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Abstract: We define a new family of resampling-based penalization pro-
cedures for model selection in a very general framework. It generalizes sev-
eral methods (including Efron’s bootstrap penalties and the recently pro-
posed leave-one-out penalties, Arlot (2008c)) to any exchangeable weighted
bootstrap resampling scheme. In the heteroscedastic regression framework,
assuming the models to have a particular structure, we prove that these
penalties satisfy a non-asymptotic oracle inequality with a leading constant
close to 1. In particular, they are asympotically optimal. We then use these
resampling penalties to define an estimator which adapts simultaneously to
the smoothness of the regression function and the heteroscedasticity of the
noise. This is remarkable because these penalties are general purpose de-
vices, which have not been built specifically to handle heteroscedastic data.
We have thus proven that resampling penalties are naturally adaptive to
heteroscedasticity. In addition, a simulation study shows that these penal-
ties improve simultaneously V -fold cross-validation, in particular when the
signal-to-noise ratio is not large.
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1. Introduction

Model selection has received much interest in the last decades. When its final
goal is prediction, it can be seen more generally as the question of choosing
between the outcomes of several prediction algorithms. With such a general
formulation, a very natural (and classical) answer is the following. First, estimate
the prediction error for each model (or algorithm). Then, select the model which
minimizes this criterion. Model selection procedures mainly differ on the way of
making this estimation.

It is natural to think of the empirical risk (also known as the apparent error
or the resubstitution error) as an estimator of the prediction error. This can
fail dramatically, because it uses the same data for building predictors and for
comparing them, making this estimate strongly biased for models involving a
number of parameters growing with the sample size.

In order to correct this drawback, cross-validation methods (Allen (4), Stone
(67)) rely on a data-splitting idea for estimating the prediction error with much
less bias. In particular, V -fold cross-validation (VFCV, Geisser (36)) is a popular
procedure in practice because it is both general and computationally tractable.
There is a huge number of papers about the properties of cross-validation meth-
ods, showing that they are efficient for a suitable choice of the way the data
is split (or V for VFCV). Asymptotic optimality results of leave-one-out cross-
validation (i.e. the V = n case) in regression have been proven for instance by
Li (49) and Shao (62). However, when V is fixed, VFCV can be asymptotically
suboptimal, as shown by Arlot (9). We refer to the latter paper for more ref-
erences on cross-validation methods, including the small amount of available
non-asymptotic results.

Another way to correct the empirical risk for its bias is penalization. Basi-
cally, it states that a good choice can be made by minimizing the sum of the
empirical risk (how do algorithms fit the data) and some complexity measure of
the algorithms (called the penalty). This is the case of FPE (Akaike (2)), AIC
(Akaike (3)) and Mallows’ Cp or CL (Mallows (51)), to name but a few.

In this article, we aim at defining efficient penalization procedures, i.e. such
that their quadratic risk is asymptotically equivalent to the risk of the oracle.
This property is often called asymptotic optimality. It does not mean that the
procedure finds out a “true model” (which may even not exist), which would
be the consistency problem. A procedure is efficient when it makes the best
possible use of the data in terms of the quadratic risk of the final estimator.
This property is desired when the final goal of model selection is prediction or
estimation. According to the previous approach, the ideal penalty for prediction
is the difference between the prediction error (the “true risk”) and the empirical
risk, and penalties should be data-dependent estimates of this quantity.

Many penalties (or complexity measures) have been proposed. Consider for
instance regression and least-square estimators on finite-dimensional vector spaces
(the models). When the design is fixed and the noise-level constant equal to σ,
Mallows’ Cp penalty (51) (equal to 2n−1σ2D for a D-dimensional space, and it
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can be modified according to the number of models (20; 59)) has some optimal-
ity properties (63; 49; 14; 21). However, such a penalty linear in the dimension
may fail with heteroscedastic data (as shown by Arlot (6), Chap. 4).

In the binary supervised classification framework, VC-dimension-based penal-
ties have also been proposed. They have the drawback of being independent of
the underlying measure, so that they are adapted to the worst case. They have
been improved with data-dependent complexity estimates, such as Rademacher
complexities (45; 17) (generalized by Fromont with resampling ideas (33)), but
these ones may still be too large because they are global complexity measures.
The localization idea then led to local Rademacher complexities (18; 46) which
are tight estimates of the ideal penalty, but involve huge (and sometimes un-
known) constants and may be very difficult to compute in practice. Hence, there
is still some need for easy-to-compute margin adaptive penalties.

It appears that all these penalties have serious drawbacks which make them
less often used in practice than cross-validation methods: AIC and Mallows’ Cp

rely on strong assumptions (like homoscedasticity of the data, and linearity of
the models) and some mainly asymptotic arguments; global complexities are far
too pessimistic; local Rademacher complexities are hard to compute, and even
much harder to calibrate. There is another approach for designing penalties in
a general framework, which does not have these drawbacks a priori, which is
resampling.

Efron’s resampling heuristics (29) (first stated for the bootstrap, then general-
ized to exchangeable weighted bootstrap by Mason and Newton (54) and Præst-
gaard and Wellner (58)) basically states that the distribution of any function
of the (unknown) law of the data and the sample can be estimated by drawing
“resamples” from the initial sample. In particular, this heuristics can be used to
estimate the variance of an estimator (Efron (29)), a prediction error (Wu (69),
Efron and Tibshirani (32)) or the ideal penalty (Efron (30; 31) and Ishiguro,
Sakamoto and Kitagawa (43) with the bootstrap; Shao (61) with the m out of n
bootstrap1; Arlot (9) with a V -fold subsampling scheme). The asymptotic op-
timality of Efron’s bootstrap penalty for some maximum likelihood estimators
has been proven by Shibata (64). Notice also that the aforementioned global
and local Rademacher complexities are using an i.i.d. Rademacher scheme for
estimating different upper bounds on the ideal penalty, and Fromont’s penalties
(34) are generalizing the global ones to the exchangeable weighted bootstrap.

The first goal of this paper is to define and study general-purpose penalties.
This means that they should be well-defined in (almost) every framework, and
perform reasonably well in most of them, including regression and classification.
The main interest of such penalties would be the ability to face difficult problems
(e.g. heteroscedastic data, a non-smooth regression function, or the fact that the
oracle model attains fast rates of estimation), without knowing them in advance.
From the practical viewpoint, such a property is crucial.

1Notice that Shao’s goal was not efficiency but consistency.
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For this, we propose to use the aforementioned resampling heuristics, with
the general exchangeable weighted bootstrap. This defines a wide family, called
“Resampling Penalization” (RP), which includes Efron’s and Shao’s penalties,
as well as the n-fold penalties defined by Arlot (9). To our knowledge, it has never
been proposed with such general resampling schemes, so that it contains a wide
range of completely new procedures. Notice that RP is well-defined in a very
general framework, which includes regression and classification, but also many
other possible fields of application. Even if we focus on least-square regression
for our proofs, we obviously do not mean that RP should be restricted to this
framework.

We investigate the model selection performance (in terms of efficiency) of
RP, with a unified approach for all the “exchangeable” resampling schemes. For
instance, our results make a comparison of the bootstrap and subsampling quite
straightforward, which is not common in the resampling literature (except a few
asymptotic results, cf. Barbe and Bertail (15)).

Our viewpoint is non-asymptotic, which has two major implications. First,
non-asymptotic results are made to handle collections of models which may
depend on the sample size n: their sizes may typically be a power of n, and
they may contain models whose complexities grow with n. Such collections of
models are particularly significant for designing adaptive estimators of a function
which is only assumed to belong to some hölderian ball, which may require an
arbitrarily large number of parameters. Second, in several practical applications,
we are in a “non-asymptotic situation” in the sense that the signal-to-noise ratio
is low. As noticed in (9), with such data, VFCV can have serious drawbacks
which can be naturally fixed when using penalization procedures, because they
are more flexible. It is worth noticing that such a non-asymptotic approach is
not common in the model selection literature, and more generally there are few
non-asymptotic results concerning general resampling methods.

Another important point is that our framework includes several kinds of
heteroscedastic data. We only assume that the observations (Xi, Yi)1≤i≤n are
i.i.d. with

Yi = s(Xi) + σ(Xi)ǫi ,

where s : X 7→ R is the (unknown) regression function, σ : X 7→ R is the
(unknown) noise-level, and ǫi has a zero mean and a unit variance conditionally
to Xi. In particular, the noise-level σ(X) can be strongly dependent from X ,
and the distribution of ǫ can itself depend from X . Such data are generally
considered as very difficult to handle, because we have no information on σ,
making irregularities of the signal harder to distinguish from noise. As already
mentioned, simple model selection procedures such as Mallows’ Cp may not
work, and it is natural to hope that resampling methods may be robust to
heteroscedasticity. In this article, both theoretical and simulation results confirm
this fact.

We mainly prove two kinds of results. First, making very mild assumptions
on the distribution of the data, we prove a non-asymptotic oracle inequality for
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RP with a leading constant close to 1 (Thm. 1). It is satisfied for several kinds of
resampling schemes (including bootstrap, leave-one-out, half-subsampling and
i.i.d. Rademacher weighted bootstrap) and implies the asymptotic optimality
of RP, even when the data is highly heteroscedastic. For proving such a result,
we have to assume that each model is the vector space of piecewise constant
functions (histograms) on some partition of the feature space. This is quite
a restriction, but we conjecture it to be mainly technical, and that RP stays
efficient in a much more general framework. We provide some evidence for this in
Sect. 8.3. Another reason for studying extensively the toy model of histograms
is that we can use it to derive heuristics for the general case. Our main goal
here is to help practical users, who would like to know how to use resampling
for performing model selection.

Second, we use RP to build an estimator simultaneously adaptive to the
smoothness of the regression function (assuming that it is α-hölderian for some
unknown α ∈ (0, 1]) and to the unknown noise-level σ ( · ) (Thm. 2). This result
may seem surprising since RP has never been designed specifically for such a
purpose. We interpretate this as another evidence that RP is naturally adaptive,
and should work well in several other difficult frameworks.

As already noticed, several similar results for other algorithms exist in the
literature, for instance for Mallows’ Cp (with homoscedastic data only), VFCV
and leave-one-out cross-validation. In addition, there exists several minimax
adaptive estimators for heteroscedastic data (assuming only that the noise-level
is smooth enough), such as the ones of Efromovich and Pinsker (28) or Galtchouk
and Pergamenschikov (35). The interest of RP is both its generality (contrary
to Mallows’ Cp and specific adaptive estimators) and its flexibility (contrary to
VFCV, see (9)).

We conduct a simulation experiment (Sect. 6) with small sample sizes. RP is
shown to be competitive with Mallows’ Cp for “easy” problems, and much better
for some harder ones (e.g. with a variable noise-level). On the other hand, a
well-calibrated RP has almost always better performances than classical VFCV.
Thus, RP may be of great interest in situations where no a priori information
is known about the data. It is an efficient alternative to VFCV, which is able to
deal with difficult problems, while being close to the best procedures that are
fitted for easier problems.

This article is organized as follows. The general Resampling Penalization
algorithm (RP) is defined in Sect. 2. We focus on the histogram regression case
in Sect. 3, for which we state our main theorems in Sect. 4. The influence of
the resampling weights on the performance of the procedure is theoretically
investigated in Sect. 5. We then present a simulation experiment in Sect. 6. The
practical implementation of RP is considered in Sect. 7. We discuss the strengths
and weakness of RP in Sect. 8. Finally, Sect. 9 is devoted to the proofs. Notice
also that some additional material (other simulation experiments and proofs)
has been reported into a technical appendix (7).
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2. A general model selection algorithm

2.1. Setting

First consider the general prediction setting: X ×Y is a measurable space, P an
unknown probability measure on it and we observe some i.i.d. data (X1, Y1), . . . , (Xn, Yn) ∈
X × Y of common law P . Let S be the set of predictors (measurable functions
X 7→ Y) and γ : S×(X ×Y) 7→ R a contrast function. Given a family (ŝm)m∈Mn

of data-dependent predictors, our goal is to find the one minimizing the predic-
tion loss (or prediction error) Pγ(t) := E(X,Y )∼P [γ(t, (X, Y ))]. Notice that the
expectation here is only taken w.r.t. (X, Y ), so that Pγ(t) is random when t
is random (e.g. data-driven). Assuming that there exists a minimizer s ∈ S
of the loss (the Bayes predictor), it is equivalent to consider the excess loss
ℓ (s, t ) = Pγ(t) − Pγ(s) ≥ 0 instead of the loss.

We assume that each predictor ŝm can be written as a function ŝm(Pn) of
the empirical distribution of the data Pn = n−1

∑n
i=1 δ(Xi,Yi). The case-example

of such a predictor is the empirical risk minimizer ŝm ∈ argmint∈Sm {Pnγ(t)},
where Sm is any set of predictors (called a model). A natural method for choosing
some data-dependent m̂ ∈ Mn is to minimize over Mn a criterion crit(m)
which estimates the true prediction loss Pγ(ŝm(Pn)). The more natural criterion
may then be the re-substitution error Pnγ ( ŝm(Pn) ), but it underestimates the
true prediction loss, in particular from the non-asymptotic viewpoint where the
complexity of the algorithms ŝm is allowed to increase with n. This leads to the
penalization idea, which is to correct this bias by adding some data-dependent
complexity measure pen(m) to the re-substitution error. In other words, we
define

m̂ ∈ arg min
m∈Mn

{Pnγ ( ŝm(Pn) ) + pen(m)} , (1)

where pen(m) is chosen so that Pnγ ( ŝm ) + pen(m) is close to the prediction
error Pγ ( ŝm ). Hence, the “ideal penalty” is

penid(m) := (P − Pn)γ(ŝm(Pn)) , (2)

and we would like pen(m) to be as close to penid(m) as possible for every
m ∈ Mn.

In such a general setting, it is natural to think that resampling may be used
to estimate the ideal penalty.

2.2. The resampling heuristics

Let us recall briefly the resampling heuristics, which has been introduced by
Efron (29) in the context of variance estimation. Basically, it tells that one can
mimic the relationship between P and Pn by building a n-sample of common
distribution Pn (the “resample”). PW

n denoting the empirical distribution of the
resample, the pair (P, Pn) should be close (in distribution) to the pair (Pn, PW

n )
(conditionally to Pn for the latter distribution). Then, the expectation of any
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quantity of the form F (P, Pn) can be estimated by EW

[
F (Pn, PW

n )
]
. The ex-

pectation EW [ · ] means that we integrate w.r.t. the resampling randomness only.
Let us emphasize that penid(m) has this form.

Later on, this heuristics has been generalized to other resampling schemes,
with the exchangeable weighted bootstrap (Mason and Newton (54), Præstgaard
and Wellner (58)). The empirical distribution of the resample then has the
general form

PW
n :=

1

n

n∑

i=1

Wiδ(Xi,Yi) with W ∈ R
n an exchangeable weight vector,

independent from the data (W is said to be exchangeable when its distribution is
invariant by any permutation of its coordinates), and such that ∀i, E [Wi ] = 1.
In this article, we will also assume that ∀i, Wi ≥ 0 a.s. and E[W 2

i ] < ∞.

We mainly consider the following weights, which include the more classical
resampling schemes:

1. Efron (m), m ∈ N\{0} (Efr): ((m/n)Wi)1≤i≤n is a multinomial vector
with parameters (m; n−1, . . . , n−1). A classical choice is m = n.

2. Rademacher (p), p ∈ (0; 1) (Rad): (pWi) are independent, with a Bernoulli
(p) distribution. A classical choice is p = 1/2.

3. Poisson (µ), µ ∈ (0,∞) (Poi): (µWi) are independent, with a Poisson (µ)
distribution. A classical choice is µ = 1.

4. Random hold-out (q), q ∈ {1, . . . , n} (Rho): Wi = (n/q)1i∈I with I uni-
form random subset (of cardinality q) of {1, . . . , n}. A classical choice is
q = n/2.

5. Leave-one-out (Loo) = Rho (n − 1).

In the following, when the parameter is not mentioned, it has its “classical”
value.

Remark 1. The terminology above is made to give explicit links with some
classical resampling schemes. See (54; 39; 68) for more details about classical
resampling weights names, as well as other classical examples.

• The name “Efron” comes from the classical choice m = n for which Efron
weights actually are Efron’s bootstrap weights. When m < n, this is the
m out of n bootstrap, used for instance by Shao (61).

• The name “Rademacher” for the i.i.d. Bernoulli weights comes from the
classical choice p = 1/2 for which (Wi − 1)i are i.i.d. Rademacher random
variables. Using this resampling scheme to estimate some upper bound on
penid(m) can lead to either global or local Rademacher complexities.

• Poisson weights are often used as approximations to Efron weights, via the
so-called “Poissonization” technique (cf. (68), Chap. 3.5, and (33)). They
are known to be efficient for estimating several non-smooth functionals
(Barbe and Bertail (15), Chap. 3; see also Mammen (52), Sect. 1.4).
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• The Random hold-out (q) weights can also be called “delete-(n− q) jack-
knife”, as well as the Leave-one-out weights also refer to the jackknife
(sometimes called cross-validation). They are both resampling schemes
without replacement (see Ex. 3.6.14 in (68)), more often called subsam-
pling weights (see e.g. Politis, Romano and Wolf (57) on subsampling).
They are thus very close to the idea of splitting the data into a training
set and a validation set (e.g. leave-one-out, hold-out and cross-validation).
Indeed, if one defines the training set as

{ (Xi, Yi) s.t. Wi 6= 0}

and the validation set as its complementary, there is a one-to-one corre-
spondence between the two ideas.

Applying the resampling heuristics (with any exchangeable weight, for in-
stance one of the above) to estimate the ideal penalty (defined by (2)), we get

EW

[
Pnγ

(
ŝm

(
PW

n

))
− PW

n γ
(
ŝm

(
PW

n

))]
. (3)

As explained in introduction, we would like this quantity to be an unbiased
estimated of penid(m) for each model m. However, the asymptotic theory of
exchangeable bootstrap empirical processes (for instance, Theorem 3.6.13 of
van der Vaart and Wellner (68)) shows that this does not hold for general W ,
although it does in the bootstrap case (i.e. Efr(n) weights). More precisely, it

is asymptotically unbiased if and only if ∀i, E (Wi − 1)
2 ≈ 1, which holds for

several classical weights: Efr(n), Rad(1/2), Poi(1) and Rho(n/2), but not in the
general case. Intuitively, this condition means that the variability of the weights
has to be of the right order, so that Pn − PW

n mimics P − Pn. Otherwise, one
may have to multiply the resampling estimate (3) by a constant CW > 0.

In the framework developped in Sect. 3, it will turn out that

CW ∼n→∞

(
1

n

n∑

i=1

E (Wi − 1)2
)−1

does not depend on the model m, and we will give non-asymptotic expressions
for it (see Tab. 1). In the general case, we suggest to use a data-driven method
to estimate C (which is discussed in Sect. 7.3.1), whereas the resampling penalty
only estimates the shape of the ideal one.

2.3. Resampling penalization

We are now in position to make explicit the resampling penalization algorithm,
in the general framework.

Algorithm 1 (Resampling penalization).

1. Choose a resampling scheme, i.e. the law L(W ) of a weight vector W .
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2. Choose a constant C ≥ CW .
3. Compute the following resampling penalty for each m ∈ Mn:

pen(m) = CEW

[
Pnγ

(
ŝm

(
PW

n

))
− PW

n γ
(
ŝm

(
PW

n

))]
. (4)

4. Choose m̂ according to (1).

Remark 2. 1. Algorithm 1 above is a generalization of several model selection
procedures. With a bootstrap resampling scheme and C = 1, it is Efron’s
bootstrap penalty (30). In the log-likelihood framework, it has also been
called the EIC procedure by Ishiguro, Sakamoto and Kitagawa (43). With
a m out of n bootstrap resampling scheme and C = 1, it has been proposed
and studied by Shao (61) in the context of model identification (notice that
CW 6= 1 for Efr(m) weights if m 6= n; this is a crucial point that we will
discuss later). A (non-exchangeable) V -fold subsampling scheme has also
been proposed recently in (9), as an alternative to V -fold cross-validation.

2. When W are the “leave-one-out” weights, RP is not identical to the clas-
sical cross-validation model selection algorithm. However, according to
(9), when C = n − 1, it is identical to Burman’s n-fold corrected cross-
validation (23), hence very close to the uncorrected one.

3. We allow C to be larger than CW because overpenalizing may be fruitful
in a non-asymptotic viewpoint, e.g. when there is few noisy data. The
simulation study of Sect. 6 provides experimental evidence for this fact.

4. Since m̂ is computed through a plug-in method, Algorithm 1 seems to be
reasonable only if Mn is not too large. Otherwise, Birgé and Massart (21)
have proved that penalization procedures have to be enlarged, taking into
account the complexity of Mn.

In order to study Algorithm 1 from the non-asymptotic viewpoint, it is crucial
to compare the expectation of the resampling penalty (4) with the one of the
ideal penalty (2). This is a quite hard problem in general, since asymptotic
results can no longer be used. This is why, in the rest of the paper, we restrict
ourselves to least-square regression on histogram models. Notice that we do not
consider histograms as a final goal, but only a first theoretical step, from which
we can derive heuristics concerning Algorithm 1 in general. We describe this
framework in the next section.

3. The histogram regression case

3.1. Setting

In the regression framework, the data (Xi, Yi) ∈ X ×R are i.i.d. of common law
P . Denoting by s the regression function, we have

Yi = s(Xi) + σ(Xi)ǫi (5)

where σ : X 7→ R is the heteroscedastic noise-level and ǫi are i.i.d. centered noise
terms, possibly dependent from Xi, but with mean 0 and variance 1 conditionally
to Xi.
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The feature space X is typically a compact subset of R
d. We use the least-

squares contrast γ : (t, (x, y)) 7→ (t(x) − y)2 to measure the quality of a pre-
dictor t : X 7→ Y. As a consequence, the Bayes predictor is the regression
function s, and the excess loss coincides with the quadratic risk: ℓ (s, t ) =

E(X,Y )∼P (t(X) − s(X))
2
. To each model Sm, we associate the empirical risk

minimizer
ŝm := ŝm(Pn) = arg min

t∈Sm

{Pnγ(t)}

(when it exists and is unique). Define also sm := argmint∈Sm Pγ ( t ).

We now focus on histograms. Each model in (Sm)m∈Mn is the set of piecewise
constant functions (histograms) on some partition (Iλ)λ∈Λm of X . It is thus a
vector space of dimension Dm = Card(Λm), spanned by the family (1Iλ

)λ∈Λm .
As this basis is orthogonal in L2(µ) for any probability measure µ on X , we can
make explicit computations:

sm =
∑

λ∈Λm

βλ1Iλ
and ŝm =

∑

λ∈Λm

β̂λ1Iλ
,

where βλ := E [Y | X ∈ Iλ ] β̂λ :=
1

np̂λ

∑

Xi∈Iλ

Yi p̂λ := Pn(X ∈ Iλ) .

Similarly, we can compute the resampling versions of these quantities

ŝW
m := arg min

t∈Sm

PW
n γ(t) =

∑

λ∈Λm

β̂W
λ 1Iλ

with β̂W
λ :=

1

np̂W
λ

∑

Xi∈Iλ

WiYi

p̂W
λ := PW

n (X ∈ Iλ) = p̂λWλ and Wλ :=
1

np̂λ

∑

Xi∈Iλ

Wi .

Remark that ŝm is uniquely defined if and only if each Iλ contains at least one
of the Xi, i.e. minλ∈Λm p̂λ > 0. For this reason, we remove models for which
minλ∈Λm p̂λ = 0 (for instance by adding +∞1

minλ∈Λm p̂λ=0
to the penalty).

3.2. A modified algorithm for histograms

Assuming that minλ∈Λm p̂λ > 0 and defining pλ := P (X ∈ Iλ), we can compute
the ideal penalty (see (46) and (47) in Sect. 9.7):

penid(m) = (P − Pn)γ(ŝm) =
∑

λ∈Λm

(pλ + p̂λ )
(

β̂λ − βλ

)2

+ (P − Pn)γ(sm) .

Hence, the resampling penalty defined by (4) can be written

pen(m) = EW

[
(Pn − PW

n )γ(ŝW
m )
]

=
∑

λ∈Λm

EW

[(
p̂λ + p̂W

λ

) (
β̂W

λ − β̂λ

)2
]

+ EW

[
(Pn − PW

n )γ(ŝm)
]

=
∑

λ∈Λm

(
EW

[
p̂λ

(
β̂W

λ − β̂λ

)2
]

+ EW

[
p̂W

λ

(
β̂W

λ − β̂λ

)2
])

(6)
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L(W ) Efr(m) Rad(p) Poi(µ) Rho(q) Loo
CW m/n p/(1 − p) µ q/(n − q) n − 1

Table 1

CW for several resampling schemes ( cf. Sect. 4.4.1).

since E[Wi] = 1 for every i implies EW

[
(Pn − PW

n )γ(ŝm)
]

= 0. Unfortunately,
this penalty (6) is well-defined if and only if ŝW

m is a.s. uniquely defined, i.e.
Wλ > 0 for every λ ∈ Λm. This can not be assumed for general resampling
schemes, considering that

P (∀i ≥ 2, Wi = 0) > 0

for most of them, including the bootstrap. We then have to modify Algorithm 1
in the histogram regression case.

Algorithm 2 (Resampling penalization for histograms).

0. Replace Mn by

M̂n =

{
m ∈ Mn s.t. min

λ∈Λm

{np̂λ} ≥ 3

}
.

1. Choose a resampling scheme L(W ).
2. Choose a constant C ≥ CW where CW is defined in Tab. 1.
3. Define, for each m ∈ M̂n, the resampling penalty pen(m) as

C
∑

λ∈Λm

(
EW

[
p̂λ

(
β̂W

λ − β̂λ

)2
∣∣∣∣ Wλ > 0

]
+ EW

[
p̂W

λ

(
β̂W

λ − β̂λ

)2
])

.

(7)
4. Choose m̂ ∈ arg min

m∈M̂n
{Pnγ ( ŝm ) + pen(m)}.

Remark 3. 1. At step 0, we remove more models than those for which minλ∈Λm p̂λ =
0. When np̂λ = 1, it is clear that one can not estimate the quality of es-
timation of β̂λ, which comes from only one observation, without making
further assumptions on the noise-level σ. Hence, we can not hope that
resampling will be able to estimate it directly. The reason why we choose
to remove also models for which minλ∈Λm p̂λ = 2 is that the oracle in-
equalities of Sect. 4 require it for several instances of weights (but not all
of them). Notice also that such models have very poor prediction perfor-
mance in general, because making predictions from only two observations
is quite hazardous. This is why step 0 is very reasonable.

2. Several other conventions may have been chosen at step 3, in order to deal
with the uniqueness issue. With (7), we have chosen to restrict to weight
vectors such that Wλ > 0, separately for each λ ∈ Λm and each m ∈ Mn.
Together with step 0, this avoids to underestimate the penalty pen when
minλ∈Λm {np̂λ } is small. We refer to Sect. 8.1 of (6) and to (9) for further
considerations about this issue.
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4. Main results

In this section, we give some non-asymptotic properties of Resampling Penaliza-
tion (Algorithm 2) for model selection. The first one is an oracle inequality, with
leading constant close to 1. In particular, it implies the asymptotic optimality
of RP. The second one is an adaptivity result, when the regression function is
assumed to belong to some Hölderian ball. A quite interesting point is that both
results stay valid with very mild assumptions on the distribution of the noise,
which is allowed to be non-gaussian and highly heteroscedastic.

Throughout this section, we assume the existence of some non-negative con-
stants αM, cM, crich, η such that:

(P1) Polynomial complexity of Mn: Card(Mn) ≤ cMnαM .
(P2) Richness of Mn: ∃m0 ∈ Mn s.t. Dm0 ∈ [

√
n; crich

√
n ].

(P3) The weight vector W is chosen among Efr, Rad, Poi, Rho and Loo (defined
in Sect. 2.2).

4.1. Oracle inequality

Theorem 1. Assume that the (Xi, Yi)’s satisfy the following:

(Ab) Bounded data: ‖Yi‖∞ ≤ A < ∞.
(An) Noise-level bounded from below: σ(Xi) ≥ σmin > 0 a.s.
(Ap) Polynomial decreasing of the bias: there exists β1 ≥ β2 > 0 and C+

b , C−
b >

0 such that
C−

b D−β1
m ≤ ℓ (s, sm ) ≤ C+

b D−β2
m .

(ArXℓ ) Lower regularity of the partitions for L(X): Dm minλ∈Λm pλ ≥ cX
r,ℓ.

Let m̂ be the model chosen by Algorithm 2 (under restrictions (P1− 3), with
C = CW ). Then, there exists a constant K1 > 0 and a sequence ǫn converging
to zero at infinity such that, with probability at least 1 − K1n

−2,

ℓ
(
s, ŝ

m̂

)
≤ (1 + ǫn ) inf

m∈Mn

{ ℓ (s, ŝm )} . (8)

Moreover, we have

E
[
ℓ
(
s, ŝ

m̂

)]
≤ (1 + ǫn ) E

[
inf

m∈Mn

{ ℓ (s, ŝm )}
]

+
A2K1

n2
. (9)

The constant K1 may depend on constants in (Ab), (An), (Ap), (ArXℓ ) and
(P1− 3), but not on n. The term ǫn is smaller than ln(n)−1/5; it can also be
taken smaller than n−δ for any 0 < δ < δ0(β1, β2), at the price of enlarging K1.

The non-asymptotic oracle inequality (8) implies that Algorithm 2 is a.s.
asymptotically optimal in this framework, when C ∼n→∞ CW . This means that
if Mn contains a model that takes well into account the smoothness of s and the
shape of the noise σ(X), the Resampling Penalization algorithm does as well as
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this oracle model for estimation. Since this does not require any knowledge about
the smoothness of s, the heteroscedasticity of σ or any other property satisfied
by P , it is a naturally adaptive algorithm. We give in the next subsection a
framework where Resampling Penalization can be used to build an adaptive
estimator.

Notice that (8) is somehow stronger than an adaptivity result because of
the leading constant close to one (whereas estimators are said “adaptive” when
they attain the correct estimation rate up to a constant independent from n,
but possibly much greater than one). Hence, once Mn is well chosen (and our
assumptions on Mn do not forbid this), one can hope that RP leads to an
adaptive estimator which should be close to the optimal ones.

We now make some comments concerning the assumptions of Thm. 1:

1. When C ∈ [CW ; ηCW ] for some η > 1, the same result holds with a
leading constant 2η − 1 + ǫn instead of 1 + ǫn in (8) and (9).

2. With (P3), we restrict ourselves to the five “classical” exchangeable weights
of Sect. 2.2. What we really need is that (1) W is exchangeable, (2)
R1,W (n, p)+R2,W (n, p) ≈ 2CW for np large enough (with a non-asymptotic
control on the ratio between these two quantities, as in the proof of
Prop. 2), and (3) R1,W (n, p) + R2,W (n, p) > (1 + ǫ)CW for some ǫ > 0, as
soon as np ≥ T ≥ 2 (as in Lemma 11). Then, replacing the threshold 3 by
T at step 0 of Algorithm 2, the results of Thm. 1 still hold.
The first two conditions hold for all the exchangeable weights considered
in Prop. 2. The third one is satisfied for most of them, as soon as T is
large enough (see Remark 11 below Lemma 11). They certainly also hold
for several other resampling schemes, to which Thm. 1 would then be
extended.

3. (Ab) and (An) are rather mild (and neither A nor σmin need to be known
from the statistician). In particular, they allow quite general heteroscedas-
tic noises. They can even be relaxed, as explained in Sect. 4.3.

4. When X has a lower bounded density w.r.t. Leb, (ArXℓ ) is satisfied for
“almost piecewise regular” histograms, including all those considered in
the simulation study of Sect. 6.

5. The upper bound in (Ap) holds when (Iλ)λ∈Λm is regular on X ⊂ R
k and

s α-hölderian with α > 0, with β = 2αk−1.

To finish with, let us comment more extensively the lower bound in (Ap),
which may seem unintuitive at first sight. Indeed, it means that s is not too
well approximated by the models Sm. Notice that it is classical to assume that
ℓ (s, sm ) > 0 for every m ∈ Mn, for proving the asymptotic optimality of
Mallows’ Cp (cf. Shibata (63), Li (49) and Birgé and Massart (21)). Moreover,
the stronger assumption (Ap) has already been made by Stone (66) and Burman
(24) in the density estimation framework, for the same technical reasons as ours.

Let us now explain why we use it in our proof. According to Remark 9 in
Sect. 9.2, when the lower bound in (Ap) is no longer assumed, (8) holds with two
modifications in its right-hand side: the inf is restricted to models of dimension
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larger than ln(n)γ1 , and there is a remainder term ln(n)γ2n−1 (where γ1 and
γ2 are numerical). This is essentially the same as (8), unless there is a model
of small dimension with a very small bias, and the lower bound in (Ap) is
sufficient to ensure that this do not happen. Notice that if there is such a very
small model very close to s, it is hopeless to obtain an oracle inequality with
a penalty which estimates penid, simply because deviations of penid around its
expectation would be much larger than the excess loss of the oracle. In such a
situation, BIC-like methods are more appropriate.

Another argument in favour of (Ap) is that it is not too strong, because it
is at least satisfied in the following case: (Iλ)λ∈Λm is “regular” (as defined in
Algorithm 3 below), X has a lower-bounded density w.r.t. the Lebesgue measure
on X ⊂ R

k, and s is non-constant and α-hölderian (w.r.t. ‖·‖∞), with

β1 = k−1 + α−1 − (k − 1)k−1α−1 and β2 = 2αk−1 .

We refer to Sect. 8.10 in (6) for more details about this claim (including complete
proofs).

We finally mention that this is not the only case where (Ap) holds. In par-
ticular, an important point is that Thm. 1 does not need the distribution of X
to satisfy any assumption, once the models are wisely chosen according to this
distribution. As a consequence, if one has some prior knowledge on the distri-
bution of X (e.g. thanks to unlabeled data), it is always possible to choose a
collection of models which satisfy (P1), (P2) and (ArXℓ ), and has good approx-
imation properties w.r.t. the distribution of X (i.e. (Ap) is satisfied, uniformly
over functions s belonging to some appropriate approximation space). Hence,
the general formulation of (Ap) is crucial to make Thm. 1 valid whatever the
distribution of X .

4.2. Adaptivity to the hölderian regularity

As noticed in the previous subsection, a natural framework in which Thm. 1 can
be applied is when X is a compact subset of R

k, X has a lower bounded density
w.r.t. the Lebesgue measure and s is α-hölderian with α ∈ (0, 1]. Indeed, the
latter condition on α ensures that regular histograms have good approximation
properties. In this subsection, we investigate how these facts can be combined
with Thm. 1 to build an adaptive estimator through Resampling Penalization.
We first define the estimator that is likely to be adaptive to α. For the sake of
simplicity2, let us assume that X is a closed ball of (Rk, ‖·‖∞), say [0, 1]k.

Algorithm 3 (Resampling penalization with regular histograms).
For every T ∈ N\ {0}, denote by Sm(T ) is the model of regular3 histograms

2If X has a smooth boundary, Algorithm. 3 can be modified so that our proof of Thm. 2
stays valid.

3When X has a general shape, it is any partition ( Iλ )λ∈Λm
such that Leb(Iλ) ∝

T−k Leb(X ) and diam(Iλ) ∝ T−1 for every λ ∈ Λm.
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with T k bins:

(Iλ )λ∈Λm
:=

(
k∏

i=1

[
T−1ji; T

−1(ji + 1)
)
)

0≤j1,...,jk≤T−1

.

Then, define (Sm)m∈Mn :=
(
Sm(T )

)
1≤T≤n1/k .

0. Replace Mn by

M̂n =

{
m ∈ Mn s.t. min

λ∈Λm

{np̂λ} ≥ 3

}
.

1. Choose a resampling scheme L(W ) among Efr, Rad, Poi, Rho and Loo.
2. Take the constant C = CW as defined in Tab. 1.
3. For each m ∈ M̂n, compute pen(m) defined by (7).
4. Choose m̂ ∈ arg min

m∈M̂n
{Pnγ ( ŝm ) + pen(m)}.

5. Define s̃ := ŝ
m̂

.

Theorem 2. Let Y ⊂ R and X = [0, 1]k. Assume that the (Xi, Yi)’s satisfy

(Ab) Bounded data: ‖Yi‖∞ ≤ A < ∞.
(An) Noise-level bounded from below: σ(Xi) ≥ σmin > 0 a.s.

(Adℓ) Density bounded from below:

∃cmin
X > 0, ∀I ⊂ X , P (X ∈ I) ≥ cmin

X Leb(I) .

(Ah) Hölderian regression function: there exists α ∈ (0; 1] and R > 0 s.t.

s ∈ H(α, R) i.e. ∀x1, x2 ∈ X , |s(x1) − s(x2)| ≤ R ‖x1 − x2‖α
∞ .

Let s̃ be the estimator obtained through Algorithm 3. Define σmax = supX |σ| ≤
2A. Then, there exists positive constants K2 and K3 such that,

E [ℓ (s, s̃ ) ] ≤ K2R
2k

2α+k n
−2α
2α+k σ

4α
2α+k
max + K3A

2n−2 . (10)

If moreover the noise-level is smooth:

(Aσ) σ is piecewise Kσ-Lipschitz with at most Jσ jumps,

then, (10) holds with ‖σ‖L2(Leb) instead of σmax, and assumption (An) can be
removed.

For both results, K2 depends only on α and k. The constant K3 depends
only on k, η, constants in (Ab), (An), (Adℓ)and (Ah) (and (Aσ) for the last
result).

We now compare the upper bounds given by Thm. 2 with classical minimax
lower bounds on the estimation of functions in H(α, R) with α ∈ (0, 1]. In
the homoscedastic case, lower bounds have been proven by Stone (65), and
generalized by several authors, such as Korostelev and Tsybakov (47) and Yang
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and Barron (72), to name but a few. It then appears that the best attainable
rate is

R
2k

2α+k n
−2α
2α+k σ

4α
2α+k ,

up to a positive multiplicative constant independent from n, R and σ. This
shows that the upper bound (10) attains the right estimation rate in terms of
n, R and σ, without using the knowledge of α, R or σ.

Moreover, (10) is still valid in a wide heteroscedastic framework, without us-
ing the knowledge of the shape of the noise-level σ. Then, up to a multiplicative
constant independent from n and R (but possibly of the order of a power of the
ratio between σmax and σmin), the upper bound (10) is the best possible estima-
tion rate. Minimax lower bounds have also been proven in the heteroscedastic
case (see e.g. Efromovich and Pinsker (28), Galtchouk and Pergamenschikov
(35) and references therein), showing in particular that when k = α = 1 and
the noise-level is smooth enough, the best attainable estimation rate depends

on σ through the multiplicative factor ‖σ‖
4α

2α+k

L2(Leb). This shows that the upper

bound given by Thm. 2 under the assumption (Aσ) is tight, even through its
dependence on the noise-level. Up to our best knowledge, such an upper bound
have never been obtained when α ∈ (0, 1) and k > 1, even with estimators using
the knowledge of α, σ and R.

Theorem 2 thus shows that Algorithm 3 defines an adaptive estimator, uni-
formly over distributions such that s belongs to some hölderian ball H(α, R)
with α ∈ (0, 1] and the noise-level σ is not too pathological. This is a quite
strong result. Of course, similar properties have already been proven for other
estimators (see e.g. Efromovich and Pinsker (28), Galtchouk and Pergamen-
schikov (35)). The main difference is that Resampling Penalization has not been
designed specifically to have such a property, contrary to these “ad hoc” esti-
mators (see Sect. 8.1.4 for further comments). This shows that exchangeable
resampling penalties are naturally adaptive to these features of the data. As we
discuss in Sect. 8.3, this make us conjecture that these penalties are adaptive
in several other frameworks, including difficult problems (heteroscedasticity of
the data being a major issue in practice).

Remark 4.

1. The proof of Thm. 2 actually gives a stronger result, which is that ŝ
m̂

attains the minimax rate of estimation on a set of probability larger than
1 − K ′

3n
−2. In particular, with probability one,

lim sup
n→∞

(
ℓ (s, s̃)R

−2k
2α+k n

2α
2α+k ‖σ‖

−4α
2α+k

L2(Leb)

)
≤ K2(α, k) .

2. If s is only piecewise α-hölderian, with at most Js jumps (of height bounded
by 2A), then the same results hold, with K3 depending also on Js.

3. As for Thm. 1, the boundedness of the data and the lower bound on the
noise level can be replaced by other assumptions. See Sect. 4.3 below for
more details.
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4.3. Alternative assumption sets

Actually, Thm. 1 and 2 are corollaries of a more general result, called Lemma 7
in Sect. 9.2. Then, the assumptions we make, in particular (Ab) and (An) on
the distribution of the noise σ(X)ǫ, are only sufficient conditions so that the
assumptions of Lemma 7 hold true. We give in this subsection some alternative
sufficient conditions.

On the one hand, one can remove (An): σ(X) ≥ σmin > 0, by adding instead
that X ⊂ R

k is bounded, equipped with ‖·‖∞, E
[
σ(X)2

]
> 0 and

(Ardu) Upper regularity of the partitions: ∃cd
r,u, αd > 0 such that

∀m ∈ Mn, max
λ∈Λm

{diam(Iλ)} ≤ cd
r,uD

−αd
m .

(Aru) Upper regularity of the partitions for Leb: ∃cr,u > 0 such that

∀m ∈ Mn, max
λ∈Λm

{Leb(Iλ)} ≤ cr,uD
−1
m .

(Aσ) σ is piecewise Kσ-Lipschitz with at most Jσ jumps.

On the other hand, the boundedness assumption (Ab) can be removed, at
the price of adding the following: X ⊂ R is bounded measurable and

(Agauss) The noise is sub-gaussian: there exists cgauss > 0 such that

∀q ≥ 2, ∀x ∈ X , E [ |ǫ|q | X = x ]
1/q ≤ cgauss

√
q .

(Aσmax) Noise-level bounded from above: σ2(X) ≤ σ2
max < +∞ a.s.

(Asmax) Bound on the target function: ‖s‖∞ ≤ A.
(Al) s is B-Lipschitz, piecewise C1 and non-constant: ±s′ ≥ B0 > 0 on some

interval J ⊂ X with Leb(J) ≥ cJ > 0.
(Arℓ,u) Regularity of the partitions for Leb: ∃cr,ℓ, cr,u > 0 such that

∀m ∈ Mn, ∀λ ∈ Λm, cr,ℓD
−1
m Leb(X ) ≤ Leb(Iλ) ≤ cr,uD

−1
m Leb(X ) .

(Adℓ) Density bounded from below: ∃cmin
X > 0, ∀I ⊂ X , P(X ∈ I) ≥ cmin

X Leb(I) Leb(X )−1.

Notice that we here keep the uniform lower bound on the noise (An).
Finally, it is possible to remove simultaneously (An) and (Ab). See (7) for

more details.

The above results mean that Thm. 1 holds for most “reasonably” difficult
problems. Actually, the proof of Thm. 1 (Prop. 3 and Remark 8) shows that
the resampling penalties are much closer to E [penid(m) ] than penid(m) itself,
provided that our concentration inequalities are tight. As a consequence, the
(ideal) penalization algorithm which uses pen(m) = E [penid(m) ] as a penalty
does not outperform much the resampling penalization algorithm. Up to differ-
ences within ǫn (we assumed here that C = CW ), they perform equally well on
a set of probability 1 − K1n

−2.
Hence, for every assumption set such that our proof gives an oracle inequality for
the penalty E [penid(m) ], the same proof gives a very similar oracle inequality
for the resampling penalties.
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4.4. Probabilistic tools

The main results stated in this section rely on several probabilistic tools, which
may be of self-interest: accurate computation of the expectations and concen-
tration inequalities for the resampling penalties, and bounds on expectations of
the inverses of several classical random variables. Their originality comes from
their non-asymptotic nature: we provide explicit bounds on the deviations or
the remainder terms for finite sample sizes.

4.4.1. Expectations of resampling penalties

Using only the exchangeability of the weights, we are able to compute the re-
sampling penalty explicitly (Lemma 8 in Sect. 9.7). This can be used to compare
its expectation to the one of the ideal penalty. We start with a result valid for
general exchangeable weights.

Proposition 1. Let Sm be the model of histograms associated with the partition
(Iλ)λ∈Λm , and W ∈ [0,∞)n be an exchangeable random vector independent from
the data. Denote by E

Λm [ · ] expectations conditionally to (1Xi∈Iλ
)1≤i≤n, λ∈Λm .

Then, defining penid(m) by (2) and pen(m) by (7), if minλ∈Λm p̂λ > 0,

E
Λm [penid(m) ] =

1

n

∑

λ∈Λm

(
1 +

pλ

p̂λ

)
σ2

λ (11)

E
Λm [pen(m) ] =

C

n

∑

λ∈Λm

(R1,W (n, p̂λ) + R2,W (n, p̂λ) ) σ2
λ (12)

with σ2
λ := E

[
(Y − s(X) )

2
∣∣∣ X ∈ Iλ

]
(13)

and R1,W (n, p̂λ) = E

[
(W1 − Wλ)2

W 2
λ

∣∣∣∣ X1 ∈ Iλ, Wλ > 0

]
(14)

R2,W (n, p̂λ) = E

[
(W1 − Wλ)2

Wλ

∣∣∣∣ X1 ∈ Iλ

]
. (15)

In particular,

E [penid(m) ] =
1

n

∑

λ∈Λm

(2 + δn,pλ
)σ2

λ (16)

where δn,p only depends on (n, p) and is small when the product np is large:
there is a numerical constant L1 such that |δn,p| ≤ L1(np)−1/4.

Remark 5. • In order to make the expectation in (16) well-defined, we have
to take a convention for penid(m) when minλ∈Λm p̂λ = 0. See Sect. 9.1
and 9.7 for more details.

• Combining Prop. 1 with Lemma 8.4 of (6), a similar result holds for non-
exchangeable weights (with only a modification of the definitions of R1,W

and R2,W .
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L(W ) Efr(m) Rad(p) Poi(µ) Rho(q) Loo

R2,W (n, p̂λ) n
m

(
1 − 1

np̂λ

)
1
p
− 1 1

µ

(
1 − 1

np̂λ

)
n
q
− 1 1

n−1

CW m/n p/(1 − p) µ q/(n − q) n − 1
Table 2

CW for several resampling schemes.

In the general heteroscedastic framework of (5), Prop. 1 shows that resam-
pling penalties take into account the fact that σ2

λ actually depends on λ ∈ Λm.
This is a major difference with the classical Mallows’ Cp penalty

penMallows(m) :=
2E
[
σ(X)2

]
Dm

n

which does not take into account the variability of the noise level over X . A
more detailed comparison with Mallows’ Cp is made in Sect. 8.1.1.

Moreover, assuming that R1,W (n, p̂λ) + R2,W (n, p̂λ) does not depend too
much on p̂λ (at least when np̂λ is large), it is possible to choose

C = C(W ) = CW ≈ 2

R1,W (n, 1) + R2,W (n, 1)
,

which only depends on n and L(W ). Then, comparing (12) and (16), we would
have a penalty close to the ideal one in expectation. Together with concentration
inequalities, this result is at the core of our proof of the oracle inequalities of
Sect. 4.1. As shown in the next subsection, R1,W + R2,W have this property
several interesting exchangeable weights W .

We focus now on the example of resampling weights given in Sect. 2.2. For
each of them, we can compute explicitly R2,W (n, p̂λ) (see Tab. 2) and show that
R1,W (n, p̂λ) ≈ R2,W (n, p̂λ) when np̂λ is large. As a consequence, we can define
CW ≈ R−1

2,W as in Tab. 2. Then, the following proposition, combined with (16)
in Prop. 1, shows that resampling penalties with C = CW are approximately
unbiased estimates for the ideal penalty, assuming that minλ∈Λm {npλ } is large
enough.

Proposition 2. Let W be an exchangeable resampling weight vector among
Efr(mn), Rad(p), Poi(µ), Rho(⌊n/2⌋) and Loo, and define CW as in Tab. 2. Let
Sm be the model of histograms associated with some partition (Iλ )λ∈Λm

of X
and pen(m) defined by (7). Then, there exists real numbers δ

(penW)

n,p̂λ

(depending

only on n, p̂λ and the resampling scheme L(W )) such that

E
Λm [pen(m) ] =

C

CW n

∑

λ∈Λm

(
2 + δ

(penW)

n,p̂λ

)
σ2

λ . (17)

If mnn−1 ≥ B > 0 (Efr), p ∈ (0; 1) (Rad) or µ > 0 (Poi), then,

∀n ∈ N\ {0} , ∀p̂λ ∈ (0, 1],
∣∣∣δ(penW)

n,p̂λ

∣∣∣ ≤ L2 (np̂λ )−1/4 ,
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where L2 > 0 is a numerical constant (for Rho(⌊n/2⌋) and Loo) or depends
respectively on B (Efr), p (Rad) or µ (Poi). More accurate bounds for each kind
of weights are given by (62) to (66).

Remark 6. Prop. 2 can also be generalized to Rho(qn) weights with 0 < B− ≤
qnn−1 ≤ B+ < 1, but the bound on δ

(penW)

n,p̂λ

only holds for np̂λ ≥ L(B−, B+)

(and L2 depends on B−, B+). See the proof of Prop. 2 for details.

Remark 7. With the explicit computation of R1,W and R2,W for several resam-
pling weights, we can enlighten several known results.

• In the maximum log-likelihood framework, Shibata (64) showed the asymp-
totical equivalence of two bootstrap penalization methods. The first penalty,
denoted by B1, is Efron’s bootstrap penalty (30). It is defined by (4) with
C = 1 and Efron (n) weights. The second penalty, denoted B2, was pro-
posed by Cavanaugh and Shumway (26). It is the equivalent of

2p̂1(m) := 2EW

[
Pn

(
γ(ŝW

m ) − γ(ŝm)
)]

in the log-likelihood contrast. In the least-square regression framework
(with histogram models), the proofs of Prop. 1 and 2 show that

E
Λm [ 2p̂1(m) ] =

2

n

∑

λ∈Λm

R1,W (n, p̂λ)σ2
λ ≈ E

Λm [pen(m) ]

for several resampling schemes, including Efron’s bootstrap (for which
CW = 1). The concentration results of Sect. 9.9 show that this remains
true without expectations. Our result is thus a non-asymptotic version of
Shibata’s (64), for general resampling weights, in the least-square regres-
sion framework.

• With Efron (mn) weights (and a bootstrap selection procedure close to RP,
but with C = 1), Shao (61) showed that mn = n leads to an inconsistent
model selection procedure for identification. On the contrary, when mn →
∞ and mn ≪ n, the bootstrap selection procedure becomes consistent.
Notice that the constant C = 1 is then much larger than CW = mn/n.
Considering that identification needs overpenalization within a factor that
goes to infinity with n, (12) gives a simple explanation to this phenomenon.

4.4.2. Concentration inequalities for resampling penalties

According to (46) and (47), the ideal penalty is a U-statistics of order 2, con-
ditionally to (1Xi∈Iλ

)(i,λ∈Λm). From the asymptotic viewpoint, this is sufficient
to show that resampling gives a consistent estimate of it (Arcones and Giné
(5) considered the bootstrap case; Hušková and Janssen (42) extended it to the
exchangeable weighted bootstrap). In our non-asymptotic framework, we need
the following result.
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Proposition 3. Let W be an exchangeable weight vector and pen(m) the cor-
responding Resampling Penalty defined by (7). Let γ > 0 and An ≥ 2. Assume
that for every q ≥ 2,
√

Dm

∑
λ∈Λm

m4
q,λ∑

λ∈Λm
m2

2,λ

≤ aℓq
ξℓ where mq,λ := (E [|Y − sm(X)|q | X ∈ Iλ])

1/q
.

Then, there are constants K4, K5 > 0 and an event of probability at least 1 −
K4n

−γ on which
∣∣pen(m) − E

Λm [pen(m) ]
∣∣1

minλ∈Λm{np̂λ }≥An
≤ CK5

× sup
np≥An

{R1,W (n, p) + R2,W (n, p)} ln(n)ξℓ+1

√
AnDm

E [p2(m) ]
(18)

where R1,W and R2,W are defined by (14) and (15). The constant K4 is numer-
ical, while K5 only depends on aℓ, ξℓ, γ.

If moreover W satisfies the assumptions of the second part of Prop. 2 and
CW is defined as in Tab. 2, then there is a constant KW > 0 such that

∣∣pen(m) − E
Λm [pen(m)]

∣∣ 1
minλ∈Λm{np̂λ }≥An

≤ CK5KW ln(n)ξℓ+1

CW

√
AnDm

E [p2(m) ] .

(19)

For the Rad(p) weights, KW is smaller than (1 − p)−1 times a numerical con-
stant. For the other weights, KW is numerical.

Notice that the moment condition holds under the assumptions of Thm. 1
as well as the alternative assumptions of Sect. 4.3. It is here stated in its most
general form.

Remark 8. With the A
−1/2
n factor, we obtain better bounds for resampling

penalties than for ideal penalties (see Prop. 12 below).
Although we do not know how tight are our bounds, such a phenomenon is

classical with bootstrap and may be understood in the asymptotic viewpoint
through Edgeworth expansions (Hall (38)). In a non-asymptotic gaussian frame-
work, (10) (see Sect. 2.3) show the same property for resampling estimators,
which concentrates at the rate n−1 instead of n−1/2 (n being the amount of
data). Since An plays the role of n in our case, it is reasonable to believe that

the gain A
−1/2
n may not be improved without some more assumptions.

This stresses the fact that resampling penalties do not estimate the ideal
penalties themselves but their expectations. Thus, our procedure (with C =
CW ) cannot take into account the fact that penid(m) may be far from its ex-
pectation.

4.4.3. Expectations of inverses

For any non-negative random variable Z, we define

e+
Z = e+

L(Z) := E [Z ] E
[
Z−1

∣∣ Z > 0
]

.
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This quantity appears in the explicit formulas for R1,W when W is among
the examples of resampling weights of Sect. 2.2. We then need non-asymptotic
bounds on this quantity when Z has a binomial, hypergeometric or Poisson
distribution, in our proof of Prop. 2. Former results concerning e+

Z can be found
in papers by Lew (48) (for general Z), Jones and Zhigljavsky (44) (for the
Poisson case) or Žnidarič (73) (for the binomial and Poisson case), but they are
either asymptotic or not accurate enough. The following results solve this issue.

In the rest of the paper, for any a, b ∈ R, we denote by a∧ b the minimum of
a and b, and by a ∨ b the maximum of a and b.

Binomial case

Lemma 4. For any n ∈ N\ {0} and p ∈ (0; 1], B(n, p) denotes the binomial
distribution with parameters (n, p), κ1 = 5.1 and κ2 = 3.2. Then, if np ≥ 1,

κ2 ∧
(

1 + κ1(np)−1/4
)
≥ e+

B(n,p) ≥ 1 − e−np (20)

and 2 + 3 × 10−4 ≥ e+

B(n, 12 )
≥ 1n≥3 . (21)

In particular, e+
B(n,p) → 1 when np → ∞, which can be derived from (73).

Notice that (20) was stated and proven in (9), where it is called Lemma 3. The
second inequality is useful for studying Rademacher weights.

Hypergeometric case Recall that an hypergeometric random variable X ∼
H(n, r, q) is defined by

∀k ∈ {0, . . . , q ∧ r} , P(X = k) =

(
r
k

)(
n−r
q−k

)
(
n
q

) .

Lemma 5. Let n, r, q ∈ N such that n ≥ r ≥ 1 and n ≥ q ≥ 1.

1. General lower-bound:

e+
H(n,r,q) ≥ 1 − 1r≤n−q exp

(
−qr

n

)
. (22)

2. General upper-bound: Let ǫ ∈ (0; 1) and κ3(ǫ) = 0.9 + 1.4 × ǫ−2.

If r ≥ 2 and
n

q
≤ (1 − ǫ)

2r

2 +
√

3(r + 1) ln(r)

Then, 1 + κ3(ǫ)
n

q

√
ln(r)

r
≥ e+

H(n,r,q) . (23)

3. “Rho” case: if n ≥ 2,

14.3 ≥ sup
r≥1

{
e+
H(n,r,⌊n

2 ⌋)

}
and 3 ≥ sup

r≥26

{
e+
H(n,r,⌊n

2 ⌋)

}
. (24)

imsart-ejs ver. 2007/12/10 file: RP.hyper27112.tex date: March 11, 2008



Arlot, S./Resampling penalization 22

4. “Loo” case:

1+
1r≥2

n(r − 1)
≥ e+

H(n,r,n−1) = 1+
1

n

(
(n − 1)r

n(r − 1)
1r≥2 − 1

)
≥ 1− 1r=1

n
. (25)

5. “Lpo” case: if n ≥ r ≥ n − q + 1 ≥ 2,

r

r − n + q
× nn−q

n(n − 1) · · · (q + 1)
≥ e+

H(n,r,q) ≥ 1 . (26)

In particular, if supk

{
nkq−1

k ∧ (nk − qk)
}

< +∞ and nk ≥ rk → +∞, then

e+
H(nk,rk,qk) → 1 when k → ∞.

Poisson case

Lemma 6. For every µ > 0, P(µ) denotes the Poisson law with parameter µ.
Then,

(
2 − 2e−2µ

)
∧
(

1 +
2(1 + e−3)

(µ − 2)+

)
≥ e+

P(µ) ≥ 1µ≥1.61 ∨
(
1 − e−µ

)
. (27)

In particular, e+
P(µ) → 1 when µ → ∞, which can be derived from (44; 73).

5. Comparison of the weights

According to Thm. 1, any resampling scheme among Efr, Rad, Poi, Rho and Loo
leads to an asymptotically optimal procedure. Even from the non-asymptotic
viewpoint, it is not quite clear to distinguish between these weights with our
main result. This comes from the equality of these resampling penalties in ex-
pectation at first order (Prop. 2), while deviations are negligible in front of
expectations (Prop. 3).

As a consequence, differences between these weights can only come from
second-order terms, either in the expectations or in the sizes of the deviations
of resampling penalties. As a first step, we compare in this section second-order
terms in the expectations of the penalties (i.e. differences between second-order
terms in (16) and (17)), for a fixed sample size. For asymptotic considerations,
we refer to Barbe and Bertail (15), Chap. 2, where Edgeworth expansions are
used to compare the accuracy of estimation with many exchangeable weights.
The asymptotic results mentioned in Sect. 4.4.3 may also be useful.

In Sect. 4.4.1, we show that penid(m) and pen(m) have the same expectation,

up to small terms δn,pλ
and δ

(penW)

n,p̂λ

. We deduce that

E [pen(m) − penid(m) ] =
1

n

∑

λ∈Λm

(
δ
(penW)

n,pλ
− δn,pλ

)
(σλ)

2
(28)

with δ
(penW)

n,pλ
:= E

[
δ
(penW)

n,p̂λ

∣∣∣ p̂λ > 0
]

.
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Fig 1. δn,p > 0 > δ
(penEfr(n))
n,p .
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Fig 2. δn,p > 0 > δ
(penPoi(1))
n,p .
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Fig 3. δn,p > δ
(penRho(n/2))
n,p for np ≥ 6.
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Fig 4. δn,p > δ
(penRho(n/4))
n,p for np ≥ 9.

Since we have explicit expressions for δn,p and δ
(penW)

n,p̂λ

, we have been able to

compute numerically δn,p and δ
(penW)

n,p as a function of np for several resampling
schemes, with n = 200. The results are given on Fig. 1 to 6 (with straight lines

for δn,p and dots for δ
(penW)

n,p ).
It follows that Loo is the most accurate, even when np is small. On the

contrary, Rho (n/2) and Rad give overestimations of δn,p (except when np is
small, where they are underpenalizing). It also seems that the bias of Rho (q)
is a decreasing function of q, as illustrated by Fig. 4. Finally, Efr and Poi are
strongly underestimating the ideal penalty, mostly because of the 1 − (np̂λ)−1

term in R1,W and R2,W .
This can be summed up as follows:

penRad ≈ penRho > penLoo >> penEfr ≈ penPoi , (29)

where “>>” means a comparatively large gap, but still negligible at first order.
As a consequence, we can expect that the leave-one-out penalty is the most effi-
cient, closely followed by Rad and Rho. However, from the non-asymptotic view-
point, it turns out that it is generally better to overpenalize slightly (and some-
times strongly, see the simulations of Sect. 6 and the discussion of Sect. 7.3.2).
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Fig 5. δn,p ≈ δ
(penLoo)
n,p .
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Fig 6. δn,p > δ
(penRad(1/2))
n,p for np ≥ 6.

Then, the ordering of (29) may also be the one of the prediction performance
of RP according to the resampling scheme. This will be confirmed by the simu-
lation study of Sect. 6.

Another interesting point is the following: we observe that δ
(penRho)

n,p ∝ δn,p

when np is large enough. Then, provided that we do not consider histograms
with too small bins (w.r.t. L(X)), penLoo and penRho are almost equivalent,
up to the choice of the factor C. If a wise tuning of C is possible, we just have to
choose between Loo and Rho according to computation issues (see the discussion
of Sect. 7.2).

6. Simulation study

As an illustration of the results of Sect. 4, we compare the performances of
Algorithm 2 (with several resampling schemes), Mallows’ Cp and V -fold cross-
validation on some simulated data.

6.1. Experimental setup

We consider four experiments, called S1, S2, HSd1 and HSd2. Data are generated
according to

Yi = s(Xi) + σ(Xi)ǫi

with Xi i.i.d. uniform on X = [0; 1] and ǫi ∼ N (0, 1) independent from Xi.
The experiments differ from the regression function s (smooth for S, see Fig. 7;
smooth with jumps for HS, see Fig. 8), the noise type (homoscedastic for S1 and
HSd1, heteroscedastic for S2 and HSd2) and the number n of data. Instances of
data sets are given by Fig. 9 to 12. Their last difference lies in the families of
models. Defining

∀k, k1, k2 ∈ N\ {0} , (Iλ )λ∈Λk
=

([
j

k
;
j + 1

k

))

0≤j≤k−1

and

(Iλ )λ∈Λ(k1 ,k2)
=

([
j

2k1
;
j + 1

2k1

))

0≤j≤k1−1

∪
([

1

2
+

j

2k2
;
1

2
+

j + 1

2k2

))

0≤j≤k2−1

,
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Fig 7. s(x) = sin(πx)
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Fig 8. s(x) = HeaviSine(x) (see (27))

the four model families are indexed by m ∈ Mn ⊂ (N\ {0} ) ∪ (N\ {0})
2
:

S1 regular histograms with 1 ≤ D ≤ n(ln(n))−1 pieces, i.e.

Mn =

{
1, . . . ,

⌊
n

ln(n)

⌋}
.

S2 histograms regular on [0; 1/2] (resp. on [1/2; 1]), with D1 (resp. D2)
pieces, 1 ≤ D1, D2 ≤ n(2 ln(n))−1. The model of constant functions is
added to Mn, i.e.

Mn = {1} ∪
{

1, . . . ,

⌊
n

2 ln(n)

⌋}2

.

HSd1 dyadic regular histograms with 2k pieces, 0 ≤ k ≤ ln2(n) − 1, i.e.

Mn =
{

2k s.t. 0 ≤ k ≤ ln2(n) − 1
}

.

HSd2 dyadic regular histograms with bin sizes 2−k1 and 2−k2 , 0 ≤ k1, k2 ≤
ln2(n)−2 (dyadic version of S2). The model of constant functions is added
to Mn, i.e.

Mn = {1} ∪
{

2k s.t. 0 ≤ k ≤ ln2(n) − 2
}2

.

Notice that we choose models that can approximately fit the true shape of σ(x)
in experiments S2 and HSd2. This choice makes the oracle model quite efficient,
hence the model selection problem more challenging.

We compare the following algorithms:

Mal Mallows’ Cp penalty: pen(m) = 2σ̂2Dmn−1 where σ̂2 is the variance es-
timator (31). The non-asymptotic validity of this procedure for model
selection in homoscedastic regression has been assessed by Baraud (13).

E [ penid ] Ideal deterministic penalty: pen(m) = E [penid(m) ]. It is a witness of what
is a good performance in each experiment.

VFCV Classical V -fold cross-validation, with V ∈ {2, 5, 10, 20} (defined as in (9)).
LOO Classical Leave-one-out (i.e. VFCV with V = n).
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Fig 9. S1: s(x) = sin(πx), σ ≡ 1, n = 200
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Fig 10. S2: s(x) = sin(πx), σ(x) = x, n =
200
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Fig 11. HSd1: HeaviSine, σ ≡ 1, n = 2048
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Fig 12. HSd2: HeaviSine, σ(x) = x, n =
2048
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penEfr Efron (n) penalty, C = CW = 1.
penRad Rademacher penalty, C = CW = 1.
penRho Random hold-out (n/2) penalty, C = CW = 1.
penLoo Leave-one-out penalty, C = CW = n − 1.

For each of these, we also consider the same penalties multiplied by 5/4 (and
we denote them by a + symbol added after the shortened names). This intends
to test for overpenalization (the choice of the factor 5/4 being arbitrary and
certainly not optimal, see Sect. 7.3.2).

In each experiment, for each simulated data set, we first remove the models
with less than 2 data points in one piece of their associated partition. Then, we
compute the least-squares estimators ŝm for each m ∈ M̂n. Finally, we select
m̂ ∈ M̂n using each algorithm and compute its true excess loss ℓ

(
s, ŝ

m̂

)
(and

the excess loss ℓ (s, ŝm ) for every m ∈ M̂n). We simulate N = 1000 data sets,
from which we can estimate the model selection performance of each procedure,
through the two following benchmarks:

Cor =
E
[
ℓ
(
s, ŝ

m̂

)]

E [ infm∈Mn ℓ (s, ŝm ) ]
Cpath−or = E

[
ℓ
(
s, ŝ

m̂

)

infm∈Mn ℓ (s, ŝm )

]

Basically, Cor is the constant that should appear in an oracle inequality like (9),
and Cpath−or corresponds to a pathwise oracle inequality like (8). As Cor and
Cpath−or approximatively give the same rankings between algorithms, we only
report Cor in Tab. 3.

6.2. Results and comments

First of all, our experiments show the interest of both Resampling Penalization
(RP) and VFCV in several difficult frameworks, with relatively small sample
sizes. Although they can not compete with simple procedures such as Mallows’
Cp from the computational viewpoint, they are much more efficient when the
noise is heteroscedastic (S2 and HSd2). In these hard frameworks, the perfor-
mances of RP and VFCV are comparable to those of the “ideal deterministic
penalty” E [penid ]. Notice that in the case of HSd2, penRad and penRho do
better than any linear penalty (possibly with a slope that depends on both the
data and the unknown distribution P ; see Sect. 8.1.2). On the other hand, they
perform slighlty worse than Mallows’ for the easier problems (S1 and HSd1),
which we interpretate as the unavoidable price for robustness.

Secondly, in the four experiments, the best procedures are always the overpe-
nalizing ones: many of them even beat the perfectly unbiased E [penid ], showing
the crucial need to overpenalize. This is mainly due to the small sample size com-
pared to the high noise-level, since it is no longer the case when σ is smaller,
and less obvious when n is larger (see respectively experiments S0.1 and S1000
in (7)). We would like to insist on the importance of this phenomenon, which
is seldom mentioned in theoretical papers because it vanishes in the asymptotic
framework, and it is quite hard to find from theoretical results.
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Table 3

Accuracy indexes Cor for each algorithm in four experiments, ± a rough estimate of
uncertainty of the value reported ( i.e. the empirical standard deviation divided by

√
N ;

N = 1000). In each column, the more accurate algorithms (taking the uncertainty into
account) are bolded.

Experiment S1 S2 HSd1 HSd2

s sin(π·) sin(π·) HeaviSine HeaviSine
σ(x) 1 x 1 x
n (sample size) 200 200 2048 2048
Mn regular 2 bin sizes dyadic, regular dyadic, 2 bin sizes

E [ penid ] 1.919 ± 0.03 2.296 ± 0.05 1.028 ± 0.004 1.102± 0.004

E [ penid ]+ 1.792± 0.03 2.028± 0.04 1.003± 0.003 1.089± 0.004

Mal 1.928 ± 0.04 3.687 ± 0.07 1.015 ± 0.003 1.373 ± 0.010
Mal+ 1.800± 0.03 3.173 ± 0.07 1.002± 0.003 1.411 ± 0.008

2-FCV 2.078 ± 0.04 2.542 ± 0.05 1.002± 0.003 1.184 ± 0.004
5-FCV 2.137 ± 0.04 2.582 ± 0.06 1.014 ± 0.003 1.115 ± 0.005
10-FCV 2.097 ± 0.04 2.603 ± 0.06 1.021 ± 0.003 1.109 ± 0.004
20-FCV 2.088 ± 0.04 2.578 ± 0.06 1.029 ± 0.004 1.105 ± 0.004
LOO 2.077 ± 0.04 2.593 ± 0.06 1.034 ± 0.004 1.105 ± 0.004

penRad 1.973 ± 0.04 2.485 ± 0.06 1.018 ± 0.003 1.102± 0.004

penRho 1.982 ± 0.04 2.502 ± 0.06 1.018 ± 0.003 1.103± 0.004

penLoo 2.080 ± 0.04 2.593 ± 0.06 1.034 ± 0.004 1.105 ± 0.004
penEfr 2.597 ± 0.07 3.152 ± 0.07 1.067 ± 0.005 1.114 ± 0.005

penRad+ 1.799± 0.03 2.137± 0.05 1.002± 0.003 1.095± 0.004

penRho+ 1.798± 0.03 2.142± 0.05 1.002± 0.003 1.095± 0.004

penLoo+ 1.844± 0.03 2.215± 0.05 1.004± 0.003 1.096± 0.004

penEfr+ 2.016 ± 0.05 2.605 ± 0.06 1.011 ± 0.003 1.097± 0.004

imsart-ejs ver. 2007/12/10 file: RP.hyper27112.tex date: March 11, 2008



Arlot, S./Resampling penalization 29

We now compare RP and VFCV. According to the four experiments of Tab. 3,
it is quite clear that RP with Rad or Rho resampling schemes outperforms VFCV
for any V , even without overpenalizing. The only exception to this is HSd1 where
2-fold cross-validation has particularly good performance. We refer to (9) for a
non asymptotic study of the performance of V -fold cross-validation, both from
the theoretical viewpoint and on these simulated data. In a nutshell, it appears
that VFCV overpenalizes within a factor 1 + 1/(2(V − 1)), while the V -fold
criterion has a variance which decreases with V . Then, when overpenalization
is necessary (e.g. in S1, S2 or HSd1), small values of V can outperform the
leave-one-out (V = n). But the increased variability of the criterion allow RP
to do much better as soon as we overpenalize at the right level. The reason
why penRad and penRho also perform slightly better without overpenalization
is that they naturally overpenalize a little when C = CW = 1 (cf. Sect. 5).

Let us now consider the performance of RP with several exchangeable resam-
pling schemes. The two best ones are Rad and Rho, in the four experiments,
with or without overpenalization. Then, Loo does slightly worse (but not always
significantly), and Efr much worse. Looking carefully at the values of the penal-
ties, it appears that Rad and Rho are slightly overpenalizing, Loo is exactly at
the right level, and Efr underpenalizes (as well as Poi, which has performances
quite similar to the ones of Efr, see (7)). Notice that this comparison can also
be derived from theoretical computations (cf. Sect. 5). Since overpenalization
is benefic in the four experiments of Tab. 3, this explains why penRad and
penRho slightly outperform penLoo. In the case of Efron’s boostrap penalty,
underpenalizing implies overfitting, which can explain the comparatively bad
performances we observe in Tab. 3.

We conclude this section with remarks concerning some particular points of
our simulation study.

• We also performed Mallows’ Cp (and its overpenalized version Mal+) with
the true mean variance E

[
σ2(X)

]
instead of σ̂2 (which would not be

possible on a real data set). It gave worse performance for all experiments
but S2, in which Cor(Mal) = 2.657 ± 0.06 and Cor(Mal+) = 2.437 ±
0.05. This shows that overpenalization is really crucial in experiment S2,
even more than the shape of the penalty itself. But once we overpenalize,
resampling penalties remain significantly better than Mallows’ Cp. Hence,
the performances of Mallows’ Cp in Tab. 3 are not only due to a bad
estimation of the mean noise-level (see also Sect. 8.1).

• Eight additional experiments are reported in (7), showing similar results
with various n, σ and s (although the assumptions of Thm. 1 are not
always satisfied).

• Resampling penalties with a V -fold subsampling scheme have also been
studied in Sect. 4 of (9), on the same simulated data. It is interesting to
notice that exchangeable resampling schemes always give better perfor-
mance that non-exchangeable ones (in a significant way when V is small),
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except for the schemes which tend to underestimate the ideal penalty, like
Efr and Poi.

7. Practical implementation

7.1. Computational cost

An exact computation of resampling penalties with exchangeable weights (with-
out using our formula (48) for histograms) would be either impossible or very
greedy. We suggest two possible ways to fix this problem.

First, one can use a classical Monte-Carlo approximation, i.e. draw a small
number B of weight vectors instead of considering each element of the support
of L(W ). Practical methods for this are addressed e.g. by Hall (38), appendix II,
in the bootstrap case. In addition, a non-asymptotic estimation of the accuracy
of Monte-Carlo approximation can be obtained via McDiarmid’s inequality (cf.
Prop. 2.11 by Arlot, Blanchard and Roquain (10) in another framework). We
would thus have a practical way of quantifying what we loose by making such
an approximation, and choose B consequently (at least for Rad, Rho and Loo
weights).

Second, it is possible to use non-exchangeable weight vectors W , such that the
cardinality of the support of L(W ) is much smaller than n. The case-example
of such weights is V -fold subsampling ones: given a partition (Bj )1≤j≤V of

{1, . . . , n} and J a uniform random variable over {1, . . . , V }, independent from
the data, we define

∀i ∈ {1, . . . , n} , Wi =
V

V − 1
1i/∈BJ

.

This leads to the so-called V -fold penalties, which have been introduced and
studied in (9). They are quite similar to VFCV (e.g. from the computational
viewpoint), while being more flexible (the overpenalization factor is decoupled
from the choice of V ). Similarly to resampling penalties, this results in an im-
provement over VFCV, with a reasonable computational cost.

Both approaches have been tested on the simulated data of Sect. 6. The
detailed results are given in (7).

7.2. Choice of the weights

In both Algorithms 2 and 3, there are two tuning parameters: the distribution
of the weight vector W , and the constant C. In this subsection, we address the
question of choosing the first one.

We have already investigated the influence of the weights from the theoretical
viewpoint in Sect. 5, focusing on second-order terms in expectation. However,
it is likely that the deviations of pen(m) around its expectation also differ ac-
cording to the weight vector W (the upper bound in (19) having no reason to
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be tight). With the simulation study of Sect. 6, we can make comparisons that
take into account both phenomenon.

In terms of model selection efficiency, Tab. 3 shows that the best weights (for
accuracy of prediction and for the variability4 of this accuracy) are Rho and
Rad, while Loo perform slightly worse. On the other hand, from both accuracy
and variability viewpoints, Efron’s bootstrap weights appear to perform worse
than Rho, Rad and Loo, mainly because they lead to underpenalization.

Notice however that this comparison is strongly dependent from our choices5

for the constant CW , which make all penalties unbiased at first order, but pos-
sibly slightly under or over-penalizing. Then, this could result in different per-
formances on data which do not require overpenalization. The computations of
Sect. 5 show that Efron’s bootstrap weights have a real drawback, which can
not be fixed only by changing CW .

From the computational viewpoint (when computing the penalties exactly),
Loo weights are the only reasonable ones, while being almost as accurate as
Rho and Rad. This is why we suggest their use, enlarging the constant C when
needed (see Sect. 7.3.2 on overpenalization).

However, computing n empirical risk minimizers (or more complicated algo-
rithms) for each model may not always be possible. Then, one should avoid using
the Leave-one-out with a Monte-Carlo approximation, because this would give
a large importance to a very small number of data points. Rho or Rad weights
seem much more safe in this situation. Alternatively, one may consider the use of
V -fold penalties (defined in (9)) as a good alternative when the computational
power is limited.

Let us emphasize that this analysis and the subsequent advices should be
considered with caution. First, we believe that the deviations of the penal-
ties around their expectations should be understood much better, because they
can be comparable or even larger than the second-order terms in expectations.
Second, in a more general framework, the comparison may be different. For in-
stance, the variability of the leave-one-out procedure is known to be quite large
in classification (Hastie, Tibshirani and Friedman (40)), while this phenomenon
disappears when the empirical minimization algorithm (Xi, Yi)1≤i≤n 7→ ŝm is
stable (Molinaro, Simon and Pfeiffer (56)). This results in a quite different pic-
ture for choosing V for V -fold cross-validation according to the framework we
consider, as noticed in (9). We expect that such differences may arise for choos-
ing between exchangeable resampling weights. As a consequence, this question
deserves further investigations, either theoretical or empirical, in any framework

4which is more an indicator of the stability of the performance of RP than of the variance
of the resampling penalty. However, it remains an interesting measure, since one may prefer
an algorithm which performs always equally well compared to another one with better mean
efficiency but very poor performances on a small probability event.

5However, it is quite unclear how to change CW in order to optimize each penalty in the
general case. This is why we have chosen in Tab. 2 to take CW as “simple” as possible.
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to which Resampling Penalization can be applied, such as binary classification,
regression with a different contrast function, or density estimation.

Finally, we remark that the bias of the bootstrap penalty has already been
noticed by Efron (30; 31), who proposed several ways to correct it, including a
double bootstrap procedure and the .632 bootstrap. The novelty of our approach
is to propose to use (for instance) a leave-one-out resampling scheme instead of
the boostrap, so that it is much less necessary to correct for this bias. This shows
the main interest of considering the general family of Resampling Penalties,
instead of only one particular resampling scheme.

7.3. Choice of the constant C

7.3.1. Optimal constant for bias

From the asymptotical viewpoint, the optimal C = C⋆ for prediction is generally
the one for which pen is an unbiased estimator of the ideal penalty penid (at least
for “reasonable” models). This is how we have defined CW in the histogram case,
and Prop. 1 and 2 provide a non-asymptotic control on the bias. This allowed
us to derive non-asymptotic oracle inequalities, which imply the asymptotic
optimality of RP. Hence6, C⋆ ∼n→∞ CW .

However, even if the asymptotic theory tells us that resampling penalties of
the general Algorithm 1 are asymptotically unbiased for every fixed model when
C = CW (see Sect. 2.2), we have no guarantee that the same result holds when
the dimension of m is allowed to grow with n. It is likely that the constant C
which makes pen unbiased sometimes differ from CW from the non-asymptotic
viewpoint, out of the histogram framework. Then, choosing C would either
require additional theoretical studies (which would be interesting, but may be
quite hard in general), or a data-driven calibration method.

For the latter point, we suggest to use the so-called “slope heuristics” to
choose C. This heuristics (and the subsequent algorithm) were first proposed
by Birgé and Massart (21) in a Gaussian homoscedastic framework. Their claim
is that the optimal penalty is twice the minimal penalty, i.e. the one under
which the selected model is obviously too large. This result has been extended
to some non-Gaussian heteroscedastic data (and so more general shapes for the
ideal penalty) by Arlot and Massart (11). One can then conjecture that this
algorithm works in a quite general framework. Then, it would be possible to
estimate the shape of penid by resampling, and the constant CW with the slope
heuristics.

7.3.2. Overpenalization

A careful look at the proof of Thm. 1 shows that a similar oracle inequality
holds for any constant C > 4CW /5, the leading constant staying close to one

6See the proof of Thm. 1 in (9) to prove that asymptotic optimality requires C⋆ ∼n→∞ CW

as soon as there are enough models close to the oracle.
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Fig 13. The non-asymptotic need for overpenalization: the prediction performance Cor (de-
fined in Sect. 6.1) of the model selection procedure (1) with pen(m) = CovE [ penid(m) ] is
represented as a function of Cov. Data and models are the ones of experiment (S2): n = 200,
σ(x) = x, s(x) = sin(πx). See Sect. 6 for more details.

when C ∼ CW asymptotically. In other words, when the sample size n is small,
we have no guarantee that the optimal constant C⋆ is exactly equal to CW .
The simulations of Sect. 6 also supports this fact: overpenalization, i.e. taking
C = CovCW with Cov > 1, can improve the prediction performance of ŝ

m̂
when

n is small and σ large, or when s is non-smooth.
This problem would appear even if we knew the “optimal” constant C⋆ such

that pen is non-asymptotically unbiased. On Fig. 13, we have estimated the
model selection performance of the penalty CovE [penid(m) ] as a function of
Cov, for experiment (S2) of Sect. 6. It appears that the optimal overpenalization
constant C⋆

ov seems to be between 1.5 and 2.35 for this particular problem. More
generally, the drawback of C⋆ is that it does not take into account the deviations
of penid(m) around its expectation. To avoid the possible overfit induced by
these fluctuations, the constant C must be slightly enlarged. A major issue
remains: how to estimate C⋆

ov from the data only, since it strongly depends on
n, σ, the smoothness of s and the number of models in Mn?

Several proposals can be made. If computational cost does not matter, one
can think of choosing Cov by V -fold cross-validation, but this would lead to a
more than greedy algorithm. We here suggest a way of using the power of the
resampling idea, for choosing the overpenalization factor wisely, with almost the
same computational complexity as the initial algorithm.

Our idea relies on the fact that overpenalization is mainly due to the devi-
ations of pen(m) − penid(m) around its expectation. If we had a simultaneous
confidence region at level α for (penid(m) )m∈Mn

— instead of point estimates

(pen(m) )m∈Mn
— then we would be able to derive a confidence set for the ora-

cle model m⋆ (instead of a single point estimate m̂). Overpenalizing could then
be obtained by picking up the more parcimonious model in that confidence set
(other ways of choosing a single model at final are possible). The point is that
such a confidence region can be obtained by resampling, since Efron’s heuristics
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provides a way of estimating the whole distribution of any function of both P
and Pn. In this particular case, this amounts to replace the expectation w.r.t.
the resampling randomness in (4) by a quantile:

penα(m) := CW inf
{

t ∈ R s.t. P
W
n

[
Pnγ

(
ŝm

(
P

W
n

))
− P

W
n γ

(
ŝm

(
P

W
n

))
> t
]
≤ α

}
.

(30)

We have no theoretical guarantee that

([
pen1−α/2(m), pen1−α/2(m)

])
m∈Mn

is a simultaneous confidence region for (penid(m) )m∈Mn
with level α (or even

α Card(Mn), thanks to the union bound), but the resulting model selection
procedure is overpenalizing, in the sense that it underfits more and more when
α goes down to zero. Then, it is tempting to replace the choice of an overpenal-
ization constant Cov by the one of a “level” α, much easier to interpetate, and
whose calibration may not depend too much on the distribution P of the data.
It can thus be left to the final user, which has to decide up to which “level” he
wants to be sure not to overfit.

A theoretical study of this procedure deserves further investigation and is
beyond the scope of this paper. Let us just mention two references that may
be helpful for defining and studying it properly. First, a non-asymptotic control
of the level of some high-dimensional resampling-based confidence regions have
been obtained by Arlot, Blanchard and Roquain (10), with general exchangeable
resampling schemes. Second, the use of relative bounds (i.e. a simultaneous
confidence region for (penid(m) − penid(m′ )m,m′∈Mn

) has been proposed by
Audibert (12) to define model selection procedures in the statistical learning
framework (see also Catoni (25)). Our proposal can be seen as mixing up these
two ideas together.

Notice that such a modification can be made with the classical V -fold cross-
validation (the level α being a multiple of V −1), but not with Mallows’ Cp

penalty. This is not the only drawback of Mallows’ Cp, as shown in Sect. 8.1.1.
Further comments on overpenalization are given in (6; 9) for instance.

8. Discussion

8.1. Comparison with other procedures

In this article, we propose a family of model selection procedure, “Resampling
Penalties” (RP), which can be used in almost any “reasonable” framework.
Moreover, we provide both theoretical and empirical evidence that it indeed
performs well for least-square histogram regression, with very few assumptions
on the distribution of the data. In particular, this includes many kinds of het-
eroscedastic data, which are generally very hard to deal with. This robustness
is a key property of RP, which may not fail dramatically in the most difficult
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situations, while performing reasonably well for the simpler ones. However, com-
puting the resampling penalties may be quite long, even with the suggestions
made in Sect. 7.1, when minimizing PW

n γ(t, ·) over t ∈ Sm is hard. In such cases,
we need some clues for choosing between simple procedures (e.g. Mallows’ Cp)
and RP. In particular, for “easy” problems, RP can behave worse than Mallows’,
simply because it is more general. We would like to know what are those “easy”
problems, for which we can avoid unnecessary long computations.

8.1.1. Mallows’ Cp

Mallows’ Cp penalty is equal to 2σ2Dmn−1 for a model m of dimension Dm,
when the noise-level σ is constant. Non-asymptotic results about Mallows’-like
penalties can be found in (16; 13; 14; 21). They imply that Mallows’ Cp is
asymptotically optimal in the homoscedastic framework, when Mn is not too
large.

When the (constant) noise-level σ is unknown, one has to estimate it. Intro-
ducing artificially a model S⌊n/2⌋ of dimension ⌊n/2⌋, a classical estimator of
σ2 is

σ̂2 =
d2
(
Y1...n, S⌊n/2⌋

)

n − ⌊n/2⌋ , (31)

where Y1...n = (Yi)1≤i≤n ∈ R
n and d the Euclidean distance on R

n. Baraud
(13; 14) then showed that the resulting data-driven model selection procedure
satisfies some non-asymptotic oracle inequalities.

Assume for the sake of simplicity that n is even, and choose Sn/2 such that
each piece of the associated partition contains exactly two data points. Reorder-
ing the (Xi, Yi) according to Xi, we then have

penMallows(m) =
2Dm

n2

n/2∑

i=1

(Y2i − Y2i−1)
2

,

so that

E
Λm [penMallows(m) ] =

2

n

∑

λ∈Λm

(Dmp̂λ ) (σr
λ)2 +

2Dm

n2

n/2∑

i=1

(s(X2i) − s(X2i−1) )2

(32)

where (σr
λ)

2
:= E

[
σ(X)2

∣∣ X ∈ Iλ

]
.

This should be compared with

E
Λm [penid(m) ] ≈ 2

n

∑

λ∈Λm

(
(σr

λ)
2
+
(
σd

λ

)2)
(33)

where
(
σd

λ

)2
:= E

[
(s(X) − sm(X) )

2
∣∣∣ X ∈ Iλ

]
.
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Hence, both Mallows’ Cp and the ideal penalty are in expectation the sum of a

“variance” term (involving the (σr
λ)2) and a “bias” term (involving the

(
σd

λ

)2
).

However, when s is smooth and minλ∈Λm {np̂λ } is large, the “bias” term in (32)
is negligible in front of the one of (33), which means that Mallows’ Cp may be
underpenalizing a little when the “bias” component of penid is large.

On the other hand, the “variance” component of penid, which is the main one
in general, is deformed in Mallows’ Cp: the part of the penalty corresponding
to Iλ is multiplied by Dmp̂λ, which may not be close to 1 when the model m is
not regular w.r.t. L(X). This happens for instance in the experiments S2 and
HSd2 of Sect. 6.

These two main differences between Mallows’ Cp and Resampling Penaliza-
tion enlighten several possibly “hard” problems:

• heteroscedastic noise, with irregular histograms and X uniform (e.g. S2,
HSd2 or Svar2 of Sect. 6),

• heteroscedastic noise, with regular histograms and X highly non-uniform
on X ,

• regression function s with jumps (e.g. HeaviSine7) or large non-smooth
areas (e.g. Doppler).

In either of those cases, one should avoid the use of Mallows’-like penalties, and
we suggest RP as an efficient alternative. As explained below, the first class of
problems can make any linear penalty suboptimal.

8.1.2. Linear penalties

The simplicity of Mallows’ Cp comes from the fact that its shape is fixed a priori
as linear in the dimension Dm of the models:

pen(m) = K̂Dm (34)

and there is only one constant K̂ to determine. In the case of Mallows’ Cp, we
take

K̂Mallows = 2σ2n−1 or 2σ̂2n−1

if the mean variance level σ is unknown. Following the slope heuristics of Birgé
and Massart (21), one can also define a data-dependent constant K̂slope and de-

fine penshape(m) = K̂slopeDm, which is proved to be efficient in a homoscedastic
framework (21; 11).

However, in view of (11), the ideal penalty is not linear in general, even in
expectation. There are even frameworks in which any penalty of the form (34)
is suboptimal, meaning that it can not satisfy any oracle inequality with leading
constant smaller than some κ > 1 (see (6), Chap. 4). This is a quite strong result,
since it even applies to procedures using the knowledge of s and σ. In particular,

7However, in experiment HSd1, Mallows’ Cp still behaves quite well compared to RP. We
do not know whether the non-smoothness of s can actually make Mallows’ Cp fail.
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even the following optimal linear penalization algorithm penopt,lin(m) := K⋆Dm

is suboptimal, where

K⋆ ∈ arg min
K>0

{
Pγ
(

ŝ
m̂(K)

)}
and ∀K > 0, m̂(K) ∈ arg min

m∈Mn

{Pnγ ( ŝm ) + KDm } .

Resampling penalties do not have the same drawback.
We compared resampling penalization with the ideal linear penalization in

the four experiments of Sect. 6. The latter has a better performance for S1,
S2 and HSd1. This is not surprising in “easy” situations, where Mallows’ Cp is
almost optimal, since penopt,lin is always better than Mallows’. It is less intuitive
for S2, which is more difficult, because of heteroscedasticity. Considering that
penopt,lin uses the knowledge of the true distribution P , one can understand
that it is sufficient to keep a good performance for “intermediate” problems.
However, in experiment HSd2, the ideal linear penalization has a constant Cor =
1.18 ± 0.01. This is worse than resampling penalization, for which Cor ≤ 1.11.
Thus, the most difficult problem of Sect. 6 (with a complex family of models,
heteroscedasticity and bias) gives another example where linear penalties are
definitely not adapted.

8.1.3. Refined versions of Mallows’

In least-square regression and other frameworks, several penalties have been
defined as refinements of Mallows’ Cp, in Gaussian frameworks (Barron, Birgé
and Massart (16), Birgé and Massart (21)) as well as in non-Gaussian ones
(Baraud (14), Sauvé (59)). Basically, when Card(Mn) is polynomial in n, these
penalties are linear in Dm. So, they have at least the same drawbacks as the
optimal linear penalty above.

When Card(Mn) is larger (e.g. exponential in n), one has to take a larger
penalty of the form

pen(m) = KDm

(
1 + c ln

(
n

Dm

))
.

With such a family of models, one can not use Resampling Penalization without
modifications. Indeed, uniform deviations for pen(m) − penid(m) derived from
the union bound may be too large, so that the model selection procedure can
fail.

In order to solve this issue, we propose to apply Algorithm 1 to (S̃C)1≤C≤n

instead of (Sm)m∈Mn , where

S̃C :=
⋃

Cm=C

Sm

and Cm ∈ {1, . . . , n} is any complexity measure (for instance the dimension of
Sm as a vector space). This new model selection problem satisfies the polyno-
mial complexity assumption. By grouping models according to Cm, we allow the
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resampling procedure to detect the complexity of Mn through the complexity
of each aggregated model S̃C . However, it is not straightforward to extend our
results to this case when each Sm is an histogram model, because S̃C is not. Re-
sults in this framework would be very interesting, since they could be related to
the CART algorithm (defined by Breiman et al. (22); see (60) for an application
of CART to variable selection).

8.1.4. Ad hoc procedures

One of the main points of Thm. 1 and 2 is that Resampling Penalization works in
an heteroscedastic framework, contrary to Mallows’ Cp. However, it is possible
to adapt Mallows’ penalty to heteroscedasticity, for instance by splitting X into
disjoint subsets (Xk)1≤k≤Kn . Then, replacing σ2Dm by

∑Kn

k=1 σ2
kDm,k (where σk

and Dm,k are local indexes for the noise and the complexity of Sm), and choose
Kn such that both Kn and nK−1

n go to infinity with n at an appropriate rate,
we obtain a procedure that should be (asymptotically) optimal in the histogram
case if σ is Lipschitz with a finite number of jumps. In the least-square regression
framework, Efromovich and Pinsker (28) and Galtchouk and Pergamenschikov
(35) defined other procedures that are more generally minimax adaptive in the
heteroscedastic case.

These procedures may perform a little better than Resampling Penalization.
We call them “ad hoc” because they are specially designed for the heteroscedas-
tic case and a particular family of estimators. On the contrary, RP is a general-
purpose device. It was neither built to be adaptive to heteroscedastic noises, nor
to take advantage of a specific model (regression, histograms).

When no information is available on the data, or when no known algorithm
can make use of such informations, we suggest the use of RP. Moreover, it may
happen that available informations are partial or wrong. Then, using an ad hoc
procedure may be catastrophic, whereas a general device like RP would still
work. In a nutshell, choose RP if you have no useful information or if you do
not trust them.

8.1.5. Other model selection procedures by resampling

The most well-known resampling-based model selection procedure is cross-validation.
For practical reasons, it is often used in its V -fold version, which may have some
tricky behaviors, in particular for choosing V (see Yang (71)). This can also be
shown in our simulation experiments (Sect. 6, Tab. 3): in HSd1, V = 2 is better
than V ∈ {5, 10, 20}. In (9), we explained this phenomenon by some bias of the
V -fold criterion, that strongly depends on V . We also use Resampling Penal-
ization for defining an alternative to V -Fold Cross-Validation, which does not
have this drawback. The resulting “V -fold penalties” are thus an improvement
on VFCV. In this paper, we have proven that RP with several exchangeable
resampling schemes — generalizing the V = n case — perform even better (or
at least as well).
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We have already mentioned the existence of several bootstrap model selection
procedures (30; 61; 64). As noticed in Remark 7, the ones studied by Shibata (64)
are quite close to RP, although stated in a less general form. In particular, they
are restricted to Efron(n) weights, which are the worst ones in our framework,
according to the simulation study of Sect. 6. Moreover, they do not consider
useful to suggest that the penalty may be multiplied by a factor C 6= 1. With
our formulation of RP, we have disconnected the question of choosing the weights
from the overpenalization problem. This is crucial because it allows to obtain
asymptotic optimality and overpenalization (and probably also consistency, see
Sect. 8.2) with many resampling schemes. Providing such a unified approach for
these resampling methods, our result enlighten for instance that the results of
Shao (61) with Efron(m) weights are probably more related to his choice C = 1
than to some intrinsic property of the m out of n bootstrap (see Sect. 8.2).

8.2. Consistency

We focused in this article on prediction, but one often uses model selection for
identification. In this framework, one assumes that s ∈ Sm (and maybe also to
some more complex models), and the goal of a model selection procedure is to
catch m as often as possible, whatever the prediction loss of ŝm. Asymptotic
optimality there becomes consistency, i.e.

P (m̂ = m ) −−−−→
n→∞

1 .

There is a huge amount of papers about model selection for identification; we
refer to Shao (62) for general asymptotic results with linear models, and the
introduction of papers by Yang (70; 71) for references about the consistency of
cross-validation in the regression and classification settings.

The main point for consistency is that overpenalization is needed, even from
the asymptotic viewpoint. This is the main reason why BIC is roughly the AIC
criterion multiplied by a constant times ln(n) (see also Aerts, Claeskens and Hart
(1)). Thus, our explicit computations of the resampling penalties enlighten the
results of Shao (61) on bootstrap model selection. Basically, Shao proved that
resampling penalties with C = 1 and Efron (n) weights are inconsistent, while
C = 1 and Efron(m) weights are consistent when m ≪ n. In the histogram
framework, we have proven that the ratio between Efron (m) resampling penal-
ties and the ideal penalty is close to Cnm−1. Then, Shao’s results may be mostly
due to the choice C = 1. Our conjecture is that choosing any C ≫ CW would
be sufficient to obtain a similar consistency result for resampling penalties with
many exchangeable weights. This may be a crucial improvement because m out
of n bootstrap weights are probably not the best ones in terms of variability (in
particular when the computational cost matters, it may be hard to take into ac-
count all the data with these weights when n/m is large). In addition, as shown
in Sect. 5, Loo, Rho and Rad weights may be more accurate than Efron(m)
ones. These preliminary evidence show that the consistency properties of RP
(with a suitable choice of the constant C) deserve further investigations.
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8.3. Prediction in a general framework, including classification

Our results on Resampling Penalization are restricted to the histogram case so
that we can wonder whether they stay valid in a general framework. We conjec-
ture that they do, for the following reasons. First, Algorithm 1 can be applied
(maybe up to some little modifications, as for histograms) to any model selec-
tion problem. It relies on the resampling idea, which is known to be quite robust
in a wide variety of situations. With our Thm 1 and 2, we have confirmed this
point for heteroscedastic regression, while RP has not been designed specifically
for this problem.

Second, we mainly make the histogram assumption in order to control the
expectations of resampling and ideal penalties from a non-asymptotic view-
point, so that it is mainly technical. We have already mentioned that the same
comparison is valid asymptotically in a much more general framework. In addi-
tion, several of the key concentration inequalities we use have been extended in
Chap. 7 of (6) to a general framework, including bounded regression and binary
classification.

In the classification setting, we even believe that RP can improve the perfor-
mances of the classical resampling-based penalties: global and local Rademacher
complexities. The former ones, introduced by Koltchinskii (45) and Bartlett,
Boucheron and Lugosi (17), are using an i.i.d. Rademacher scheme to estimate

penid,g(m) := sup
t∈Sm

{ (P − Pn)γ(t)} instead of penid(m) = (P − Pn)γ(ŝm) .

They have also been generalized by Fromont (34) to general exchangeable resam-
pling schemes. Their main drawback is that they are much too large compared
to the ideal penalty, so that they can not attain fast rates of estimation when
the margin condition (introduced by Mammen and Tsybakov (53)) holds.

This is why localized penalties (e.g. local Rademacher complexities) have then
been introduced to take into account the closeness of ŝm and s (50; 18; 19; 46).
It is shown in these papers that localized penalties are close enough to penid(m),
so that the resulting algorithms can benefit of the margin condition. With RP,
we precisely try to improve Fromont’s bootstrap penalties (33) by estimating
penid(m) instead of penid,g(m). Then, RP can be considered as local penalties.

But contrary to local Rademacher complexities, RP are estimating the ideal
penalty itself, not a complicated upper bound defined as a fixed point of a local
modulus of continuity. These are two crucial points in favour of RP, which may
be closer to the ideal penalty and much easier to compute.

Moreover, local Rademacher complexities generally depend on several con-
stants which are huge according to theory, and not only a multiplicative factor.
They may thus be hard to calibrate from the data, in order to obtain at least
an asymptotically optimal procedure. On the contrary, RP depends only on
a multiplicative factor, which can for instance be chosen thanks to the slope
heuristics (cf. Sect. 7). As a consequence, we can conjecture that RP (e.g. com-
bined with the slope heuristics, as in (11)) is adaptive to the margin condition,
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and simultaneously asymptotically optimal. A rigorous proof of this fact would
of course be of much interest. We draw in Chap. 7 of (6) some possible paths
towards such a proof.

8.4. Conclusion

This article intends to help the practical user to answer the following question:
when shall Resampling Penalization be used? To sum up, we list below the
advantages and drawbacks of RP vs. the classical methods.

Advantages of RP

• generality: well-defined in almost any framework.
• robustness and versatility: designed for the cautious user.
• adaptivity: to several properties, e.g. heteroscedasticity and smoothness

of the target.
• flexibility: possibility of overpenalization, either for non-asymptotic pre-

diction or for identification.

Drawbacks of RP

• computation time: one may prefer V -fold algorithms, such as V -fold cross-
validation, or the V -fold subsampling version of resampling penalties (see
(9)).

• possibly outperformed by Mallows’ Cp (in easy cases) or ad hoc procedures
(in some particular frameworks, when one has some information on the
data).

9. Proofs

9.1. Notations

Before starting the proofs, we introduce some notations or conventions:

• The letter L designs “some positive numerical constant, possibly different
from some place to another”. In the same way, a positive constant which
depends on c1, . . . , ck is denoted by Lc1,...,ck

, and if (A) denotes a set of
assumptions, L(A) is any positive constant that depends on the parameters
appearing in (A).

• By convention, ∞1E and 1E/0 are both equal to zero when E does not
hold.

• For any x ∈ R, x+ := x ∨ 0 and x− := (−x) ∨ 0.
• For any non-negative random variable Z, e0

L(Z) := E [Z ] E
[
Z−11Z>0

]
.
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• For every model m ∈ Mn,

p1(m) := P (γ(ŝm) − γ(sm) ) p2(m) := Pn (γ(sm) − γ(ŝm) )

δ(m) := (Pn − P ) (γ(sm) − γ(s) ) .

• Histograms-specific notations: for any q > 0, m ∈ Mn, λ ∈ Λm and any
random variable Z,

E
Λm [Z ] := E

[
Z | (1Xi∈Iλ

)1≤i≤n, λ∈Λm

]
‖Z‖(Λm)

q := E
Λm [ |Z|q ]

1/q

mq,λ := ‖Y − sm(X)‖q,λ := (E [|Y − sm(X)|q | X ∈ Iλ])
1/q

Sλ,1 :=
∑

Xi∈Iλ

(Yi − βλ ) and Sλ,2 :=
∑

Xi∈Iλ

(Yi − βλ)
2

.

• Conventions for p1 and p2 when ŝm is not well-defined (in the histogram
framework):

p̃1(m) = p̃1
(0)

(m)+
∑

λ∈Λm

pλ (σλ)2 1
p̂λ=0

with p̃1
(0)

(m) =
∑

λ∈Λm

pλ1
p̂λ>0

(np̂λ)2
S

2
λ,1 .

(35)

p̃2(m) := p2(m) +
1

n

∑

λ∈Λm

(σλ)
2 1

np̂λ=0

Notice that whatever the convention we choose (and even if we keep their
original definition), p1(m) and p2(m) have the same value when ŝm is
uniquely defined, and we will always remove from Mn the other models.
The choice we make here is only important when writing expectations, so
it is merely technical. In the following, we will often write simply p1 (resp.
p2) instead of p̃1 (resp. p̃2).

9.2. General framework

9.2.1. Bounded assumption set (Bg)

There is some noise: ‖σ(X)‖2 > 0.
(P1) Polynomial complexity of Mn: Card(Mn) ≤ cMnαM .
(P2) Richness of Mn: ∃m0 ∈ Mn s.t. Dm0 ∈ [

√
n; crich

√
n ].

(P3) The weights are exchangeable, among Efr, Rad, Poi, Rho and Loo.
(P4) The constant C is well chosen: ηCW ≥ C ≥ CW .
(Ab) Bounded data: ‖Yi‖∞ ≤ A < ∞.

(Am,ℓ) Local moment assumption: there exists aℓ, ξℓ ≥ 0 such that for every q ≥ 2,
for every m ∈ Mn such that Dm ≥ D0,

P ℓ
m(q) :=

√
Dm

∑
λ∈Λm

m4
q,λ∑

λ∈Λm
m2

2,λ

≤ aℓq
ξℓ .
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(Ap) Polynomial decreasing of the bias: there exists β1 ≥ β2 > 0 and C+
b , C−

b >
0 such that, for every m ∈ Mn,

C−
b D−β1

m ≤ ℓ (s, sm ) ≤ C+
b D−β2

m .

(AQ) For every m ∈ Mn such that Dm ≥ D0,

Q(p)
m :=

nE [p2(m) ]

Dm
=

1

Dm

∑

λ∈Λm

σ2
λ ≥ c−Q > 0

(ArXℓ ) Lower regularity of the partitions for L(X): there exists cX
r,ℓ > 0 such that

for every m ∈ Mn, Dm minλ∈Λm pλ ≥ cX
r,ℓ.

9.2.2. Unbounded assumption set (Ug)

We remove (Ab) from (Bg), and add

(Aσmax) Noise-level bounded from above: σ2(X) ≤ σ2
max < ∞ a.s.

(Asmax) Bound on the target function: ‖s‖∞ ≤ A < ∞.
(Ag,ǫ) Global moment assumption for the noise: there exists agǫ, ξgǫ ≥ 0 such

that for every q ≥ 2,

P gǫ(q) := ‖ǫ‖q ≤ agǫq
ξgǫ

(Aδ) Global moment assumption for the bias: there is a constant cg
∆,m > 0 such

that, for every m ∈ Mn of dimension Dm ≥ D0,

‖s − sm‖∞ ≤ cg
∆,m ‖s(X) − sm(X)‖2

9.2.3. General result

Lemma 7. Let n ∈ N\ {0}, γ0 > 0 and m̂ given by Algorithm 2. Assume that
either (Bg) or (Ug) holds with constants independent from n.

Then, there exists a constant K1 (that depends on γ0 and all the constants
in (Bg) (resp. (Ug)), but not on n) such that

ℓ
(
s, ŝ

m̂

)
≤
[
2η − 1 + ln(n)−1/5

]
inf

m∈Mn

{ℓ (s, ŝm )} (36)

with probability at least 1 − K1n
−γ0 .

The proof of this lemma is made in Sect. 9.6.

Remark 9. If we remove the lower bound in (Ap) from the assumption set, then,
the proof of Lemma 7 shows that there are constants γ1, γ2 > 0 (depending only
on ξℓ, resp. ξℓ and ξgǫ) and an event of probability at least 1−K1n

−γ0 on which

ℓ
(
s, ŝ

m̂

)
≤
[
2η − 1 + ln(n)−1/5

]
inf

m∈Mn

Dm≥ln(n)γ1

{ℓ (s, ŝm )} +
ln(n)γ2

n
. (37)
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Remark 10. In the infimum in (36), there may be some m ∈ Mn such that ŝm

is not well defined. We take by convention ℓ (s, ŝm ) = ∞ in those cases.
From the proof, there is a constant c > 0 (that depends on αM, γ0 and cX

r,ℓ)

such that every model of dimension smaller than cn ( ln(n) )−1 belongs to M̂n

on the event where (36) holds. For each of these models,

ℓ (s, ŝm ) = ℓ (s, sm ) + p̃1
(0)(m) = ℓ (s, sm ) + p̃1(m)

so that we can restrict the infimum to models of dimension lower than cn ( ln(n) )
−1

with any of these conventions for ℓ (s, ŝm ).

9.3. Proof of Thm. 1

We apply Lemma 7 with γ0 = 2. In order to deduce (8), it remains to show
that (Am,ℓ) and (AQ) are satisfied. This is true with D0 = 1 since for every
m ∈ Mn,

P ℓ
m(q) =

√∑
λ∈Λm

m4
q,λ

√
DmQ

(p)
m

≤ ‖Y − sm(X)‖2
∞

Q
(p)
m

≤ 4A2

Q
(p)
m

Q(p)
m :=

1

Dm

∑

λ∈Λm

[
(σr

λ )
2

+
(
σd

λ

)2 ] ≥ σ2
min .

Let Ωn be the event on which (8) holds true. Then,

E
[
ℓ
(
s, ŝ

m̂

)]
= E

[
ℓ
(
s, ŝ

m̂

)1Ωn

]
+ E

[
ℓ
(
s, ŝ

m̂

)1Ωc
n

]

≤ [ 2η − 1 + ǫn ] E

[
inf

m∈Mn

{ ℓ (s, ŝm )}
]

+ A2K1P (Ωc
n )

which proves (9). Following Remark 10, (9) also holds with Mn replaced by
{

m ∈ Mn s.t. Dm ≤ c(αM, cX
r,ℓ)n ln(n)−1

}

and the convention p1(m) = p̃1
(0)(m).

9.4. Proof of Thm. 1: alternative assumptions

We prove in this section the statements of Sect. 4.3.

9.4.1. No uniform lower bound on the noise-level

When σ(X) is allowed to go to zero, we only need another proof for (AQ):

Q(p)
m ≥

‖σ‖2
L2(Leb)

2cr,u
−

K2
σ

(
cd
r,u

)2
diam(X )2

D2αd
m

− Jσ ‖σ(X)‖2
∞

2Dm
(by Lemma 16).

Hence, (Am,ℓ) and (AQ) hold true uniformly on models m ∈ Mn such that
Dm ≥ D0 = L(Bg).
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9.4.2. Unbounded data

We still use Lemma 7, but the proof is a little longer.

Pathwise oracle inequality We prove it for a general γ0 (since we need it
for the classical oracle below). We have to prove (Am,ℓ), (AQ), (Ag,ǫ) and (Aδ).
The first three ones are almost straightforward: for every m ∈ Mn,

P ℓ
m(q) =

√∑
λ∈Λm

m4
q,λ

√
DmQ

(p)
m

≤
(
2A + cgauss

√
qσmax

)2

Q
(p)
m

≤ Lcgauss,σmax,Aq

Q
(p)
m

Q(p)
m ≥ σ2

min

P gǫ(q) ≤ σmaxcgauss
√

q .

For the last one, we use Lemma 17 (with (Al), (Arℓ,u) and (Adℓ)) which
shows that

cg
∆,m ≤ L(Ug) if Dm ≥ D0 = L(Ug) .

Classical oracle inequality Let Ωn be the event on which (8) holds true
with γ0 = 6 + αM. As in the bounded case, we only have to upper bound

E
Λm
[
ℓ
(
s, ŝ

m̂

)1Ωc
n

]
≤
√

P(Ωc)

√
EΛm

[
ℓ
(
s, ŝ

m̂

)2]
by Cauchy-Schwartz

≤
√

K1n
−γ0/2

√
EΛm

[
2 ‖s‖2

∞ + 2p1(m̂)2
]

≤ L(Ug)n
−γ0/2


1 +

√√√√EΛm

[
∑

m∈Mn

p1(m)21
m∈M̂n

]
 .

For every m ∈ M̂n, we have to compute E
Λm [(p1(m))2] (and derive a bound on

it, even very poor). Starting from (46), we have

E
Λm
[
p1(m)2

]
=

1

n2

∑

λ∈Λm

(
pλ

p̂λ

)2

E
Λm

[
S4

λ,1

(np̂λ)2

]
+

1

n2

∑

λ6=λ′

[
pλ

p̂λ

pλ′

p̂λ′

m2
2,λm2

2,λ′

]

≤
∑

λ∈Λm

E
Λm

[
S4

λ,1

(np̂λ)2

]
+
∑

λ6=λ′

(
σ2

max + (2A)2
)2 ≤ D2

mL(Ug) ≤ n2L(Ug)

since

E
Λm

[
S4

λ,1

(np̂λ)2

]
= E

Λm

[(∑
Xi∈Iλ

(Yi − βλ)
)4

(np̂λ)2

]
=

m4
4,λ

np̂λ
+

6(np̂λ − 1)m4
2,λ

np̂λ

and Dm

∑

λ∈Λm

m4
q,λ ≤

(
aℓq

ξℓ
)2 (

σ2
max + (2A)2

)2
.

imsart-ejs ver. 2007/12/10 file: RP.hyper27112.tex date: March 11, 2008



Arlot, S./Resampling penalization 46

Using that Card(Mn) ≤ cMnαM , we obtain

E
Λm
[
ℓ
(
s, ŝ

m̂

)1Ωc
n

]
≤ L(Ug)n

1+(αM−γ0)/2

which proves (9).

9.5. Proof of Thm. 2

In this proof, we denote by (H) the set of assumptions made in Thm. 2. All the
assumptions of Thm. 1 are satisfied, except maybe the lower bound in (Ap) (for
(ArXℓ ), we use (Adℓ) and the fact that all the models are “regular”). We start
from (37) in Remark 9 below Lemma 7. The constants γi are then numerical,
because the data is bounded.

Let m(T0) ∈ Mn be the model of dimension T k
0 closest to R

2k
2α+k n

k
2α+k σ

−2k
2α+k
max .

We must have

2−1R
2

2α+k n
1

2α+k σ
−2

2α+k
max ≤ T0 ≤ 2R

2
2α+k n

1
2α+k σ

−2
2α+k
max .

This dimension is larger than ln(n)γ1 and smaller than cn(ln(n))−1 if n ≥ L(H),c.

Hence, from the proof of Lemma 7, this model belongs to M̂n and has a finite
excess loss on the large probability event of Lemma 7. Moreover, this excess loss
is smaller than

L
(

ℓ
(
s, sm(T0)

)
+ E

[
p̃1

(0)(m(T0))
])

when n ≥ L(H). Since

ℓ
(
s, sm(T0)

)
≤ R2T−2α

0

E

[
p̃1

(0)(m(T0))
]
≤ sup

np≥0
e0
B(n,p) ×

1

n

∑

λ∈Λm(T0)

(
(σr

λ)2 +
(
σd

λ

)2)

≤ 2

n


R2T 1−2α

0 +
∑

λ∈Λm(T0)

(σr
λ)

2


 ≤ 2R2T 1−2α

0

n
+

2σ2
maxDm(T0)

n
,

(the bound on e0
B(n,p) coming from (37), Lemma 4.1), there is an event of prob-

ability at least 1 − K ′
1n

−2 on which

ℓ
(
s, ŝ

m̂

)
≤ K2R

2k
2α+k n

−2α
2α+k σ

4α
2α+k
max +

ln(n)γ2

n
,

where K2 only depends on k and α. Notice that the constant K1 has been
replaced by a larger one, K ′

1, so that the probability bound is nonpositive when
n is too small. Enlarging K ′

1 once more, one can also drop off the ln(n)γ2n−1

term by adding 1 to the constant K2. We then take expectations as in the proof
of Thm. 1, and deduce (10).

imsart-ejs ver. 2007/12/10 file: RP.hyper27112.tex date: March 11, 2008



Arlot, S./Resampling penalization 47

When (Aσ) holds, we replace σmax by ‖σ‖L2(Leb) in the definition of m(T0).
Then, for every λ ∈ Λm(T0) such that there is no jump of σ on Iλ,

(σr
λ)

2 ≤ max
Iλ

σ2 ≤
(

Kσ

T0
+

√∫

X

σ2(t) Leb(dt)

)2

≤
(
1 + θ−1

) K2
σ

T 2
0

+ (1 + θ)

∫

X

σ2(t) Leb(dt)

for every θ > 0 (since Leb(X ) = 1). If σ jumps on Iλ (and there are at most Jσ

such λ), we simply bound maxIλ
σ2 by σ2

max. As a consequence, taking θ = T−1
0 ,

we get

E

[
p̃1

(0)(m(T0))
]
≤ 2

n


R2T 1−2α

0 +
∑

λ∈Λm(T0)

(σr
λ)

2




≤ 2R2T 1−2α
0

n
+

2Dm(T0) ‖σ‖
2
L2(Leb)

n
+

L(H)

n

and the end of the proof does not change. In this second case, we can also
remove (An) because all the assumptions stated in the first part of Sect. 4.3 are
satisfied.

9.6. Proof of Lemma 7

We first give the complete proof in the bounded case. Then, we will explain how
it can be extended to the unbounded case.

9.6.1. Bounded case

For every m ∈ Mn, define pen′
id(m) = p1(m) + p2(m) − δ(m) = penid(m) +

(P − Pn)γ(s). By definition of penid and m̂, we have for every m ∈ M̂n,

ℓ
(
s, ŝ

m̂

)
− (pen′

id(m̂) − pen(m̂) ) ≤ ℓ (s, ŝm ) + (pen(m) − pen′
id(m) ) . (38)

The idea of the proof is to show that pen− pen′
id is negligible in front of ℓ (s, ŝm )

for “reasonable” models (i.e., those which are likely to be either selected by
Algorithm 2, or an oracle model) with a large probability. We will prove it by
using Prop. 1 and 2, as well as the concentration inequalities of Sect. 9.9.

For every m ∈ Mn, define An(m) = minλ∈Λm {np̂λ } and Bn(m) = minλ∈Λm {npλ }.
We now define the event Ωn,γ0 on which the concentration inequalities of Prop. 3
and 12 and Lemma 13 and 15, hold with γ = αM + γ0 (or similarly x =
(αM + γ0) ln(n)), for every m ∈ Mn. Using assumption (P1), the union bound
gives P (Ωn,γ0 ) ≥ 1 − LcMn−γ0 .

First, let c, γ1 > 0 be two constants to be chosen later, and consider M̃n,
the set of models m ∈ Mn such that ln(n)γ1 ≤ Dm ≤ cn(ln(n))−1. According
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to (ArXℓ ), for every such m, Bn(m) ≥ cX
r,ℓc

−1 ln(n), so that (77) ensures that

An(m) ≥ ln(n) on Ωn,γ0 , if c ≤ LcX
r,ℓ

,αM,γ0
. In particular, m ∈ M̂n on Ωn,γ0 . We

also assume that n ≥ exp(D0), so that Dm ≥ D0 for every m ∈ M̃n if γ1 ≥ 1.
Now, using both bounds on Dm, by construction of Ωn,γ0 ,

max
{
|p̃1(m) − E [ p̃1(m) ]| , |p2(m) − E [p2(m) ]| ,

∣∣δ(m)
∣∣ ,
∣∣pen(m) − E

Λm [pen(m) ]
∣∣}

is smaller than L(Bg) ln(n)−1 ( ℓ (s, sm ) + E [p2(m) ] ) on this event, provided
that c ≤ LcX

r,ℓ
,γ (to ensure that Bn(m) is large enough) and γ1 ≥ 2ξℓ + 6. We

now fix c = LcX
r,ℓ

,γ > 0 and γ1 = Lξℓ
that satisfy these conditions. Using Prop. 2,

Lemma 9 and the lower bound on Bn(m), we have for every m ∈ M̃n

−L(Bg)

ln(n)1/4
ℓ (s, ŝm ) ≤ (pen− pen′

id)(m) ≤
[
2(η − 1) +

L(Bg)

ln(n)1/4

]
ℓ (s, ŝm ) .

as soon as n ≥ L(Bg) (this restriction is necessary because the bounds are in
terms of excess loss of ŝm instead of ℓ (s, sm ) + E [p2 ]). Combined with (38),
this gives: if n ≥ L(Bg),

ℓ
(
s, ŝ

m̂

)1
m̂∈M̃n

≤
[
2η − 1 +

L(Bg)

ln(n)1/4

]
× inf

m∈M̃n

{ℓ (s, ŝm )} . (39)

Second, we prove that any minimizer m̂ of the penalized empirical criterion
crit(m) = Pnγ ( ŝm ) + pen(m) belongs to M̃n on the event Ωn,γ0 . Define, for
every m ∈ Mn, crit′(m) = crit(m) − Pnγ (s), which has the same minimizers

over M̂n as crit. According to (P2), there exists m0 ∈ Mn such that
√

n ≤
Dm0 ≤ crich

√
n. If n ≥ L(Bg), m0 ∈ M̃n, from which we deduce (using (Ap))

crit′(m0) ≤ ℓ (s, sm0 ) +
∣∣δ(m0)

∣∣+ pen(m0) ≤ L(Bg)

(
n−β2/2 + n−1/2

)
. (40)

On the other hand, if Dm < ln(n)γ1 , we have

crit′(m) ≥ ℓ (s, sm ) −
∣∣δ(m)

∣∣− p2(m)

≥ C−
b ( ln(n) )−γ1β1 − LA,γ0

√
ln(n)

n
− L(Bg)

ln(n)1+ξℓ+γ1

n
(41)

on Ωn,γ0 . In addition, if Dm > cn(ln(n))−1 and m ∈ M̂n, by Lemma 11,
E

Λm [pen(m) − p2(m) ] ≥ E
Λm [p2(m) ] /4. As a consequence, by construction

of Ωn,γ0 , we have pen(m) − p2(m) ≥ (1 − L(Bg)n
−1/4)E [p2(m) ] on it, so that

crit′(m) ≥ pen(m) − p2(m) −
∣∣δ(m)

∣∣ ≥ L(Bg) ln(n)−1 (42)

when n ≥ L(Bg). Comparing (40), (41) and (42), it follows that m̂ ∈ M̃n on
Ωn,γ0 , provided that n ≥ L(Bg).
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Finally, we show that the infimum can be extended to Mn in the right-
hand side of (39), with the convention ℓ (s, ŝm ) = +∞ if An(m) = 0. Using
similar arguments as above (as well as the definition of Ωn,γ0 , in particular (71)
for large models), we have ℓ (s, ŝm0 ) ≤ L(Bg)

(
n−β2/2 + n−1/2

)
on Ωn,γ0 . On

the other hand, for every m ∈ Mn, if Dm < ln(n)γ1 , ℓ (s, ŝm ) ≥ ℓ (s, sm ) ≥
L(Bg) ln(n)−γ1β1 while if Dm > cn(ln(n))−1, ℓ (s, ŝm ) ≥ L(Bg) ln(n)−2 on Ωn,γ0

as soon as n ≥ L(Bg). Hence, if n ≥ L(Bg), no model m /∈ M̃n can contribute
to the infimum in the right-hand side of (39). This concludes the proof of (36)
in the bounded case.

9.6.2. Unbounded case

The proof of the bounded case has to be slightly modified. In the definition
of Ωn,γ0 , we replace the concentration inequalities of Lemma 13 by the ones of
Lemma 14. We then have another condition for chosing γ1, which is γ1 ≥ 2ξgǫ+3.
The rest of the proof of (39) is unchanged.

In order to prove that m̂ ∈ M̃n, (41) has to be slightly changed because of
the use of (75) instead of (72) to bound δ(m). The final part of the proof is
then modified similarly.

9.6.3. Proof of Remark 9

We now prove the assertion made in Remark 9 below Lemma 7. Starting from
(39), we can prove in the same way that D

m̂
≤ cn ln(n)−1, but not the corre-

sponding lower bound. Let m ∈ M̂n such that Dm < ln(n)γ1 . Assume first that

ℓ (s, sm ) ≥ 1

1 − ln(n)−1

[
(2η − 1 + ǫn ) inf

m∈M̃n

{ℓ (s, ŝm )} +
ln(n)ξℓ+γ1+2

n

]
,

(43)
where ǫn ≤ L(Bg) ln(n)−1/4 comes from (8). Then, on Ωn,γ0 , using (72) (with
η = ln(n)−1), and (43),

crit′(m) ≥ ℓ (s, sm ) −
∣∣δ(m)

∣∣− p2(m)

≥ (2η − 1 + ǫn) inf
m∈M̃n

{ℓ (s, ŝm )} +
ln(n)ξℓ+γ1+2

n
− LA

ln(n)

n
− L(Bg)

ln(n)ξℓ+γ1+1

n

≥ (2η − 1 + ǫn) inf
m∈M̃n

{ℓ (s, ŝm )} +
ln(n)ξℓ+γ1+2

2n
, (44)

provided that n ≥ L(Bg). On the other hand, let m0 ∈ arg min
m′∈M̃n

{ ℓ (s, ŝm′ )}.
Since m0 ∈ M̃n, on Ωn,γ0 ,

crit′(m0) = ℓ (s, ŝm0 ) + pen(m0) − penid(m0) ≤ (2η − 1 + ǫn ) ℓ (s, ŝm0 ) ,

imsart-ejs ver. 2007/12/10 file: RP.hyper27112.tex date: March 11, 2008



Arlot, S./Resampling penalization 50

and this upper bound is smaller than the lower bound in (44).
Hence, on Ωn,γ0 , if D

m̂
< ln(n)γ1 , it can not satisfy (43). Using that

p̃1(m) ≤ L(Bg) ln(n)ξℓ+2 Dm

n

for every m ∈ Mn such that Dm ≤ cn ln(n)−1 on Ωn,γ0 , we then have

ℓ
(
s, ŝ

m̂

)
= ℓ

(
s, s

m̂

)
+ p̃1(m̂)

≤ 2η − 1 + L(Bg) ln(n)−1/4

1 − ln(n)−1
inf

m∈M̃n

{ ℓ (s, ŝm )} + L(Bg)
ln(n)ξℓ+γ1+2

n

≤
(

2η − 1 + ln(n)−1/5
)

inf
m∈M̃n

{ ℓ (s, ŝm )} +
ln(n)ξℓ+γ1+3

n
, (45)

assuming that n ≥ L(Bg). As a consequence, m̂ satisfies either (36) or (45) on
Ωn,γ0 . Finally, with the same arguments as in the proof of Lemma 7, we can
extend the infimum in the right-hand side of (36) and (45) to the set of m ∈ Mn

such that Dm ≥ ln(n)γ1 , with the convention ℓ (s, ŝm ) = +∞ if An(m) = 0.
Enlarging the constant K1 to remove the conditions n ≥ L(Bg), we have proven
(37), with γ2 = γ1+ξℓ +3. The proof is quite similar in the unbounded case.

9.7. Expectations

proof of Prop. 1. First, (11) and (16) directly come from Prop. 1 in (9) and its
proof. The former result hold whatever the convention we take for p1 and p2 in
Sect. 9.1. Since we use them in Sect. 3.2 and for proving concentration results,
we recall below explicit expressions for p1 and p2 in the histogram framework:

p1(m) =
∑

λ∈Λm

pλ

(
βλ − β̂λ

)2

=
∑

λ∈Λm

1

n2p̂λ

pλ

p̂λ
S2

λ,1 (46)

p2(m) =
∑

λ∈Λm

p̂λ

(
βλ − β̂λ

)2

=
∑

λ∈Λm

S2
λ,11np̂λ>0

n2p̂λ
. (47)

Finally, (12) directly follows from the slightly more general Lemma 9 below
(where W is allowed to depend on (1Xi∈Iλ

)(i,λ)).

Lemma 8. Let Sm be the model of histograms adapted to some partition (Iλ )λ∈Λm
,

W ∈ [0;∞)n be a random vector such that for every λ ∈ Λm, (Wi)Xi∈Iλ
is ex-

changeable and independent from (Xi, Yi)Xi∈Iλ
. Define the Resampling Penalty

for histograms as (7), and assume minλ∈Λm {np̂λ } ≥ 1. Then,

pen(m) =
C

n

∑

λ∈Λm

(R1,W (n, p̂λ) + R2,W (n, p̂λ) )
np̂λSλ,2 − S2

λ,1

np̂λ − 1
1

np̂λ≥2
, (48)

where R1,W and R2,W are defined by (14) and (15).
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proof of Lemma 8. First, as we have split penid into p1 and p2 (plus a centered
term), we split the penalty (without the constant C) into these two terms:

p̂1(m) =
∑

λ∈Λm

EW

[
p̂λ

(
β̂W

λ − β̂λ

)2
∣∣∣∣ Wλ > 0

]
(49)

p̂2(m) =
∑

λ∈Λm

EW

[
p̂W

λ

(
β̂W

λ − β̂λ

)2
]

. (50)

A key quantity to compute is the following: for every λ ∈ Λm and Wλ > 0,

EW

[
p̂λ

(
β̂W

λ − β̂λ

)2
∣∣∣∣ Wλ

]
= EW


 p̂λ

(
1

np̂λ

∑

Xi∈Iλ

(Yi − βλ)

(
1 − Wi

Wλ

))2
∣∣∣∣∣∣

Wλ




=
1

n2p̂λ

[
∑

Xi∈Iλ

(Yi − βλ)
2

EW

[(
1 − Wi

Wλ

)2
∣∣∣∣∣ Wλ

]
(51)

+
1

n2p̂λ

∑

i6=j,Xi∈Iλ,Xj∈Iλ

(Yi − βλ)(Yj − βλ)EW

[(
1 − Wi

Wλ

)(
1 − Wj

Wλ

) ∣∣∣∣ Wλ

]]
.

Since the weights are exchangeable, (Wi)Xi∈Iλ
is also exchangeable conditionally

to Wλ and (Xi)1≤i≤n. Thus, the “variance” term

RV (n, np̂λ, Wλ,L(W )) := EW

[
(Wi − Wλ )2

∣∣∣ Wλ

]

does not depend from i (provided that Xi ∈ Iλ), and the “covariance” term

RC(n, np̂λ, Wλ,L(W )) := EW [ (Wi − Wλ ) (Wj − Wλ ) | Wλ ]

does not depend from (i, j) (provided that i 6= j and Xi, Xj ∈ Iλ). Moreover,

0 = EW



(
∑

Xi∈Iλ

(Wi − Wλ )

)2
∣∣∣∣∣∣

Wλ




= np̂λRV (n, np̂λ, Wλ,L(W )) + np̂λ (np̂λ − 1)RC(n, np̂λ, Wλ,L(W ))

so that, if np̂λ ≥ 2,

RC(n, np̂λ, Wλ, W ) =
−1

np̂λ − 1
RV (n, np̂λ, Wλ,L(W )) , (52)

and RV (n, 1, Wλ,L(W )) = 0.
Combining (51) and (52), we obtain

EW

[
p̂λ

(
β̂W

λ − β̂λ

)2
∣∣∣∣ Wλ

]
=

RV (n, np̂λ, Wλ,L(W ))

Wλn2p̂λ
1

np̂λ≥2
(53)

×
[

np̂λ

np̂λ − 1
Sλ,2 −

1

np̂λ − 1
S2

λ,1

]

Combining (53) and (49) (resp. (53) and (50)), we deduce (48).
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Finally, let us recall the following lemma which compares p1 and p2 in expec-
tation.

Lemma 9 (Lemma 7 of (9)). If minλ∈Λm {npλ } ≥ B ≥ 1,

(
1 − e−B

)
E [ p̃2(m) ] ≤ E

[
p̃1

(0)(m)
]
≤ E [ p̃1(m) ] ≤

(
1 + sup

np≥B
δn,p

)
E [ p̃2(m) ]

(54)
where δn,p is the same as in (16). A similar result holds with p2 instead of p̃2

inside the expectation.

9.8. Resampling constants

In this section, we prove some results relative to the exchangeable weights in-
troduced in Sect. 2.2, in particular Prop. 2. We start with a lemma proving the
formulas given in Tab. 2 for R2,W .

Lemma 10. Let n ∈ N and p̂λ ∈ (0, 1] such that np̂λ ∈ {1, . . . , n}. Then, for
every m ∈ N\{0}, p ∈ (0; 1], µ > 0 and q ∈ {1, . . . , n},

R1,Efr(m) =
n

m
e+

B(m,p̂λ)

(
1 − 1

np̂λ

)
R2,Efr(m) =

n

m

(
1 − 1

np̂λ

)
(55)

R1,Rad(p) =
1

p
e+

B(np̂λ,p)
− 1 R2,Rad(p) =

1

p
− 1 (56)

R1,Poi(µ) =
1

µ
e+

P(np̂λµ)

(
1 − 1

np̂λ

)
R2,Poi(µ) =

1

µ

(
1 − 1

np̂λ

)
(57)

R1,Rho(q) =
n

q
e+

H(n,np̂λ,q)
− 1 R2,Rho(q) =

n

q
− 1 (58)

R1,Loo =
np̂λ

n(np̂λ − 1)
1

np̂λ≥2
R2,Loo =

1

n − 1
(59)

where B, P and H are respectively the Binomial, Poisson and Hypergeometric
distributions, and e+

µ = E [Z ] E
[
Z−1

∣∣ Z > 0
]

with Z ∼ µ.

proof of Lemma 10. Since W is independent from the data, we can assume that
the observations with Xi ∈ Iλ are the np̂λ first ones: (X1, Y1), . . . , (Xnp̂λ

, Y
np̂λ

).

The random vector (Wi)1≤i≤np̂λ
is then exchangeable (since W is). By definition

of Wλ = (np̂λ)−1
∑np̂λ

i=1 Wi, we deduce

∀i ∈ {1, . . . , np̂λ}, EW [Wi | Wλ ] = Wλ . (60)

Then, the quantity

RV (n, np̂λ, Wλ,L(W )) = RV (Wλ) = E

[
(Wi − Wλ )

2
∣∣∣ Wλ

]

appearing both in R1,W and R2,W is the variance of the weight Wi conditionally
to Wλ.
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Exchangeable subsampling weights We call subsampling weight any re-
sampling weight W such that Wi ∈ {0, κ} a.s. for every i. Such weights can be
written Wi = κ1i∈I for some random I ⊂ {1, . . . , n}. Rad and Rho are the two
main examples of such weights, and they are both exchangeable. In their exam-
ple 3.6.14, van der Vaart and Wellner (68) call this kind of weights “bootstrap
without replacement”. Using (60), we derive that

Wλ = EW [Wi | Wλ ] = κP (Wi = κ | Wλ )

and thus

L (Wi | Wλ ) = κB(κ−1Wλ) and RV (Wλ) = Wλ(κ − Wλ) .

We then apply this result to Rad, for which κ = p−1 and L(Wλ) = (np̂λp)−1×
B(np̂λ, p) and deduce (56). In the Rho case, we have κ = (n/q) and L(Wλ) =
(qp̂λ)−1H (n, np̂λ, q ), so that (58) follows. The Loo is a particular case of Rho
(with q = n − 1), so that we only have to compute e+

H(n,np̂λ,n−1)
. This is done

with (25) in Lemma 5.

Efron Efron weights can also be written

Wi =
n

m
Card {1 ≤ j ≤ m s.t. Uj = i} (61)

with (Uj)1≤j≤m a sequence of i.i.d. random variables, uniform over {1, . . . , n}.
From this, we deduce

L(Wλ) = (mp̂λ)−1B(m, p̂λ) and L (Wi | Wλ ) =
n

m
B
(

mp̂λWλ,
1

np̂λ

)
.

Thus,

RV (Wλ) =
n

m
Wλ

(
1 − 1

np̂λ

)

and (55) follows.

Poisson One can check that the weights defined by (61), with m = Nn ∼
P(µn) independent from the (Uj)j≥1, are actually Poisson (µ) weights. This is
the classical poissonization trick. Moreover, conditionally to Wλ and Nn = m,
the same reasoning as for Efron(m) (with a multiplicative constant µ−1 instead
of n/m) leads to (57).

proof of Prop. 2. From (48), we obtain (17) with

δ
(penW)

n,p̂λ

= CW (R1,W (n, p̂λ) + R2,W (n, p̂λ) ) − 2 .

Combining Lemma 10 with Lemma 4 (for Efr and Rad), Lemma 5 (for Rho and
Loo) and Lemma 6 (for Poi), we obtain the following non-asymptotic bounds:
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1. Efron (mn): let κ1 = 5.1 and κ2 = 3.2,

(κ2 − 1) ∧
(

κ1

(Bnp̂λ )1/4

)
≥ δ

(penEfr(mn))

n,p̂λ

≥ −2

np̂λ
− e−Bnp̂λ . (62)

2. Rademacher (p):

2

1 − p

[
(κ2 − 1) ∧

(
κ1

(npp̂λ )1/4

)]
≥ δ

(penRad(p))

n,p̂λ

≥ −2e−pnp̂λ

1 − p
(63)

(
1 + 3 × 10−4

)
∧
(

κ1 × 21/4

(np̂λ )
1/4

)
≥ δ

(penRad(1/2))

n,p̂λ

≥ −1
np̂λ≤2

. (64)

3. Poisson (µ):

1 ∧ 2
(
1 + e−3

)

(µnp̂λ − 2)+
≥ δ

(penPoi(µ))

n,p̂λ

≥ −2

np̂λ
−
(

e−µnp̂λ ∧ 1
µnp̂λ<1.61

)
. (65)

4. Random hold-out (qn): on the one hand,

δ
(penRho(qn))

n,p̂λ

=
n

n − q

(
e+

H(n,np̂λ,qn)
− 1

)
≥ e−B−np̂λ

1 − B+
,

where the lower bounds assumes that 0 < B− ≤ qnn−1 ≤ B+ < ∞. On
the other hand, under the same condition,

δ
(penRho(qn))

n,p̂λ

≤ L

B−(1 − B+)

√
ln(np̂λ)

np̂λ

provided that np̂λ ≥ LB−,B+ . When qn = ⌊n/2⌋, we combine this upper
bound with (24).

5. Leave-one-out: 1
np̂λ≥2

np̂λ − 1
≥ δ

(penLoo)

n,p̂λ

≥ −1
np̂λ=1

. (66)

A byproduct of the proof of Prop. 2 (combined with Lemma 9), is the fol-
lowing:

Lemma 11. Assume that W is a weight vector among Efr, Rad, Poi, Rho and
Loo. Let Sm be the model of histograms associated with the partition (Iλ)λ∈Λm ,
p2(m) = Pn (γ(sm) − γ(ŝm) ) and pen(m) be defined by (7) with C = CW ( cf.
Tab. 2). Then, if minλ∈Λm {np̂λ } ≥ 3,

E
Λm [pen(m) ] ≥ 5

4
E

Λm [p2(m) ] . (67)
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Remark 11. Assuming that minλ∈Λm {np̂λ } ≥ T for some positive T , (67) still
holds for:

• Efr(mn) when mnn−1 ≥ −T−1 ln(3/4 − 2/T )
• Rad(p) when T ≥ p−1 ln[8/(3(1 − p))]
• Poi(µ) when T ≥ 3 and µT ≥ 1.61
• Rho(qn) when T ≥ nq−1

n ln[(4n)/(3(n − qn))].

9.9. Concentration inequalities

In this subsection, we give concentration inequalities for both the ideal and
resampling penalties.

9.9.1. Resampling penalties

proof of Prop. 3. According to (48), pen(m) is a U-statistics of order 2 condi-
tionally to (1Xi∈Iλ

)(i,λ). Then, using Lemma 5 of (9), with

aλ =
R1,W (n, p̂λ) + R2,W (n, p̂λ)

n(np̂λ − 1)
bλ =

− (R1,W (n, p̂λ) + R2,W (n, p̂λ) )

n2p̂λ(np̂λ − 1)
,

we have, for all q ≥ 2,

∥∥pen(m) − E
Λm [pen(m)]

∥∥(Λm)

q
≤ Laℓ,ξℓ

D−1/2
m A−1/2

n

× sup
np≥An

{R1,W (n, p) + R2,W (n, p)} qξℓ+1
E [p2(m) ] .

We deduce conditional concentration inequalities through the classical link be-
tween moments and concentration, with a probability bound 1 − n−γ . Since it
is deterministic, this implies unconditional concentration inequalities.

The second statement follows from the proof of Prop. 2, where we can find

non-asymptotic upper bounds on 2+δ
(penW)

n,p̂λ

= CW×(R1,W (n, p̂λ) + R2,W (n, p̂λ) ).

9.9.2. Ideal penalty

Concentration properties for the ideal penalty are proven in (9), App. B.5, under
the assumptions of Thm. 1. We here state them with assumption (Am,ℓ) instead
of the boundedness assumption (Ab), so that they can be applied in the general
framework of Sect. 9.2. Our first result has to deal with p1 and p2, which are the
main components of the ideal penalty. Remark that concentration for p2 can be
obtained in a general framework (see (6), Chap. 7). On the contrary, we do not
know any other non-asymptotic bound on the deviation of p1.
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Proposition 12. Let γ > 0. Assume that minλ∈Λm {npλ } ≥ Bn and (Am,ℓ)
∀q ≥ 2, P ℓ

m(q) ≤ aℓq
ξℓ . Then, if Bn ≥ 1, on an event of probability at least

1 − Ln−γ,

p̃1(m) ≥ E [ p̃1(m) ] − Laℓ,ξℓ,γ

[
ln(n)ξℓ+2

√
Dm

+ e−LBn

]
E [p2(m) ] (68)

p̃1(m) ≤ E [ p̃1(m) ] + Laℓ,ξℓ,γ

[
ln(n)ξℓ+2

√
Dm

+
√

Dme−LBn

]
E [p2(m) ] (69)

|p2(m) − E[p2(m)]| ≤ Laℓ,ξℓ,γ
ln(n)ξℓ+1

√
Dm

E [p2(m) ] . (70)

In addition, if Bn > 0, there is an event of probability at least 1 − Ln−γ on
which

p̃1(m) ≥
(

1

2 + (γ + 1)B−1
n ln(n)

− Laℓ,ξℓ,γ

[
ln(n)ξℓ+2

√
Dm

+ e−LBn

])
E [ p̃2(m) ] .

(71)

proof of Prop. 12. See the proof of Prop. 9 in (9), which only differ in the way
of upper bounding mq,λ, since the data is no longer assumed to be bounded.

We now come to the centered term δ(m). When the data is bounded, we have
the following:

Lemma 13 (Prop. 3 of (11)). Assume that ‖Y ‖∞ ≤ A < ∞. Then for all
x ≥ 0, there is an event of probability at least 1 − 2e−x on which, for every
η > 0,

∀η > 0,
∣∣δ(m)

∣∣ ≤ ηℓ (s, sm ) +

(
4

η
+

8

3

)
A2x

n
. (72)

In particular,

∣∣δ(m)
∣∣ ≤ ℓ (s, sm )√

Dm

+
20

3

A2

Q
(p)
m

E
Λm [p2(m)]√

Dm

x . (73)

proof of Lemma 13. We refer to (11) for a detailed proof of (72), which es-
sentially relies on Bernstein’s inequality. Then, we deduce (73) by choosing

η = D
−1/2
m and using the definition of Q

(p)
m .

In the unbounded case, we need another concentration inequality for δ(m).
There are many strategies for this, since it is a sum of i.i.d. centered random
variables. In our framework, the following result is sufficient.

Lemma 14. Assume that (Ag,ǫ) ∀q ≥ 2, P gǫ(q) ≤ agǫq
ξgǫ , (Aσmax) ‖σ(X)‖∞ ≤

σmax and (Aδ) ‖s − sm‖∞ ≤ cg
∆,m ‖s(X) − sm(X)‖2. Then, for every x ≥ 0,

there exists an event of probability at least 1 − e−x on which

∣∣δ(m)
∣∣ ≤

Lagǫ,ξgǫ,cg
∆,m

xξgǫ+1/2

√
Dm

[
ℓ (s, sm ) +

σ2
max

Q
(p)
m

E [p2(m) ]

]
. (74)
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On the other hand, if (Ag,ǫ) and (Aσmax) holds true, but (Aδ) is replaced
by (Asmax) ‖s‖∞ ≤ A, then, for every x ≥ 0, there is an event of probability at
least 1 − e−x on which

∣∣δ(m)
∣∣ ≤ Lagǫ,ξgǫ,A,σmaxn

−1/2xξgǫ+1/2 . (75)

proof of Lemma 14. From Lemma 8.18 of (6) (which is for instance a conse-
quence of (55), Sect. 5.3.5), we have

∥∥δ(m)
∥∥

q
≤ 2

√
κ
√

q√
n

‖Fm − E[Fm]‖q

with Fm := (Y − sm(X))2 − (Y − s(X))2

= (sm(X) − s(X))2 − 2ǫσ(X)(sm(X) − s(X)) .

Notice that ǫσ(X)(sm(X) − s(X)) is centered conditionally to X ∈ Iλ for all
λ ∈ Λm. We thus have

∥∥δ(m)
∥∥

q
≤ 2

√
κ
√

q√
n

(
‖s − sm‖2

∞ + 2σmax ‖s − sm‖∞ ‖ǫ‖q

)
. (76)

We now use assumptions (Ag,ǫ) and (Aδ). Then, for all q ≥ 2,

∥∥δ(m)
∥∥

q
≤ 2

√
κ
√

q
(
(cg

∆,m)2ℓ (s, sm ) + 2cg
∆,m

√
ℓ (s, sm )P gǫ(q)σmax

) 1√
n

≤ Lcg
∆,m

√
qD−1/2

m ℓ (s, sm ) + Lagǫ,ξgǫ,cg
∆,m

qξgǫ+1/2 σ2
max

√
Dm

n
.

We take θ = D
−1/2
m and deduce (74) with the classical link between moments

and concentration. For the second statement, start back from (76) and use that
‖s − sm‖∞ ≤ 2A.

9.10. Technical lemmas

The three following lemmas are needed in our proofs. They are proven in the
technical appendix (7).

Empirical and expected frequencies

Because of the randomness of the design, we have to ensure that the empirical
frequencies np̂λ are not too far from the expected ones npλ.

Lemma 15. Let (pλ)λ∈Λm be non-negative real numbers of sum 1, (np̂λ)λ∈Λm a
multinomial vector of parameters (n; (pλ)λ∈Λm), γ > 0. Assume that Card(Λm) ≤
n and minλ∈Λm {npλ } ≥ Bn > 0. There is an event of probability at least
1 − Ln−γ on which the following inequality holds:

min
λ∈Λm

{np̂λ } ≥ minλ∈Λm {npλ }
2

− 2(γ + 1) ln(n) (77)

Proof. This relies mainly on Bernstein’s inequality for each np̂λ. See Lemma 12
in (9) for a detailed proof.
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Bounds for Q
(p)
m

Besides the straightforward lower bound σ2
min when (An), holds, we have the

following.

Lemma 16. Recall that

Q(p)
m :=

1

Dm

∑

λ∈Λm

σ2
λ .

If X ⊂ R
k, (Ardu) maxλ∈Λm {diam(Iλ)} ≤ cd

r,uD−αd
m diam(X), (Aru) maxλ∈Λm {Leb(Iλ)} ≤

cr,uD
−1
m Leb(X ), and σ is piecewise Kσ-Lipschitz with at most Jσ jumps (Aσ),

then

Q(p)
m ≥

‖σ‖2
L2(Leb)

2cr,u
− K2

σ

(
cd
r,u

)2
diam(X )2

D2αd
m

− Jσ ‖σ(X)‖2
∞

2Dm
.

Remark 12. Since ‖σ(X)‖2 > 0 and σ is piecewise Lipschitz, ‖σ‖L2(Leb) > 0.

Thus, the lower bound for Q
(p)
m is positive when Dm is large enough.

Sufficient condition for (Aδ)

Lemma 17. Assume that X ⊂ R is bounded and:

(Al) s : X 7→ R is B-Lipschitz, piecewise C1 and non-constant ( i.e. ±s′ ≥
B0 > 0 on some interval J ⊂ X with Leb(J) ≥ cJ Leb(X ), with cJ > 0).

(Arℓ,u) Regularity of the partitions for Leb:

∀λ ∈ Λm, cr,ℓD
−1
m Leb(X ) ≤ Leb(Iλ) ≤ cr,uD−1

m Leb(X ) .

(Adℓ) Density bounded from below: ∃cmin
X > 0, ∀I ⊂ X , P (X ∈ I) ≥ cmin

X Leb(I) Leb(X )−1.

Then, (Aδ) holds true, i.e., for every model m of dimension Dm ≥ D0,

‖s − sm‖∞ ≤ cg
∆,m ‖s(X) − sm(X)‖2

with cg
∆,m =

(
cr,u

cr,ℓ

)3/2
B
√

24

B0

√
cmin
X cJ

and D0 := 4cr,uc
−1
J .

9.11. Expectations of inverses

We prove in this subsection the lemmas of Sect. 4.4.3. Notice that Sect. 2 in (8)
explains how to generalize (20) to a wide class of random variables. We will use
two results that can be found there: the general lower bound

e+
Z ≥ P(Z > 0) , (78)

which comes from Jensen inequality. Defining

e0
L(Z) := E [Z ]E

[
Z−11Z>0

]
= e+

ZP(Z > 0) , (79)
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we have the following upper bound, which holds as soon as P(cZ > Z > 0) = 0.

∀α > 0, e0
Z = E

[
Z−11αE[Z]>Z>0

]
E[Z] + E

[
Z−11Z≥αE[Z]

]
E[Z]

≤ P (αE[Z] > Z > 0) E[Z]c−1
Z + α−1 . (80)

9.11.1. Binomial case (proof of Lemma 4)

We only have to prove (21). When n ≥ 9, the upper bound follows from (79)
together with Lemma 4.1 of (37) (showing that e0

B(n,p) ≤ 2n/(n + 1)). When

n ≤ 8, e+
B(n,1/2) ≤ 1.21 (see for instance Sect. 8.7 of (6)). For the lower bound,

the crucial point is that Z ∼ B
(
n, 1

2

)
is nonnegative and symmetric, i.e. L(Z) =

L(n − Z). Using only this property, and defining p0 = P(Z = 0) = P(Z = n) =
2−n, we have

e+
Z =

P (Z = n | Z > 0)

2
+ E

[
1

Z

∣∣∣∣ 0 < Z < 2

]
n

2

P(0 < Z < n)

P(Z > 0)

=
p0

2(1 − p0)
+

1 − 2p0

1 − p0

n

2
E

[
1

2

(
1

Z
+

1

n − Z

) ∣∣∣∣ 0 < Z < n

]

=
p0

2(1 − p0)
+

1 − 2p0

1 − p0

(
1 +

n

2
E

[ (
Z − n

2

)2

Z(n − Z)

∣∣∣∣∣ 0 < Z < n

])
. (81)

Since Z is binomial with parameters (n, 1/2), we have

n(1 − 2p0)

2
E

[ (
Z − n

2

)2

Z(n − Z)

∣∣∣∣∣ 0 < Z < n

]
≥ P (Z = 1 or Z = n − 1)

(n − 2)2

4(n − 1)

if n ≥ 3. Putting this into (81), we obtain:

e+

B(n, 1
2 )

≥ 1

1 − 2−n

(
2−n−1 + 1 − 21−n +

n(n − 2)2

2n+1(n − 1)

)
≥ 1 .

9.11.2. Hypergeometric case (proof of Lemma 5)

Let Z ∼ H(n, r, q). It has an expectation E [Z] = qr
n .

General lower bound We first use (78) and

P (Z = 0) ≤
(
1 − r

n

)q

≤ exp
(
−qr

n

)
.

Moreover, if r ≥ n − q + 1, P(Z > 0) = 1.
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A general upper bound According to (79) and the lower bound for P(Z > 0)
above, it is sufficient to upper bound e0

H(n,r,q). We first prove the following
general result, that holds for every n ≥ r, q ≥ 1:

e+
H(n,r,q) ≤

inf q
n >β≥ 2

r

{
qr
n exp

[
− 2(βr−1)2

r+1

]
+ 1

1−nβ
q

}

1 − exp
(
− qr

n

) (82)

The idea of the proof is to use (80) with cZ = 1, E[Z] = qrn−1. For this, we
need the following concentration result by Hush and Scovel (41): for all x ≥ 2,

P (E(Z) − Z > x)

< exp

(
−2(x − 1)2

[(
1

r + 1
+

1

n − r + 1

)
∨
(

1

q + 1
+

1

n − q + 1

)])
.

Taking α = 1 − nβ
q with q

n > β ≥ 2
r , we obtain

e0
H(n,r,q) ≤

qr

n
exp

[
−2(βr − 1)2

r + 1

]
+

1

1 − nβ
q

.

As a consequence, (82) holds.

Back to (23) With the supplementary conditions on n, r and q, we can take

β =
1+

√
3
4 ln(r)(r+1)

r in (82). Hence

e0
H(n,r,q) ≤

1

2
√

r
+

1

1 − n
q

(
1+

√
3
4 ln(r)(r+1)

r

) ≤ 1 +
n

q
K(ǫ)

√
ln(r)

r

with K(ǫ) =
1

2
√

ln(2)
+

1

ǫ2

(√
ln(3)

3
+

3

4

)
.

Using (79) and the upper bound on P (Z = 0), we deduce (23) since r ≥ 2 and

κ3(ǫ) = 0.9 + 1.4 × ǫ−2 ≥ 1.02 × K(ǫ) + 0.03 .

“Rho” case We now assume that q = ⌊n
2 ⌋ so that n

q = 2 + 1
⌊n

2 ⌋ ≤ 3 and

converges to 2 when n goes to infinity.
For r ≥ 6, we can take β = 2

r in (82) and we obtain:

e+
H(n,6,q) ≤ 9.68 e+

H(n,7,q) ≤ 7.61 e+
H(n,8,q) ≤ 7.46 e+

H(n,9,q) ≤ 7.32

For r ≥ 10, taking β = 1
4 + 1

r in (82), we derive

sup
r≥10

e+
H(n,r,q) ≤ 7.49 sup

r≥26
e+
H(n,r,q) ≤ 3 .
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Small values of r must be treated appart. For r = 1, it is easy to compute
e+
H(n,1,q) = qn−1 ≤ 1. When n = r, we have e+

H(n,n,q) = 1. Otherwise, using the

fact that for every n ≥ r + 1, n!
(n−r)! ≥

(r+1)!
(r+1)r nr,

e0
H(n,r,q) ≤

r

R

(r + 1)r

(r + 1)!Rr

(
r∑

k=1

(
r

k

)
(R − 1)r−k

k

)

with R = n
q ∈ [1; +∞). For r = 2, this upper bound is lower than 1.6. If n

q ≤ 3

(which holds in the “Rho” case),

e+
H(n,3,q) ≤ 4.67 e+

H(n,4,q) ≤ 8.15 e+
H(n,5,q) ≤ 14.29 .

“Loo” case We now have q = n−1. We first consider r = 1. The conditioning
make Z deterministic and equal to 1, so that

e+
H(n,1,n−1) = E[Z] = 1 − 1

n
.

Now, if r ≥ 2, Z > 0 holds a.s. since it only take two values:

P (Z = r − 1) =
r

n
and P (Z = r ) =

n − r

n
.

As a consequence,

e+
H(n,r,n−1) =

(n − 1)r

n

(
r

(r − 1)n
+

n − r

nr

)
= 1 +

1

n

(
(n − 1)r

n(r − 1)
− 1

)
.

The lower bound is straightforward since n ≥ r.

“Lpo” case As noticed in Lemma 10, we have

∀r ≥ p + 1, e+
H(n,r,n−p) ≥ 1 .

Moreover, when r ≥ p + 1, H(n, r, n − p) has its support in {r − p, . . . , r} and
thus

e+
H(n,r,n−p) =

(n − p)r

n

r∑

j=r−p

(
r
j

)(
n−r

n−p−j

)

j
(

n
n−p

)

=
(n − p)r

n

p∑

k=(p+r−n)∨0

(
r
k

)(
n−r
p−k

)

(r − k)
(
n
p

) .

More precisely, the k-th term of the sum is equal to

(n − p)r

n

(
r
k

)(
n−r
p−k

)

(r − k)
(
n
p

) ≤
( r

n

)k (
1 − r

n

)p−k
(

p

k

)
r

r − p

np

n · · · (n − p + 1)
,

so that

e+
H(n,r,n−p) ≤

rnp

(r − p)n · · · (n − p + 1)
.

The result follows.
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Remark 13 (Asymptotics). If for some α > 0, qkr
1/2−α
k n−1

k −−−−−→
k→+∞

+∞ and

nk ≥ rk → +∞, then e+
H(nk,rk,qk) → 1 when k → ∞. The upper bound is

obtained by taking

β =
1 +

√
(r + 1) ln

(
qr
n

)

r

in (82) (it’s possible for r sufficiently large). The lower bound is straightforward.

9.11.3. Poisson case (proof of Lemma 6)

Let Z ∼ P(µ), and define g : [0;∞) 7→ R by g(0) = 0 and for every µ > 0

g(µ) := e+
P(µ) = µE

[
Z−1

∣∣ Z > 0
]

=
µe−µ

1 − e−µ

+∞∑

k=1

µk

k × k!
=

µ

eµ − 1

∫ µ

0

ex − 1

x
dx .

The function g is continuous at 0 and has a first derivative g′(0) = 1. For every
x ≥ 0, we define

h(x) =
ex − 1

x
H(x) =

∫ x

0

h(t)dt a(x) =
h′(x)

h(x)
= 1 − ex − 1 − x

x(ex − 1)
.

where the last equality holds if x > 0, and a(0) = 1/2. Then, g(u) = H(u)/h(u)
satisfies the following ordinary differential equation:

g(0) = 0 ∀u ≥ 0, g′(u) = 1 − a(u)g(u) .

Since

∀u ≥ 0,
1

2
≤ a(u) ≤ 1 and lim

u→+∞
a(u) = 1 ,

g satisfies a differential inequation

1 − g

2
≤ g′ ≤ 1 − g g(0) = 0 .

Then, for every x ≥ x0 ≥ 0,

2

[
1 − e2(x0−x)

(
1 − g(x0)

2

)]
≥ g(x) ≥ 1 + (g(x0) − 1)ex0−x . (83)

Lower bound The general lower bound (78) gives

g(µ) ≥ P(Z > 0) = 1 − e−µ .

We can do better: remark that if g(x0) ≥ 1, (83) shows that g(x) ≥ 1 for every
x ≥ x0. Since g = H/h and for every u ≥ 0,

H(u) ≥ u +
u2

4
+

u3

18
, we deduce that g(u) ≥

u
(
u + u2

4 + u3

18

)

eu − 1
.

Then, g(1.61) ≥ 1, so that g(x) ≥ 1 for every x ≥ 1.61.
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Upper bound Using (83) with x0 = 0 gives

∀x ≥ 0, g(x) ≤ 2 − 2e−2x ≤ 2.

Moreover, for every ǫ ∈ (0; 1), 1 − ǫ ≤ a(x) ≤ 1 as soon as x ≥ ǫ−1. Then, on
[ǫ−1;∞), g satisfies the differential inequation

g′ ≥ 1 − (1 − ǫ)g .

Integrating this between ǫ−1 and 2ǫ−1, we obtain that

g(2ǫ−1) ≤ 1

1 − ǫ

[
1 +

(
g(ǫ−1)(1 − ǫ) − 1

)
exp

(
−ǫ−1(1 − ǫ)−1

)]
.

For every x > 2, ǫ = 2x−1 ∈ (0; 1) so that

g(x) ≤ 1 +
2 + (x − 4) exp

(
− x2

2(x−2)

)

x − 2
≤ 1 +

2(1 + e−3)

x − 2
.

The result follows.
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