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Abstract: In this paper, a new family of resampling-based penalization
procedures for model selection is defined in a general framework. It gen-
eralizes several methods, including Efron’s bootstrap penalization and the
leave-one-out penalization recently proposed by Arlot (2008), to any ex-
changeable weighted bootstrap resampling scheme. In the heteroscedastic
regression framework, assuming the models to have a particular structure,
these resampling penalties are proved to satisfy a non-asymptotic oracle
inequality with leading constant close to 1. In particular, they are asym-
potically optimal. Resampling penalties are used for defining an estimator
adapting simultaneously to the smoothness of the regression function and to
the heteroscedasticity of the noise. This is remarkable because resampling
penalties are general-purpose devices, which have not been built specifically
to handle heteroscedastic data. Hence, resampling penalties naturally adapt
to heteroscedasticity. A simulation study shows that resampling penalties
improve on V -fold cross-validation in terms of final prediction error, in
particular when the signal-to-noise ratio is not large.
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1. Introduction

In the last decades, model selection has received much interest. When the final
goal is prediction, model selection can be seen more generally as the question
of choosing between the outcomes of several prediction algorithms. With such
a general formulation, a natural and classical answer is the following. First,
estimate the prediction error for each model or algorithm; second, select the
model minimizing this criterion. Model selection procedures mainly differ on
the way of estimating the prediction error.

The empirical risk, also known as the apparent error or the resubstitution
error, is a natural estimator of the prediction error. Nevertheless, minimizing
the empirical risk can fail dramatically: the empirical risk is strongly biased for
models involving a number of parameters growing with the sample size because
the same data are used for building predictors and for comparing them.

In order to correct this drawback, cross-validation methods have been in-
troduced [4, 65], relying on a data-splitting idea for estimating the prediction
error with much less bias. In particular, V -fold cross-validation (VFCV, [36]) is
a popular procedure in practice because it is both general and computationally
tractable. A large number of papers exist about the properties of cross-validation
methods, showing that they are efficient for a suitable choice of the way data are
split (or V for VFCV). Asymptotic optimality results for leave-one-out cross-
validation (that is the V = n case) in regression have been proved for instance
by Li [49] and by Shao [60]. However, when V is fixed, VFCV can be asymptot-
ically suboptimal, as showed by Arlot [9]. We refer to the latter paper for more
references on cross-validation methods, including the small amount of available
non-asymptotic results.

Another way to correct the empirical risk for its bias is penalization. In short,
penalization selects the model minimizing the sum of the empirical risk and of
some measure of complexity1 of the model (called penalty); see FPE [2], AIC
[3], Mallows’ Cp or CL [51]. Model selection can target two different goals.
On the one hand, a procedure is efficient (or asymptotically optimal) when its
quadratic risk is asymptotically equivalent to the risk of the oracle. On the other
hand, a procedure is model consistent when it selects the smallest true model
asymptotically with probability one. This paper deals with efficient procedures,
without assuming the existence of a true model. Therefore, the ideal penalty for
prediction is the difference between the prediction error (the “true risk”) and the
empirical risk; penalties should be data-dependent estimates of the ideal penalty.

Many penalties or complexity measures have been proposed. Consider for
instance regression and least-squares estimators on finite-dimensional vector
spaces (the models). When the design is fixed and the noise-level constant equal
to σ, Mallows’ Cp penalty [51] is equal to 2n−1σ2D for a model of dimension
D and it can be modified according to the number of models [20, 58]. Mallows’

1Note that “complexity” here and in the following refers to the implicit modelization of
a model or an algorithm, such as the number of estimated parameters. “Complexity” does
not refer at all to the computational complexity of algorithms, which will always be called
“computational complexity” in the following.
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Cp-like penalties satisfy some optimality properties [61, 49, 14, 21] but they
can fail when the data are heteroscedastic [7] because these penalties are linear
functions of the dimension of the models.

In the binary supervised classification framework, several penalties have been
proposed. First, VC-dimension-based penalties have the drawback of being inde-
pendent of the underlying measure, so that they are adapted to the worst case.
Second, global Rademacher complexities [45, 17] (generalized by Fromont with
resampling ideas [33]) take into account the distribution of the data, but they
are still too large to achieve fast rates of estimation when the margin condition
[53] holds. Third, local Rademacher complexities [18, 46] are tighter estimates
of the ideal penalty, but their computational cost is heavy and they involve huge
(and sometimes unknown) constants. Therefore, easy-to-compute penalties that
can achieve fast rates are still needed.

All the above penalties have serious drawbacks making them less often used in
practice than cross-validation methods: AIC and Mallows’ Cp rely on strong as-
sumptions (such as homoscedasticity of the data and linearity of the models) and
some mainly asymptotic arguments; VC-dimension-based penalties and global
Rademacher complexities are far too pessimistic; local Rademacher complexities
are computationally intractable, and their calibration is a serious issue. Another
approach for designing penalties in the general framework may not suffer from
these drawbacks: the resampling idea.

Efron’s resampling heuristics [29] was first stated for the bootstrap, then gen-
eralized to the exchangeable weighted bootstrap by Mason and Newton [54] and
by Præstgaard and Wellner [57]. In short, according to the resampling heuristics,
the distribution of any function of the (unknown) distribution of the data and
the sample can be estimated by drawing “resamples” from the initial sample. In
particular, the resampling heuristics can be used to estimate the variance of an
estimator [29], a prediction error [67, 32] or the ideal penalty (using the boot-
strap [30, 31, 43], the M out of n bootstrap2 [59] or a V -fold subsampling scheme
[9]). The asymptotic optimality of Efron’s bootstrap penalty for selecting among
maximum likelihood estimators has been proved by Shibata [62]. Note also that
global and local Rademacher complexities are using an i.i.d. Rademacher re-
sampling scheme for estimating different upper bounds on the ideal penalty and
Fromont’s penalties [34] generalize the global Rademacher complexities to the
exchangeable weighted bootstrap.

The first goal of this paper is to define and study general-purpose penalties,
that is penalties well-defined in almost every framework and performing rea-
sonably well in most of them, including regression and classification. The main
interest of such penalties would be the ability to solve difficult problems (for
instance heteroscedastic data, a non-smooth regression function or the fact that
the oracle model achieves fast rates of estimation) without knowing them in
advance. From the practical point of view, such a property is crucial.

To this aim, the resampling heuristics with the general exchangeable weighted
bootstrap is used for estimating the ideal penalty (Section 2). This defines a

2Shao’s goal in [59] was not efficiency but model consistency.
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wide family of model selection procedures, called “Resampling Penalization”
(RP), which includes Efron’s and Shao’s penalization methods [30, 59] as well
as the leave-one-out penalization defined in [9]. To our knowledge, it has never
been proposed with such general resampling schemes, so that the RP family
contains a wide range of new procedures. Note that RP is well-defined in a
general framework, including regression and classification, but also many other
application fields (Section 7.2). Even if the main results are proved in the least-
squares regression framework only, we obviously do not mean that RP should
be restricted to this framework.

In this paper, the model selection efficiency of RP is studied with a unified
approach for all the exchangeable resampling schemes. Therefore, comparing
bootstrap with subsampling is quite straightforward (Section 5) which is not
common in the resampling literature (except a few asymptotic results, see Barbe
and Bertail [15]).

The point of view used in the paper is non-asymptotic, which has two major
implications. First, non-asymptotic results allow to consider collections of mod-
els depending on the sample size n: in practice, it is usual to increase the number
of explanatory variables with the number of observations. Considering models
with a large number of parameters (for instance of order nα for some α > 0)
is also particularly useful for designing adaptive estimators of a function which
is only assumed to belong to some Hölderian ball (see Section 3.2). Thus, the
non-asymptotic point of view allows not to assume that the regression function
is described with a small number of parameters.

Second, several practical problems are “non-asymptotic” in the sense that
the signal-to-noise ratio is low. As noticed in [9], with such data, VFCV can
have serious drawbacks which can be naturally fixed by using the flexibility of
penalization procedures. It is worth noting that such a non-asymptotic approach
is not common in the model selection literature and few non-asymptotic results
exist on general resampling methods.

Another important point is that the framework of the paper includes several
kinds of heteroscedastic data. The observations (Xi, Yi)1≤i≤n are only assumed
to be i.i.d. with

Yi = s(Xi) + σ(Xi)ǫi,

where s : X 7→ R is the (unknown) regression function, σ : X 7→ R is the
(unknown) noise-level and ǫi has zero mean and unit variance conditionally
on Xi. In particular, the noise-level σ(X) can strongly depend on X and the
distribution of ǫi can depend on Xi. Such data are generally considered as
difficult to handle because no information on σ is known, making irregularities of
the signal difficult to distinguish from noise. As already mentioned, simple model
selection procedures such as Mallows’ Cp can fail in this framework [7] whereas it
is natural to expect that resampling methods are robust to heteroscedasticity. In
this article, both theoretical and simulation results confirm this fact (Sections 3
and 5).

The two main results of the paper are stated in Section 3. First, making
mild assumptions on the distribution of the data, a non-asymptotic oracle in-
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equality for RP is proved with leading constant close to 1 (Theorem 1). It
holds for several kinds of resampling schemes (including bootstrap, leave-one-
out, half-subsampling and i.i.d. Rademacher weighted bootstrap) and implies
the asymptotic optimality of RP, even when the data are highly heteroscedas-
tic. For proving such a result, each model is assumed to be the vector space
of piecewise constant functions (histograms) on some partition of the feature
space. This is indeed a restriction, but we conjecture that it is mainly tech-
nical and that RP remains efficient in a much more general framework (see
Section 7.2). Moreover, studying extensively the toy model of histograms allows
to derive precise heuristics for the general framework. A major goal of the pa-
per is to help practicioners who would like to know how to use resampling for
performing model selection (see in particular Sections 6 and 7.3).

Second, RP is used to build an estimator simultaneously adaptive to the
smoothness of the regression function (assuming that s is α-Hölderian for some
unknown α ∈ (0, 1]) and to the unknown noise-level σ ( · ) (Theorem 2). This
result may seem surprising since RP has never been designed specifically for such
a purpose. We interpretate Theorem 2 as a confirmation that RP is naturally
adaptive and should work well in several other difficult frameworks.

Several results similar to Theorem 1 exist in the literature for other proce-
dures such as Mallows’ Cp (with homoscedastic data only), VFCV and leave-one-
out cross-validation. Moreover, there exist several minimax adaptive estimators
for heteroscedastic data with a smooth noise-level, for instance [28, 35], and the
regression function and the noise level can be estimated simultaneously [37]. In
comparison, the interest of RP is both its generality (contrary to Mallows’ Cp

and specific adaptive estimators) and its flexibility (contrary to VFCV, see [9]),
as detailed in Section 7.1.

A simulation study is conducted in Section 5 with small sample sizes. RP
is showed to be competitive with Mallows’ Cp for “easy” problems, and much
better for some harder ones (for instance with a variable noise-level). Moreover,
a well-calibrated RP yields almost always better model selection performance
than VFCV. Therefore, RP can be of great interest in situations where no a
priori information is known about the data. RP can deal with difficult problems,
and compete with procedures that are fitted for easier problems. In short, RP
is an efficient alternative to VFCV.

This article is organized as follows. The framework and the Resampling Pe-
nalization (RP) family of procedures are defined in Section 2. The main results
are stated in Section 3. The differences between the resampling weights are
investigated in Section 4. Then, a simulation study is presented in Section 5.
Practical issues concerning the implementation of RP are considered in Sec-
tion 6. RP is compared to other penalization methods in Section 7.1 and the
extension of RP to the general framework is discussed in Section 7.2. Finally,
Section 8 is devoted to the proofs. Some additional material (other simulation
experiments and proofs) is available in a technical Appendix [8].
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2. The Resampling Penalization procedure

In order to simplify the presentation, we choose to focus on the particular frame-
work of least-squares regression on models of piecewise constant functions (his-
tograms), which is the framework of the main results of Section 3 and the
simulation study of Section 5.

Nevertheless, the RP family is a general-purpose method which can easily be
defined in the general prediction framework. The main interest of the histogram
framework is to provide general heuristics about RP, so that the practicioner
can make the best possible use of RP in the general framework. A discussion on
RP in the general prediction framework is provided in Section 7.2, including a
general definition of RP.

2.1. Framework

Suppose we observe some data (X1, Y1), . . . , (Xn, Yn) ∈ X × R, independent
with common distribution P , where the feature space X is typically a compact
set of R

k. Let s denote the regression function, that is s(x) = E [Y | X = x ].
Then,

Yi = s(Xi) + σ(Xi)ǫi (1)

where σ : X 7→ R is the heteroscedastic noise-level and ǫi are i.i.d. centered
noise terms; the ǫi possibly depend on Xi, but they are have zero mean and
unit variance conditionally on Xi.

The goal is to predict Y given X where (X, Y ) ∼ P is independent of the data.
The quality of a predictor t : X 7→ R is measured by the quadratic prediction loss
Pγ(t) := E(X,Y ) [γ(t, (X, Y )) ], where (X, Y ) ∼ P and γ(t, (x, y)) := ( t(x) − y )

2

is the least-squares contrast. Since Pγ(t) is minimal when t = s, the excess loss
is defined as

ℓ (s, t ) := Pγ ( t ) − Pγ (s ) = E(X,Y ) (t(X) − s(X))
2
.

Given a particular set of predictors Sm (called a model), the best predictor over
Sm is defined as

sm := arg min
t∈Sm

{Pγ(t)} ,

with its empirical counterpart

ŝm := arg min
t∈Sm

{Pnγ(t)}

(when it exists and is unique) where Pn = n−1
∑n

i=1 δ(Xi,Yi) is the empirical
distribution. The estimator ŝm is the well-known empirical risk minimizer, also
called least-squares estimator since γ is the least-squares contrast.

In this article, we mainly consider histogram models Sm, that is of the fol-
lowing form. Let (Iλ )λ∈Λm

be some fixed partition of X . Then, Sm denotes the
set of functions X 7→ R which are constant over Iλ for every λ ∈ Λm; Sm is a
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vector space of dimension Dm = Card(Λm), spanned by the family (1Iλ
)λ∈Λm .

The empirical risk minimizer ŝm over an histogram model Sm is often called a
regressogram.

Explicit computations are easier with regressograms because (1Iλ
)λ∈Λm is an

orthogonal basis of L2(µ) for any probability measure µ on X . In particular,

sm =
∑

λ∈Λm

βλ1Iλ
and ŝm =

∑

λ∈Λm

β̂λ1Iλ
,

where βλ := EP [Y | X ∈ Iλ ] , β̂λ :=
1

np̂λ

∑

Xi∈Iλ

Yi and p̂λ := Pn(X ∈ Iλ).

Note that ŝm is uniquely defined if and only if each Iλ contains at least one of
the Xi, that is minλ∈Λm p̂λ > 0.

Let us assume that a collection of models (Sm)m∈Mn is given. Model selection
consists in selecting some data-dependent m̂ ∈ Mn such that ℓ

(
s, ŝ

m̂

)
is as

small as possible. General penalization procedures can be described as follows.
Let pen : Mn 7→ R

+ be some penalty function, possibly data-dependent, and
define

m̂ ∈ arg min
m∈Mn

{Pnγ ( ŝm ) + pen(m)} . (2)

Since the goal is to minimize the loss Pγ ( ŝm ), the ideal penalty is

penid(m) := (P − Pn)γ ( ŝm ) , (3)

and we would like pen(m) to be as close to penid(m) as possible for every
m ∈ Mn. In the histogram framework, note that ŝm is not uniquely defined
when minλ∈Λm p̂λ = 0; then, we consider that the model Sm cannot be chosen,
which is formally equivalent to add +∞1

minλ∈Λm p̂λ=0
to the penalty pen(m).

When Sm is the histogram model associated with some partition (Iλ )λ∈Λm

of X , the ideal penalty (3) can be computed explicitly:

penid(m) = (P − Pn)γ(sm) + P (γ ( ŝm ) − γ (sm ) ) + Pn (γ (sm ) − γ ( ŝm ) )

= (P − Pn)γ(sm) +
∑

λ∈Λm

[
pλ

(
β̂λ − βλ

)2
+ p̂λ

(
β̂λ − βλ

)2 ]
(4)

where pλ := P (X ∈ Iλ ). The ideal penalty penid(m) is unknown because it
depends on the true distribution P ; therefore, resampling is a natural method
for estimating penid(m).

2.2. The resampling heuristics

Let us recall briefly the resampling heuristics, which has been introduced by
Efron [29] in the context of variance estimation. Basically, it says that one can
mimic the relationship between P and Pn by drawing a n-sample with common
distribution Pn, called the “resample”; let PW

n denote the empirical distribution
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of the resample. Then, the conditional distribution of the pair (Pn, PW
n ) given Pn

should be close to the distribution of the pair (P, Pn). Hence, the expectation
of any quantity of the form F (P, Pn) can be estimated by EW

[
F (Pn, PW

n )
]
.

The expectation EW [ · ] means that we integrate with respect to the resampling
randomness only. Let us emphasize that penid(m) has the form F (P, Pn).

Later on, this heuristics has been generalized to other resampling schemes,
with the exchangeable weighted bootstrap [54, 57]. The empirical distribution
of the resample then has the general form

PW
n :=

1

n

n∑

i=1

Wiδ(Xi,Yi)

where W ∈ R
n is an exchangeable3 weight vector independent of the data and

such that ∀i, EW [Wi ] = 1. In this article, W is also assumed to satisfy ∀i,
Wi ≥ 0 a.s. and EW [W 2

i ] < ∞.
We mainly consider the following weights, which include the more classical

resampling schemes:

1. Efron (M), M ∈ N\{0} (Efr): ((M/n)Wi)1≤i≤n is a multinomial vector
with parameters (M ; n−1, . . . , n−1). A classical choice is M = n.

2. Rademacher (p), p ∈ (0; 1) (Rad): (pWi) are independent, with a Bernoulli
(p) distribution. A classical choice is p = 1/2.

3. Poisson (µ), µ ∈ (0,∞) (Poi): (µWi) are independent, with a Poisson (µ)
distribution. A classical choice is µ = 1.

4. Random hold-out (q), q ∈ {1, . . . , n} (Rho): Wi = (n/q)1i∈I where I is a
uniform random subset of cardinality q of {1, . . . , n}. A classical choice is
q = n/2.

5. Leave-one-out (Loo) = Rho (n − 1).

In the following, Efr, Rad, Poi, Rho and Loo respectively denote the above re-
sampling weight vector distributions with the “classical” value of the parameter.

Remark 1. The above terminology explicitly links the weight vector distribu-
tions with some classical resampling schemes. See [54, 40, 66] for more details
about classical resampling weight names, as well as other classical examples.

• The name “Efron” comes from the classical choice M = n for which Efron
weights actually are the bootstrap weights. When M < n, Efron(M) is
the M out of n bootstrap, used for instance by Shao [59].

• The name “Rademacher” for the i.i.d. Bernoulli weights comes from the
classical choice p = 1/2 for which (Wi − 1)i are i.i.d. Rademacher random
variables. For instance, global and local Rademacher complexities use this
resampling scheme to estimate different upper bounds on penid(m) (see
Section 7.2.4).

• Poisson weights are often used as approximations to Efron weights, via the
so-called “Poissonization” technique (see [66, Chapter 3.5] and [33]). They

3W is said to be exchangeable when its distribution is invariant by any permutation of its
coordinates.
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are known to be efficient for estimating several non-smooth functionals (see
[15, Chapter 3] and [52, Section 1.4]).

• The Random hold-out (q) weights can also be called “delete-(n− q) jack-
knife”, as well as the Leave-one-out weights also refer to the jackknife
(sometimes called cross-validation). They are both resampling schemes
without replacement [66, Example 3.6.14], more often called subsampling
weights (see for instance the book by Politis, Romano and Wolf [56] on sub-
sampling). They are close to the idea of splitting the data into a training
set and a validation set (for instance, leave-one-out, hold-out and cross-
validation). Indeed, if one defines the training set as

{ (Xi, Yi) s.t. Wi 6= 0}

and the validation set as its complement, there is a one-to-one correspon-
dence between subsampling weights and data splitting.

2.3. Resampling Penalization

Applying directly the resampling heuristics of Section 2.2 for estimating the
ideal penalty (3), we would get the penalty

EW

[
Pnγ

(
ŝW

m

)
− PW

n γ
(
ŝW

m

)]
, (5)

where ŝW
m := arg min

t∈Sm

PW
n γ(t) =

∑

λ∈Λm

β̂W
λ 1Iλ

, β̂W
λ :=

1

np̂W
λ

∑

Xi∈Iλ

WiYi,

p̂W
λ := PW

n (X ∈ Iλ) = p̂λŴλ and Ŵλ :=
1

np̂λ

∑

Xi∈Iλ

Wi.

Two problems have to be solved before defining properly the Resampling Pe-
nalization procedure. Here, we focus on the histogram framework; the general
framework will be considered in Section 7.2.

First, (5) is not well-defined because ŝW
m is not unique if minλ∈Λm p̂W

λ = 0.

Hence, even when minλ∈Λm p̂λ > 0, the problem occurs as soon as Ŵλ = 0 for
some λ ∈ Λm, which has a positive probability (except when Dm = 1) for most
of the resampling schemes since PW (∀i ≥ 2, Wi = 0) > 0. In order to make (5)
well-defined, let us rewrite the resampling penalty as the resampling estimate
of (4), that is

EW

[
Pnγ

(
ŝW

m

)
− PW

n γ
(
ŝW

m

)]
= p̂0(m) + p̂1(m) + p̂2(m)

where

p̂0(m) := EW

[
(Pn − PW

n )γ(ŝm)
]

=
1

n

n∑

i=1

(EW [ 1 − Wi ] γ ( ŝm; (Xi, Yi) ) ) = 0
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Table 1

CW for several resampling schemes (see Section 3.4.1)

D(W ) Efr(M) Rad(p) Poi(µ) Rho(q) Loo
CW M/n p/(1 − p) µ q/(n − q) n − 1

because EW [Wi] = 1 for every i,

p̂1(m) :=
∑

λ∈Λm

(
EW

(
p̂λ

(
β̂W

λ − β̂λ

)2
))

and p̂2(m) :=
∑

λ∈Λm

(
EW

[
p̂W

λ

(
β̂W

λ − β̂λ

)2
])

.

With the convention p̂W
λ (β̂W

λ − β̂λ)2 = 0 when p̂W
λ = 0, p̂2(m) is well-defined

since β̂W
λ is well-defined when p̂W

λ > 0. It remains to define properly p̂1(m).
We suggest to replace the expectation over all the resampling weights by an
expectation conditional on Ŵλ > 0, separately for each m ∈ Mn and λ ∈ Λm,
which ensures that we only remove a small proportion of the possible resampling
weights. To summarize, (5) is replaced by

∑

λ∈Λm

(
EW

[
p̂λ

(
β̂W

λ − β̂λ

)2
∣∣∣∣ Ŵλ > 0

]
+ EW

[
p̂W

λ

(
β̂W

λ − β̂λ

)2
])

. (6)

Second, (6) is strongly biased as an estimate of penid when var(W1) is small,
because PW

n is then much closer to Pn than Pn is close to P . Assuming the Sm

to be histogram models, we will prove in Section 3.4.1 (see Propositions 1 and 2)
that the bias can be corrected by multiplying (6) by a constant CW which only
depends on the distribution of W . The values of CW for the classical weights
are reported in Table 1. Remark that CW = 1 in the bootstrap case (Efr), as
well as for Rad, Poi and Rho.

We are now in position to define properly the Resampling Penalization (RP)
procedure for selecting among histogram models. See Section 7.2 for the defini-
tion of RP in the general framework (Procedure 3).

Procedure 1 (Resampling Penalization for histograms).

1. Replace Mn by

M̂n =
{

m ∈ Mn s.t. min
λ∈Λm

{np̂λ} ≥ 3
}
.

2. Choose a resampling scheme D(W ).
3. Choose a constant C ≥ CW where CW is defined in Table 1.
4. Define, for each m ∈ M̂n, the resampling penalty pen(m) as

C
∑

λ∈Λm

(
EW

[
p̂λ

(
β̂W

λ − β̂λ

)2
∣∣∣∣ Ŵλ > 0

]
+ EW

[
p̂W

λ

(
β̂W

λ − β̂λ

)2
])

.

(7)
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5. Select m̂ ∈ arg min
m∈M̂n

{Pnγ ( ŝm ) + pen(m)}.

Remark 2. 1. At step 1, we remove more models than those for which ŝm

is not uniquely defined. When np̂λ = 1 for some λ ∈ Λm, estimating the
quality of estimation of β̂λ with only one data-point is hopeless with no
assumption on the noise-level σ. The reason why we remove also models
for which minλ∈Λm {np̂λ } = 2 is that the oracle inequalities of Section 3
require it for some of the weights; nevertheless, such models generally have
a poor prediction performance, so that step 1 is reasonable.

2. At step 3, C can be larger than CW because overpenalizing can be fruitful
from the non-asymptotic point of view, in particular when the sample size
n is small or the noise level σ is large. The simulation study of Section 5
provides experimental evidence for this fact (see also Section 6.3.2).

3. RP (Procedure 1) generalizes several model selection procedures. With a
bootstrap resampling scheme (Efr) and C = 1, RP is Efron’s bootstrap pe-
nalization [30], which has also been called EIC in the log-likelihood frame-
work [43]. With an M out of n bootstrap resampling scheme (Efr(M))
and C = 1, RP has been proposed and studied by Shao [59] in the con-
text of model identification. Note that CW 6= 1 for Efr(M) weights if
M 6= n; this crucial point will be discussed in Section 3.4.1. RP with a
(non-exchangeable) V -fold subsampling scheme has also been proposed
recently in [9].

4. When W are the “leave-one-out” weights, RP is not the classical leave-
one-out model selection procedure. Nevertheless, according to [9], when
C = n − 1, it is identical to Burman’s n-fold corrected cross-validation
[22], hence close to the uncorrected one.

3. Main results

In this section, we state some non-asymptotic properties of Resampling Penaliza-
tion (Procedure 1) for model selection. First, Theorem 1 is an oracle inequality
with leading constant close to 1. In particular, Theorem 1 implies the asymptotic
optimality of RP. Second, Theorem 2 is an adaptivity result for an estimator
built upon RP, when the regression function belongs to some Hölderian ball.
A remarkable point is that both results remain valid under mild assumptions
on the distribution of the noise, which can be non-Gaussian and highly het-
eroscedastic.

Throughout this section, we assume the existence of non-negative constants
αM, cM, crich such that:

(P1) Polynomial size of Mn: Card(Mn) ≤ cMnαM .
(P2) Richness of Mn: ∃m0 ∈ Mn s.t. Dm0 ∈ [

√
n; crich

√
n ].

(P3) The weight vector W is chosen among Efr, Rad, Poi, Rho and Loo (defined
in Section 2.2, with the classical value of their parameter).

(P1) is a natural restriction since RP plugs an estimator of the ideal penalty
into (2). When Card(Mn) is larger, say proportional to ean for some a > 0,
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Birgé and Massart [21] proved that penalties estimating the ideal penalty cannot
be asymptotically optimal. (P2) is merely technical. (P3) can be relaxed, as
explained in Section 4.2.

3.1. Oracle inequality

Theorem 1. Assume that the data (Xi, Yi)1≤i≤n satisfy the following:

(Ab) Bounded data: ‖Yi‖∞ ≤ A < ∞.
(An) Noise-level bounded from below: σ(Xi) ≥ σmin > 0 a.s.
(Ap) Polynomially decreasing bias: there exist β1 ≥ β2 > 0 and C+

b , C−
b > 0

such that

∀m ∈ Mn, C−
b D−β1

m ≤ ℓ (s, sm ) ≤ C+
b D−β2

m .

(ArXℓ ) Lower regularity of the partitions for D(X): there exists cX
r,ℓ > 0 such

that
∀m ∈ Mn, Dm min

λ∈Λm

pλ ≥ cX
r,ℓ.

Let m̂ be defined by Procedure 1 (under restrictions (P1 − 3), with C = CW ).
Then, there exist a constant K1 > 0 and an absolute sequence εn converging to
zero at infinity such that, with probability at least 1 − K1n

−2,

ℓ
(
s, ŝ

m̂

)
≤ (1 + εn ) inf

m∈Mn

{ℓ (s, ŝm )} . (8)

Moreover,

E
[
ℓ
(
s, ŝ

m̂

)]
≤ (1 + εn ) E

[
inf

m∈Mn

{ ℓ (s, ŝm )}
]

+
A2K1

n2
. (9)

The constant K1 may depend on constants in (Ab), (An), (Ap), (ArXℓ ) and

(P1− 3) but not on n. The term εn is smaller than ( ln(n) )
−1/5

; εn can also be
made smaller than n−δ for any 0 < δ < δ0(β1, β2) at the price of enlarging K1.

Theorem 1 is proved in Section 8.3. The non-asymptotic oracle inequality
(8) implies that Procedure 1 is a.s. asymptotically optimal in this framework if
limn→∞(C/CW ) = 1. When W are Efr weights, the asymptotic optimality of RP
was proved by Shibata [62] for selecting among maximum likelihood estimators,
assuming that the distribution P belongs to some parametric family of densities
(see also Remark 6 in Section 3.4.1).

Resampling Penalization yields an estimator with an excess loss as small
as the one of the oracle without requiring any knowledge about P such as
the smoothness of s or the variations of the noise-level σ. Therefore, RP is a
naturally adaptive procedure. Note that (8) is even stronger than an adaptivity
result because of the leading constant close to one, whereas adaptive estimators
only achieve the correct estimation rate up to a possibly large absolute constant.
Hence, one can expect that an estimator obtained with RP and a well chosen
collection of models is almost optimal.

We now comment on the assumptions of Theorem 1:
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1. The constant C can differ from CW . For instance, when a constant η > 1
exists such that C ∈ [CW ; ηCW ], the oracle inequalities (8) and (9) hold
with leading constant 2η − 1 + εn instead of 1 + εn.

2. (Ab) and (An) are rather mild and neither A nor σmin need to be known
by the statistician. In particular, quite general heteroscedastic noises are
allowed; (Ab) and (An) can even be relaxed as explained in Section 3.3.2.

3. When X has a lower bounded density with respect to Leb, (ArXℓ ) is satis-
fied for “almost piecewise regular” histograms, including all those consid-
ered in the simulation study of Section 5.

4. The upper bound in (Ap) holds with β = 2αk−1 when (Iλ)λ∈Λm is regular
on X ⊂ R

k and s is α-Hölderian with α > 0. The lower bound in (Ap) is
discussed extensively in Section 3.3.1.

3.2. An adaptive estimator

A natural framework in which Theorem 1 can be applied is when X is a compact
subset of R

k, X has a lower bounded density with respect to the Lebesgue
measure and s is α-Hölderian with α ∈ (0, 1]. Indeed, the latter condition ensures
that regular histograms can approximate s well. In this subsection, we show
that Resampling Penalization can be used to build an estimator adaptive to the
smoothness of s in this framework.

We first define the estimator. For the sake of simplicity4, X is assumed to be
a closed ball of (Rk, ‖·‖∞), say [0, 1]k.

Procedure 2 (Resampling Penalization with regular histograms). For every
T ∈ N\ {0}, let Sm(T ) be the model of regular5 histograms with T k bins, that
is the histogram model associated with the partition

(Iλ )λ∈Λm(T )
:=

(
k∏

i=1

[
ji

T
;
ji + 1

T

))

0≤j1,...,jk≤T−1

.

Then, define (Sm)m∈Mn :=
(
Sm(T )

)
1≤T≤n1/k .

0. Replace Mn by

M̂n =
{
m ∈ Mn s.t. min

λ∈Λm

{np̂λ} ≥ 3
}
.

1. Choose a resampling scheme D(W ) among Efr, Rad, Poi, Rho and Loo.
2. Take the constant C = CW as defined in Table 1.
3. For each m ∈ M̂n, compute the resampling penalty pen(m) defined by (7).

4If X has a smooth boundary, Procedure 2 can be modified so that the proof of Theorem 2
remains valid.

5When X has a general shape, assume that both Leb(X ) and diam(X ) for ‖·‖
∞

are finite.
Then, a partition ( Iλ )λ∈Λm

of X is regular with T k bins when Card(Λm) = T k and there

exist positive constants c1, c2, c3, c4 such that for every λ ∈ Λm, c1T−k ≤ Leb(Iλ) ≤ c2T−k

and c3T−1 ≤ diam(Iλ) ≤ c4T−1.
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4. Select m̂ ∈ argmin
m∈M̂n

{Pnγ ( ŝm ) + pen(m)}.
5. Define s̃ := ŝ

m̂
.

Theorem 2. Let X = [0, 1]k. Assume that the data (Xi, Yi)1≤i≤n satisfy the
following:

(Ab) Bounded data: ‖Yi‖∞ ≤ A < ∞.
(An) Noise-level bounded from below: σ(Xi) ≥ σmin > 0 a.s.

(Adℓ) Density bounded from below:

∃cmin
X > 0, ∀I ⊂ X , P (X ∈ I) ≥ cmin

X Leb(I).

(Ah) Hölderian regression function: there exist α ∈ (0; 1] and R > 0 such that

s ∈ H(α, R) that is ∀x1, x2 ∈ X , |s(x1) − s(x2)| ≤ R ‖x1 − x2‖α
∞ .

Let s̃ be the estimator defined by Procedure 2 and σmax := supX |σ| ≤ 2A.
Then, there exist positive constants K2 and K3 such that,

E [ℓ (s, s̃ ) ] ≤ K2R
2k

2α+k n
−2α
2α+k σ

4α
2α+k
max + K3A

2n−2. (10)

If moreover the noise-level is smooth, that is

(Aσ) σ is piecewise Kσ-Lipschitz with at most Jσ jumps,

then, assumption (An) can be removed and (10) holds with σmax replaced by
‖σ‖L2(Leb) := [(Leb(X ))−1

∫
X

σ2(t)dt]1/2.
For both results, K2 may only depend on α and k. The constant K3 may only

depend on k, A, cmin
X , R, α (and σmin for (10); Kσ and Jσ for the latter result).

Theorem 2 is proved in Section 8.5. The upper bounds given by Theorem 2
coincide with several classical minimax lower bounds on the estimation of func-
tions in H(α, R) with α ∈ (0, 1], up to an absolute constant. In the homoscedastic
case, lower bounds have been proved by Stone [63] and generalized by several
authors among which Korostelev and Tsybakov [47] and Yang and Barron [69].
Up to a multiplicative factor independent of n, R and σ the best achievable rate
is

R
2k

2α+k n
−2α
2α+k σ

4α
2α+k .

Hence, (10) shows that Procedure 2 achieves the right estimation rate in terms
of n, R and σ, without using the knowledge of α, R or σ.

Moreover, (10) still holds in a wide heteroscedastic framework, without using
any information on the noise-level σ(·). Then, up to a multiplicative constant
independent of n and R (but possibly of the order of some power of σmax/σmin),
the upper bound (10) is the best possible estimation rate.

Minimax lower bounds proved in the heteroscedastic case (see for instance
[28, 35] and references therein) show that when k = α = 1 and the noise-level is
smooth enough, the best achievable estimation rate depends on σ through the

multiplicative factor ‖σ‖
4α

2α+k

L2(Leb). Therefore, the upper bound given by Theorem 2
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under assumption (Aσ) is tight, even through its dependence on the noise-level.
Up to our best knowledge, such an upper bound had never been obtained when
α ∈ (0, 1) and k > 1, even with estimators using the knowledge of α, σ and R.

Theorem 2 shows that Procedure 2 defines an adaptive estimator, uniformly
over distributions such that s belongs to some Hölderian ball H(α, R) with
α ∈ (0, 1] and the noise-level σ is not too pathological. This result is quite strong.
Although similar properties have already been proved for “ad hoc” estimators
(see [28, 35] and Section 7.1.3), Resampling Penalization has not been designed
specifically to have such a property. Therefore, exchangeable resampling penal-
ties are naturally adaptive to the smoothness of s and to the heteroscedasticity
of the data.

Remark 3.

1. The proof of Theorem 2 shows that ŝ
m̂

achieves the minimax rate of es-
timation on an event of probability larger than 1 − K ′

3n
−2. In particular,

with probability one,

lim sup
n→∞

(
ℓ (s, s̃ )R

−2k
2α+k n

2α
2α+k ‖σ‖

−4α
2α+k

L2(Leb)

)
≤ K2(α, k).

2. If s is piecewise α-Hölderian with at most Js jumps (each jump of height
bounded by 2A), then (10) holds with K3 depending also on Js.

3. As for Theorem 1, the boundedness of the data and the lower bound on
the noise level can be replaced by other assumptions (see Section 3.3.2).

3.3. Discussion on some assumptions

The aim of this subsection is to discuss some of the main assumptions made in
Theorems 1 and 2. We first tackle the lower bound in (Ap) which is required
in Theorem 1. Then, two alternative assumption sets to Theorems 1 and 2 are
provided, allowing the noise level to vanish or the data to be unbounded.

3.3.1. Lower bound in (Ap)

The lower bound ℓ (s, sm ) ≥ C−
b D−β1

m in (Ap) may seem unintuitive because
it means that s is not too well approximated by the models Sm. Assuming
that infm∈Mn ℓ (s, sm ) > 0 is classical for proving the asymptotic optimality of
Mallows’ Cp [61, 49, 21].

Let us explain why (Ap) is used for proving Theorem 1. According to Re-
mark 8 in Section 8.2, when the lower bound in (Ap) is no longer assumed, (8)
holds with two modifications on its right-hand side: the infimum is restricted to
models of dimension larger than ( ln(n) )

γ1 and a remainder term (ln(n) )
γ2 n−1

is added (where γ1 and γ2 are absolute constants). This is essentially the same
as (8) unless there exists a model of small dimension with a small bias; the lower
bound in (Ap) is sufficient to ensure this does not happen. Note that assump-
tion (Ap) was made in the density estimation framework [64, 23] for the same
technical reasons.
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As showed in [8], (Ap) is at least satisfied with

β1 = k−1 + α−1 − (k − 1)k−1α−1 and β2 = 2αk−1

in the following case: (Iλ)λ∈Λm is “regular” (as defined in Procedure 2 below),
X has a lower-bounded density with respect to the Lebesgue measure Leb on
X ⊂ R

k and s is non-constant and α-Hölderian (with respect to ‖·‖∞).
The general formulation of (Ap) is crucial to make Theorem 1 valid whatever

the distribution of X which can be useful in some practical problems. Indeed,
when X has a general distribution, a collection (Sm )m∈Mn

satisfying (P1),

(P2), (ArXℓ ) and (Ap) can always be chosen either thanks to prior knowledge
on D(X) or to unlabeled data. In the latter case, classical density estimation
procedures can be applied for estimating D(X) from unlabeled data (see for
instance [26] on density estimation). Assumption (Ap) then means that the
collection of models has good approximation properties, uniformly over some
appropriate function space (depending on D(X)) to which s belongs.

3.3.2. Two alternative assumption sets

Theorems 1 and 2 are corollaries of a more general result, called Lemma 7 in
Section 8.2. The assumptions of Theorems 1 and 2, in particular (Ab) and
(An) on the distribution of the noise σ(X)ǫ, are only sufficient conditions for
the assumptions of Lemma 7 to hold. The following two alternative sufficient
conditions are proved to be valid in Section 8.4.

First, one can have σmin = 0 in (An) if moreover E
[
σ(X)2

]
> 0, X ⊂ R

k is
bounded and

(Ardu) Upper regularity of the partitions for ‖·‖∞: ∃cd
r,u, αd > 0 such that

∀m ∈ Mn, max
λ∈Λm

{diam(Iλ)} ≤ cd
r,uD

−αd
m .

(Aru) Upper regularity of the partitions for Leb: ∃cr,u > 0 such that

∀m ∈ Mn, max
λ∈Λm

{Leb(Iλ)} ≤ cr,uD
−1
m .

(Aσ) σ is piecewise Kσ-Lipschitz with at most Jσ jumps.

Second, the Yi can be unbounded (assuming now that σmin > 0 in (An)) if
moreover X ⊂ R is bounded measurable and

(Agauss) The noise is sub-Gaussian: ∃cgauss > 0 such that

∀q ≥ 2, ∀x ∈ X , E [ |ǫ|q | X = x ]
1/q ≤ cgauss

√
q.

(Aσmax) Noise-level bounded from above: σ2(X) ≤ σ2
max < +∞ a.s.

(Asmax) Bound on the regression function: ‖s‖∞ ≤ A.
(Al) s is B-Lipschitz, piecewise C1 and non-constant: ±s′ ≥ B0 > 0 on

some interval J ⊂ X with Leb(J) ≥ cJ > 0.
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(Arℓ,u) Regularity of the partitions for Leb: ∃cr,ℓ, cr,u > 0 such that

∀m ∈ Mn, ∀λ ∈ Λm, cr,ℓD
−1
m ≤ Leb(Iλ) ≤ cr,uD

−1
m .

(Adℓ) Density bounded from below: ∃cmin
X > 0, ∀I ⊂ X , P(X ∈ I) ≥

cmin
X Leb(I).

Third, it is possible to have simultaneously σmin = 0 in (An) and unbounded
data, see [8] for details.

The above results mean that Theorem 1 holds for most “reasonably” diffi-
cult problems. Actually, Proposition 3 and Remark 7 show that the resampling
penalties are much closer to E [penid(m) ] than penid(m) itself, provided that
the concentration inequalities for penid are tight (Proposition 10). Therefore,
up to differences within εn, RP with C = CW and the “ideal” deterministic pe-
nalization procedure E [penid(m) ] perform equally well on a set of probability
1 − K1n

−2. For every assumption set such that the proof of Theorem 1 gives
an oracle inequality for the penalty E [penid(m) ], the same proof gives a similar
oracle inequality for RP.

3.4. Probabilistic tools

Theorems 1 and 2 rely on several probabilistic tools of independent interest:
precise computation of the expectations of resampling penalties (Propositions 1
and 2), concentration inequalities for resampling penalties (Proposition 3) and
bounds on expectations of the inverses of several classical random variables
(Lemma 4–6). Their originality comes from their non-asymptotic nature: explicit
bounds on the deviations or the remainder terms are provided for finite sample
sizes.

3.4.1. Expectations of resampling penalties

Using only the exchangeability of the weights, the resampling penalty can be
computed explicitly (Lemma 16 in Section 8.8). This can be used to compare
the expectations of the resampling penalties and the ideal penalty. First, Propo-
sition 1 is valid for general exchangeable weights.

Proposition 1. Let Sm be the model of histograms associated with some parti-
tion (Iλ)λ∈Λm of X and W ∈ [0,∞)n be an exchangeable random vector indepen-
dent of the data. Define penid(m) by (3) and pen(m) by (7). Let E

Λm [ · ] denote
expectations conditionally on (1Xi∈Iλ

)1≤i≤n, λ∈Λm . Then, if minλ∈Λm p̂λ > 0,

E
Λm [penid(m) ] =

1

n

∑

λ∈Λm

(
1 +

pλ

p̂λ

)
σ2

λ (11)

E
Λm [pen(m) ] =

C

n

∑

λ∈Λm

(R1,W (n, p̂λ) + R2,W (n, p̂λ) ) σ2
λ (12)
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with σ2
λ :=E

[
(Y − s(X) )

2
∣∣∣ X ∈ Iλ

]
,

R1,W (n, p̂λ) :=E

[
(W1 − Ŵλ)2

Ŵ 2
λ

∣∣∣∣∣ X1 ∈ Iλ, Ŵλ > 0

]
, (13)

and R2,W (n, p̂λ) :=E

[
(W1 − Ŵλ)2

Ŵλ

∣∣∣∣∣ X1 ∈ Iλ

]
. (14)

In particular,

E [penid(m) ] =
1

n

∑

λ∈Λm

(2 + δn,pλ
)σ2

λ (15)

where δn,p only depends on (n, p) and satisfies |δn,p| ≤ L1(np)−1/4 for some
absolute constant L1.

Proposition 1 is proved in Section 8.8.

Remark 4. • In order to make the expectation in (15) well-defined, a conven-
tion for penid(m) has to be chosen when minλ∈Λm p̂λ = 0. See Section 8.1
for details.

• Combining Proposition 1 with [6, Lemma 8.4], a similar result holds for
non-exchangeable weights (with only a modification of the definitions of
R1,W and R2,W ).

In the general heteroscedastic framework (1), Proposition 1 shows that resam-
pling penalties take into account the fact that σ2

λ actually depends on λ ∈ Λm.
This is a major difference with the classical Mallows’ Cp penalty

penMallows(m) :=
2E
[
σ(X)2

]
Dm

n

which does not take into account the variability of the noise level over X . A
more detailed comparison with Mallows’ Cp is made in Section 7.1.1.

If R1,W (n, p̂λ)+R2,W (n, p̂λ) does not depend too much on p̂λ (at least when
np̂λ is large), Proposition 1 shows that pen(m) estimates unbiasedly penid(m)
as soon as6

C = CW ≈ 2

R1,W (n, 1) + R2,W (n, 1)
=

1

E
[
(W1 − 1)

2 ] .

In particular, all the examples of resampling weights given in Section 2.2 satisfy
that R1,W (n, p̂λ) ≈ R2,W (n, p̂λ) does not depend on p̂λ when np̂λ is large, which
leads to Proposition 2 below (see Table 2 for exact expressions of R2,W and CW ).

Proposition 2. Let W be an exchangeable resampling weight vector among
Efr(Mn), Rad(p), Poi(µ), Rho(⌊n/2⌋) and Loo, and define CW as in Table 2.

6The definition of CW actually used in this paper is slightly different for Efron(M) and
Poisson(µ) weights (see Table 2). We arbitrarily choosed the simplest possible expression
making CW asymptotically equivalent to 1/E[(W1 − 1 )2]. The results of the paper also hold
when CW = 1/E[(W1 − 1 )2].
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Table 2

R2,W (n, p̂λ) and CW for several resampling schemes. The formulas for R2,W come from
Lemma 17

D(W ) Efr(M) Rad(p) Poi(µ) Rho(q) Loo

R2,W (n, p̂λ) n
M

(
1 − 1

np̂λ

)
1
p
− 1 1

µ

(
1 − 1

np̂λ

)
n
q
− 1 1

n−1

CW M/n p/(1 − p) µ q/(n − q) n − 1

Let Sm be the model of histograms associated with some partition (Iλ )λ∈Λm
of X

and pen(m) be defined by (7). Then, there exist real numbers δ
(penW)

n,p̂λ

depending

only on n, p̂λ and the resampling scheme D(W ) such that

E
Λm [pen(m) ] =

C

CW n

∑

λ∈Λm

(
2 + δ

(penW)

n,p̂λ

)
σ2

λ. (16)

If Mnn−1 ≥ B > 0 (Efr), p ∈ (0; 1) (Rad) or µ > 0 (Poi), then,

∀n ∈ N\ {0} , ∀p̂λ ∈ (0, 1],
∣∣∣δ(penW)

n,p̂λ

∣∣∣ ≤ L2 (np̂λ )
−1/4

,

where L2 > 0 is an absolute constant (for Rho(⌊n/2⌋) and Loo) or depends
respectively on B (Efr), p (Rad) or µ (Poi). More precise bounds for each
weight distribution are given by (62)–(66) in Section 8.9.

Proposition 2 is proved in Section 8.9.

Remark 5. Proposition 2 can also be generalized to Rho(qn) weights with 0 <

B− ≤ qnn−1 ≤ B+ < 1, but the bound on δ
(penW)

n,p̂λ

only holds for np̂λ ≥
L(B−, B+) and L2 depends on B−, B+ (see Section 8.9).

Remark 6. Combined with the explicit expressions of CW for several resampling
weights (Table 2), Proposition 2 helps to understand several known results.

• In the maximum likelihood framework, Shibata [62] showed the asymptot-
ical equivalence of two bootstrap penalization methods. The first penalty,
denoted by B1, is Efron’s bootstrap penalty [30], which is defined by (5)
with Efr weights. The second penalty, denoted by B2, was proposed by
Cavanaugh and Shumway [25]; it transposes

2p̂1(m) = 2EW

[
Pn

(
γ(ŝW

m ) − γ(ŝm)
)]

into the maximum likelihood framework. In the least-squares regression
framework (with histogram models), the proofs of Propositions 1 and 2
show that

E
Λm [ 2p̂1(m) ] =

2

n

∑

λ∈Λm

R1,W (n, p̂λ)σ2
λ ≈ E

Λm [pen(m) ]

for several resampling schemes, including Efron’s bootstrap (for which
CW = 1). The concentration results of Section 8.10 show that this remains
true without expectations.
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• With Efron (Mn) weights (and a bootstrap selection procedure close to
RP, but with C = 1), Shao [59] showed that Mn = n leads to an incon-
sistent model selection procedure for identification. On the contrary, when
Mn → ∞ and Mn ≪ n, Shao’s bootstrap selection procedure is model con-
sistent. Proposition 2 shows that these assumptions on Mn can be rewritten
C = 1 ≫ CW = Mn/n. Therefore, the rationale behind Shao’s result may
mostly be that identification needs overpenalization within a factor tending
to infinity with n.

3.4.2. Concentration inequalities for resampling penalties

From (4), the ideal penalty can be written

penid(m) = (P − Pn)γ (sm ) +
∑

λ∈Λm

pλ + p̂λ

(np̂λ )
2

(
∑

Xi∈Iλ

(Yi − βλ )

)2

.

Hence, penid(m) is a U-statistics of order 2 conditionally on (1Xi∈Iλ
)(i,λ∈Λm),

which is sufficient to prove that resampling yields a consistent estimate of
penid(m) (Arcones and Giné [5] considered the bootstrap case; Hušková and
Janssen [42] extended it to the exchangeable weighted bootstrap).

In the non-asymptotic framework, that is when the models Sm can depend
on n, the following concentration inequality is needed.

Proposition 3. Let γ > 0, An ≥ 2 and W be an exchangeable weight vector.
Let Sm be the model of histograms associated with some partition (Iλ)λ∈Λm of
X and pen(m) be defined by (7). Assume that two positive constants aℓ and ξℓ

exist such that for every q ≥ 2,
√

Dm

∑
λ∈Λm

m4
q,λ∑

λ∈Λm
m2

2,λ

≤ aℓq
ξℓ where mq,λ := (E [|Y − sm(X)|q | X ∈ Iλ])

1/q
.

Let Ωm(An) denote the event {minλ∈Λm {np̂λ } ≥ An }. Then, there exist con-
stants K4, K5 > 0 and an event of probability at least 1 − K4n

−γ on which
∣∣pen(m) − E

Λm [pen(m) ]
∣∣1Ωm(An) ≤ CK5

× sup
np≥An

{R1,W (n, p) + R2,W (n, p)} ( ln(n) )
ξℓ+1

√
AnDm

E [p2(m) ]

where R1,W and R2,W are defined by (13) and (14). The constant K4 is absolute
and K5 may only depend on aℓ, ξℓ and γ.

If moreover W satisfies the assumptions of the second part of Proposition 2
and CW is defined as in Table 2, then a constant KW > 0 exists such that

∣∣pen(m) − E
Λm [pen(m)]

∣∣ 1Ωm(An) ≤
CK5KW ( ln(n) )

ξℓ+1

CW

√
AnDm

E [p2(m) ] . (17)

For the Rad(p) weights, KW is smaller than (1− p)−1 multiplied by an absolute
constant. For the other weights, KW is an absolute constant.
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Proposition 3 is proved in Section 8.10.1. Note that the moment condition
holds under the assumptions of Theorem 1 as well as the alternative assumptions
of Section 3.3.2. It is here stated in its most general form.

Remark 7. Since the A
−1/2
n factor should tend to infinity with n for most reason-

able models, Proposition 3 gives better bounds for resampling penalties than
what could be obtained for ideal penalties with Proposition 10 in the same
framework.

Although we do not know how tight are the bounds of Proposition 3, such a
phenomenon is classical with bootstrap and can be understood from the asymp-
totic point of view through Edgeworth expansions [39]. In a non-asymptotic
Gaussian framework, [10, Section 2.3] shows the same property for resampling
estimators, which concentrate at the rate N−1 instead of N−1/2 (N being the

amount of data). Since An plays the role of N , the gain A
−1/2
n can reasonably

be conjectured to be unimprovable without some more assumptions.
Let us emphasize that if resampling penalties estimate E [ penid(m) ] instead

of penid(m), RP with C = CW cannot take into account the fact that penid(m)
may be far from its expectation.

3.4.3. Expectations of inverses

For any non-negative random variable Z, we define

e+
Z = e+

D(Z) := E [Z ] E
[
Z−1

∣∣ Z > 0
]
.

This quantity appears in the explicit formulas for R1,W when W is among the
examples of resampling weights of Section 2.2 (see Lemma 17). Therefore, in
order to prove Proposition 2, non-asymptotic bounds on e+

Z are needed when Z
has a binomial, hypergeometric or Poisson distribution.

Former results concerning e+
Z can be found in papers by Lew [48] (for general

Z), by Jones and Zhigljavsky [44] (for the Poisson case) and by Žnidarič [70] (for
the binomial and Poisson case), but they are either asymptotic or not precise
enough. Lemmas 4–6 solve this issue.

In the rest of the paper, for any a, b ∈ R, a∧ b denotes the minimum of a and
b and a ∨ b denotes the maximum of a and b.

Binomial case

Lemma 4. For any n ∈ N\ {0} and p ∈ (0; 1], B(n, p) denotes the binomial
distribution with parameters (n, p), κ1 := 5.1 and κ2 := 3.2. Then, if np ≥ 1,

κ2 ∧
(
1 + κ1(np)−1/4

)
≥ e+

B(n,p) ≥ 1 − e−np (18)

and 2 + 3 × 10−4 ≥ e+

B(n, 1
2 )

≥ 1n≥3. (19)

The first bounds (18) were first stated in [9, Lemma 3] where they are proved.
The second ones (19) are proved in Section 8.11.1. Lemma 4 implies in particular
that e+

B(n,p) → 1 when np → ∞, which can be derived from [70].
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Hypergeometric case Recall that an hypergeometric random variable X ∼
H(n, r, q) is defined by

∀k ∈ {0, . . . , q ∧ r } , P(X = k) =

(
r
k

)(
n−r
q−k

)
(
n
q

) .

Lemma 5. Let n, r, q ∈ N such that n ≥ r ≥ 1 and n ≥ q ≥ 1.

1. General lower-bound:

e+
H(n,r,q) ≥ 1 − 1r≤n−q exp

(
−qr

n

)
.

2. General upper-bound: let ǫ ∈ (0; 1) and κ3(ǫ) := 0.9 + 1.4 × ǫ−2.

If r ≥ 2 and
n

q
≤ (1 − ǫ)

2r

2 +
√

3(r + 1) ln(r)

Then, 1 + κ3(ǫ)
n

q

√
ln(r)

r
≥ e+

H(n,r,q). (20)

3. “Rho” case: if n ≥ 2,

14.3 ≥ sup
r≥1

{
e+
H(n,r,⌊n

2 ⌋)

}
and 3 ≥ sup

r≥26

{
e+
H(n,r,⌊n

2 ⌋)

}
. (21)

4. “Loo” case:

1 +
1r≥2

n(r − 1)
≥ e+

H(n,r,n−1) = 1 +
1

n

(
(n − 1)r

n(r − 1)
1r≥2 − 1

)
≥ 1 − 1r=1

n
. (22)

5. “Lpo” case: if n ≥ r ≥ n − q + 1 ≥ 2,

r

r − n + q
× nn−q

n(n − 1) · · · (q + 1)
≥ e+

H(n,r,q) ≥ 1.

Lemma 5 is proved in Section 8.11.2. It implies in particular that

e+
H(nk,rk,qk) −−−−→k→∞

1 if nk ≥ rk −−−−→
k→∞

+∞

and supk

{
nkq−1

k

}
< +∞.

Poisson case

Lemma 6. For every µ > 0, P(µ) denotes the Poisson distribution with pa-
rameter µ. Then,

(
2 − 2e−2µ

)
∧
(

1 +
2(1 + e−3)

(µ − 2)1µ>2

)
≥ e+

P(µ) ≥ 1 − 1µ<1.61e
−µ.

Lemma 6 is proved in Section 8.11.3. It implies in particular that e+
P(µ) → 1

when µ → ∞, which can be derived from [44, 70].
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4. Comparison of the weights

We investigate in this section how the loss of the final estimator may depend
on the distribution of the exchangeable weight vector W . First, we consider
in Section 4.1 the most classical ones, that is Efr, Rad, Poi, Rho and Loo.
Then, we discuss in Section 4.2 whether Theorem 1 can be extended to general
exchangeable weights.

4.1. Comparison of the classical weights

According to Theorem 1, any resampling scheme among Efr, Rad, Poi, Rho
and Loo leads to an asymptotically optimal procedure. Even from the non-
asymptotic point of view, it is not quite clear to distinguish between these
weights with the results of Section 3. Indeed, the resampling penalties are equal
in expectation at first order (Proposition 2), and their deviations are negligible
in front of their expectations (Proposition 3).

Therefore, differences between these weights can only come from second-order
terms, either in the expectations or in the sizes of the deviations of resampling
penalties. As a first step, we compare in this subsection second-order terms in the
expectations of the penalties (that is, differences between second-order terms in
(15) and (16)), for a fixed sample size. Asymptotic considerations can be found
in the book by Barbe and Bertail [15, Chapter 2] where Edgeworth expansions
are used to compare the accuracy of estimation with many exchangeable weights.
The asymptotic results mentioned in Section 3.4.3 may also be useful.

Propositions 1 and 2 show that penid(m) and pen(m) have the same expec-

tation, up to the small terms δn,pλ
and δ

(penW)

n,p̂λ

. More precisely,

E [pen(m) − penid(m) ] =
1

n

∑

λ∈Λm

(
δ
(penW)

n,pλ
− δn,pλ

)
(σλ)

2

with δ
(penW)

n,pλ
:= E

[
δ
(penW)

n,p̂λ

∣∣∣ p̂λ > 0
]
.

Using the explicit expressions of δn,p and δ
(penW)

n,p̂λ

, δn,p and δ
(penW)

n,p have been

computed numerically as a function of np for several resampling schemes, with
n = 200. The results are given on Figures 1–6 (with straight lines for δn,p and

dots for δ
(penW)

n,p ).
It follows that Loo weights are the most accurate ones, even when np is

small. On the contrary, Rho (n/2) and Rad tend to overestimate penid since

δ
(penW)

n,p > δn,p (except when np is small, where the inequality is reversed). It
also seems that the bias of Rho (q) is a decreasing function of q, as illustrated by
Figures 3–4. Finally, Efr and Poi are strongly underestimating the ideal penalty,
mostly because of the 1 − (np̂λ)−1 term in R1,W (n, p̂λ) and R2,W (n, p̂λ).

This can be summed up as follows:

penRad ≈ penRho > penLoo ≈ penid >> penEfr ≈ penPoi, (23)



S. Arlot/Resampling penalization 25

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

n*pl

δ(
n,

pl
) 

or
 E

[δ
W

(n
,p

hl
) 

| p
hl

>
0]

   
E

fr
on

 (
n)

δ(n,pl)
E[δ

W
(n,phl) | phl>0]

Fig 1. δn,p > 0 > δ
(penEfr(n))
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Fig 2. δn,p > 0 > δ
(penPoi(1))
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Fig 3. δn,p > δ
(penRho(n/2))
n,p for np ≥ 6.
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Fig 4. δn,p > δ
(penRho(n/4))
n,p for np ≥ 9.
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Fig 5. δn,p ≈ δ
(penLoo)
n,p .
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Fig 6. δn,p > δ
(penRad(1/2))
n,p for np ≥ 6.

where “>>” means a comparatively large gap, but still negligible at first or-
der. Hence, we can expect that the Loo penalty is the most efficient, closely
followed by Rad and by Rho. However, from the non-asymptotic point of view,
it turns out that smaller prediction loss is obtained by overpenalizing slightly
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(and sometimes strongly, see the simulations of Section 5 and the discussion of
Section 6.3.2). Then, the ordering of (23) may also be the one of the prediction
performances of RP, the best performances being obtained with Rad and Rho.
This is confirmed by the simulation study of Section 5.

Another interesting point is that δ
(penRho)

n,p ∝ δn,p when np is large enough.
Then, provided that histograms with too small bins are removed from the col-
lection, penLoo and penRho are almost equivalent, up to the choice of the factor
C. If a wise tuning of C is possible, it remains to choose between Loo and Rho
according to computational issues (see the discussion of Section 6.2).

4.2. Other exchangeable weights

The oracle inequality of Theorem 1 is only stated for the five “classical” ex-
changeable weights of Section 2.2. Nevertheless, replacing the threshold 3 by
some T ≥ 2 at step 1 of Procedure 1, the proof of Theorem 1 can be extended
to any resampling weight vector W satisfying:

1. W is exchangeable,
2. R1,W (n, p)+R2,W (n, p) ≈ 2CW for np large enough (with a non-asymptotic

control on the ratio between these two quantities, as in the proof of Propo-
sition 2),

3. R1,W (n, p)+R2,W (n, p) > (1+ǫ)CW for some ǫ > 0, as soon as np ≥ T ≥ 2
(as in Lemma 15).

In particular, the first two conditions hold for all the exchangeable weights
considered in Proposition 2. The third one is satisfied for most of them as soon
as T is large enough (see Lemma 15 in Section 8.6).

5. Simulation study

As an illustration of the results of Section 3, the prediction performances of
Procedure 1 (with several resampling schemes), Mallows’ Cp and V -fold cross-
validation are compared on some simulated data.

5.1. Experimental setup

We consider four experiments, called S1, S2, HSd1 and HSd2. Data are generated
according to

Yi = s(Xi) + σ(Xi)ǫi

where (Xi )1≤i≤n are independent with uniform distribution over X = [0; 1]
and ( ǫi )1≤i≤n are independent standard Gaussian variables independent of
(Xi )1≤i≤n. The experiments differ from the regression function s (smooth for
S, see Figure 7; smooth with jumps for HS, see Figure 8), the noise type (ho-
moscedastic for S1 and HSd1, heteroscedastic for S2 and HSd2) and the sample
size n (see Table 3). Instances of data sets are plotted on Figures 9–12.
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Fig 7. s(x) = sin(πx).
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Fig 8. s(x) = HeaviSine(x) (see [27]).
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Fig 9. S1: s(x) = sin(πx), σ ≡ 1, n = 200.
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Fig 10. S2: s(x) = sin(πx), σ(x) = x, n =
200.
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Fig 11. HSd1: HeaviSine, σ ≡ 1, n = 2048.
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Fig 12. HSd2: HeaviSine, σ(x) = x, n =
2048.
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The collections of histogram models also differ according to the experiments.
Define

∀k, k1, k2 ∈ N\ {0} , (Iλ )λ∈Λk
=

([
j

k
;
j + 1

k

))

0≤j≤k−1

and

(Iλ )λ∈Λ(k1 ,k2)
=

([
j

2k1
;
j + 1

2k1

))

0≤j≤k1−1

∪
([

1

2
+

j

2k2
;
1

2
+

j + 1

2k2

))

0≤j≤k2−1

.

For every m ∈ (N\ {0})∪(N\ {0} )
2
, let Sm be the histogram model associated

with the partition (Iλ )λ∈Λm
. Then, for each experiment, the collection of models

is (Sm )Mn
with different index sets Mn:

S1 regular histograms with 1 ≤ D ≤ n ( ln(n) )
−1

pieces, that is

Mn =

{
1, . . . ,

⌊
n

ln(n)

⌋}
.

S2 histograms regular on [0; 1/2] (resp. on [1/2; 1]), with D1 (resp. D2)

pieces, 1 ≤ D1, D2 ≤ n (2 ln(n) )−1. The model of constant functions is
added to Mn, that is

Mn = {1} ∪
{

1, . . . ,

⌊
n

2 ln(n)

⌋}2

.

HSd1 dyadic regular histograms with 2k pieces, 0 ≤ k ≤ ln2(n) − 1, that is

Mn =
{

2k s.t. 0 ≤ k ≤ ln2(n) − 1
}

.

HSd2 dyadic histograms regular on [0; 1/2] (resp. on [1/2; 1]) with bin sizes
2−k1 (resp. 2−k2), 0 ≤ k1, k2 ≤ ln2(n) − 2 (dyadic version of S2). The
model of constant functions is added to Mn, that is

Mn = {1} ∪
{

2k s.t. 0 ≤ k ≤ ln2(n) − 2
}2

.

Note that the collections of models used in experiments S2 and HSd2 can adapt
to s and σ(·). Therefore, the oracle model is generally quite efficient so that the
model selection problem is more challenging.

The following procedures7 are compared:

Mal Mallows’ Cp penalty: pen(m) = 2σ̂2Dmn−1 where σ̂2 is the classical
variance estimator defined as

σ̂2 =
d2
(
Y1...n, S⌊n/2⌋

)

n − ⌊n/2⌋ , (24)

where Y1...n = (Yi)1≤i≤n ∈ R
n, S⌊n/2⌋ is any model of dimension ⌊n/2⌋

(only assumed to have a bias negligible in front of σ2) and d is the

7The code used for computing resampling penalties is available on the author’s webpage
at http://www.di.ens.fr/∼arlot/index.htm.

http://www.di.ens.fr/~arlot/index.htm
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Euclidean distance on R
n. The non-asymptotic validity of this model

selection procedure in homoscedastic regression has been assessed by
Baraud [13].

E [penid ] Expectation of the ideal penalty: pen(m) = E [penid(m) ], which wit-
nesses what is a good performance in each experiment.

VFCV V -fold cross-validation, with V ∈ {2, 5, 10, 20} (defined as in [9]).
LOO Leave-one-out (that is VFCV with V = n).

penEfr Efron (n) penalty (7) with C = CW = 1.
penRad Rademacher (1/2) penalty (7) with C = CW = 1.
penRho Random hold-out (n/2) penalty (7) with C = CW = 1.
penLoo Leave-one-out penalty (7) with C = CW = n − 1.

For each of these, the same penalties multiplied by 5/4 are also considered (and
they are denoted by a + symbol added after the shortened names). This intends
to test for overpenalization (the choice of the factor 5/4 being arbitrary and
certainly not optimal, see Section 6.3.2).

In each experiment, for each simulated data set, first the models with 2 data
points or less in one piece of their associated partition are removed. Then, the
least-squares estimators ŝm are computed for each m ∈ M̂n. Finally, m̂ ∈ M̂n

is selected using each procedure and its true excess loss ℓ
(
s, ŝ

m̂

)
is computed as

well as the excess loss of the oracle infm∈Mn ℓ (s, ŝm ). N = 1000 data sets are
simulated, thanks to which the model selection performance of each procedure
is estimated through the two following benchmarks:

Cor =
E
[
ℓ
(
s, ŝ

m̂

)]

E [ infm∈Mn ℓ (s, ŝm ) ]
Cpath−or = E

[
ℓ
(
s, ŝ

m̂

)

infm∈Mn ℓ (s, ŝm )

]

Basically, Cor is the constant that should appear in an oracle inequality like (9),
and Cpath−or corresponds to a pathwise oracle inequality like (8). Since Cor and
Cpath−or approximatively give the same rankings between procedures, Table 3
only reports Cor; the values of Cpath−or are reported in [8].

5.2. Results and comments

First, the above experiments show the interest of both Resampling Penalization
(RP) and VFCV in several difficult frameworks, with relatively small sample
sizes. Although RP and VFCV cannot compete with simple procedures such
as Mallows’ Cp from the computational point of view, they are much more
efficient when the noise is heteroscedastic (S2 and HSd2). In these difficult
frameworks, the prediction performances of RP and VFCV are comparable to
those of E [ penid ]. Note that in HSd2, penRad and penRho give smaller losses
than any penalty proportional to the dimension of the models (see Section 7.1.2).
Moreover, penRad and penRho perform slighlty worse than Mallows’ Cp for the
easiest problems (S1 and HSd1), which can be interpretated as the unavoidable
price for robustness.
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Table 3

Accuracy indices Cor for each procedure in four experiments, ± a rough estimate of
uncertainty of the value reported (that is the empirical standard deviation divided by

√
N ;

N = 1000). In each column, the more accurate procedures (taking the uncertainty into
account) are bolded

Experiment S1 S2 HSd1 HSd2

s sin(π·) sin(π·) HeaviSine HeaviSine
σ(x) 1 x 1 x
n (sample size) 200 200 2048 2048
Mn regular 2 bin sizes dyadic, regular dyadic, 2 bin sizes

E [ penid ] 1.919 ± 0.03 2.296 ± 0.05 1.028 ± 0.004 1.102± 0.004

E [ penid ]+ 1.792± 0.03 2.028± 0.04 1.003± 0.003 1.089± 0.004

Mal 1.928 ± 0.04 3.687 ± 0.07 1.015 ± 0.003 1.373 ± 0.010
Mal+ 1.800± 0.03 3.173 ± 0.07 1.002± 0.003 1.411 ± 0.008

2-FCV 2.078 ± 0.04 2.542 ± 0.05 1.002± 0.003 1.184 ± 0.004
5-FCV 2.137 ± 0.04 2.582 ± 0.06 1.014 ± 0.003 1.115 ± 0.005
10-FCV 2.097 ± 0.04 2.603 ± 0.06 1.021 ± 0.003 1.109 ± 0.004
20-FCV 2.088 ± 0.04 2.578 ± 0.06 1.029 ± 0.004 1.105 ± 0.004
LOO 2.077 ± 0.04 2.593 ± 0.06 1.034 ± 0.004 1.105 ± 0.004

penRad 1.973 ± 0.04 2.485 ± 0.06 1.018 ± 0.003 1.102± 0.004

penRho 1.982 ± 0.04 2.502 ± 0.06 1.018 ± 0.003 1.103± 0.004

penLoo 2.080 ± 0.04 2.593 ± 0.06 1.034 ± 0.004 1.105 ± 0.004
penEfr 2.597 ± 0.07 3.152 ± 0.07 1.067 ± 0.005 1.114 ± 0.005

penRad+ 1.799± 0.03 2.137± 0.05 1.002± 0.003 1.095± 0.004

penRho+ 1.798± 0.03 2.142± 0.05 1.002± 0.003 1.095± 0.004

penLoo+ 1.844± 0.03 2.215± 0.05 1.004± 0.003 1.096± 0.004

penEfr+ 2.016 ± 0.05 2.605 ± 0.06 1.011 ± 0.003 1.097± 0.004

Second, in the four experiments, the best procedures always are the overpe-
nalizing ones: many of them even beat the perfectly unbiased E [penid ], showing
the crucial need to overpenalize. This phenomenon disappears for small σ and
large n [8, Experiments S0.1 and S1000], hence it is certainly due to the small
signal-to-noise ratio. We would like to insist on the importance of the overpenal-
ization phenomenon, which is seldom mentioned in theoretical papers because
it vanishes in the asymptotic framework, and it is quite hard to find from the-
oretical results.

Let us now compare RP and VFCV. According to the four experiments of
Table 3, RP with Rad or Rho resampling schemes clearly outperforms VFCV for
any V , even without overpenalizing. The only exception to this is HSd1 where
2-fold cross-validation yields a particularly good model selection performance.

This can be interpretated thanks to the non-asymptotic study of the perfor-
mance of V -fold cross-validation provided in [9]. In short, VFCV overpenalizes
within a factor 1 + 1/(2(V − 1)), while the V -fold criterion has a variance de-
creasing with V .
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Then, when overpenalization is necessary (for instance in S1, S2 or HSd1),
small values of V can outperform the leave-one-out (V = n). Nevertheless,
RP with the right overpenalization level C/CW leads to a smaller prediction
loss than VFCV, because RP provides a less variable model selection criterion
than VFCV. The reason why penRad and penRho also perform slightly better
without overpenalization is that they naturally overpenalize when C = CW = 1
(see Section 4).

Let us now consider the model selection performance of RP with several
exchangeable resampling schemes. The two best ones are Rad and Rho in the
four experiments, with or without overpenalization. Then, Loo performs slightly
worse (but not always significantly) and Efr much worse. Looking carefully at
the values of the penalties, it appears that Rad and Rho slightly overpenal-
ize, Loo is exactly at the right level, and Efr underpenalizes (as well as Poi,
which has performances quite similar to the ones of Efr, see [8]). Note that
this comparison can also be derived from theoretical computations (see Sec-
tion 4). Since overpenalization is benefic in the four experiments of Table 3, this
explains why penRad and penRho slightly outperform penLoo. In the case of
Efron’s boostrap penalty, underpenalizing implies overfitting which explains the
comparatively bad performances reported in Table 3.

We conclude this section with remarks concerning some particular points of
the simulation study.

• On the same data sets, Mallows’ Cp and its overpenalized version Mal+
were performed with the true mean variance E

[
σ2(X)

]
instead of σ̂2

(which would not be possible on a real data set). It yielded worse model
selection performance for all experiments but S2, in which Cor(Mal) =
2.657 ± 0.06 and Cor(Mal+) = 2.437 ± 0.05. Therefore, overpenalization
is crucial in experiment S2, more than the shape8 of the penalty itself.
Moreover, the overpenalization level being fixed, resampling penalties re-
main significantly better than Mallows’ Cp. Hence, the performances of
Mallows’ Cp in Table 3 are not only due to a bad estimation of the mean
noise-level (see also Section 7.1).

• Eight additional experiments are reported in [8], showing similar results
with various n, σ and s (although the assumptions of Theorem 1 are not
always satisfied).

• Resampling penalties with a V -fold subsampling scheme have also been
studied in [9, Section 4] on the same simulated data: exchangeable resam-
pling schemes always give better model selection performance than non-
exchangeable ones (significantly when V is small), except for Efr and Poi
which tend to underestimate the ideal penalty.

8The shape of a penalty is defined as the way pen(m) depends on m up to a linear
transformation.
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6. Practical implementation

This section tackles three main issues for using Procedure 1 in practice: how
to compute the resampling penalty (7)? how to choose the weights W? how to
choose the constant C?

6.1. Computational cost

An exact computation of resampling penalties with exchangeable weights (with-
out using formula (50) for histograms) would be either impossible or computa-
tionally expensive. We suggest two possible ways to fix this problem.

First, one can use a classical Monte-Carlo approximation, that is draw a small
number B of independent weight vectors instead of considering each element
of the support of D(W ). Practical Monte-Carlo methods for the boostrap are
proposed for instance by Hall [39, Appendix II]. Moreover, a non-asymptotic
estimation of the accuracy of Monte-Carlo approximation can be obtained via
McDiarmid’s inequality (see Arlot, Blanchard and Roquain [10, Proposition 2.7]
for a precise result using the same idea in another framework). This would
provide a practical way of quantifying what is lost by making a Monte-Carlo
approximation, and choose B consequently (at least for Rad, Rho and Loo
weights).

Second, it is possible to use non-exchangeable weight vectors W such that the
cardinality of the support of D(W ) is much smaller than n. A case-example is
V -fold subsampling: given a partition (Bj )1≤j≤V of {1, . . . , n} and J a uniform

random variable over {1, . . . , V } independent of the data, we define

∀i ∈ {1, . . . , n} , Wi =
V

V − 1
1i/∈BJ

.

The resulting resampling penalties —called V -fold penalties— have been intro-
duced and studied in [9]. They are computationally similar to VFCV while being
more flexible, since the overpenalization factor is decoupled from the choice of
V ; hence, like resampling penalties, V -fold penalties select an estimator with
smaller prediction loss than the one selected by VFCV.

Both Monte-Carlo approximation of RP and V -fold penalization have been
tested on the simulated data of Section 5. The detailed results are given in [8].

6.2. Choice of the weights

The influence of the weights has been investigated from the theoretical point
of view in Section 4 with focus on second-order terms in expectation. However,
deviations of pen(m) around its expectation are likely to depend on the weight
vector W since the upper bound in (17) may not be tight. The simulation study
of Section 5 allows to take into account both phenomena in the comparison
between the resampling weights.
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In terms of model selection efficiency, Table 3 shows that the best weights
(for accuracy of prediction and for the variability9 of this accuracy) are Rho and
Rad, whereas Loo perform slightly worse. On the contrary, from both accuracy
and variability points of view, Efron’s bootstrap weights perform worse than
Rho, Rad and Loo, mainly because they lead to underpenalization.

Note however that this comparison strongly depends on the precise defini-
tion10 of CW , which makes all penalties unbiased at first order but possibly un-
der or over-penalizing at second order. Then, different prediction performances
may be observed on data which do not require overpenalization. Nevertheless,
the computations of Section 4 show that Efron’s bootstrap weights have a real
drawback which cannot be fixed only by changing CW .

When computing the penalties exactly, Loo weights are the only computa-
tionally tractable ones, while being almost as accurate as Rho and Rad. Hence,
we suggest their use, enlarging the constant C when needed (see Section 6.3.2
on overpenalization).

However, computing n empirical risk minimizers (or the outputs of compu-
tationally more expensive algorithms) for each model is not always possible.
In such a case, one should avoid using the Leave-one-out with a Monte-Carlo
approximation, which would give a large importance to a small number of data
points. Rho or Rad weights are much safer in this situation. Alternatively, one
may consider the use of V -fold penalties [9] as a good alternative when the
computational power is limited.

Let us emphasize that this analysis and the subsequent advices should be con-
sidered with caution. First, the deviations of resampling penalties around their
expectations should be understood much better, because they can be compa-
rable or even larger than the second-order terms in expectations. Second, the
optimal choice of V for V -fold cross-validation is known to be different between
least-squares regression and binary classification [9, Section 2.3]. Such differences
are expected to arise for choosing between exchangeable resampling weights.

Remark that the bias of the bootstrap penalty has already been noticed
by Efron [30, 31] who proposed several ways to correct it, including a double
bootstrap procedure and the .632 bootstrap. The novelty of the approach of this
paper is to propose the use of other exchangeable resampling schemes instead
of the boostrap so that the bias of resampling penalties no longer has to be
corrected.

9The variability of the accuracy is more an indicator of the stability of the performance of
RP than of the variance of the resampling penalty. However, it remains an interesting measure,
since a procedure performing always equally well can be preferred to a procedure with better
mean efficiency but poor performances on a small probability event.

10However, it is quite unclear how to change CW in order to optimize each penalty in the
general case. This is why CW has been chosen as “simple” as possible in Table 2.
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6.3. Choice of the constant C

6.3.1. Optimal constant for bias

From the asymptotic point of view, the optimal C = C⋆ for prediction is gener-
ally the one for which pen estimates the ideal penalty penid unbiasedly (at least
for collections of models of polynomial size). This is how CW is defined in the
histogram framework and Theorem 1 implies that C = CW is asymptotically
optimal for prediction. Hence11, C⋆ is asymptotically equivalent to CW .

As showed by Arlot and Massart [11], C⋆ can also be estimated directly from
data for general penalties, in particular for RP. Hence, the knowledge of CW

is not necessary, which can be useful in the general prediction framework (see
Section 7.2).

6.3.2. Overpenalization

A careful look at the proof of Theorem 1 shows that a similar oracle inequality
holds for any C > 4CW /5, the leading constant remaining close to one when C ∼
CW asymptotically. In other words, when the sample size n is small, the optimal
constant C⋆ may not be exactly equal to CW . The simulations of Section 5 also
support this fact: Overpenalization, that is, taking C = CovCW with Cov > 1,
can improve the prediction performance of ŝ

m̂
when n is small, when σ is large

or when s is non-smooth.
This problem would appear even if the “optimal” constant C⋆ such that

pen is non-asymptotically unbiased was known. On Figure 13, the estimated
model selection performance of the penalty CovE [penid(m) ] is plotted as a
function of Cov, for experiment S2 of Section 5. It appears that the optimal
overpenalization constant C⋆

ov ∈ (1.5; 2.35) for this particular problem. More
generally, the drawback of using C = C⋆ is that it does not take into account
the deviations of penid(m) around its expectation. To avoid the possible overfit
induced by these deviations, the constant C must be slightly enlarged. A major
issue remains: How to estimate C⋆

ov from data only, since it strongly depends
on n, on σ, on the smoothness of s and on the number of models in Mn?

One can think of choosing Cov by V -fold cross-validation, but this would lead
to a computationally intractable procedure. An alternative idea is to use resam-
pling for building a simultaneous confidence region on (penid(m) )m∈Mn

instead
of estimating E [ penid(m) ] only (see [10] on confidence regions built with general
exchangeable resampling schemes). Then, the uncertainty on the estimation of
penid(m) can be taken into account for choosing a model, similarly to model
selection procedures built upon relative bounds [12, 24]. Finally, the choice of
the overpenalization factor would be replaced by the choice of a confidence level
which should be made by the practicioner. See also [6, Section 11.3.3] for a
discussion on a data-driven choice of the overpenalization factor.

11See the proof of Theorem 1 in [9] to prove that asymptotic optimality requires
C⋆/CW −−−−→

n→∞

1 as soon as there are enough models close to the oracle.
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Fig 13. The non-asymptotic need for overpenalization: the prediction performance Cor (de-
fined in Section 5.1) of the model selection procedure (2) with pen(m) = CovE [ penid(m) ] is
represented as a function of Cov . Data and models are the ones of experiment S2: n = 200,
σ(x) = x, s(x) = sin(πx). See Section 5 for details.

7. Discussion

7.1. Comparison with other procedures

In this article, the Resampling Penalization (RP) family of model selection pro-
cedures is defined and showed to satisfy some optimality properties under mild
assumptions on the data (Theorems 1 and 2). In particular, RP is robust to the
heteroscedasticity of the noise according to both theoretical and experimental
results. The price for robustness is that the computational cost of RP is gener-
ally larger than simple procedures like Mallows’ Cp, even with the suggestions
of Section 6.1. The purpose of this subsection is to identify the “easy” prob-
lems, for which the computational cost of RP can be reduced by using Cp-like
penalties without enlarging the prediction loss too much.

7.1.1. Mallows’ Cp

Mallows’ Cp penalty is equal to 2σ2Dmn−1 for a model Sm of dimension Dm,
when the noise-level σ is constant. Non-asymptotic results about Cp-like penal-
ties can be found in [16, 13, 14, 21]. They imply that Mallows’ Cp is asymptot-
ically optimal in the homoscedastic framework, when the size of Mn is polyno-
mial in n.

When the mean noise-level is unknown, it must be estimated. A classical
estimator of E

[
σ2(X)

]
is defined by (24). Baraud [13, 14] showed that the

resulting data-driven model selection procedure satisfies a non-asymptotic oracle
inequality with leading constant close to one.

Assume for the sake of simplicity that n is even and let Sn/2 be a model such
that each piece of the associated partition contains exactly two data points.
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Reordering the (Xi, Yi) according to Xi,

penMallows(m) =
2Dm

n2

n/2∑

i=1

(Y2i − Y2i−1)
2

so that

E
Λm [penMallows(m) ] ≈ 2

n

∑

λ∈Λm

(Dmp̂λ ) (σr
λ)

2
+

2Dm

n2

n/2∑

i=1

(s(X2i) − s(X2i−1) )
2

(25)

where (σr
λ)

2
:= E

[
σ(X)2

∣∣ X ∈ Iλ

]
.

This should be compared with the result of Proposition 1:

E
Λm [penid(m) ] ≈ 2

n

∑

λ∈Λm

(
(σr

λ)
2
+
(
σd

λ

)2)
(26)

where
(
σd

λ

)2
:= E

[
(s(X) − sm(X) )

2
∣∣∣ X ∈ Iλ

]
.

Although both Mallows’ Cp and the ideal penalty are in expectation the sum

of a “variance” term (involving the (σr
λ)

2
) and a “bias” term (involving the

variations of s through (s(X2i) − s(X2i−1))
2 or (σd

λ)2), they differ on at least
two points.

First, when s is smooth and minλ∈Λm {np̂λ } is large, the “bias” term in (25)
is negligible in front of the one of (26), which means that Mallows’ Cp under-
penalizes when the “bias” component of penid is large. Second, the “variance”
component of penid, which is the main one in general, is distorted in Mallows’
Cp: the part of the penalty corresponding to Iλ is multiplied by Dmp̂λ which is
not close to 1 when the partition (Iλ )λ∈Λm

is not regular with respect to D(X).
This happens for instance in experiments S2 and HSd2 of Section 5. Therefore,
there are at least three possibly “hard” problem classes:

• heteroscedastic noise, with irregular histograms and X uniform (for in-
stance S2, HSd2 in Section 5, or Svar2 in [8]),

• heteroscedastic noise, with regular histograms and X highly non-uniform
on X ,

• regression function s with jumps (such as HeaviSine12) or large non-smooth
areas (such as Doppler in [8]).

In either of these cases, one should avoid the use of Cp-like penalties, and we
suggest resampling penalties as an efficient alternative. As explained in Sec-
tion 7.1.2 below, the first class of problems can make any penalty proportional
to the dimension Dm suboptimal.

12However, in experiment HSd1, Mallows’ Cp still behaves quite well compared to RP. We
do not know whether the non-smoothness of s can actually make Mallows’ Cp fail.
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7.1.2. Linear penalties

Mallows’ Cp is simple because it is a linear function of the dimension Dm of Sm:

pen(m) = K̂Dm (27)

and K̂ is the only constant to determine. Depending on what is known on the
mean variance level, the constant K̂Mallows can be defined as

2E
[
σ(X)2

]
n−1 or 2σ̂2n−1.

Refined versions of Mallows’ Cp have also been proposed [16, 14, 21] but they
are still linear or very close to linearity.

However, according to (11), the ideal penalty is not linear in general, even
in expectation. Moreover, there exist some frameworks in which any penalty
of the form (27) is suboptimal when data are heteroscedastic [7], that is, it
cannot satisfy any oracle inequality with leading constant smaller than some
absolute constant κ > 1. In other words, the optimal linear penalization proce-
dure penopt,lin(m) := K̂⋆Dm is suboptimal, where

K̂⋆ ∈ arg min
K>0

{
Pγ
(
ŝ

m̂(K)

)}

and ∀K > 0, m̂(K) ∈ arg min
m∈Mn

{Pnγ ( ŝm ) + KDm } .

As showed by Theorem 1, RP does not suffer from this drawback.
On the one hand, the optimal linear penalization procedure has a better

model selection performance than RP for S1, S2 and HSd1, which is not surpris-
ing for the “easy” problems where Mallows’ Cp is almost optimal (S1, HSd1). It
is less intuitive for S2 where data are heteroscedastic. Considering that penopt,lin

uses the knowledge of the true distribution P , one can understand that it is suf-
ficient to keep a good performance for “intermediate” problems.

On the other hand, in experiment HSd2, the optimal linear penalization has
a model selection performance Cor = 1.18 ± 0.01, which is worse than the one
of RP (Cor ≤ 1.11). Thus, the most difficult problem of Section 5 (with a large
collection of models, heteroscedastic data and bias) gives an example where
linear penalties are definitely not adapted, in addition to the ones of [7].

7.1.3. Ad hoc procedures

One of the main advances with Theorems 1 and 2 is that RP is proved to work
in the heteroscedastic framework contrary to Mallows’ Cp. Nevertheless, in a
framework such as the one of experiment S2, Mallows’ Cp can be adapted to
heteroscedasticity by splitting X into several parts where σ is almost constant,
and performing the histogram selection procedure with Mallows’ Cp separately
on each part of X .

More generally, Efromovich and Pinsker [28] and Galtchouk and Pergamen-
schikov [35] (among several others) defined estimators of s that are minimax



S. Arlot/Resampling penalization 38

adaptive in the heteroscedastic framework, the latter by model selection. In the
Gaussian regression framework, Gendre [37] proposed a model selection method
for estimating simultaneously the regression function and the noise level.

All these procedures may perform slightly better than RP in terms of predic-
tion loss. They are called “ad hoc” because they have been specially designed
for the heteroscedastic framework (and a particular collection of estimators for
[35, 37]). On the contrary, RP is a general-purpose device: It was neither built
to be adaptive to heteroscedasticity nor to take advantage of a specific model,
and RP has exactly the same definition in the general prediction framework (see
Section 7.2).

When no information is available on the data or when no model selection pro-
cedure is known for using such information, we suggest the use of RP. Moreover,
available information can be partial or wrong. Then, using an ad hoc procedure
would be disastrous whereas a general device like RP would still work. In short,
choose RP if you have no useful information or if you do not trust them.

7.1.4. Other model selection procedures by resampling

The most well-known resampling-based model selection procedure is cross-va-
lidation. For practical reasons, it is often used in its V -fold version which can
have some tricky behavior, in particular for choosing V [68, 9]. This can also
be showed in the simulation experiments of Section 5 (see Table 3): In HSd1,
V = 2 performs better than V ∈ {5, 10, 20}, a phenomenon explained in [9] by
analyzing how the bias of the V -fold criterion depends on V .

V -fold penalization, that is, RP with a V -fold subsampling scheme, was pro-
posed in [9] where it was showed to improve significantly the model selection
performance of VFCV. In this paper and in [8], RP with several exchangeable
resampling schemes —generalizing the V = n case— is proved to perform at
least as well as V -fold penalization and often better.

Several penalization procedures use the bootstrap for estimating the ideal
penalty [30, 25, 62]. As noticed in Remark 6, the penalization procedures studied
by Shibata [62] are quite close to RP, although they are restricted to bootstrap
weights, which are the worst ones in the framework of the present paper (see
Sections 4.1 and 6.2). Moreover, they do not consider useful to multiply the
penalty by a factor C possibly different from one, contrary to what is suggested
in RP. The factor C is crucial because it disconnects the choice of the weights
from the overpenalization problem.

In order to select the correct model asymptotically with probability one,
Shao [59] proposed to use RP with the Mn out of n bootstrap and provided a
sufficient condition on Mn to achieve model consistency. Thanks to the unified
approach for all the exchangeable resampling weights provided in this paper,
Shao’s condition can be rewritten as C = 1 ≫ CW (see Remark 6), which
corresponds to the known fact that model consistency requires overpenalization
within a factor tending to infinity with n [1]. Hence, we conjecture that RP
with a constant C ≫ CW is model consistent for most exchangeable W , which
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may improve Shao’s penalties since Efr(Mn) weights are probably not the best
weights in terms of accuracy (see Section 4) and variability13.

7.2. Resampling Penalization in the general prediction framework

As mentioned in Section 2.1, Resampling Penalization is a general-purpose
method which is definitely not restricted to the histogram selection problem.
The purpose of this subsection is to define properly RP in the general predic-
tion framework and to discuss briefly what differences can be expected compared
to the histogram selection framework.

7.2.1. Framework

Suppose we observe some data (X1, Y1), . . . , (Xn, Yn) ∈ X ×Y independent with
common distribution P . The goal is to predict Y given X where (X, Y ) ∼ P is
independent of the data. The quality of a predictor t : X 7→ Y is measured by the
prediction loss Pγ(t) := E(X,Y ) [γ(t, (X, Y )) ] where (X, Y ) ∼ P and γ is a given
contrast function. Typically, γ(t, (x, y)) measures the discrepancy between t(x)
and y. The excess loss is defined as ℓ (s, t ) := Pγ ( t )− inft:X 7→Y Pγ ( t ), even if
s = argmint {Pγ ( t )} is not well-defined. Classical examples are least-squares
regression where Y = R and γ(t, (x, y)) = (t(x) − y)2 and binary supervised
classification where Y = {0, 1} and γ(t, (x, y)) = 1t(x) 6=y is the 0-1 contrast.

A general prediction algorithm ŝ is then defined as a function associat-
ing a predictor to any data sample. In order to simplify the presentation,
algorithms are assumed to depend only on the empirical distribution Pn =
n−1

∑n
i=1 δ(Xi,Yi) as an input14. For instance, the empirical risk minimizer over

a set Sm of predictors is defined as ŝm(Pn) := argmint∈Sm Pnγ ( t ), provided
the minimum in Sm exists and is unique.

Let us assume that a collection of algorithms ( ŝm )m∈Mn
is given. The goal

is to select some data-dependent m̂ ∈ Mn minimizing the prediction loss
Pγ ( ŝm(Pn) ). The penalization method consists in selecting

m̂ ∈ arg min
m∈Mn

{Pnγ ( ŝm (Pn ) ) + pen(m)} ,

where pen : Mn 7→ R is a penalty function, possibly data-dependent. Since the
goal is to minimize the prediction loss, the ideal penalty is

penid(m) := (P − Pn)γ ( ŝm(Pn) ) = Fm(P, Pn)

which cannot be used because it depends on the unknown distribution P . When
Mn is not too large (for instance, when Card(Mn) ≤ Cnα for some positive con-
stants C, α), a natural strategy is to define pen(m) as an estimator of penid(m)
with a bias as small as possible.

13Taking into account all the data for computing the resampling penalty with Efr(Mn)
weights is computationally costly when n/Mn is large.

14Otherwise, we can consider algorithms whose input is any weighted sample.
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7.2.2. Definition of Resampling Penalization

As detailed in Section 2.2, the resampling heuristics can be used for estimating
E [penid(m) ] = E [Fm(P, Pn) ], leading to the following procedure.

Procedure 3 (Resampling Penalization).

1. Replace Mn by

M̂n = {m ∈ Mn s.t. ŝm(Pn) is well-defined } .

2. Choose a resampling scheme, that is the distribution D(W ) of a weight
vector W .

3. Choose a constant C ≥ CW .
4. Compute the following resampling penalty for each m ∈ Mn:

pen(m) = CEW

[
Pnγ

(
ŝm

(
PW

n

))
− PW

n γ
(
ŝm

(
PW

n

))]
, (28)

where PW
n := n−1

∑n
i=1 Wiδ(Xi,Yi).

5. Select m̂ ∈ argmin
m∈M̂n

{Pnγ ( ŝm (Pn ) ) + pen(m)}.

As for the histogram selection problem, two possible problems have to be
solved. First, ŝm(PW

n ) may not be well-defined for a.e. W even if m ∈ M̂n.

A way to define properly the resampling penalty for every m ∈ M̂n such that
ŝm(PW

n ) is well-defined for every W ∈ (0, +∞)n is suggested in [6, Section 8.1].
This assumption is satisfied by regressograms (hence, in the framework of the
rest of the paper) for which the suggest of [6, Section 8.1] yields exactly the
penalty (7).

Second, the constant CW such that (28) estimates unbiasedly penid(m) when
C = CW is required in Procedure 3. For the histogram selection problem, the ex-
plicit expression of CW follows from Propositions 1 and 2. In general, the asymp-
totic theory of exchangeable bootstrap empirical processes [66, Theorem 3.6.13]
suggests that CW = 1 if var(W1) ≪ 1, which holds for the classical weights Efr,
Rad, Poi and Rho; nevertheless, asymptotic control on the bias is not sufficient
when the collection of algorithms is allowed to depend on the sample size n,
as in the histogram selection problem. Therefore, further theoretical investiga-
tions would be useful to compute the theoretical value of CW to be used in
Procedure 3. From the practical point of view, the data-driven calibration algo-
rithm of [11] can be used for choosing the constant C in front of the resampling
penalty.

7.2.3. Model selection properties of Resampling Penalization

The theoretical validity of Procedure 3 is only proved for histogram model selec-
tion in this paper, because precise non-asymptotic controls of the ideal penalty
and its resampling counterpart are needed. To our knowledge, the only known
result about model selection with Resampling Penalization was that RP with the
classical bootstrap weights (Efr) is asymptotically optimal for selecting among
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maximum likelihood estimators in [62], assuming that the distribution P belongs
to some parametric family of densities.

RP can be conjectured to enjoy adaptivity properties for a wide class of model
selection problems for two main reasons. First, RP relies on the resampling idea
which is known to be robust in a wide variety of frameworks; Theorems 1 and 2
have confirmed the robustness of RP to heteroscedasticity, whereas RP has not
been designed specifically for least-squares regression with heteroscedastic data.
Second, several of the key concentration inequalities used to prove Theorems 1
and 2 have been extended in [11, Propositions 8 and 10] to a general framework
including bounded regression and binary classification.

As mentioned at the end of Section 7.2.1, Procedure 3 should be restricted to
choosing among a number of algorithms at most polynomial in n. Indeed, when
Card(Mn) is larger, estimating unbiasedly penid can yield strong overfitting
[21]. Therefore, RP must be modified for large collections Mn. We suggest to
group algorithms according to some modelling complexity index Cm, such as the
dimension of Sm if ŝm is the empirical risk minimizer over some vector space
Sm; then, for every C ∈ Cn = {Cm s.t. m ∈ Mn }, define ŝC := ŝ

m̂(C)
where

m̂(C) ∈ argminCm=C Pnγ ( ŝm(Pn) ); finally, apply Procedure 3 to the collection
( ŝC )C∈Cn

, assuming that Card (Cn ) is at most polynomial in n.

7.2.4. Related penalties for classification

In the classification framework, RP should be compared to several classical
resampling-based penalization methods. First, RP with Efr weights was first
introduced by Efron [30] and called bootstrap penalization; its main drawback
is its bias (as for the histogram selection problem), which can be corrected in
several ways, using for instance the double bootstrap penalization or the .632
bootstrap [30]. Nevertheless, the computational cost of the double bootstrap is
heavy and the general validity of the .632 bootstrap is questionable because of
its poor theoretical grounds.

Second, the global Rademacher complexities were introduced in order to ob-
tain theoretically validated model selection procedures in classification [45, 17].
They are resampling estimates of

penid,g(m) := sup
t∈Sm

{(P − Pn)γ(t)} ≥ (P − Pn)γ ( ŝm(Pn) ) = penid(m),

with Rad weights; more recently, Fromont [34] generalized global Rademacher
complexities to a wide family of exchangeable resampling weights and obtained
non-asymptotic oracle inequalities. Nevertheless, global complexities (that is,
estimates of penid,g) are too large compared to penid so that they cannot achieve
fast rates of estimation when the margin condition [53] holds.

Therefore, localized penalties taking into account the closeness between ŝm(Pn)
and s have been introduced, in particular local Rademacher complexities [50, 18,
19, 46]; these papers proved sufficiently tight oracle inequalities to ensure that
the final prediction loss can achieve fast rates. Nevertheless, local Rademacher
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complexities are computationally heavy and depend on several constants which
are difficult to calibrate.

RP aims at combining the advantages of these three approaches in classifi-
cation. From the practical point of view, RP is computationally tractable (see
Section 6.1) and reasonably easy to calibrate (see Section 6.3). Compared to
global Rademacher complexities, resampling penalties estimate directly penid,
so that RP should be able to achieve fast rates of estimation when the margin
condition holds. Finally, contrary to the bootstrap penalty, RP can be used with
several resampling weights including i.i.d. Rademacher weights (Rad), so that
the bias of RP may not have to be corrected.

7.3. Conclusion

This article intends to help the practicioner to answer the following question:
When should Resampling Penalization be used? To sum up, we list below the
advantages and drawbacks of RP vs. the classical methods.

Advantages of RP

• generality: well-defined in almost any framework.
• robustness and versatility: designed for the cautious user.
• adaptivity to several properties, in particular heteroscedasticity and smooth-

ness of the target.
• flexibility: possibility of overpenalization, either for non-asymptotic predic-

tion or for identification.

Drawbacks of RP

• computation time: one may prefer V -fold procedures such as V -fold cross-
validation or V -fold penalties [9].

• possibly outperformed by Mallows’ Cp (for easy problems) or ad hoc proce-
dures (in some particular frameworks, when some information on the data
is available).

8. Proofs

8.1. Notation

Before starting the proofs, we introduce some additional notation and conven-
tions:

• The letter L denotes “some positive absolute constant, possibly different
from some place to another”. In the same way, a positive constant which
depends on c1, . . . , ck is denoted by Lc1,...,ck

; if (A) denotes a set of assump-
tions, L(A) denotes any positive constant depending on the parameters
appearing in (A).
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• By convention, ∞1E and 1E/0 are both equal to zero when the event E
does not hold.

• For any x ∈ R, x+ := x ∨ 0 = max(x, 0) and x− := (−x) ∨ 0.
• For any non-negative random variable Z, e0

D(Z) := E [Z ] E
[
Z−11Z>0

]
.

• For any model m ∈ Mn,

p1(m) := P (γ(ŝm) − γ(sm) ) p2(m) := Pn (γ(sm) − γ(ŝm) )

δ(m) := (Pn − P ) (γ(sm) − γ(s) ) .

• Histogram-specific notation: for any q > 0, m ∈ Mn, λ ∈ Λm and any
random variable Z,

E
Λm [Z ] := E

[
Z | (1Xi∈Iλ

)1≤i≤n, λ∈Λm

]
‖Z‖(Λm)

q := E
Λm [ |Z|q ]

1/q

mq,λ := ‖Y − sm(X)‖q,λ := (E [|Y − sm(X)|q | X ∈ Iλ])
1/q

Sλ,1 :=
∑

Xi∈Iλ

(Yi − βλ ) and Sλ,2 :=
∑

Xi∈Iλ

(Yi − βλ)
2
.

• Conventions for p1 and p2 when ŝm is not well-defined (in the histogram
framework):

p̃1(m) := p̃1
(0)(m) +

∑

λ∈Λm

pλ (σλ)
2
1

p̂λ=0

with p̃1
(0)(m) :=

∑

λ∈Λm

pλ1p̂λ>0

(np̂λ)2
S2

λ,1

and p̃2(m) := p2(m) +
1

n

∑

λ∈Λm

(σλ)2 1
np̂λ=0

Note that p1(m) = p̃1
(0)(m) = p̃1(m) and p2(m) = p̃2(m) are well-defined

when ŝm is uniquely defined, and other models are always removed from
Mn. The above convention is only important when writing expectations,
so it is merely technical. In the following, p̃1 (resp. p̃2) will often be written
simply p1 (resp. p2).

Using the above notations, p1(m) and p2(m) can now be computed explicitly
for histogram models. For any m ∈ Mn such that minλ∈Λm p̂λ > 0,

p1(m) =
∑

λ∈Λm

pλ

(
βλ − β̂λ

)2

=
1

n

∑

λ∈Λm

(
pλ

p̂λ

S2
λ,1

np̂λ

)
(29)

p2(m) =
∑

λ∈Λm

p̂λ

(
βλ − β̂λ

)2

=
1

n

∑

λ∈Λm

(
1

np̂λ>0

S2
λ,1

np̂λ

)
(30)

since β̂λ − βλ = Sλ,1/(np̂λ).
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8.2. General framework

The main results (Theorems 1 and 2) actually are corollaries of a more general
oracle inequality (Lemma 7). First, two different assumption sets under which
Lemma 7 holds are stated in this subsection. The first one (Bg) deals with
bounded data, the second one (Ug) with unbounded data.

8.2.1. Bounded assumption set (Bg)

There is some noise: ‖σ(X)‖2 > 0.
(P1) Polynomial size of Mn: Card(Mn) ≤ cMnαM .
(P2) Richness of Mn: ∃m0 ∈ Mn s.t. Dm0 ∈ [

√
n; crich

√
n ].

(P3) The weight vector W is exchangeable, among Efr, Rad, Poi, Rho and
Loo.

(P4) The constant C is well chosen: ηCW ≥ C ≥ CW .
(Ab) Bounded data: ‖Yi‖∞ ≤ A < ∞.

(Am,ℓ) Local moment assumption: there exist aℓ, ξℓ, D0 ≥ 0 such that for every
q ≥ 2, for every m ∈ Mn such that Dm ≥ D0,

P ℓ
m(q) :=

√
Dm

∑
λ∈Λm

m4
q,λ∑

λ∈Λm
m2

2,λ

≤ aℓq
ξℓ .

(Ap) Polynomially decreasing bias: there exist β1 ≥ β2 > 0 and C+
b , C−

b > 0
such that, for every m ∈ Mn,

C−
b D−β1

m ≤ ℓ (s, sm ) ≤ C+
b D−β2

m .

(AQ) There exist c−Q > 0 and D0 ≥ 0 such that for every m ∈ Mn with
Dm ≥ D0,

Q(p)
m :=

nE [p2(m) ]

Dm
=

1

Dm

∑

λ∈Λm

σ2
λ ≥ c−Q > 0.

(ArXℓ ) Lower regularity of the partitions for D(X): there exists cX
r,ℓ > 0 such

that for every m ∈ Mn, Dm minλ∈Λm pλ ≥ cX
r,ℓ.

8.2.2. Unbounded assumption set (Ug)

(Ab) is replaced in (Bg) by

(Aσmax) Noise-level bounded from above: σ2(X) ≤ σ2
max < ∞ a.s.

(Asmax) Bound on the target function: ‖s‖∞ ≤ A < ∞.
(Ag,ǫ) Global moment assumption for the noise: there exist agǫ, ξgǫ ≥ 0 such

that for every q ≥ 2,

P gǫ(q) := ‖ǫ‖q ≤ agǫq
ξgǫ .
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(Aδ) Global moment assumption for the bias: there exists cg
∆,m > 0 such

that for every m ∈ Mn with Dm ≥ D0,

‖s − sm‖∞ ≤ cg
∆,m ‖s(X) − sm(X)‖2 .

8.2.3. General result

Lemma 7. Let n ∈ N\ {0}, γ0 > 0 and m̂ be defined by Procedure 1. Assume
that either (Bg) or (Ug) holds with constants independent of n.

Then, there exists a constant K1 (that depends on γ0 and all the constants
in (Bg) (resp. (Ug)), but not on n) such that

ℓ
(
s, ŝ

m̂

)
≤
[
2η − 1 + ( ln(n) )

−1/5 ]
inf

m∈Mn

{ ℓ (s, ŝm )} (31)

holds with probability at least 1 − K1n
−γ0 .

Lemma 7 is proved in Section 8.7.

Remark 8. If the lower bound in (Ap) is removed from the assumption set, then
there exist constants γ1, γ2 > 0 (depending only on ξℓ, resp. on ξℓ and ξgǫ) and
an event of probability at least 1 − K1n

−γ0 on which

ℓ
(
s, ŝ

m̂

)
≤
[
2η − 1 + (ln(n) )

−1/5 ]
inf

m∈Mn

Dm≥( ln(n) )γ1

{ ℓ (s, ŝm )} +
(ln(n) )

γ2

n
. (32)

This assertion is proved in Section 8.7.3.

Remark 9. In the infimum in (31), ŝm may not be well-defined for some m ∈
Mn. By convention ℓ (s, ŝm ) is defined as +∞ for these m.

From the proof of Lemma 7, there exists a constant c > 0 (depending on

αM, γ0 and cX
r,ℓ) such that every model of dimension smaller than cn ( ln(n) )

−1

belongs to M̂n on the event where (31) holds. For each of these models,

ℓ (s, ŝm ) = ℓ (s, sm ) + p̃1
(0)(m) = ℓ (s, sm ) + p̃1(m)

so that the infimum can be restricted to models of dimension smaller than
cn ( ln(n) )

−1
with any of these conventions for ℓ (s, ŝm ).

The main results of the paper (Theorems 1 and 2) can now be proved, which
is done in Sections 8.3–8.5.

First, the assumptions of Theorem 1 imply (Bg). Second, the alternative
assumption sets stated in Section 3.3.2 imply (Bg). Third, the assumptions of
Theorem 2 imply (Bg) except the lower bound in (Ap), so that Remark 8 can
be used instead of Lemma 7.
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8.3. Proof of Theorem 1

Lemma 7 is applied with γ0 = 2. In order to deduce (8), it remains to show that
(Am,ℓ) and (AQ) are satisfied. Both hold with D0 = 1 since for every m ∈ Mn,

P ℓ
m(q) =

√∑
λ∈Λm

m4
q,λ

√
DmQ

(p)
m

≤ ‖Y − sm(X)‖2
∞

Q
(p)
m

≤ 4A2

Q
(p)
m

(33)

Q(p)
m :=

1

Dm

∑

λ∈Λm

[
(σr

λ )
2

+
(
σd

λ

)2 ] ≥ σ2
min.

Let Ωn be the event on which (8) holds true. Then,

E
[
ℓ
(
s, ŝ

m̂

)]
= E

[
ℓ
(
s, ŝ

m̂

)
1Ωn

]
+ E

[
ℓ
(
s, ŝ

m̂

)
1Ωc

n

]

≤ [ 2η − 1 + εn ] E

[
inf

m∈Mn

{ℓ (s, ŝm )}
]

+ A2K1P (Ωc
n )

which proves (9). Following Remark 9, (9) also holds with Mn replaced by

{
m ∈ Mn s.t. Dm ≤ c(αM, cX

r,ℓ)n ( ln(n) )−1 }

and the convention p1(m) = p̃1
(0)(m).

8.4. Proof of Theorem 1: alternative assumptions

In this section, the statements of Section 3.3.2 are proved.

8.4.1. No uniform lower bound on the noise-level

When σmin = 0 in (An), Lemma 8 below proves that (AQ) also holds with
D0 = L(Bg). Therefore, using (33), (Am,ℓ) holds with the same D0.

Lemma 8. Let X ⊂ R
k, m ∈ Mn, and assume that positive constants cd

r,u, αd, cr,u, Kσ, Jσ

exist such that

(Ardu) maxλ∈Λm {diam(Iλ)} ≤ cd
r,uD−αd

m diam(X),
(Aru) maxλ∈Λm {Leb(Iλ)} ≤ cr,uD−1

m and
(Aσ) σ is piecewise Kσ-Lipschitz with at most Jσ jumps.

Then,

Q(p)
m ≥

Leb(X ) ‖σ‖2
L2(Leb)

2cr,u
−

K2
σ

(
cd
r,u

)2
diam(X )2

D2αd
m

− Jσ ‖σ(X)‖2
∞

2Dm
.

Lemma 8 is proved in the technical appendix [8].

Remark 10. Since ‖σ(X)‖2 > 0 and σ is piecewise Lipschitz, ‖σ‖L2(Leb) > 0.

Thus, the lower bound on Q
(p)
m is positive when Dm is large enough.
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8.4.2. Unbounded data

We still use Lemma 7, but the proof is a little longer and requires the following
Lemma 9 which is proved in the technical appendix [8].

Lemma 9. Assume that X ⊂ R is bounded and the following:

(Al) ∃B, B0, cJ > 0 such that s :X 7→R is B-Lipschitz, piecewise C1 and non-
constant (that is, ±s′ ≥ B0 on some interval J ⊂ X with Leb(J)≥ cJ).

(Arℓ,u) Regularity of the partitions for Leb: ∃cr,ℓ, cr,u > 0 such that

∀m ∈ Mn, ∀λ ∈ Λm, cr,ℓD
−1
m ≤ Leb(Iλ) ≤ cr,uD−1

m .

(Adℓ) Density bounded from below: ∃cmin
X > 0, ∀I ⊂ X , P (X ∈ I) ≥ cmin

X Leb(I).

Then, (Aδ) holds true, that is, for every model Sm of dimension Dm ≥ D0,

‖s − sm‖∞ ≤ cg
∆,m ‖s(X) − sm(X)‖2

with cg
∆,m =

(
cr,u

cr,ℓ

)3/2
B
√

24

B0

√
cmin
X cJ

and D0 := 4cr,uc
−1
J .

Pathwise oracle inequality We prove that (8) holds with probability 1 −
K1n

−γ0 for a general γ0, since it will be required for proving a classical oracle
inequality below. First, (Am,ℓ), (AQ) and (Ag,ǫ) hold since for every m ∈ Mn

P ℓ
m(q) =

√∑
λ∈Λm

m4
q,λ

√
DmQ

(p)
m

≤
(
2A + cgauss

√
qσmax

)2

Q
(p)
m

≤ qLcgauss,σmax,A

Q
(p)
m

Q(p)
m ≥ σ2

min

P gǫ(q) ≤ σmaxcgauss
√

q.

Second, Lemma 9 (with (Al), (Arℓ,u) and (Adℓ)) shows that (Aδ) holds
with cg

∆,m = L(Ug) and D0 = L(Ug).

Classical oracle inequality Let Ωn be the event on which (8) holds true
with γ0 = 6 + αM. As in the bounded case, it suffices to upper bound

E
Λm
[
ℓ
(
s, ŝ

m̂

)
1Ωc

n

]
≤
√

P(Ωc)

√
EΛm

[
ℓ
(
s, ŝ

m̂

)2]
by Cauchy-Schwarz

≤
√

K1n
−γ0/2

√
EΛm

[
2 ‖s‖2

∞ + 2p1(m̂)2
]

≤ L(Ug)n
−γ0/2


1 +

√√√√EΛm

[ ∑

m∈Mn

p1(m)21
m∈M̂n

]
 .
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For every m ∈ M̂n, a bound on E
Λm [(p1(m))2] is required. Starting from (29),

E
Λm
[
p1(m)2

]
=

1

n2

∑

λ∈Λm

(
pλ

p̂λ

)2

E
Λm

[
S4

λ,1

(np̂λ)2

]
+

1

n2

∑

λ6=λ′

[
pλ

p̂λ

pλ′

p̂λ′

m2
2,λm2

2,λ′

]

≤
∑

λ∈Λm

E
Λm

[
S4

λ,1

(np̂λ)2

]
+
∑

λ6=λ′

(
σ2

max + (2A)2
)2

≤ D2
mL(Ug) ≤ n2L(Ug)

since

E
Λm

[
S4

λ,1

(np̂λ)2

]
= E

Λm

[(∑
Xi∈Iλ

(Yi − βλ)
)4

(np̂λ)2

]
=

m4
4,λ

np̂λ
+

6(np̂λ − 1)m4
2,λ

np̂λ

and Dm

∑

λ∈Λm

m4
q,λ ≤

(
aℓq

ξℓ
)2 (

σ2
max + (2A)2

)2
.

Hence, using that Card(Mn) ≤ cMnαM ,

E
Λm
[
ℓ
(
s, ŝ

m̂

)
1Ωc

n

]
≤ L(Ug)n

1+(αM−γ0)/2

which proves (9).

8.5. Proof of Theorem 2

In this proof, (H) denotes the set of assumptions made in Theorem 2. (H)
implies all the assumptions of Theorem 1 except maybe the lower bound in
(Ap); indeed, (Adℓ) and the fact that all the models are “regular” imply (ArXℓ ).
Therefore, we can start from (32) in Remark 8 below Lemma 7 which does not
require the lower bound in (Ap) to hold. The constants γi are absolute because
the data are bounded.

Let m(T0) ∈ Mn be the model of dimension T k
0 closest to R

2k
2α+k n

k
2α+k σ

−2k
2α+k
max .

By definition of T0 and Mn,

2−1R
2

2α+k n
1

2α+k σ
−2

2α+k
max ≤ T0 ≤ 2R

2
2α+k n

1
2α+k σ

−2
2α+k
max .

If n ≥ L(H),c, T k
0 is larger than ( ln(n) )γ1 and smaller than cn ( ln(n) )−1 . Hence,

from the proof of Lemma 7, m(T0) ∈ M̂n and m(T0) has a finite excess loss on
the large probability event of Lemma 7. Moreover,

ℓ
(
s, ŝm(T0)

)
≤ ℓ

(
s, sm(T0)

)
+ LE

[
p̃1

(0)(m(T0))
]

when n ≥ L(H). Since ℓ
(
s, sm(T0)

)
≤ R2T−2α

0 and

E

[
p̃1

(0)(m(T0))
]
≤
(

sup
np≥0

e0
B(n,p)

)
1

n

∑

λ∈Λm(T0)

(
(σr

λ)
2
+
(
σd

λ

)2 )
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≤ 2R2T 1−2α
0

n
+

2σ2
maxDm(T0)

n

(the bound e0
B(n,p) ≤ 2 coming from [38, Lemma 4.1]), an event of probability

at least 1 − K ′
1n

−2 exists on which

ℓ
(
s, ŝ

m̂

)
≤ K2R

2k
2α+k n

−2α
2α+k σ

4α
2α+k
max +

(ln(n) )
γ2

n
,

where K2 may only depend on k and α. Note that the constant K1 has been
replaced by K ′

1 ≥ K1 so that the probability bound 1 − K ′
1n

−2 is nonpositive
when n is too small. Enlarging K ′

1 once more, the term (ln(n) )
γ2 n−1 can be

dropped off by adding 1 to the constant K2. Then, taking expectations as in
the proof of Theorem 1, (10) holds.

When (Aσ) holds, σmax can be replaced by ‖σ‖L2(Leb) in the definition of

m(T0). Then, for every λ ∈ Λm(T0) such that σ does not jump on Iλ,

(σr
λ)

2 ≤ max
Iλ

σ2 ≤
(

Kσ

T0
+

√∫

X

σ2(t) Leb(dt)

)2

≤
(
1 + θ−1

) K2
σ

T 2
0

+ (1 + θ)

∫

X

σ2(t) Leb(dt)

for every θ > 0 (since Leb(X ) = 1). If σ jumps on Iλ (and there exist at most
Jσ such λ), maxIλ

σ2 ≤ σ2
max. Hence, taking θ = T−1

0 ,

E

[
p̃1

(0)(m(T0))
]
≤ 2

n


R2T 1−2α

0 +
∑

λ∈Λm(T0)

(σr
λ)

2




≤ 2R2T 1−2α
0

n
+

2Dm(T0) ‖σ‖
2
L2(Leb)

n
+

L(H)

n

and the end of the proof does not change. In this second case, (An) can also be
removed because all the assumptions stated in the first part of Section 3.3.2 are
satisfied.

8.6. Additional probabilistic tools

Several probabilistic results are needed in addition to the ones of Section 3.4 for
proving Lemma 7. First, Proposition 10 below deals with concentration proper-
ties of p1 and p2. Remark that concentration inequalities for p2 can be obtained
in a general framework [11, Proposition 10]. On the contrary, we do not know
any other non-asymptotic bound on the two-sided deviations of p1.

Proposition 10. Let γ > 0 and Sm be the model of histograms associated with
some partition (Iλ)λ∈Λm of X . Assume that minλ∈Λm {npλ } ≥ Bn and that
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positive constants aℓ, ξℓ exist such that (Am,ℓ) ∀q ≥ 2, P ℓ
m(q) ≤ aℓq

ξℓ . Then, if
Bn ≥ 1, an event of probability at least 1 − Ln−γ exists on which

p̃1(m) ≥ E [ p̃1(m) ] − Laℓ,ξℓ,γ

[
( ln(n) )ξℓ+2

√
Dm

+ e−LBn

]
E [p2(m) ]

p̃1(m) ≤ E [ p̃1(m) ] + Laℓ,ξℓ,γ

[
( ln(n) )

ξℓ+2

√
Dm

+
√

Dme−LBn

]
E [p2(m) ] (34)

|p2(m) − E[p2(m)]| ≤ Laℓ,ξℓ,γ
( ln(n) )

ξℓ+1

√
Dm

E [p2(m) ] .

Moreover, if Bn > 0, an event of probability at least 1−Ln−γ exists on which

p̃1(m) ≥
(

1

2 + (γ+1) ln(n)
Bn

− Laℓ,ξℓ,γ

[
( ln(n) )ξℓ+2

√
Dm

+ e−LBn

])
E [ p̃2(m) ] .

(35)

Proposition 10 is proved in [8]. Second, Lemmas 11 and 12 below provide
concentration inequalities for δ(m), when the data are either bounded or un-
bounded.

Lemma 11. Assume that ‖Y ‖∞ ≤ A < ∞. Recall that for every m ∈ Mn,
δ(m) = (Pn−P ) (γ (sm ) − γ (s ) ). Then for every x ≥ 0, an event of probability
at least 1 − 2e−x exists on which

∀η > 0,
∣∣δ(m)

∣∣ ≤ ηℓ (s, sm ) +

(
4

η
+

8

3

)
A2x

n
. (36)

In particular,

∣∣δ(m)
∣∣ ≤ ℓ (s, sm )√

Dm

+
20

3

A2

Q
(p)
m

E
Λm [p2(m)]√

Dm

x. (37)

Proof of Lemma 11. (36) essentially relies on Bernstein’s inequality and is proved

in details in [11, Proposition 8]. Then, (37) follows from (36) with η = D
−1/2
m

and the definition of Q
(p)
m .

Lemma 12. Assume that positive constants agǫ, ξgǫ, σmax and cg
∆,m exist such

that

(Ag,ǫ) ∀q ≥ 2, P gǫ(q) ≤ agǫq
ξgǫ ,

(Aσmax) ‖σ(X)‖∞ ≤ σmax,
(Aδ) ‖s − sm‖∞ ≤ cg

∆,m ‖s(X) − sm(X)‖2 .

Then, for every x ≥ 0, an event of probability at least 1 − e−x exists on which

∣∣δ(m)
∣∣ ≤

Lagǫ,ξgǫ,cg
∆,m

xξgǫ+1/2

√
Dm

[
ℓ (s, sm ) +

σ2
max

Q
(p)
m

E [p2(m) ]

]
. (38)



S. Arlot/Resampling penalization 51

Moreover, if (Ag,ǫ) and (Aσmax) holds true, but (Aδ) is replaced by (Asmax)
‖s‖∞ ≤ A, then, for every x ≥ 0, an event of probability at least 1 − e−x exists
on which ∣∣δ(m)

∣∣ ≤ Lagǫ,ξgǫ,A,σmaxn
−1/2xξgǫ+1/2. (39)

Lemma 12 is proved in Section 8.10. Third, Lemma 13 ensures that empirical
frequencies np̂λ are not too far from the expected ones npλ.

Lemma 13. Let (pλ)λ∈Λm be non-negative real numbers of sum 1, (np̂λ)λ∈Λm

be a multinomial vector of parameters (n; (pλ)λ∈Λm) and γ > 0. Assume that
Card(Λm) ≤ n and minλ∈Λm {npλ } ≥ Bn > 0. Then, an event of probability at
least 1 − Ln−γ exists on which

min
λ∈Λm

{np̂λ } ≥ minλ∈Λm {npλ }
2

− 2(γ + 1) ln(n). (40)

Proof of Lemma 13. First, for every λ ∈ Λm, Bernstein’s inequality [55, Propo-
sition 2.9] applied to np̂λ shows that an event of probability at least 1−2n−(γ+1)

exists on which

np̂λ ≥ npλ −
√

2npλ(γ + 1) ln(n) − (γ + 1) ln(n)

3
.

Since
√

2npλ(γ + 1) ln(n) ≤ (npλ)/2 + (γ + 1) ln(n), (40) holds on an event of
probability at least 1 − 2 Card(Λm)n−(γ+1) ≥ 1 − 2n−γ.

Finally, Lemmas 14 and 15 below are useful to compare the expectations of
p1 and p2 on the one hand, and the expectations of pen and penid for possibly
large models on the other hand.

Lemma 14 (Lemma 7 of [9]). If minλ∈Λm {npλ } ≥ B ≥ 1,

(
1 − e−B

)
E [ p̃2(m) ] ≤ E

[
p̃1

(0)(m)
]
≤ E [ p̃1(m) ] ≤

(
1 + sup

np≥B
δn,p

)
E [ p̃2(m) ]

where δn,p is the same as in (15). A similar result holds with p2 instead of p̃2

inside the expectation.

Lemma 15. Assume that W is a weight vector among Efr, Rad, Poi, Rho and
Loo. Let Sm be the model of histograms associated with the partition (Iλ)λ∈Λm ,
p2(m) = Pn (γ(sm) − γ(ŝm) ) and pen(m) be defined by (7) with C = CW (see
Table 2). Then, if minλ∈Λm {np̂λ } ≥ 3,

E
Λm [pen(m) ] ≥ 5

4
E

Λm [p2(m) ] . (41)

If minλ∈Λm {np̂λ } ≥ T for some positive T , (41) still holds for weight vectors
among:

• Efr(Mn) when Mnn−1 ≥ −T−1 ln(3/4 − 2/T )
• Rad(p) when T ≥ p−1 ln[8/(3(1 − p))]
• Poi(µ) when T ≥ 3 and µT ≥ 1.61
• Rho(qn) when T ≥ nq−1

n ln[(4n)/(3(n − qn))].

Lemma 15 is proved in Section 8.9.
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8.7. Proof of Lemma 7

We first give the complete proof in the bounded case. Then, we will explain how
it can be extended to the unbounded case.

8.7.1. Bounded case

For every m ∈ Mn, define

pen′
id(m) := p1(m) + p2(m) − δ(m) = penid(m) − (P − Pn)γ(s).

By definition of pen′
id and m̂, for every m ∈ M̂n,

ℓ
(
s, ŝ

m̂

)
− (pen′

id(m̂) − pen(m̂) ) ≤ ℓ (s, ŝm ) + (pen(m) − pen′
id(m) ) . (42)

The proof of Lemma 7 is divided into three main parts:

1. With a large probability, pen− pen′
id is negligible in front of ℓ (s, ŝm ) uni-

formly over models Sm of “intermediate” dimension, that is ( ln(n) )γ1 ≤
Dm ≤ cn ( ln(n) )

−1
for some constants c, γ1 > 0. This relies on the concen-

tration inequalities and comparisons of expectations stated in Sections 3.4
and 8.6.

2. The model m̂ selected by Resampling Penalization has an “intermediate”
dimension. In order to prove this, a lower bound on

crit′′(m) := Pnγ ( ŝm ) + pen(m) − Pnγ (s )

is proved for large and small models, and this bound is showed to be larger
than crit′′(m0), where Sm0 is the model of intermediate dimension belong-
ing to the collection (Sm )m∈Mn

according to assumption (P2). Lemma 15
is crucial at this point.

3. The oracle model (that is the one minimizing ℓ (s, ŝm )) is also of “inter-
mediate” dimension, which is proven similarly to point 2 with crit′′(m)
replaced by ℓ (s, ŝm ).

For every m ∈ Mn, define

An(m) := min
λ∈Λm

{np̂λ } and Bn(m) = min
λ∈Λm

{npλ } .

Let Ωn,γ0 be the event on which the concentration inequalities of Propositions 3
and 10 and Lemmas 11 and 13 hold for every m ∈ Mn with γ = αM + γ0 (or
similarly x = (αM +γ0) ln(n) in Lemma 11). Using assumption (P1), the union
bound gives P (Ωn,γ0 ) ≥ 1 − LcMn−γ0 .

1. pen is close to pen′
id for intermediate models Let c, γ1 > 0 be two

constants to be chosen later, and consider M̃n, the set of m ∈ Mn such that
( ln(n) )

γ1 ≤ Dm ≤ cn ( ln(n) )
−1

. According to (ArXℓ ), for every m ∈ M̃n,
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Bn(m) ≥ cX
r,ℓc

−1 ln(n) so that (40) ensures that An(m) ≥ ln(n) on Ωn,γ0 if

c ≤ LcX
r,ℓ

,αM,γ0
. In particular, M̃n ⊂ M̂n on Ωn,γ0 .

Assume also that n ≥ exp(D0), so that Dm ≥ D0 for every m ∈ M̃n if
γ1 ≥ 1. Now, using both bounds on Dm,

max {|p̃1(m) − E [ p̃1(m) ]| , |p2(m) − E [p2(m) ]| ,
∣∣δ(m)

∣∣ ,
∣∣pen(m) − E

Λm [pen(m) ]
∣∣}

is smaller than L(Bg) ( ln(n) )
−1

( ℓ (s, sm ) + E [p2(m) ] ) on Ωn,γ0 provided that
c ≤ LcX

r,ℓ
,γ (to ensure that Bn(m) is large enough) and γ1 ≥ 2ξℓ + 6. Fix now

c = LcX
r,ℓ

,γ > 0 and γ1 = Lξℓ
satisfying these conditions. Using Proposition 2,

Lemma 14 and the lower bound on Bn(m), we have for every m ∈ M̃n

−L(Bg)

( ln(n) )
1/4

ℓ (s, ŝm ) ≤ (pen− pen′
id)(m) ≤

[
2(η − 1) +

L(Bg)

( ln(n) )
1/4

]
ℓ (s, ŝm ) .

as soon as n ≥ L(Bg) (this restriction is necessary because the bounds are in
terms of ℓ (s, ŝm ) instead of ℓ (s, sm )+ E [p2 ]). Combined with (42), this gives:
if n ≥ L(Bg)

ℓ
(
s, ŝ

m̂

)
1

m̂∈M̃n
≤
[

2η − 1 +
L(Bg)

( ln(n) )
1/4

]
inf

m∈M̃n

{ℓ (s, ŝm )} . (43)

2. m̂ has an “intermediate” dimension The penalized empirical criterion
crit(m) = Pnγ ( ŝm ) + pen(m) has the same minimizers as

crit′′(m) = ℓ (s, ŝm )+pen(m)−pen′
id(m) = ℓ (s, sm )+pen(m)− p2(m)+ δ(m)

over M̂n.
According to (P2), there exists m0 ∈ Mn such that

√
n ≤ Dm0 ≤ crich

√
n.

If n ≥ L(Bg), m0 ∈ M̃n so that (using (Ap) and the same inequalities as in the
first part of the proof)

crit′′(m0) ≤ ℓ (s, sm0 ) +
∣∣δ(m0)

∣∣+ pen(m0) ≤ L(Bg)

(
n−β2/2 + n−1/2

)
. (44)

Therefore, it remains to provide lower bounds on crit′′(m) for m /∈ M̃n.
On the one hand, on Ωn,γ0 if Dm < ( ln(n) )γ1 ,

crit′′(m) ≥ ℓ (s, sm ) −
∣∣δ(m)

∣∣− p2(m)

≥ C−
b ( ln(n) )−γ1β1 − LA,γ0

√
ln(n)

n
− L(Bg)

( ln(n) )
1+ξℓ+γ1

n
. (45)

On the other hand, if Dm > cn ( ln(n) )
−1

and m ∈ M̂n, by Lemma 15,
E

Λm [pen(m) − p2(m) ] ≥ E
Λm [p2(m) ] /4. Therefore, we have pen(m)−p2(m) ≥

(1 − L(Bg)n
−1/4)E [p2(m) ] on Ωn,γ0 , so that

crit′′(m) ≥ pen(m) − p2(m) −
∣∣δ(m)

∣∣ ≥ L(Bg) ( ln(n) )
−1

(46)
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when n ≥ L(Bg). Comparing (44), (45) and (46), it follows that any minimizer

m̂ of crit over M̂n belongs to M̃n on Ωn,γ0 , provided that n ≥ L(Bg).

3. the oracle has an “intermediate” dimension It remains to prove that
the infimum can be extended to Mn on the right-hand side of (43), with the
convention ℓ (s, ŝm ) = +∞ if An(m) = 0. Using similar arguments as above
(as well as the definition of Ωn,γ0 , in particular (35) for large models), we have

ℓ (s, ŝm0 ) ≤ L(Bg)

(
n−β2/2 + n−1/2

)
on Ωn,γ0 . Moreover, for every m /∈ M̃n,

either Dm < ( ln(n) )
γ1 and ℓ (s, ŝm ) ≥ ℓ (s, sm ) ≥ L(Bg) ( ln(n) )

−γ1β1 or Dm >

cn ( ln(n) )
−1

and ℓ (s, ŝm ) ≥ p1(m) ≥ L(Bg) ( ln(n) )
−2

on Ωn,γ0 by (35) as soon

as n ≥ L(Bg). Hence, if n ≥ L(Bg), m /∈ M̃n cannot contribute to the infimum
in the right-hand side of (43). This concludes the proof of (31) in the bounded
case.

8.7.2. Unbounded case

The proof of the bounded case has to be slightly modified. In the definition
of Ωn,γ0 , the concentration inequalities of Lemma 11 are replaced by those of
Lemma 12. Then, γ1 has to be chosen such that γ1 ≥ 2ξgǫ + 3. The rest of the
proof of (43) is unchanged.

In order to prove that m̂ ∈ M̃n, (45) has to be slightly changed because of
the use of (39) instead of (36) to bound δ(m). The final part of the proof is
then modified similarly.

8.7.3. Proof of Remark 8

We now prove the assertion made in Remark 8 below Lemma 7. Starting from
(43), we can prove in the same way that D

m̂
≤ cn ( ln(n) )

−1
, but D

m̂
<

( ln(n) )
γ1 cannot be excluded.

Let m ∈ M̂n such that Dm < ( ln(n) )
γ1 . Assume first that

ℓ (s, sm ) ≥ 2η − 1 + εn

1 − ( ln(n) )
−1 inf

m∈M̃n

{ℓ (s, ŝm )} +
(ln(n) )

ξℓ+γ1+2

(
1 − ( ln(n) )

−1 )
n

, (47)

where εn ≤ L(Bg) ( ln(n) )−1/4 comes from (8). Then, on Ωn,γ0 , using (36) with

η = (ln(n) )−1 and (47),

crit′′(m) ≥ ℓ (s, sm ) −
∣∣δ(m)

∣∣− p2(m)

≥ (2η − 1 + εn) inf
m∈M̃n

{ℓ (s, ŝm )} +
(ln(n) )

ξℓ+γ1+1 (
ln(n) − L(Bg)

)

n

≥ (2η − 1 + εn) inf
m∈M̃n

{ℓ (s, ŝm )} +
(ln(n) )ξℓ+γ1+2

2n
, (48)
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provided that n ≥ L(Bg). In addition, let m0 ∈ arg min
m′∈M̃n

{ℓ (s, ŝm′ )}.
Since m0 ∈ M̃n, on Ωn,γ0 ,

crit′′(m0) = ℓ (s, ŝm0 ) + pen(m0) − pen′
id(m0) ≤ (2η − 1 + εn ) ℓ (s, ŝm0 ) ,

and this upper bound is smaller than the lower bound in (48).
Hence, on Ωn,γ0 , if D

m̂
< ( ln(n) )

γ1 (47) cannot be satisfied with m = m̂.

Moreover, by (34), for every m ∈ Mn such that Dm ≤ cn ( ln(n) )
−1

p̃1(m) ≤ L(Bg) ( ln(n) )
ξℓ+2 Dm

n

on Ωn,γ0 . Therefore,

ℓ
(
s, ŝ

m̂

)
= ℓ

(
s, s

m̂

)
+ p̃1(m̂)

≤ 2η − 1 + εn

1 − ( ln(n) )
−1 inf

m∈M̃n

{ ℓ (s, ŝm )} + L(Bg)
( ln(n) )

ξℓ+γ1+2

n

≤
(
2η − 1 + (ln(n) )

−1/5 )
inf

m∈M̃n

{ ℓ (s, ŝm )} +
(ln(n) )

ξℓ+γ1+3

n
(49)

assuming that n ≥ L(Bg).
When D

m̂
≥ ( ln(n) )

γ1 , (31) holds on Ωn,γ0 which implies (49). Hence, (49)
holds on Ωn,γ0 .

Finally, with the same arguments as in Section 8.7.1, the infimum on the
right-hand side of (49) can be extended to the set of m ∈ Mn such that Dm ≥
( ln(n) )γ1 , with the convention ℓ (s, ŝm ) = +∞ if An(m) = 0. Enlarging the
constant K1 to remove the condition n ≥ L(Bg), (32) is proved to hold with
γ2 = γ1 + ξℓ + 3. The proof is quite similar in the unbounded case.

8.8. Expectations

Proof of Proposition 1. On the one hand, (11) and (15) are consequences of (29)
and (30); note that (15) holds whatever the convention taken for p1 and p2 in
Section 8.1.

On the other hand, (12) follows from Lemma 16 below which is slighlty more
geenral since W is allowed to depend on (1Xi∈Iλ

)(i,λ).

Lemma 16. Let Sm be the model of histograms adapted to some partition
(Iλ )λ∈Λm

of X , W ∈ [0;∞)n be a random vector such that for every λ ∈ Λm,
(Wi)Xi∈Iλ

is exchangeable and independent of (Xi, Yi)Xi∈Iλ
. Let pen(m) be de-

fined by (7) and assume minλ∈Λm {np̂λ } ≥ 1. Then,

pen(m) =
C

n

∑

λ∈Λm

(R1,W (n, p̂λ) + R2,W (n, p̂λ) )
np̂λSλ,2 − S2

λ,1

np̂λ(np̂λ − 1)
1

np̂λ≥2
, (50)
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where R1,W and R2,W are defined by (13) and (14), that is

R1,W (n, p̂λ) := E

[
(W1 − Ŵλ)2

Ŵ 2
λ

∣∣∣∣∣ X1 ∈ Iλ, Ŵλ > 0

]

and R2,W (n, p̂λ) := E

[
(W1 − Ŵλ)2

Ŵλ

∣∣∣∣∣ X1 ∈ Iλ

]
.

Proof of Lemma 16. First, as penid(m) was split into p1(m) and p2(m) (plus a
centered term), the resampling penalty (without the constant C) is split into
two terms:

p̂1(m) =
∑

λ∈Λm

EW

[
p̂λ

(
β̂W

λ − β̂λ

)2
∣∣∣∣ Ŵλ > 0

]
(51)

p̂2(m) =
∑

λ∈Λm

EW

[
p̂W

λ

(
β̂W

λ − β̂λ

)2
]

. (52)

A key quantity to compute is the following: for every λ ∈ Λm and Ŵλ > 0,

EW

[
p̂λ

(
β̂W

λ − β̂λ

)2
∣∣∣∣ Ŵλ

]

= EW


 p̂λ

(
1

np̂λ

∑

Xi∈Iλ

(Yi − βλ)

(
1 − Wi

Ŵλ

))2
∣∣∣∣∣∣

Ŵλ




=
1

n2p̂λ

∑

Xi∈Iλ

(Yi − βλ)2 EW

[(
1 − Wi

Ŵλ

)2
∣∣∣∣∣ Ŵλ

]
(53)

+
1

n2p̂λ

∑

i6=j

Xi∈Iλ,Xj∈Iλ

(Yi − βλ)(Yj − βλ)EW

[(
1 − Wi

Ŵλ

)(
1 − Wj

Ŵλ

) ∣∣∣∣ Ŵλ

]
.

Since the weights are exchangeable, (Wi)Xi∈Iλ
is also exchangeable conditionally

on Ŵλ and (Xi)1≤i≤n. Hence, the “variance” term

RV (n, np̂λ, Ŵλ,D(W )) := EW

[(
Wi − Ŵλ

)2 ∣∣∣ Ŵλ

]

does not depend on i (provided that Xi ∈ Iλ) and the “covariance” term

RC(n, np̂λ, Ŵλ,D(W )) := EW

[(
Wi − Ŵλ

)(
Wj − Ŵλ

) ∣∣∣ Ŵλ

]

does not depend on (i, j) (provided that i 6= j and Xi, Xj ∈ Iλ). Moreover,

0 = EW



(
∑

Xi∈Iλ

(
Wi − Ŵλ

)
)2
∣∣∣∣∣∣

Ŵλ



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= np̂λRV (n, np̂λ, Ŵλ,D(W )) + np̂λ (np̂λ − 1)RC(n, np̂λ, Ŵλ,D(W ))

so that if np̂λ ≥ 2,

RC(n, np̂λ, Ŵλ, W ) =
−1

np̂λ − 1
RV (n, np̂λ, Ŵλ,D(W )) (54)

and RV (n, 1, Ŵλ,D(W )) = 0. Then, (53) and (54) imply

EW

[
p̂λ

(
β̂W

λ − β̂λ

)2
∣∣∣∣ Ŵλ

]
=

RV (n, np̂λ, Ŵλ,D(W ))

Ŵλn2p̂λ

1
np̂λ≥2

(55)

×
[

np̂λ

np̂λ − 1
Sλ,2 −

1

np̂λ − 1
S2

λ,1

]

Finally, (50) follows from the combination of (51) and (52) with (55).

8.9. Resampling constants

Some results relative to the exchangeable weights introduced in Section 2.2 are
proved in this subsection. First, Lemma 17 below provides explicit formulas for
R1,W (n, p̂λ) and R2,W (n, p̂λ) which appear in the explicit formula (50) for the
resampling penalty.

Lemma 17. Let n ∈ N and p̂λ ∈ (0, 1] such that np̂λ ∈ {1, . . . , n}. Then, for
every M ∈ N\{0}, p ∈ (0; 1], µ > 0 and q ∈ {1, . . . , n},

R1,Efr(M) =
n

M
e+

B(M,p̂λ)

(
1 − 1

np̂λ

)
R2,Efr(M) =

n

M

(
1 − 1

np̂λ

)
(56)

R1,Rad(p) =
1

p
e+

B(np̂λ,p)
− 1 R2,Rad(p) =

1

p
− 1 (57)

R1,Poi(µ) =
1

µ
e+

P(np̂λµ)

(
1 − 1

np̂λ

)
R2,Poi(µ) =

1

µ

(
1 − 1

np̂λ

)
(58)

R1,Rho(q) =
n

q
e+

H(n,np̂λ,q)
− 1 R2,Rho(q) =

n

q
− 1 (59)

R1,Loo =
np̂λ

n(np̂λ − 1)
1

np̂λ≥2
R2,Loo =

1

n − 1

where B, P and H denote respectively the Binomial, Poisson and Hypergeometric
distributions and e+

µ = E [Z ] E
[
Z−1

∣∣ Z > 0
]

with Z ∼ µ.

Proof of Lemma 17. Since W is independent of the data, the observations with
Xi ∈ Iλ can be assumed to be the np̂λ first ones: (X1, Y1), . . . , (Xnp̂λ

, Y
np̂λ

). The

random vector (Wi)1≤i≤np̂λ
is then exchangeable (since W is exchangeable).

Hence, by definition of Ŵλ = (np̂λ)−1
∑np̂λ

i=1 Wi,

∀i ∈ {1, . . . , np̂λ}, EW

[
Wi | Ŵλ

]
= Ŵλ. (60)
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Then, the quantity

RV (n, np̂λ, Ŵλ,D(W )) = RV (Ŵλ) = E

[(
Wi − Ŵλ

)2 ∣∣∣ Ŵλ

]

appearing both in R1,W and R2,W is the variance of the weight Wi conditionally

on Ŵλ.

Exchangeable subsampling weights A subsampling weight is defined as
any resampling weight W such that Wi ∈ {0, κ} a.s. for every i. Such weights
can be written Wi = κ1i∈I for some random I ⊂ {1, . . . , n}. Rad and Rho
are the two main examples of such weights and they are both exchangeable.
This kind of weights are called “bootstrap without replacement weights” in [66,
Example 3.6.14]. First, when W is an exchangeable subsampling weight, (60)
implies

Ŵλ = EW

[
Wi | Ŵλ

]
= κP

(
Wi = κ | Ŵλ

)

so that

D
(

Wi | Ŵλ

)
= κB(κ−1Ŵλ) and RV (Ŵλ) = Ŵλ(κ − Ŵλ).

Then, this result is applied to Rad with κ = p−1 and D(Ŵλ) = (np̂λp)−1 ×
B(np̂λ, p) which proves (57). In the Rho case, κ = (n/q) and D(Ŵλ) = (qp̂λ)−1 ×
H (n, np̂λ, q ) so that (59) follows. The Loo is a particular case of Rho (with
q = n − 1) and e+

H(n,np̂λ,n−1)
can be computed with (22) in Lemma 5.

Efron Efron weights can also be written

Wi =
n

M
Card {1 ≤ j ≤ M s.t. Uj = i} (61)

with (Uj)1≤j≤M a sequence of independent random variables with uniform dis-
tribution over {1, . . . , n}. Therefore,

D(Ŵλ) = (Mp̂λ)−1B(M, p̂λ) and D
(

Wi | Ŵλ

)
=

n

M
B
(

Mp̂λŴλ,
1

np̂λ

)

so that

RV (Ŵλ) =
n

M
Ŵλ

(
1 − 1

np̂λ

)

and (56) follows.

Poisson One can check that the weights defined by (61) with M = Nn ∼
P(µn) independent of the (Uj)j≥1, are actually Poisson (µ) weights; this is
the classical poissonization trick [66, Chapter 3.5]. Moreover, conditionally on

Ŵλ and Nn = M , the same reasoning as for Efron(M) (with a multiplicative
constant µ−1 instead of n/M) leads to (58).
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Proof of Proposition 2. From (50), (16) holds with

δ
(penW)

n,p̂λ

= CW (R1,W (n, p̂λ) + R2,W (n, p̂λ) ) − 2.

Combining Lemma 17 with Lemma 4 (for Efr and Rad), Lemma 5 (for Rho and
Loo) and Lemma 6 (for Poi), the following non-asymptotic bounds are obtained:

1. Efron (Mn): let κ1 = 5.1 and κ2 = 3.2, then

(κ2 − 1) ∧
(

κ1

(Bnp̂λ )
1/4

)
≥ δ

(penEfr(Mn))

n,p̂λ

≥ −2

np̂λ
− e−Bnp̂λ . (62)

2. Rademacher (p):

2

1 − p

[
(κ2 − 1) ∧

(
κ1

(npp̂λ )1/4

)]
≥ δ

(penRad(p))

n,p̂λ

≥ −2e−pnp̂λ

1 − p
(63)

(
1 + 3 × 10−4

)
∧
(

κ1 × 21/4

(np̂λ )
1/4

)
≥ δ

(penRad(1/2))

n,p̂λ

≥ −1
np̂λ≤2

. (64)

3. Poisson (µ):

1 ∧ 2
(
1 + e−3

)

(µnp̂λ − 2)+
≥ δ

(penPoi(µ))

n,p̂λ

≥ −2

np̂λ
−
(

e−µnp̂λ ∧ 1
µnp̂λ<1.61

)
. (65)

4. Random hold-out (qn): on the one hand,

δ
(penRho(qn))

n,p̂λ

=
n

n − q

(
e+

H(n,np̂λ,qn)
− 1

)
≥ e−np̂λB−

1 − B+
,

where the lower bounds assume that 0 < B− ≤ qnn−1 ≤ B+ < ∞. On the
other hand, under the same condition

δ
(penRho(qn))

n,p̂λ

≤ L

B−(1 − B+)

√
ln(np̂λ)

np̂λ

provided that np̂λ ≥ LB−,B+ . When qn = ⌊n/2⌋, this upper bound is
combined with (21).

5. Leave-one-out:
1

np̂λ≥2

np̂λ − 1
≥ δ

(penLoo)

n,p̂λ

≥ −1
np̂λ=1

. (66)

Proof of Lemma 15. Lemma 15 is a byproduct of the proof of Proposition 2
(combined with Lemma 14).
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8.10. Concentration inequalities

In this subsection, concentration inequalities are proved for the resampling
penalty (Proposition 3) and for δ(m) with unbounded data (Lemma 12).

8.10.1. Proof of Proposition 3

According to (50), pen(m) is a U-statistics of order 2 conditionally on (1Xi∈Iλ
)(i,λ).

Then, [9, Lemma 5] with

aλ =
R1,W (n, p̂λ) + R2,W (n, p̂λ)

n(np̂λ − 1)
bλ =

− (R1,W (n, p̂λ) + R2,W (n, p̂λ) )

n2p̂λ(np̂λ − 1)
,

implies that for every q ≥ 2

∥∥pen(m) − E
Λm [pen(m)]

∥∥(Λm)

q
≤ Laℓ,ξℓ

D−1/2
m A−1/2

n

× sup
np≥An

{R1,W (n, p) + R2,W (n, p)} qξℓ+1
E [p2(m) ] .

Conditional concentration inequalities follow from the classical link between
moments and concentration [6, Lemma 8.10], with a probability bound 1 −
n−γ . Since 1 − n−γ is deterministic, this implies unconditional concentration
inequalities.

The second statement follows from the proof of Proposition 2 where non-
asymptotic upper bounds on

2 + δ
(penW)

n,p̂λ

= CW × (R1,W (n, p̂λ) + R2,W (n, p̂λ) )

can be found.

8.10.2. Proof of Lemma 12

From [6, Lemma 8.18] which is stated and proved in [8],

∥∥δ(m)
∥∥

q
≤ 2

√
κ
√

q√
n

‖Fm − E[Fm]‖q

with Fm := (Y − sm(X))2 − (Y − s(X))2

= (sm(X) − s(X))2 − 2ǫσ(X)(sm(X) − s(X)).

Note that ǫσ(X)(sm(X) − s(X)) is centered conditionally on X ∈ Iλ for every
λ ∈ Λm. Hence,

∥∥δ(m)
∥∥

q
≤ 2

√
κ
√

q√
n

(
‖s − sm‖2

∞ + 2σmax ‖s − sm‖∞ ‖ǫ‖q

)
. (67)

Using now assumptions (Ag,ǫ) and (Aδ), for every q ≥ 2,

∥∥δ(m)
∥∥

q
≤ 2

√
κ
√

q
(
(cg

∆,m)2ℓ (s, sm ) + 2cg
∆,m

√
ℓ (s, sm )P gǫ(q)σmax

) 1√
n



S. Arlot/Resampling penalization 61

≤ Lcg
∆,m

√
qD−1/2

m ℓ (s, sm ) + Lagǫ,ξgǫ,cg
∆,m

qξgǫ+1/2 σ2
max

√
Dm

n
.

Taking θ = D
−1/2
m , (38) follows from the classical link between moments and

concentration inequalities [6, Lemma 8.10]. For the second statement, start back
from (67) and use that ‖s − sm‖∞ ≤ 2A.

8.11. Expectations of inverses

This subsection is devoted to the proofs of the lemmas of Section 3.4.3. Note
that [9, Section 2 of the Technical appendix] explains how to generalize (18) to a
wide class of random variables. Two useful results can be found in [9, Technical
appendix]: first, the general lower bound

e+
Z ≥ P(Z > 0), (68)

comes from Jensen inequality. Second, defining

e0
D(Z) := E [Z ] E

[
Z−11Z>0

]
= e+

ZP(Z > 0), (69)

the following upper bound holds as soon as P(cZ > Z > 0) = 0:

∀α > 0, e0
Z = E

[
Z−11αE[Z]>Z>0

]
E[Z] + E

[
Z−11Z≥αE[Z]

]
E[Z]

≤ P (αE[Z] > Z > 0) E[Z]c−1
Z + α−1. (70)

8.11.1. Binomial case (proof of (19) in Lemma 4)

When n ≥ 9, the upper bound follows from (69) together with Lemma 4.1
of [38] (showing that e0

B(n,p) ≤ 2n/(n + 1)). When n ≤ 8, e+
B(n,1/2) ≤ 1.21

(see for instance [6, Section 8.7]). For the lower bound, the crucial point is
that Z ∼ B

(
n, 1

2

)
is nonnegative and symmetric, that is, D(Z) = D(n − Z).

Using only this property and defining p0 = P(Z = 0) = P(Z = n) = 2−n, we
have

e+
Z =

P (Z = n | Z > 0)

2
+ E

[
1

Z

∣∣∣∣ 0 < Z < 2

]
n

2

P(0 < Z < n)

P(Z > 0)

=
p0

2(1 − p0)
+

1 − 2p0

1 − p0

n

2
E

[
1

2

(
1

Z
+

1

n − Z

)∣∣∣∣ 0 < Z < n

]

=
p0

2(1 − p0)
+

1 − 2p0

1 − p0

(
1 +

n

2
E

[ (
Z − n

2

)2

Z(n − Z)

∣∣∣∣∣ 0 < Z < n

])
. (71)

Since Z is binomial with parameters (n, 1/2)

n(1 − 2p0)

2
E

[ (
Z − n

2

)2

Z(n − Z)

∣∣∣∣∣ 0 < Z < n

]
≥ P (Z = 1 or Z = n − 1)

(n − 2)2

4(n − 1)

if n ≥ 3. Putting this into (71), we obtain:

e+

B(n, 1
2 )

≥ 1

1 − 2−n

(
2−n−1 + 1 − 21−n +

n(n − 2)2

2n+1(n − 1)

)
≥ 1.
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8.11.2. Hypergeometric case (proof of Lemma 5)

Let Z ∼ H(n, r, q). It has an expectation E [Z] = (qr)/n.

General lower bound It follows from (68),

P (Z = 0) ≤
(
1 − r

n

)q

≤ exp
(
−qr

n

)

and the fact that if r ≥ n − q + 1, P(Z > 0) = 1.

A general upper bound According to (69) and the lower bound for P(Z > 0)
above, an upper bound on e+

H(n,r,q) can be derived from an upper bound on

e0
H(n,r,q). Recall the following concentration result by Hush and Scovel [41]: for

every x ≥ 2,

P (E(Z) − Z > x)

< exp

(
−2(x − 1)2

[(
1

r + 1
+

1

n − r + 1

)
∨
(

1

q + 1
+

1

n − q + 1

)])
.

Combined with the above concentration inequality, (70) with cZ = 1, E[Z] =
qrn−1 and α = 1 − nβ

q for any q
n > β ≥ 2

r yields

e0
H(n,r,q) ≤

qr

n
exp

[
−2(βr − 1)2

r + 1

]
+

1

1 − nβ
q

.

Therefore,

e+
H(n,r,q) ≤

inf q
n >β≥ 2

r

{
qr
n exp

[
− 2(βr−1)2

r+1

]
+ 1

1−nβ
q

}

1 − exp
(
− qr

n

) (72)

holds for every n ≥ r, q ≥ 1.

End of the proof of (20) With the additional conditions on n, r and q, β

can be taken equal to
1+

√
3
4 ln(r)(r+1)

r in (72) so that

e0
H(n,r,q) ≤

1

2
√

r
+

1

1 − n
q

(
1+

√
3
4 ln(r)(r+1)

r

) ≤ 1 +
n

q
K(ǫ)

√
ln(r)

r

with K(ǫ) =
1

2
√

ln(2)
+

1

ǫ2

(√
ln(3)

3
+

3

4

)
.

Using (69) and the upper bound on P (Z = 0), (20) follows since r ≥ 2 and

κ3(ǫ) = 0.9 + 1.4 × ǫ−2 ≥ 1.02 × K(ǫ) + 0.03.
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“Rho” case Assume now that q = ⌊n
2 ⌋ so that n

q = 2 + 1
⌊n

2 ⌋ ≤ 3 and tends

to 2 when n tends to infinity.
For r ≥ 6, β = 2

r in (72) yields

e+
H(n,6,q) ≤ 9.68 e+

H(n,7,q) ≤ 7.61 e+
H(n,8,q) ≤ 7.46 e+

H(n,9,q) ≤ 7.32

For r ≥ 10, β = 1
4 + 1

r in (72) yields

sup
r≥10

e+
H(n,r,q) ≤ 7.49 sup

r≥26
e+
H(n,r,q) ≤ 3.

Small values of r must be treated appart. For r = 1, it is easy to compute
e+
H(n,1,q) = qn−1 ≤ 1. When n = r, we have e+

H(n,n,q) = 1. Otherwise, using the

fact that for every n ≥ r + 1, n!
(n−r)! ≥

(r+1)!
(r+1)r nr,

e0
H(n,r,q) ≤

r

R

(r + 1)r

(r + 1)!Rr

(
r∑

k=1

(
r

k

)
(R − 1)r−k

k

)

with R = n
q ∈ [1; +∞). For r = 2, this upper bound is lower than 1.6. If n

q ≤ 3

(which holds in the “Rho” case),

e+
H(n,3,q) ≤ 4.67 e+

H(n,4,q) ≤ 8.15 e+
H(n,5,q) ≤ 14.29.

“Loo” case Assume now q = n−1. On the one hand, if r = 1, the conditioning
makes Z deterministic and equal to 1 so that

e+
H(n,1,n−1) = E[Z] = 1 − 1

n
.

On the other hand, if r ≥ 2, Z > 0 holds a.s. since it only take two values:

P (Z = r − 1) =
r

n
and P (Z = r ) =

n − r

n
.

Hence,

e+
H(n,r,n−1) =

(n − 1)r

n

(
r

(r − 1)n
+

n − r

nr

)
= 1 +

1

n

(
(n − 1)r

n(r − 1)
− 1

)
.

The lower bound is straightforward since n ≥ r.

“Lpo” case As noticed in Lemma 17,

∀r ≥ p + 1, e+
H(n,r,n−p) ≥ 1.

Moreover, when r ≥ p + 1 the support of H(n, r, n − p) is {r − p, . . . , r} and

e+
H(n,r,n−p) =

(n − p)r

n

r∑

j=r−p

(
r
j

)(
n−r

n−p−j

)

j
(

n
n−p

)
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=
(n − p)r

n

p∑

k=(p+r−n)∨0

(
r
k

)(
n−r
p−k

)

(r − k)
(

n
p

) .

More precisely, the k-th term of the sum is equal to

(n − p)r

n

(
r
k

)(
n−r
p−k

)

(r − k)
(
n
p

) ≤
( r

n

)k (
1 − r

n

)p−k
(

p

k

)
r

r − p

np

n · · · (n − p + 1)
,

so that

e+
H(n,r,n−p) ≤

rnp

(r − p)n · · · (n − p + 1)
.

The result follows.

Remark 11 (Asymptotics). If for some α > 0, qkr
1/2−α
k n−1

k −−−−−→
k→+∞

+∞ and

nk ≥ rk → +∞, then e+
H(nk,rk,qk) → 1 when k → ∞. The upper bound is

obtained by taking

β =
1 +

√
(rk + 1) ln

(
qkrk

nk

)

rk

in (72), which is possible for k sufficiently large. The lower bound is straight-
forward.

8.11.3. Poisson case (proof of Lemma 6)

Let Z ∼ P(µ) and define g : [0;∞) 7→ R by g(0) = 0 and for every µ > 0

g(µ) := e+
P(µ) = µE

[
Z−1

∣∣ Z > 0
]

=
µe−µ

1 − e−µ

+∞∑

k=1

µk

k × k!
=

µ

eµ − 1

∫ µ

0

ex − 1

x
dx.

The function g is continuous at 0 and has a first derivative g′(0) = 1. For every
x ≥ 0, define

h(x) =
ex − 1

x
H(x) =

∫ x

0

h(t)dt a(x) =
h′(x)

h(x)
= 1 − ex − 1 − x

x(ex − 1)
.

where the last equality holds if x > 0 and a(0) = 1/2. Then, g(u) = H(u)/h(u)
satisfies the following ordinary differential equation:

g(0) = 0 ∀u ≥ 0, g′(u) = 1 − a(u)g(u).

Since

∀u ≥ 0,
1

2
≤ a(u) ≤ 1 and lim

u→+∞
a(u) = 1,

g satisfies a differential inequation

1 − g

2
≤ g′ ≤ 1 − g g(0) = 0.

Then, for every x ≥ x0 ≥ 0,

2

[
1 − e2(x0−x)

(
1 − g(x0)

2

)]
≥ g(x) ≥ 1 + (g(x0) − 1)ex0−x. (73)
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Lower bound The general lower bound (68) gives

g(µ) ≥ P(Z > 0) = 1 − e−µ,

which can be improved. Indeed, if g(x0) ≥ 1, (73) shows that g(x) ≥ 1 for every
x ≥ x0. Since g = H/h and for every u ≥ 0,

H(u) ≥ u +
u2

4
+

u3

18
, it follows that g(u) ≥ u

(
u + u2

4 + u3

18

)

eu − 1
.

Then, g(1.61) ≥ 1, so that g(x) ≥ 1 for every x ≥ 1.61.

Upper bound Using (73) with x0 = 0 gives

∀x ≥ 0, g(x) ≤ 2 − 2e−2x ≤ 2.

Moreover, for every ǫ ∈ (0; 1), 1 − ǫ ≤ a(x) ≤ 1 as soon as x ≥ ǫ−1. Then, on
[ǫ−1;∞), g satisfies the differential inequation

g′ ≥ 1 − (1 − ǫ)g.

Integrating this between ǫ−1 and 2ǫ−1,

g(2ǫ−1) ≤ 1

1 − ǫ

[
1 +

(
g(ǫ−1)(1 − ǫ) − 1

)
exp

(
−ǫ−1(1 − ǫ)−1

)]
.

For every x > 2, ǫ = 2x−1 ∈ (0; 1) so that

g(x) ≤ 1 +
2 + (x − 4) exp

(
− x2

2(x−2)

)

x − 2
≤ 1 +

2(1 + e−3)

x − 2
.

The result follows.
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[20] Lucien Birgé and Pascal Massart. Gaussian model selection. J. Eur. Math.
Soc. (JEMS), 3(3):203–268, 2001. MR1848946

http://www.ams.org/mathscinet-getitem?mr=0483125
http://www.ams.org/mathscinet-getitem?mr=0343481
http://www.ams.org/mathscinet-getitem?mr=1197777
http://tel.archives-ouvertes.fr/tel-00198803/en/
http://arxiv.org/abs/0812.3141v1
http://hal.archives-ouvertes.fr/hal-00262478/en/
http://arxiv.org/abs/0802.0566v2
http://www.ams.org/mathscinet-getitem?mr=1777129
http://www.ams.org/mathscinet-getitem?mr=1918295
http://www.ams.org/mathscinet-getitem?mr=2195545
http://www.ams.org/mathscinet-getitem?mr=1679028
http://www.ams.org/mathscinet-getitem?mr=2166554
http://www.ams.org/mathscinet-getitem?mr=2177915
http://www.ams.org/mathscinet-getitem?mr=1848946


S. Arlot/Resampling penalization 67
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