1.058 ± 0.01
penPoi(20) 3.588 ± 0.21 2.899 ± 0.15 1.033 ± 0.01 1.066 ± 0.01

pen2-F 4.088 ± 0.23 3.210 ± 0.14 1.048 ± 0.01 1.062 ± 0.01
pen5-F 3.024 ± 0.18 2.485 ± 0.13 1.033 ± 0.01 1.055 ± 0.01
pen10-F 3.009 ± 0.18 2.192 ± 0.12 1.029 ± 0.01 1.056 ± 0.01
pen20-F 2.723 ± 0.14 2.150 ± 0.12 1.031 ± 0.01 1.056 ± 0.01

penRad+ 2.036± 0.09 1.746± 0.09 1.092 ± 0.00 1.058 ± 0.01
penRho+ 2.053± 0.09 1.747± 0.09 1.091 ± 0.00 1.059 ± 0.01
penLoo+ 2.152± 0.10 1.858± 0.10 1.082 ± 0.00 1.048± 0.01

penEfr+ 2.205 ± 0.11 1.924± 0.11 1.056 ± 0.01 1.057 ± 0.01
penPoi+ 2.249 ± 0.11 2.017 ± 0.11 1.056 ± 0.01 1.058 ± 0.01

pen2-F+ 3.015 ± 0.17 2.728 ± 0.12 1.084 ± 0.00 1.084 ± 0.01
pen5-F+ 2.409 ± 0.13 2.080 ± 0.09 1.080 ± 0.00 1.063 ± 0.01
pen10-F+ 2.305 ± 0.11 1.869± 0.09 1.082 ± 0.00 1.050± 0.01

pen20-F+ 2.180 ± 0.10 1.832± 0.09 1.079 ± 0.00 1.052± 0.01

C′
or/Cor 0.795 0.996 0.998 0.977
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Table 4

Accuracy indexes Cpath−or for experiments S1, S2, HSd1 and HSd2 (N = 1000).

Uncertainties reported are empirical standard deviations divided by
√

N . In each column, the
more accurate data-dependent algorithms (taking the uncertainty into account) are bolded,
as well as E [ penid ] and E [ penid ] + when they have better or comparable performances.

Experiment S1 S2 HSd1 HSd2

s sin(π·) sin(π·) HeaviSine HeaviSine
σ(x) 1 x 1 x
n (sample size) 200 200 2048 2048
Mn regular 2 bin sizes dyadic, regular dyadic, 2 bin sizes

Mal 2.064 ± 0.04 4.129 ± 0.10 1.015 ± 0.002 1.316 ± 0.010
Mal+ 1.921± 0.03 3.500 ± 0.09 1.002± 0.001 1.354 ± 0.008
Mal⋆ 2.168 ± 0.04 2.907 ± 0.07 1.045 ± 0.003 1.453 ± 0.006
Mal⋆+ 1.941± 0.03 2.645 ± 0.06 1.004± 0.001 1.487 ± 0.005
E [ penid ] 2.053 ± 0.04 2.458 ± 0.06 1.029 ± 0.003 1.050± 0.002

E [ penid ]+ 1.903± 0.03 2.142± 0.04 1.003± 0.001 1.038± 0.002

2-FCV 2.230 ± 0.05 2.755 ± 0.06 1.002± 0.001 1.134 ± 0.004
5-FCV 2.290 ± 0.05 2.827 ± 0.08 1.014 ± 0.002 1.064 ± 0.003
10-FCV 2.237 ± 0.05 2.832 ± 0.08 1.021 ± 0.002 1.057 ± 0.002
20-FCV 2.225 ± 0.05 2.794 ± 0.07 1.029 ± 0.003 1.054 ± 0.002
LOO 2.212 ± 0.05 2.832 ± 0.08 1.034 ± 0.003 1.053 ± 0.002

penRad 2.102 ± 0.04 2.705 ± 0.07 1.018 ± 0.002 1.051± 0.002

penRho 2.111 ± 0.04 2.726 ± 0.07 1.018 ± 0.002 1.051± 0.002

penLoo 2.215 ± 0.05 2.832 ± 0.08 1.034 ± 0.003 1.053 ± 0.002
penEfr 2.818 ± 0.08 3.468 ± 0.09 1.067 ± 0.004 1.062 ± 0.003
penPoi 2.874 ± 0.09 3.522 ± 0.09 1.067 ± 0.004 1.062 ± 0.003

penRad(20) 2.148 ± 0.04 3.000 ± 0.08 1.022 ± 0.002 1.056 ± 0.002
penRho(20) 2.159 ± 0.04 2.941 ± 0.08 1.020 ± 0.002 1.055 ± 0.002
penEfr(20) 2.899 ± 0.08 3.695 ± 0.09 1.065 ± 0.004 1.066 ± 0.004
penPoi(20) 2.842 ± 0.08 3.807 ± 0.10 1.068 ± 0.004 1.067 ± 0.004

pen2-F 2.770 ± 0.07 3.340 ± 0.08 1.039 ± 0.003 1.052± 0.003

pen5-F 2.383 ± 0.06 2.982 ± 0.08 1.038 ± 0.003 1.053 ± 0.002
pen10-F 2.256 ± 0.05 2.867 ± 0.07 1.035 ± 0.003 1.053 ± 0.002
pen20-F 2.219 ± 0.05 2.869 ± 0.08 1.035 ± 0.003 1.053 ± 0.002

penRad+ 1.917± 0.03 2.304± 0.06 1.002± 0.001 1.045± 0.002

penRho+ 1.915± 0.03 2.308± 0.06 1.002± 0.001 1.045± 0.002

penLoo+ 1.959± 0.03 2.397± 0.06 1.004± 0.001 1.045± 0.002

penEfr+ 2.155 ± 0.05 2.841 ± 0.08 1.011 ± 0.002 1.046± 0.002

penPoi+ 2.179 ± 0.05 2.855 ± 0.08 1.011 ± 0.002 1.045± 0.002

pen2-F+ 2.328 ± 0.05 2.979 ± 0.07 1.011 ± 0.002 1.056 ± 0.003
pen5-F+ 2.050 ± 0.04 2.540 ± 0.06 1.006± 0.001 1.052± 0.002

pen10-F+ 1.997 ± 0.03 2.436 ± 0.05 1.005± 0.001 1.048± 0.002

pen20-F+ 2.018 ± 0.04 2.416 ± 0.06 1.004± 0.001 1.047± 0.002
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Table 5

Accuracy indexes Cpath−or for experiments S1000, S
√

0.1, S0.1 and Svar2 (N = 250).

Uncertainties reported are empirical standard deviations divided by
√

N . In each column, the
more accurate data-dependent algorithms (taking the uncertainty into account) are bolded,
as well as E [ penid ] and E [ penid ] + when they have better or comparable performances.

Experiment S1000 S
√

0.1 S0.1 Svar2

s sin(π·) sin(π·) sin(π·) sin(π·)
σ(x) 1

√
0.1 0.1 1x≥1/2

n (sample size) 1000 200 200 200
Mn regular regular regular 2 bin sizes

Mal 1.704± 0.04 1.654± 0.03 1.407± 0.02 7.212 ± 0.40
Mal+ 1.670± 0.03 1.636± 0.03 1.436 ± 0.02 5.740 ± 0.34
Mal⋆ 1.793 ± 0.04 2.018 ± 0.04 3.273 ± 0.06 5.597 ± 0.33
Mal⋆+ 1.664± 0.03 2.175 ± 0.05 3.719 ± 0.08 4.284 ± 0.25
E [ penid ] 1.793 ± 0.04 1.611± 0.03 1.378± 0.01 2.785± 0.19

E [ penid ]+ 1.194± 0.02 1.177± 0.02 1.128± 0.01 1.337± 0.07

2-FCV 1.721± 0.04 1.723 ± 0.04 1.400± 0.02 3.507 ± 0.19
5-FCV 1.801 ± 0.06 1.740 ± 0.04 1.399± 0.02 3.486 ± 0.24
10-FCV 1.802 ± 0.05 1.735 ± 0.04 1.388± 0.02 3.149 ± 0.20
20-FCV 1.832 ± 0.05 1.687 ± 0.03 1.388± 0.02 3.257 ± 0.23
LOO 1.815 ± 0.05 1.685 ± 0.04 1.385± 0.01 3.127 ± 0.24

penRad 1.796 ± 0.05 1.655± 0.04 1.411± 0.02 2.932 ± 0.22
penRho 1.796 ± 0.05 1.666± 0.04 1.409± 0.02 2.951 ± 0.23
penLoo 1.825 ± 0.05 1.687 ± 0.04 1.385± 0.01 3.152 ± 0.24
penEfr 1.865 ± 0.05 1.941 ± 0.06 1.423 ± 0.02 4.181 ± 0.31
penPoi 1.865 ± 0.05 1.972 ± 0.06 1.425 ± 0.02 4.310 ± 0.32

penRad(20) 1.836 ± 0.05 1.675± 0.04 1.423 ± 0.02 3.650 ± 0.29
penRho(20) 1.768 ± 0.05 1.689 ± 0.04 1.403± 0.02 3.567 ± 0.27
penEfr(20) 1.836 ± 0.05 1.924 ± 0.05 1.416 ± 0.02 4.854 ± 0.34
penPoi(20) 1.924 ± 0.07 1.974 ± 0.06 1.418 ± 0.02 4.678 ± 0.33

pen2-F 2.108 ± 0.07 1.864 ± 0.05 1.394± 0.02 3.839 ± 0.27
pen5-F 1.852 ± 0.05 1.675± 0.04 1.404± 0.02 3.237 ± 0.23
pen10-F 1.812 ± 0.05 1.767 ± 0.04 1.381± 0.01 3.093 ± 0.23
pen20-F 1.839 ± 0.05 1.706 ± 0.03 1.391± 0.01 3.123 ± 0.23

penRad+ 1.665± 0.03 1.615± 0.03 1.427 ± 0.02 2.502± 0.15

penRho+ 1.665± 0.03 1.619± 0.03 1.428 ± 0.02 2.511± 0.15

penLoo+ 1.673± 0.03 1.624± 0.03 1.409± 0.02 2.659± 0.18

penEfr+ 1.683± 0.03 1.730 ± 0.04 1.413± 0.02 3.098 ± 0.25
penPoi+ 1.683± 0.03 1.729 ± 0.04 1.427 ± 0.02 3.133 ± 0.25

pen2-F+ 1.852 ± 0.05 1.765 ± 0.05 1.420 ± 0.02 3.336 ± 0.23
pen5-F+ 1.732± 0.04 1.664± 0.03 1.408± 0.02 2.890± 0.22

pen10-F+ 1.663± 0.04 1.657± 0.03 1.394± 0.02 2.810± 0.21

pen20-F+ 1.680± 0.04 1.623± 0.03 1.397± 0.01 2.657± 0.19
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Table 6

Accuracy indexes Cpath−or for experiments Sqrt, His6, DopReg and Dop2bin (N = 250).

Uncertainties reported are empirical standard deviations divided by
√

N . In each column, the
more accurate data-dependent algorithms (taking the uncertainty into account) are bolded,
as well as E [ penid ] and E [ penid ] + when they have better or comparable performances.

Experiment Sqrt His6 DopReg Dop2bin

s
√
· His6 Doppler Doppler

σ(x) 1 1 1 1
n (sample size) 200 200 2048 2048
Mn regular regular dyadic, regular dyadic, 2 bin sizes

Mal 2.557 ± 0.12 2.356 ± 0.18 1.040 ± 0.00 1.049± 0.00

Mal+ 2.232± 0.10 2.041± 0.12 1.094 ± 0.00 1.045± 0.01

Mal⋆ 2.838 ± 0.15 2.533 ± 0.21 1.013± 0.00 1.057 ± 0.00
Mal⋆+ 2.349± 0.11 2.168± 0.16 1.073 ± 0.00 1.038± 0.00

E [ penid ] 2.678 ± 0.14 2.182± 0.17 1.026 ± 0.00 1.053 ± 0.00
E [ penid ]+ 1.348± 0.07 1.230± 0.06 1.050 ± 0.00 1.038± 0.00

2-FCV 2.974 ± 0.17 3.713 ± 0.25 1.100 ± 0.00 1.164 ± 0.01
5-FCV 3.209 ± 0.21 2.977 ± 0.24 1.066 ± 0.00 1.046± 0.00

10-FCV 2.912 ± 0.16 2.639 ± 0.21 1.045 ± 0.00 1.047± 0.00

20-FCV 2.889 ± 0.15 2.584 ± 0.20 1.035 ± 0.00 1.050 ± 0.00
LOO 3.061 ± 0.17 2.568 ± 0.21 1.027 ± 0.00 1.055 ± 0.00

penRad 2.708 ± 0.13 2.272± 0.19 1.044 ± 0.00 1.052 ± 0.00
penRho 2.755 ± 0.14 2.291± 0.19 1.044 ± 0.00 1.052 ± 0.00
penLoo 3.063 ± 0.17 2.571 ± 0.21 1.027 ± 0.00 1.055 ± 0.00
penEfr 4.091 ± 0.32 3.560 ± 0.29 1.031 ± 0.01 1.061 ± 0.00
penPoi 4.126 ± 0.32 3.790 ± 0.32 1.042 ± 0.01 1.061 ± 0.00

penRad(20) 2.690 ± 0.13 2.685 ± 0.24 1.046 ± 0.00 1.055 ± 0.00
penRho(20) 2.822 ± 0.14 2.560 ± 0.20 1.048 ± 0.00 1.054 ± 0.00
penEfr(20) 4.103 ± 0.29 3.931 ± 0.32 1.038 ± 0.01 1.055 ± 0.00
penPoi(20) 4.107 ± 0.26 3.753 ± 0.28 1.034 ± 0.01 1.062 ± 0.01

pen2-F 5.062 ± 0.37 4.462 ± 0.30 1.050 ± 0.00 1.059 ± 0.01
pen5-F 3.595 ± 0.25 3.458 ± 0.28 1.034 ± 0.00 1.052 ± 0.00
pen10-F 3.445 ± 0.22 2.744 ± 0.21 1.031 ± 0.00 1.053 ± 0.00
pen20-F 3.120 ± 0.17 2.670 ± 0.21 1.032 ± 0.00 1.053 ± 0.00

penRad+ 2.291± 0.11 2.018± 0.14 1.095 ± 0.00 1.056 ± 0.01
penRho+ 2.317± 0.11 2.019± 0.14 1.095 ± 0.00 1.057 ± 0.01
penLoo+ 2.437± 0.12 2.218± 0.18 1.085 ± 0.00 1.045± 0.00

penEfr+ 2.495 ± 0.13 2.348± 0.19 1.058 ± 0.00 1.054 ± 0.00
penPoi+ 2.531 ± 0.13 2.446 ± 0.20 1.058 ± 0.00 1.054 ± 0.00

pen2-F+ 3.723 ± 0.29 3.777 ± 0.26 1.087 ± 0.00 1.082 ± 0.01
pen5-F+ 2.790 ± 0.18 2.698 ± 0.19 1.083 ± 0.00 1.061 ± 0.01
pen10-F+ 2.653 ± 0.14 2.364± 0.20 1.085 ± 0.00 1.047± 0.01

pen20-F+ 2.497 ± 0.13 2.318± 0.20 1.082 ± 0.00 1.049± 0.01
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Then, we use Lemma 5, with ξi,λ = Yi − βλ, aλ = 0, bλ = pλ(np̂λ)−2 for p̃1 and
bλ = (n2p̂λ)−1 for p2. This proves, for all q ≥ 2,

∥∥p̃1(m) − E
Λm [p̃1(m)]

∥∥(Λm)

q
≤ max

λ∈Λm

{
pλ

p̂λ
1

p̂λ>0

}
LA,σminD

−1/2
m qE [p2(m) ] (3)

‖p2(m) − E[p2(m)]‖(Λm)
q ≤ LA,σminD

−1/2
m qE [p2(m) ] . (4)

We deduce conditional concentration inequalities from those moment inequal-
ities (for instance by Lemma 8.9 of (1)), with a deterministic probability bound
1−Le−x = 1−n−γ . Hence, we deduce unconditional concentration inequalities,
and the result follows for p2. To control the remainder term for p̃1, we use (9)
in Lemma 9.

We now have to control the distance between E
Λm [ p̃1 ] and E [ p̃1 ]. First, if

Bn ≥ 1, we can use Lemma 6: taking Xλ = np̂λ and aλ = pλ (σλ)2, according
to (46), we have p̃1(m) = Zm,1 and the concentration inequality for p̃1 follows.
On the other hand, if we only know that Bn > 0, instead of using Lemma 6, we
remark that

E
Λm [ p̃1(m) ] ≥ min

λ∈Λm

{
pλ

p̂λ

}
E

Λm [p2(m) ] ,

and the result follows thanks to (10) in Lemma 9.

Lemma 5 (Prop. 5.5 of (1)). Let (aλ)λ∈Λm
and (bλ)λ∈Λm

be two families of
real numbers, (rλ)λ∈Λm

a family of integers. For all λ ∈ Λm, let (ξλ,i)1≤i≤rλ

be independent centered random variables admitting 2q-th moments m2q,λ,i for
some q ≥ 2. We define Sλ,1, Sλ,2 and Z as follows:

Z =
∑

λ∈Λm

(
aλSλ,2 + bλS2

λ,1

)
with Sλ,1 =

rλ∑

i=1

ξλ,i and Sλ,2 =

rλ∑

i=1

ξ2
λ,i . (5)

Then, there is a numerical constant κ ≤ 1.271 such that, for every q ≥ 2,

‖Z − E[Z]‖q ≤ 4
√

κ
√

q

√√√√∑

λ∈Λm

(
(aλ + bλ)2

rλ∑

i=1

m4
2q,λ,i

)
+ 8

√
2κq

√√√√∑

λ∈Λm

(
b2
λ

∑

1≤i6=j≤rλ

m2
2q,λ,im

2
2q,λ,j

)
.

Lemma 6 (Lemma 5.4 of (1)). Assume that minλ∈Λm
{npλ } ≥ Bn ≥ 1 and

T ∈ (0, 1]. Define c1 = 0.184, c2 = 0.28, c3 = 9.6, c4 = 0.09, c5 = 10.5, and for
every t ≥ 0, ϕ1(t) = max(t, 1)e−max(t,1).

1. Lower deviations: for every x ≥ 0, with probability at least 1 − e−x,

E [Zm,1 ]−Zm,1 ≤ ϕ1(c1Bn)

c1

∑

λ∈Λm

aλ

npλ
+3

√
2

√∑

λ∈Λm

a2
λ

(npλ)2

√
4Dm exp(−c1Bn) + x

(6)

imsart-ejs ver. 2007/12/10 file: RP_appendix.tex date: March 5, 2008



Arlot, S./Technical appendix 18

2. Upper deviations: for every x ≥ 0, with probability at least 1 − e−x,

Zm,T − E [Zm,T ] ≤ ϕ1 (c2Bn)

c2

∑

λ∈Λm

(
aλ

npλ

)

+

√√√√
∑

λ∈Λm

(
aλ

npλ

)2

(Dme−c4Bn + x) × c3 ∨




c5T
√

x + e−c4Bn

n minλ∈Λm

{
pλ
aλ

}√∑
λ∈Λm

(
aλ

npλ

)2




(7)

In the proof of Lemma 14, we need the following two consequences of Sect. 5.3.5
of Massart (7).

Lemma 7 (Lemma 8.17 of (1)). Let (X1, . . . , Xn) be n independent random
variables, f a measurable function R

n 7→ R and

Z = f(X1, . . . , Xn) .

Then, there exists κ ≤ 1.271 such that for every q ≥ 2,

‖Z − E[Z]‖q ≤ 2
√

κ

√√√√q

∥∥∥∥∥

n∑

i=1

(Z − E [Z | (Xj)j 6=i ] )
2

∥∥∥∥∥
q/2

. (8)

proof of Lemma 7. Making references to (7), we use (5.58) in Thm. 5.10, with

V defined by (5.12) and Zi = E

[
Z | (Xj )j 6=i

]
. Hence,

∥∥(Z − E [Z ] )+
∥∥

q
≤
√

κq ‖V ‖q/2 .

It is then sufficient to apply it to both Z and −Z, and finally use the triangular
inequality, in order to bound the moments of (Z − E [Z ] ).

Lemma 8 (Lemma 8.18 of (1)). Let (X1, . . . , Xn) be n independent random
variables admitting q-th moments for some q ≥ 2: mi,q = E[|Xi|q]1/q. Let S =∑s

i=1 Xi. Then,

‖S‖q ≤ 2
√

κ
√

q

√√√√
s∑

i=1

m2
i,q.

proof of Lemma 8. Apply Lemma 7 to S:

‖S − E[S]‖q ≤ 2
√

κ

√√√√q

∥∥∥∥∥

s∑

i=1

E [(S − E[S | Xi])2 | X1...n]

∥∥∥∥∥
q/2

= 2
√

κ

√√√√q

∥∥∥∥∥

s∑

i=1

X2
i

∥∥∥∥∥
q/2

≤ 2
√

κ

√√√√q

s∑

i=1

‖Xi‖2
q .
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5. Proofs of the technical lemmas

We here give the complete proofs of the three technical lemmas stated in App. 9.10.
First, we add to Lemma 15 two inequalities that we used in Sect. 4.

Lemma 9 (Lemma 12 of (3)). Let (pλ)λ∈Λm
be non-negative real numbers of

sum 1, (np̂λ)λ∈Λm
a multinomial vector of parameters (n; (pλ)λ∈Λm

), γ > 0.
Assume that Card(Λm) ≤ n and minλ∈Λm

{npλ } ≥ Bn > 0. There is an event
of probability at least 1 − Ln−γ on which the following three inequalities hold.

max
λ∈Λm

{
pλ

p̂λ
1

p̂λ>0

}
≤ L × (γ + 1) ln(n) (9)

min
λ∈Λm

{
pλ

p̂λ

}
≥ 1

2 + (γ + 1)B−1
n ln(n)

(10)

min
λ∈Λm

{np̂λ } ≥ minλ∈Λm
{npλ }

2
− 2(γ + 1) ln(n) (11)

proof of Lemma 9. Those three results come from Bernstein’s inequality (e.g.
Prop. 2.9 of (7)) applied to np̂λ: for every λ ∈ Λm, there is a set of probability
1 − 2n−(γ+1) on which

npλ−
√

2npλ(γ + 1) ln(n)− (γ + 1) ln(n)

3
≤ np̂λ ≤ npλ+

√
2npλ(γ + 1) ln(n)+

(γ + 1) ln(n)

3
.

For (9), if npλ ≥ 8(γ + 1) ln(n), the lower bound gives the result. Otherwise,
remark only that (pλ/p̂λ)1

p̂λ>0
≤ npλ ≤ 8(γ + 1 ln(n). For (10), use the upper

bound and remark that npλ(γ + 1) ln(n)B−1
n ≥ (γ + 1) ln(n). For (11), use the

lower bound and remark that
√

2npλ(γ + 1) ln(n) ≤ (npλ)/2 + (γ + 1) ln(n).
Finally, the union bound gives the result since Card(Λm) ≤ n.

proof of Lemma 16. Remark that for every λ ∈ Λm such that σ does not jump
on Iλ,

(σr
λ)

2 ≥ min
x∈Iλ

{
σ(X)2

}
≥ 1

2 Leb(Iλ)

∫

Iλ

σ(x)2 Leb(dx) − (Kσ diam(Iλ) )
2

since (a− b)2 = a2 − 2ab+ b2 ≥ a2

2 − b2 and σ is Kσ Lipschitz. There is at most
Jσ other λ, for which

(σr
λ )

2 ≥ 0 ≥ 1

2 Leb(Iλ)

∫

Iλ

σ(x)2 Leb(dx) − ‖σ(X)‖2
∞

2
.

This implies

∑

λ∈Λm

(σr
λ )

2 ≥ Leb(X )

2 maxλ∈Λm
{Leb(Iλ)} ‖σ‖2

L2(Leb)−DmK2
σ max

λ∈Λm

{
diam(Iλ)2

}
−Jσ ‖σ(X)‖2

∞

2
.
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proof of Lemma 17. From (Al) and the upper bound in (Arℓ,u),

‖s − sm‖∞ ≤ B max
λ∈Λm

{diam(Iλ)} = B max
λ∈Λm

{Leb(Iλ)} ≤ Bcr,u Leb(X )D−1
m .

(12)
For the lower bound, let ΛJ

m be the set of λ ∈ Λm such that Iλ ⊂ J ,

sλ,Leb = Leb(Iλ)−1

∫

Iλ

s(x) Leb(dx)

and µ = L(X). Then, using (Adℓ),

‖s − sm‖2
L2(µ) ≥

∑

λ∈ΛJ
m

∫

Iλ

(s(x) − sm(x))
2
cmin
X Leb(X )−1 Leb(dx)

≥ cmin
X Leb(X )−1

∑

λ∈ΛJ
m

∫

Iλ

(s(x) − sλ,Leb)
2
Leb(dx) .

For any λ ∈ ΛJ
m, since s is continuous on Iλ, there is some xλ ∈ Iλ such that

sλ,Leb = s(xλ). By (Al), for every x ∈ Iλ,

(s(x) − s(xλ))
2 ≥ B2

0 (x − xλ)
2

so that

‖s − sm‖2
L2(µ) ≥ cmin

X Leb(X )−1
∑

λ∈ΛJ
m

B2
0 Leb(Iλ)3

12
≥

cmin
X B2

0c3
r,ℓ Leb(X )2

12D3
m

Card
(
ΛJ

m

)

≥
cmin
X B2

0c3
r,ℓ Leb(X )2

12D3
m

(
cJDm

cr,u
− 2

)

+

.

Combined with (12), this gives the result.
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