
HAL Id: hal-00262455
https://hal.science/hal-00262455

Submitted on 11 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new class of transport distances between measures
Jean Dolbeault, Bruno Nazaret, Giuseppe Savaré

To cite this version:
Jean Dolbeault, Bruno Nazaret, Giuseppe Savaré. A new class of transport distances between mea-
sures. Calc. Var. Partial Differential Equations, 2009, 34 (2), pp.193-231. �hal-00262455�

https://hal.science/hal-00262455
https://hal.archives-ouvertes.fr


A new class of transport distances between measures

Jean Dolbeault · Bruno Nazaret · Giuseppe Savaŕe

March 11, 2008

Abstract We introduce a new class of distances between nonnegative Radon measures in
R

d. They are modeled on the dynamical characterization of the Kantorovich-Rubinstein-
Wasserstein distances proposed by BENAMOU-BRENIER [7] and provide a wide family in-
terpolating between the Wasserstein and the homogeneousW−1,p

γ -Sobolev distances.
From the point of view of optimal transport theory, these distances minimize a dynamical
cost to move a given initial distribution of mass to a final configuration. An important dif-
ference with the classical setting in mass transport theoryis that the cost not only depends
on the velocity of the moving particles but also on the densities of the intermediate configu-
rations with respect to a given reference measureγ .
We study the topological and geometric properties of these new distances, comparing them
with the notion of weak convergence of measures and the well established Kantorovich-
Rubinstein-Wasserstein theory. An example of possible applications to the geometric theory
of gradient flows is also given.

Keywords Optimal transport· Kantorovich-Rubinstein-Wasserstein distance· Continuity
equation· Gradient flows

1 Introduction

Starting from the contributions by Y. BRENIER, R. MCCANN , W. GANGBO, L.C. EVANS,
F. OTTO, C. VILLANI [9,18,25,17,27], the theory of Optimal Transportation hasreceived
a lot of attention and many deep applications to various mathematical fields, such as PDE’s,
Calculus of Variations, functional and geometric inequalities, geometry of metric-measure
spaces, have been found (we refer here to the monographs [28,16,30,3,31]). Among all pos-
sible transportation costs, those inducing the so-calledLp-KANTOROVICH-RUBINSTEIN-
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WASSERSTEINdistancesWp(µ0,µ1), p∈ (1,+∞), between two probability measuresµ,ν ∈
P(Rd)

Wp(µ0,µ1) := inf

{(∫

Rd×Rd
|y−x|p dΣ

) 1
p

: Σ ∈ Γ (µ0,µ1)

}
(1.1)

play a distinguished role. HereΓ (µ0,µ1) is the set of allcouplingsbetweenµ0 andµ1: they
are probability measuresΣ on R

d ×R
d whose first and second marginals are respectively

µ0 andµ1, i.e.Σ (B×R
d) = µ0(B) andΣ (Rd×B) = µ1(B) for all Borel setsB∈ B(Rd).

It was one of the most surprising achievement of [24,25,19,26] that many evolution
partial differential equations of the form

∂tρ +∇ ·
(
ρ

∣∣ξξξ
∣∣q−2ξξξ

)
= 0, ξξξ = −∇

(δF

δ ρ

)
in R

d × (0,+∞), (1.2)

can be, at least formally, interpreted asgradient flowsof suitable integral functionalsF
with respect toWp (see also the general approach developed in [30,3,31]). In (1.2)δF/δ ρ
is the Euler first variation ofF , q := p/(p−1) is the Hölder’s conjugate exponent ofp,
andt 7→ ρt (a time dependent solution of (1.2)) can be interpreted as a flow of probability
measuresµt = ρt L

d with densityρt with respect to the Lebesgue measureL
d in R

d.
Besides showing deep relations with entropy estimates and functional inequalities [27],

this point of view provides a powerful variational method toprove existence of solutions to
(1.2), by the so-calledMinimizing movementscheme [19,13,3]: given a time stepτ > 0 and
an initial datumµ0 = ρ0L

d, the solutionµt = ρtL
d at timet ≈ nτ can be approximated by

the discrete solutionµn
τ obtained by a recursive minimization of the functional

µ 7→ 1
pτ p−1Wp

p (µ,µk
τ )+F (µ), k = 0,1, · · · (1.3)

The link between the Wasserstein distance and equations exhibiting the characteristic struc-
ture of (1.2) (in particular the presence of the diffusion coefficient ρ , the fact thatξξξ is a
gradient vector field, and the presence of theq-duality mapξξξ 7→ |ξξξ |q−2ξξξ ), is well explained
by thedynamic characterizationof Wp introduced by BENAMOU-BRENIER [7]: it relies in
the minimization of the “action” integral functional

Wp
p (µ0,µ1) = inf

{∫ 1

0

∫

Rd
ρt(x) |vt(x)|p dxdt :

∂tρt +∇ · (ρtvt) = 0 in R
d × (0,1), µ0 = ρ |t=0

L
d, µ1 = ρ |t=1

L
d
}

.

(1.4)

Towards more general cost functionals.If one is interested to study the more general class
of diffusion equations

∂tρ +∇ ·
(
h(ρ)

∣∣ξξξ
∣∣q−2ξξξ

)
= 0, ξξξ = −∇

(δF

δ ρ

)
in R

d × (0,+∞), (1.5)

obtained from (1.2) replacing the mobility coefficientρ by an increasing nonlinear function
h(ρ), h : [0,+∞) → [0,+∞) whose typical examples are the functionsh(ρ) = ρα , α ≥ 0, it
is then natural to investigate the properties of the “distance”

W̃p
p (µ0,µ1) = inf

{∫ 1

0

∫

Rd
h
(
ρt(x)

)
|vt(x)|p dxdt :

∂tρt +∇ · (h(ρt)vt) = 0 in R
d × (0,1), µ0 = ρ |t=0

L
d, µ1 = ρ |t=1

L
d
}
.

(1.6)
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In the limiting caseα = 0, h(ρ) ≡ 1, one can easily recognize that (1.6) provides an equiv-
alent description of the homogeneous (dual)Ẇ−1,p(Rd) Sobolev (pseudo)-distance

‖µ0−µ1‖Ẇ−1,p(Rd) := sup
{∫

Rd
ζ d(µ0−µ1) : ζ ∈C1

c(Rd),
∫

Rd
|Dζ |q dx≤ 1

}
. (1.7)

Thus the distances defined by (1.6) for 0≤ α ≤ 1 (we shall see that this is the natural
range for the parameterα) can be considered as a natural “interpolating” family between
the Wasserstein and the (dual) Sobolev ones.

Notice that if one wants to keep the usual transport interpretation given by a “dynamic
cost” to be minimized along the solution of the continuity equation, one can simply introduce
the velocity vector field̃vt := ρ−1

t h(ρt)vt and minimize the cost
∫ 1

0

∫

Rd
ρ f (ρ) |ṽt |p dxdt, where f (ρ) :=

( ρ
h(ρ)

)p−1
. (1.8)

Therefore, in this model the usualp-energy
∫
Rd ρt |ṽt |p dx of the moving massesρt with

velocity ṽt results locally modified by a factorf (ρt) depending on the local density of the
mass occupied at the timet. Different non-local models have been considered in [8,4].

In the present paper we try to present a systematic study of these families of intermediate
distances, in view of possible applications, e.g., to the study of evolution equations like (1.5),
the Minimizing movement approach (1.3), and functional inequalities.

Examples: PDE’s as gradient flows.Let us show a few examples evolution equations which
can beformally interpreted as gradient flows of suitable integral functionals in this setting:
the scalar conservation law

∂tρ −∇ ·
(
ρα∇V

)
= 0 corresponds to the linear functionalF (ρ) :=

∫

Rd
V(x)ρ dx,

for some smooth potentialV : R
d → R andp = 2. Choosing form> 0

p = 2, F (ρ) = cα ,m

∫
ρm+1−α dx, cα ,m :=

m
(m+1−α)(m−α)

,

one gets the porous media/fast diffusion equation

∂tρ − m
m−α

∇ ·
(
ρα ∇ρm−α)

= ∂tρ −∆ρm = 0, (1.9)

and in particular the heat equation for the entropy functional 1
(2−α)(1−α)

∫
ρ2−α dx. Choosing

F (ρ) = cα ,m,q

∫
ρ

m+2q−3−α
q−1 dx, cα ,m,q :=

m(q−1)q

(m+2q−3−α)(m+q−2−α)
,

one obtains the doubly nonlinear equation

∂tρ −m∇ · (ρm−1|∇ρ |q−2∇ρ) = 0 (1.10)

and in particular the evolution equation for theq-Laplacian whenm = 1. The Dirichlet
integral forp = 2

F (ρ) =
1
2

∫
|∇ρ |2 dx yields ∂tρ +∇ ·

(
ρα ∇∆ρ

)
= 0, (1.11)

a thin-film like equation.



4

The measure-theoretic point of view: Wasserstein distance. We present now the main points
of our approach (see also, in a different context, [10]). First of all, even if the language of
densities and vector fields (asρ and v, ṽ in (1.4) or (1.6)) is simpler and suggests inter-
esting interpretations, the natural framework for considering the variational problems (1.4)
and (1.6) is provided by time dependent families of Radon measures inR

d. Following this
point of view, one can replaceρt by a continuous curvet ∈ [0,1] 7→ µt (µt = ρt L

d in the
absolutely continuous case) in the spaceM

+
loc(R

d) of nonnegative Radon measures inR
d

endowed with the usual weak∗ topology induced by the duality with functions inC0
c(Rd).

The (Borel) vector fieldvt in (1.4) induces a time dependent family of vector measures
ννν t := µtvt ≪ µt . In terms of the couple(µ,ννν) the continuity equation (1.4) reads

∂t µt +∇ ·ννν t = 0 in the sense of distributions inD ′(Rd× (0,1)), (1.12)

and it is now alinear equation. Sincevt = dννν t/dµt is the density ofννν t w.r.t. µt , the action
functional which has to be minimized in (1.4) can be written as

Ep,1(µ,ννν) =
∫ 1

0
Φp,1(µt ,ννν t)dt, Φp,1(µ,ννν) :=

∫

Rd

∣∣∣∣
dννν
dµ

∣∣∣∣
p

dµ. (1.13)

Notice that in the case of absolutely continuous measures with respect toL d, i.e.µ = ρL
d

andννν = wL d, the functionalΦp,1 can also be expressed as

Φp,1(µ,ννν) :=
∫

Rd
φp,1(ρ ,w)dL

d(x), φp,1(ρ ,w) := ρ
∣∣∣∣
w
ρ

∣∣∣∣
p

. (1.14)

Denoting byCE(0,1) the class of measure-valued distributional solutionsµ,ννν of the con-
tinuity equation (1.12), we end up with the equivalent characterization of the Kantorovich-
Rubinstein-Wasserstein distance

Wp
p (µ0,µ1) := inf

{
Ep,1(µ,ννν) : (µ,ννν) ∈ CE(0,1), µ|t=0

= µ0, µ|t=1
= µ1

}
. (1.15)

Structural properties and convexity issues.The density functionφ = φp,1 : (0,+∞)×R
d →

R
d appearing in (1.14) exhibits some crucial features

1. w 7→ φ(·,w) is symmetric, positive (whenw 6= 0), and p-homogeneous with respect
to the vector variablew: this ensures thatWp is symmetric and satisfies the triangular
inequality.

2. φ is jointly convex in(0,+∞)×R
d: this ensures that the functionalΦp,1 (and therefore

alsoE ) defined in (1.13) is lower semicontinuous with respect to the weak∗ convergence
of Radon measures. It is then possible to show that the infimumin (1.15) is attained, as
soon as it is finite (i.e. when there exists at least one curve(µ,ννν) ∈ CE(0,1) with finite
energyE (µ,ννν) joining µ0 to µ1); in particularWp(µ0,µ1) = 0 yieldsµ0 = µ1. Moreover,
the distance map(µ0,µ1) 7→ Wp(µ0,µ1) is lower semicontinuous with respect to the
weak∗ convergence, a crucial property in many variational problems involvingWp, as
(1.3).

3. φ is jointly positively 1-homogeneous: this a distinguishedfeature of the Wasserstein
case, which shows that the functionalΦp,1 depends only onµ,ννν and not on the Lebesgue
measureL d, even if it can be represented as in (1.14). In other words, suppose that
µ = ρ̃γ andννν = w̃γ , whereγ is another reference (Radon, nonnegative) measure inR

d.
Then

Φp,1(µ,ννν) =
∫

Rd
φp,1(ρ̃, w̃)dγ . (1.16)
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As we will show in this paper, the 1-homogeneity assumption yields also two “quantita-
tive” properties: ifµ0 is a probability measure, then any solution(µ,ννν) of the continuity
equation (1.12) with finite energyE (µ,ννν) < +∞ still preserves the massµt(R

d) ≡ 1
for every timet ≥ 0 (and it is therefore equivalent to assume this condition inthe def-
inition of CE(0,1), see e.g. [3, Chap. 8]). Moreover, if thep-moment ofµ0 mp(µ0) :=∫
Rd |x|p dµ0(x) is finite, thenWp(µ0,µ1) < +∞ if and only if mp(µ1) < +∞.

Main definitions.Starting from the above remarks, it is then natural to consider the more
general case when the density functionalφ : (0,+∞)×R

d → [0,+∞) still satisfies 1. (p-
homogeneity w.r.t.w) and 2. (convexity), but not 3. (1-homogeneity). Due to thislast choice,
the associated integral functionalΦ is no more independent of a reference measureγ and it
seems therefore too restrictive to consider only the case ofthe Lebesgue measureγ = L

d.
In the present paper we will thus introduce a further nonnegative referenceRadon mea-

sureγ ∈ M
+
loc(R

d) and a general convex functionalφ : (0,+∞)×R
d → [0,+∞) which is

p-homogeneous w.r.t. its second (vector) variable and non degenerate (i.e.φ(ρ ,w) > 0 if
w 6= 0). Particularly interesting examples of density functionals φ , corresponding to (1.6),
are given by

φ(ρ ,w) := h(ρ)

∣∣∣∣
w

h(ρ)

∣∣∣∣
p

, (1.17)

whereh : (0,+∞) → (0,+∞) is an increasing andconcavefunction; the concavity ofh
is a necessary and sufficient condition for the convexity ofφ in (1.17) (see [29] and§3).
Choosingh(ρ) := ρα , α ∈ (0,1), one obtains

φp,α (ρ ,w) := ρα
∣∣∣∣

w
ρα

∣∣∣∣
p

= ρθ−p |w|p, θ := (1−α) p+α ∈ (1, p), (1.18)

which is jointly θ -homogeneous in(ρ ,w).
In the case, e.g., whenα < 1 in (1.18) or more generally limρ↑∞ h(ρ)/ρ = 0, thereces-

sion functionof φ satisfies

φ ∞(ρ ,w) = lim
λ↑+∞

λ−1φ(λρ ,λw) = +∞ if ρ ,w 6= 0, (1.19)

so that the associated integral functional reads as

Φ(µ,ννν|γ) :=
∫

Rd
φ(ρ ,w)dγ µ = ργ + µ⊥, ννν = wγ ≪ γ , (1.20)

extended to+∞ whenννν is not absolutely continuous with respect toγ or supp(µ) 6⊂ supp(γ).
Notice that only the densityρ of the γ-absolutely continuous part ofµ enters in the func-
tional, but the functional could be finite even ifµ has a singular partµ⊥. This choice is
crucial in order to obtain a lower semicontinuous functional w.r.t. weak∗ convergence of
measures. The associated(φ ,γ)-Wasserstein distance is therefore

W
p
φ ,γ(µ0,µ1) := inf

{
Eφ ,γ(µ,ννν) : (µ,ννν) ∈ CE(0,1), µ|t=0

= µ0, µ|t=1
= µ1

}
, (1.21)

where the energyEφ ,γ of a curve(µ,ννν) ∈ CE(0,1) is

Eφ ,γ(µ,ννν) :=
∫ 1

0
Φ(µt ,ννν t |γ)dt. (1.22)
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The most important case associated to the functional (1.18)deserves the distinguished nota-
tion

Wp,α ;γ (·, ·) := Wφp,α ,γ(·, ·). (1.23)

The limiting caseα = θ = 1 corresponds to theLp-Wasserstein distance, the SobolevẆ−1,p
γ

corresponds toα = 0, θ = p. The choice ofγ allows for a great flexibility: besides the
Lebesgue measure inRd, we quote

– γ := L d|Ω , Ω being an open subset ofR
d. The measures are then supported inΩ̄ and,

with the choice (1.17) andv = w/h(ρ), (1.12) is a weak formulation of the continuity
equation (n∂Ω being the exterior unit normal to∂ Ω )

∂tρt +∇ ·
(
h(ρt)vt

)
= 0 in Ω × (0,1), vt ·n∂Ω = 0 on∂ Ω . (1.24)

This choice is useful for studying equations (1.9) (see [11]), (1.10), (1.11) in bounded
domains with Neumann boundary conditions.

– γ := e−VL d for someC1 potentialV : R
d → R. With the choice (1.17) andv = w/h(ρ)

(1.12) is a weak formulation of the equation

∂tρt +∇ ·
(
h(ρt)vt

)
−h(ρt)∇V ·vt = 0 in R

d × (0,1). (1.25)

Whenh(ρ) = ρα , p = 2, the gradient flow ofF (µ) := 1
(2−α)(1−α)

∫
Rd ρ2−α dγ is the

Kolmogorov-Fokker-Planck equations [15]

∂t µ −∆ µ −∇ · (µ∇V) = 0, ∂tρ −∆ρ +∇V ·∇ρ = 0,

which in the Wasserstein framework is generated by the logarithmic entropy ([19,3,5]).
– γ := H k|M, M being a smoothk-dimensional manifold embedded inRd with the Rie-

mannian metric induced by the Euclidean distance;H
k denotes thek-dimensional Haus-

dorff measure. (1.12) is a weak formulation of

∂tρt +divM

(
h(ρ)vt

)
= 0 onM× (0,1). (1.26)

Thanks to Nash embedding theorems [22,23], the study of the continuity equation and of
the weighted Wasserstein distances on arbitrary Riemannian manifolds can be reduced
to this case, which could be therefore applied to study equations (1.9), (1.10), (1.11) on
Riemannian manifolds.

Main results. Let us now summarize some of the main properties ofWp,α ;γ(·, ·) we will
prove in the last section of the present paper. In order to deal with distances (instead of
pseudo-distances, possibly assuming the value+∞), for a nonnegative Radon measureσ
we will denote byMp,α ;γ [σ ] the set of all measuresµ with Wp,α ;γ(µ,σ ) < +∞ endowed
with theWp,α ;γ -distance.

1. Mp,α ;γ [σ ] is a complete metric space (Theorem 5.7).
2. Wp,α ;γ induces a stronger convergence than the usual weak∗ one (Theorem 5.5).
3. Bounded sets inMp,α ;γ [σ ] are weakly∗ relatively compact (Theorem 5.5).
4. The map(µ0,µ1) 7→ Wp,α ;γ(µ0,µ1) is weakly∗ lower semicontinuous (Theorem 5.6),

convex (Theorem 5.11), and subadditive (Theorem 5.12). It enjoys some useful mono-
tonicity properties with respect toγ (Proposition 5.14) and to convolution (Theorem
5.15).
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5. The infimum in (1.15) is attained,Mp,α ;γ [σ ] is a geodesic space (Theorem 5.4), and
constant speed geodesics connecting two measuresµ0,µ1 are unique (Theorem 5.11).

6. If
∫

|x|≥1
|x|−p/(θ−1) dγ(x) < +∞ θ = (1−α)p+α ,

p
θ −1

=
q

1−α
, (1.27)

andσ ∈ P(Rd), thenMp,α ;γ [σ ]⊂P(Rd) (Theorem 5.8). If moreoverγ satisfies stronger
summability assumptions, then the distancesWp,α ;γ provide a control of various mo-
ments of the measures (Theorem 5.9). Comparison results with Wp andẆ−1,p are also
discussed in§5.4.

7. Absolutely continuous curves w.r.t.Wp,α ;γ can be characterized in completely analogous
ways as in the Wasserstein case (§5.3).

8. In the caseγ = L
d the functional

Ψα(µ|γ) :=
1

(2−α)(1−α)

∫

Rd
ρ2−α dx µ = ρL

d ≪ L
d, (1.28)

is geodesically convex w.r.t. the distanceW2,α ;L d and the heat equation inRd is its
gradient flow, as formally suggested by (1.9) (§5.5: we prove this property in the case
α > 1−2/d, whenP(Rd) is complete w.r.t.W2,α ;L d .)

Plan of the paper.Section 2 recalls some basic notation and preliminary factsabout weak∗

convergence and integral functionals of Radon measures; 2.3 recalls a simple duality result
in convex analysis, which plays a crucial role in the analysis of the integrandφ(ρ ,w).

The third section is devoted to the class of admissible action integral functionalsΦ like
(1.20) and their densityφ . Starting from a few basic structural assumptions onφ we deduce
its main properties and we present some important examples in Section 3.2. The correspond-
ing properties ofΦ (in particular, lower semicontinuity and relaxation with respect to weak∗

convergence, monotonicity, etc) are considered in Section3.3.
Section 4 is devoted to the study of measure-valued solutions of the continuity equation

(1.12). It starts with some preliminary basic results, which extend the theory presented in
[3] to the case of general Radon measures: this extension is motivated by the fact that the
class of probability measures (and therefore with finite mass) is too restrictive to study the
distancesWp,α ;γ , in particular whenγ(Rd) = +∞ as in the case of the Lebesgue measure.
We shall see (Remark 5.27) thatP(Rd) with the distanceWp,α ;L d is not complete ifd >
p/(θ −1) = q/(1−α). We consider in Section 4.2 the class of solutions of (1.12) with finite
energyEφ ,γ (1.22), deriving all basic estimates to control their mass and momentum.

As we briefly showed, Section 5 contains all main results of the paper concerning the
modified Wasserstein distances.

2 Notation and preliminaries

Here is a list of the main notation used throughout the paper:

BR The open ball (in someRh) of radiusR centered at 0
B(Rh) (resp.Bc(R

h)) Borel subsets ofRh (resp. with compact closure)
P(Rh) Borel probability measures inRh

M
+(Rh) (resp.M+

loc(R
h)) Finite (resp. Radon), nonnegative Borel measures onR

h

P(Rh) Borel probability measures inRh
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M(Rh;Rm) R
m-valued Borel measures with finite variation

Mloc(R
h;Rm) R

m-valued Radon measures
‖µµµ‖ Total variation ofµµµ ∈ Mloc(R

h;Rm), see (2.2)
C0

b(Rh) Continuous andboundedreal functions
mp(µ) p-moment

∫
Rd |x|p dµ of µ ∈ M

+(Rh)
ψ∞ Recession function ofψ , see (2.4)
Ψ (µµµ|γ), Φ(µ,ννν|γ) Integral functionals on measures, see 2.2 and 3.3
µ(ζ ), 〈µ,ζ 〉, 〈µµµ,ζζζ〉 the integrals

∫
Rd ζ dµ,

∫
Rd ζζζ ·dµµµ

CE(0,T),CEφ ,γ(0,T), Classes of measure-valued solutions of the continuity
CE(0,T; µ0 → µ1) equation, see Def. 4.2 and Sec. 4.2.

2.1 Measures and weak convergence

We recall some basic notation and properties of weak convergence of (vector) radon mea-
sures (see e.g. [2]). A Radon vector measure inMloc(R

h;Rm) is a R
m-valued mapµµµ :

Bc(R
h) → R

m defined on the Borel sets ofRh with compact closure. We identifyµµµ ∈
Mloc(R

h;Rm) with a vector(µµµ1,µµµ2, · · · ,µµµm) of mmeasures inMloc(R
h): its integral with a

continuous vector valued function with compact supportζζζ ∈C0
c(Rh;Rm) is given by

〈µµµ,ζζζ〉 :=
∫

Rh
ζζζ · dµµµ =

m

∑
i=1

∫

Rh
ζζζ i

(x)dµµµ i(x). (2.1)

It is well known thatMloc(R
h;Rm) can be identified with the dual ofC0

c(R
h;Rm) by the

above duality pairing and it is therefore endowed with the corresponding of weak∗ topology.
If ‖ · ‖ is a norm inR

d with dual‖ · ‖∗ (in particular the euclidean norm| · |) for every open
subsetA⊂ R

h we have

‖µµµ‖(A) = sup
{∫

Rh
ζζζ · dµµµ : supp(ζζζ) ⊂ A, ‖ζζζ (x)‖∗ ≤ 1 ∀x∈ R

h
}
. (2.2)

‖µµµ‖ is in fact a Radon positive measure inM
+
loc(R

h) andµµµ admits the polar decomposition
µµµ = w‖µµµ‖ where the Borel vector fieldw belongs toL1

loc(‖µµµ‖;Rm). We thus have

〈µµµ,ζζζ 〉 =
∫

Rh
ζζζ · dµµµ =

∫

Rh
ζζζ ·wd‖µµµ‖. (2.3)

If (µµµk)k∈N is a sequence inMloc(R
h;Rm) with supn‖µµµ‖(BR) < +∞ for every open ball

BR, then it is possible to extract a subsequenceµµµkn
weakly∗ convergent toµµµ ∈ M(Rh;Rm),

whose total variation‖µµµkn
‖ weakly∗ converges toλ ∈ M

+(Rh) with ‖µµµ‖ ≤ λ .

2.2 Convex functionals defined on Radon measures

Let ψ : R
m→ [0,+∞] be a convex and lower semicontinuous function withψ(0) = 0, whose

proper domainD(ψ) := {x∈R
m : ψ(x) < +∞} has non empty interior. Itsrecession function

(see e.g. [2])ψ∞ : R
m → [0,+∞] is defined as

ψ∞(y) := lim
r→+∞

ψ(ry)

r
= sup

r>0

ψ(ry)

r
. (2.4)
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ψ∞ is still convex, lower semicontinuous, and positively 1-homogeneous, so that its proper
domainD(ψ∞) is a convex cone always containing 0. We say that

ψ has asuperlinear growthif ψ∞(y) = ∞ for everyy 6= 0: D(ψ∞) = {0},

ψ has asublinear growthif ψ∞(y)≡ 0 for everyy∈ R
m.

(2.5)

Let nowγ ∈M
+
loc(R

h) andµµµ ∈Mloc(R
h;Rm) with supp(µµµ)⊂ supp(γ); the Lebesgue decom-

position ofµµµ w.r.t.γ readsµµµ =ϑϑϑγ +µµµ⊥, whereϑϑϑ = dµµµ/dγ . We can introduce a nonnegative
Radon measureσ ∈ M

+
loc(R

h) such thatµµµ⊥ = ϑϑϑ⊥σ ≪ σ , e.g.σ = |µµµ⊥| and we set

Ψ a(µµµ|γ) :=
∫

Rh
ψ(ϑϑϑ(x))dγ(x), Ψ ∞(µµµ|γ) :=

∫

Rh
ψ∞(ϑϑϑ⊥(y))dσ (y), (2.6)

and finally

Ψ(µµµ|γ) := Ψa(µµµ|γ)+Ψ ∞(µµµ|γ); Ψ ∞(µµµ|γ) = +∞ if supp(µµµ) 6⊂ supp(γ). (2.7)

Sinceψ∞ is 1-homogeneous, the definition ofΨ∞ depends onγ only through its support and
it is independent of the particular choice ofσ in (2.6). Whenψ has a superlinear growth then
the functionalΨ is finite iff µµµ ≪ γ andΨa(µµµ|γ) is finite; in this caseΨ (µ|γ) = Ψ a(µµµ|γ).

Theorem 2.1 (L.s.c. and relaxation of integral functionalsof measures [1,2])Let us con-
sider two sequencesγn ∈M

+
loc(R

h),µµµn ∈Mloc(R
h;Rm) weakly∗ converging toγ ∈M

+
loc(R

h)
andµµµ ∈ Mloc(R

h;Rm) respectively. We have

liminf
n↑+∞

Ψ (µµµn|γn) ≥Ψ (µµµ|γ). (2.8)

Let converselyµµµ,γ be such thatΨ (µµµ|γ) < +∞. Then there exists a sequenceµµµn = ϑϑϑnγ ≪ γ
weakly∗ converging toµµµ such that

lim
n↑+∞

Ψ a(µµµn|γ) = lim
n↑+∞

∫

Rh
ψ(ϑϑϑn(x))dγ(x) =Ψ (µµµ|γ). (2.9)

Theorem 2.2 (Montonicity w.r.t. γ) If γ1 ≤ γ2 then

Ψ (µµµ|γ2) ≤Ψ(µµµ|γ1). (2.10)

Proof Thanks to Theorem 2.1, it is sufficient to prove the above inequality forµµµ ≪ γ1. Since
γ1 = θγ2, with densityθ ≤ 1 γ2-a.e., we haveµµµ = ϑϑϑ iγ i with ϑϑϑ2 = θ ϑϑϑ 1, and therefore

∫

Rd
ψ(ϑϑϑ1)dγ1 =

∫

Rd
ψ(θ−1ϑϑϑ 2)θ dγ2 ≥

∫

Rd
ψ(ϑϑϑ2)dγ2, (2.11)

where we used the propertyθψ(θ−1x) ≥ ψ(x) for θ ≤ 1, beingψ(0) = 0. ⊓⊔

Theorem 2.3 (Monotonicity with respect to convolution)If k ∈C∞
c (Rd) is a convolution

kernel satisfying k(x) ≥ 0,
∫
Rd k(x)dx = 1, then

Ψ (µµµ ∗k|γ ∗k) ≤Ψ (µµµ|γ). (2.12)

The proof follows the same argument of [3, Lemma 8.1.10], by observingthat the map
(x,y) 7→ xψ(y/x) is convex and positively 1-homogeneous in(0,+∞)×R

d.
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2.3 A duality result in convex analysis

Let X,Y be Banach spaces and letA be an open convex subset ofX. We consider a convex
(and a fortiori continuous) functionφ : A×Y → R and its partial Legendre transform

φ̃(x,y∗) := sup
y∈Y

〈y∗,y〉−φ(x,y) ∈ (−∞,+∞], ∀x∈ A, y∗ ∈Y∗. (2.13)

The following duality result is well known in the framework of minimax problems [29].

Theorem 2.4 φ̃ is a l.s.c. function and there exists a convex set Y∗
o ⊂Y∗ such that

φ̃(x,y∗) < +∞ ⇔ y∗ ∈Y∗
o , (2.14)

so thatφ̃(·,y∗) ≡ +∞ for every y∗ ∈Y∗ \Y∗
o andφ admits the dual representation formula

φ(x,y) = sup
y∗∈Y∗

o

〈y,y∗〉− φ̃(x,y∗) ∀x∈ A, y∈Y. (2.15)

For every y∗ ∈Y∗
o we have

the map x7→ φ̃(x,y∗) is concave (and continuous) in A. (2.16)

Conversely, a functionφ : A×Y →R is convex if it admits the dual representation(2.15)for
a functionφ̃ satisfying(2.16).

Proof Let us first show that (2.16) holds. For a fixedy∗ ∈ Y∗, x0,x1 > 0, θ ∈ [0,1], and
arbitraryyi ∈Y, we get

φ̃((1−ϑ )x0+ϑx1,y
∗) ≥ 〈y∗,(1−ϑ )y0+ϑy1〉−φ((1−ϑ )x0 +ϑx1,(1−ϑ )y0 +ϑy1)

≥ (1−ϑ )
(
〈y∗,y0〉−φ(x0,y0)

)
+ϑ

(
〈y∗,y1〉−φ(x1,y1)

)
.

Taking the supremum with respect toy0,y1 we eventually get

φ̃((1−ϑ )x0+ϑx1,y
∗) ≥ (1−ϑ )φ̃(x0,y

∗)+ϑφ̃(x1,y
∗) (2.17)

and we conclude that̃φ(·,y∗) is concave. In particular, if it takes the value+∞ at some point
it should be identically+∞ so that (2.14) holds.

The converse implication is even easier, since (2.15) exhibits φ as a supremum of con-
tinuous and convex functions (jointly inx∈ A,y∈Y). ⊓⊔

3 Action functionals

The aim of this section is to study some property of integral functionals of the type

Φa(µ,ννν|γ) :=
∫

Rd
φ(ρ ,w)dγ , µ = ργ ∈ M

+
loc(R

d), ννν = wγ ∈ Mloc(R
d;Rd) (3.1)

and their relaxation, whenφ satisfies suitable convexity and homogeneity properties.
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3.1 Action density functions

Let us therefore consider a nonnegative density functionφ : (0,+∞)×R
d → [0,+∞) and an

exponentp∈ (1,+∞) satisfying the following assumptions

φ is convex and (a fortiori) continuous, (3.2a)

w 7→ φ(·,w) is homogeneous of degreep, i.e.

φ(ρ ,λw) = |λ |pφ(ρ ,w) ∀ρ > 0, λ ∈ R, w ∈ R
d,

(3.2b)

∃ρ0 > 0 : φ(ρ0, ·) is non degenerate, i.e. φ(ρ0,w) > 0 ∀w ∈ R
d \{0}. (3.2c)

Let q = p/(p− 1) ∈ (1,+∞) be the usual conjugate exponent ofp. We denote byφ̃ :
(0,+∞)×R

d → (−∞,+∞] the partial Legendre transform

1
q

φ̃(ρ ,z) := sup
w∈Rd

z·w− 1
p

φ(ρ ,w) ∀ρ > 0,z∈ R
d. (3.2d)

We collect some useful properties of such functions in the following result.

Theorem 3.1 Let φ : (0,+∞)×R
d → R

d satisfy(3.2a,b,c). Then

1. For everyρ > 0 the functionw 7→ φ(ρ ,w)1/p is a norm ofRd whose dual norm is given
by z 7→ φ̃(ρ ,z)1/q, i.e.

φ̃(ρ ,z)1/q = sup
w 6=0

w ·z
φ(ρ ,w)1/p

, φ(ρ ,w)1/p = sup
z6=0

w ·z
φ̃(ρ ,z)1/q

. (3.3)

In particular φ̃(·,z) is q-homogeneous with respect toz.
2. The marginal conjugate functioñφ takes its values in[0,+∞) and for everyz∈ R

d

the mapρ 7→ φ̃(ρ ,z) is concave and non decreasingin (0,+∞). (3.4)

In particular, for everyw ∈ R
d

the mapρ 7→ φ(ρ ,w) is convex and non increasingin (0,+∞). (3.5)

3. There exist constants a,b≥ 0 such that

φ̃(ρ ,z) ≤
(
a+bρ

)
|z|q, φ(ρ ,z) ≥

(
a+bρ

)1−p|w|p ∀ρ > 0, z,w ∈ R
d. (3.6)

4. For every closed interval[ρ0,ρ1] ⊂ (0,+∞) there exists a constant C= Cρ0,ρ1 > 0 such
that for everyρ ∈ [ρ0,ρ1]

C−1|w|p ≤ φ(ρ ,w) ≤C|w|p, C−1|z|q ≤ φ̃(ρ ,z) ≤C|z|q ∀w,z∈ R
d. (3.7)

Equivalently, a functionφ satisfies(3.2a,b,c)if and only if it admits the dual representation
formula

1
p

φ(ρ ,w) = sup
z∈Rd

w ·z− 1
q

φ̃(ρ ,z) ∀ρ > 0,w ∈ R
d, (3.8)

whereφ̃ : (0,+∞)×R
d → (0,+∞) is a nonnegative function which is convex and q-homogeneous

w.r.t. z andconcavewith respect toρ .
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Proof Let us first assume thatφ satisfies (3.2a,b,c). The functionw 7→ φ(ρ ,w)1/p is 1-
homogeneous and its sublevels are convex, i.e. it is the gauge function of a (symmetric)
convex set and therefore it is a (semi)-norm. The concavity of φ̃ follows from Theorem
2.4; takingw = 0 in (3.2d), we easily get that̃φ is nonnegative; (3.2c) yields, for a suitable
constantc0 > 0,

φ(ρ0,w) ≥ c0|w|p ∀w ∈ R
d, so that φ̃(ρ0,z) ≤ c0|z|q < +∞ ∀z∈ R

d. (3.9)

Still applying Theorem 2.4, we obtain thatρ 7→ φ̃(ρ ,z) is finite, strictly positive and nonde-
creasing in the interval(0,+∞). Sinceφ̃(ρ ,0) = 0 we easily get

φ̃(ρ ,z) ≤ φ̃(ρ0,z) ≤ c0|z|q ∀z∈ R
d, ρ ∈ (0,ρ0); (3.10)

φ̃(ρ ,z) ≤ ρ
ρ 0

φ̃(ρ0,z) ≤
c0

ρ0
ρ |z|q ∀z∈ R

d, ρ ∈ (ρ0,+∞). (3.11)

Combining the last two bounds we get (3.6). (3.7) follows by homogeneity and by the fact
that the continuous mapφ has a maximum and a strictly positive minimum on the compact
set[ρ0,ρ1]×{w ∈ R

d : |w| = 1}.
The final assertion concerning (3.8) still follows by Theorem 2.4. ⊓⊔

3.2 Examples

Example 3.2Our main example is provided by the function

φ2,α(ρ ,w) =
|w|2
ρα , φ̃2,α (ρ ,z) := ρα |z|2, 0≤ α ≤ 1. (3.12)

Observe thatφ2,α is positivelyθ -homogeneous,θ := 2−α , i.e.

φ2,α(λρ ,λw) = λ θ φ(ρ ,w) ∀λ ,ρ > 0, w ∈ R
d. (3.13)

It can be considered as a family of interpolating densities between the caseα = 0, when

φ2,0(ρ ,w) := |w|2, (3.14)

andα = 1, corresponding to the 1-homogeneous functional

φ2,1(ρ ,w) :=
|w|2

ρ
. (3.15)

Example 3.3More generally, we introduce a concave functionh : (0,+∞)→ (0,+∞), which
is a fortiori continuous and nondecreasing, and we considerthe density function

φ(ρ ,w) :=
|w|2
h(ρ)

, φ̃(ρ ,z) := h(ρ)|w|2. (3.16)

If h is of classC2, we can express the concavity condition in terms of the function g(ρ) :=
1/h(ρ) as

h is concave ⇔ g′′(ρ)g(ρ)≥ 2
(
g′(ρ)

)2 ∀ρ > 0, (3.17)

which is related to a condition introduced in [6, Section 2.2, (2.12c)] to study entropy func-
tionals.
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Example 3.4We consider matrix-valued functionsH,G : (0,+∞) → M
d×d such that

H(ρ),G(ρ) are symmetric and positive definite,H(ρ) = G
−1(ρ) ∀ρ > 0. (3.18)

They induce the action densityφ : (0,+∞)×R
d → [0,+∞) defined as

φ(ρ ,w) := 〈G(ρ)w,w〉 =
〈
H
−1(ρ)w,w

〉
. (3.19)

Taking into account Theorem 3.1,φ satisfies conditions (3.2) if and only if the maps

ρ 7→ 〈H(ρ)w,w〉 are concave in(0,+∞) ∀w ∈ R
d. (3.20)

Equivalently,

H((1−ϑ )ρ0 +ϑρ1) ≥ (1−ϑ )H(ρ0)+ϑH(ρ1) as quadratic forms. (3.21)

WhenG is of classC2 this is also equivalent to ask that

G
′′(ρ)≥ 2G

′(ρ)H(ρ)G′(ρ) ∀ρ > 0, (3.22)

in the sense of the associated quadratic forms. In fact, differentiatingH = G
−1 with respect

to ρ we get
H
′ = −HG

′
H, H

′′ = −HG
′′
H+2HG

′
HG

′
H,

so that

d2

d2ρ
〈H(ρ)w,w〉 = −

〈
G
′′w̃, w̃

〉
+2

〈
G
′
HG

′w̃, w̃
〉

where w̃ := Hw;

we eventually recall thatH(ρ) is invertible for everyρ > 0.

Example 3.5Let‖·‖ be any norm inRd with dual norm‖·‖∗, and leth : (0,+∞)→ (0,+∞)
be a concave (continuous, nondecreasing) function as in Example 3.3. We can thus consider

φ(ρ ,w) := h(ρ)

∥∥∥∥
w

h(ρ)

∥∥∥∥
p

, φ̃(ρ ,z) := h(ρ)‖z‖q
∗. (3.23)

See [20,21] for a in-depth study of this class of functions.

Example 3.6 ((α-θ)-homogeneous functionals)In the particular caseh(ρ) := ρα the func-
tional φ of the previous example is jointly positivelyθ -homogeneous, withθ := α +(1−
α)p. This is in fact the most general example ofθ -homogeneous functional, since ifφ is
θ -positively homogeneous, 1≤ θ ≤ p, then

φ(ρ ,w) = ρθ φ(1,w/ρ) = ρθ−pφ(1,w) = ρα‖w/ρα‖p, α =
p−θ
p−1

, (3.24)

where‖w‖ := φ(1,w)1/p is a norm inR
d by Theorem 3.1. The dual marginal densityφ̃ in

this case takes the form

φ̃(ρ ,z) = ρα‖z‖q
∗ ∀ρ > 0, z∈ R

d, (3.25)

and it isq+α-homogeneous. Notice thatα andθ are related by

θ
p

+
α
q

= 1. (3.26)

In the particular case when‖ · ‖ = ‖ · ‖∗ = | · | is the Euclidean norm, we set as in (3.16)

φp,α (ρ ,w) := ρα
∣∣∣∣

w
ρα

∣∣∣∣
p

, φ̃q,α(ρ ,z) := ρα |z|q, 0≤ α ≤ 1. (3.27)
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3.3 The action functional on measures

Lower semicontinuity envelope and recession function.Thanks to the monotonicity prop-
erty (3.5), we can extendφ also forρ = 0 by setting for everyw ∈ R

d

φ(0,w) = sup
ρ>0

φ(ρ ,w) = lim
ρ↓0

φ(ρ ,w); in particular

{
φ(0,0) = 0,

φ(0,w) > 0 if w 6= 0.
(3.28)

Whenρ < 0 we simply setφ(ρ ,w) = +∞, observing that this extension is lower semicon-
tinuous inR×R

d. It is not difficult to check that̃φ(0, ·) satisfies an analogous formula

φ̃(0,z) = sup
w∈Rd

z·w−φ(0,w) = inf
ρ>0

φ̃(ρ ,z) = lim
ρ↓0

φ̃(ρ ,z) ∀z∈ R
d. (3.29)

Observe that, as in the(α-θ)-homogeneous case of Example 3.6 withα > 0,

φ̃(0,z) ≡ 0 ⇒ φ(0,w) =

{
+∞ if w 6= 0

0 if w = 0.
(3.30)

As in (2.4), we also introduce therecession functional

φ ∞(ρ ,w) = sup
λ>0

1
λ

φ(λρ ,λw) = lim
λ↑+∞

1
λ

φ(λρ ,λw) = lim
λ↑+∞

λ p−1φ(λρ ,w). (3.31)

φ ∞ is still convex,p-homogeneous w.r.t.w, and l.s.c. with values in[0,+∞]; moreover, it is
1-homogeneous so that it can be expressed as

φ ∞(ρ ,w) =

{ϕ∞(w)

ρ p−1 = ρ ϕ∞(w/ρ) if ρ 6= 0,

+∞ if ρ = 0 andw 6= 0,
(3.32)

whereϕ∞ : R
d → [0,+∞] is a convex andp-homogeneous function which is non degenerate,

i.e. ϕ∞(w) > 0 if w 6= 0. ϕ∞ admits a dual representation, based on

ϕ̃∞(z) := inf
λ>0

1
λ

φ̃(λ ,z) = lim
λ↑+∞

1
λ

φ̃(λρ ,z). (3.33)

ϕ̃∞ is finite, convex, nonnegative, andq-homogeneous, so that̃ϕ∞(z)1/q is a seminorm,
which does not vanish atz∈R

d if and only if ρ 7→ φ̃(ρ ,z) has a linear growth whenρ ↑+∞.
It is easy to check that

ϕ∞(w)1/p = sup
{

w ·z : ϕ̃∞(z) ≤ 1
}

. (3.34)

In the caseφ̃ has a sublinear growth w.r.t.ρ , as for(α-θ)-homogeneous functionals with
α < 1 (see Example 3.6), we have in particular

whenϕ̃∞(z) ≡ 0, ϕ∞(w) =

{
+∞ if w 6= 0,

0 if w = 0.
(3.35)
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The action functional.Let γ ,µ ∈ M
+
loc(R

d) be nonnegative Radon measures and letννν ∈
Mloc(R

d;Rd) be a vector Radon measure onR
d. We assume that supp(µ),supp(ννν)⊂ supp(γ),

and we write their Lebesgue decomposition with respect to the reference measureγ

µ := ργ + µ⊥, ννν := wγ +ννν⊥. (3.36)

We can always introduce a nonnegative Radon measureσ ∈M
+(Ω) such thatµ⊥ = ρ⊥σ ≪

σ ,ννν⊥ = w⊥σ ≪ σ , e.g.σ := µ⊥ + |ννν⊥|. We can thus define theaction functional

Φ(µ,ννν|γ) = Φa(µ,ννν|γ)+Φ∞(µ,ννν|γ) :=
∫

Rd
φ(ρ ,w)dγ +

∫

Rd
φ ∞(ρ⊥,w⊥)dσ . (3.37)

Observe that, beingφ ∞ 1-homogeneous, this definition is independent ofσ . We will also
use a localized version ofΦ : if B∈ B(Rd) we set

Φ(µ,ννν|γ ,B) :=
∫

B
φ(ρ ,w)dγ +

∫

B
φ ∞(ρ⊥,w⊥)dσ . (3.38)

Lemma 3.7 Let µ = ργ + µ⊥,ννν = wγ +ννν⊥ be such thatΦ(µ,ννν|γ) is finite. Thenννν⊥ =
w⊥µ⊥ ≪ µ⊥ and

Φ∞(µ,ννν|γ) =
∫

Rd
ϕ∞(w⊥)dµ⊥, Φ(µ,ννν|γ) =

∫

Rd
φ(ρ ,w)dγ +

∫

Rd
ϕ∞(w⊥)dµ⊥. (3.39)

Moreover, if φ̃ has asublinear growth with respect toρ (e.g. in the(α-θ)-homogeneous
case of Example 3.6, withα < 1) thenϕ̃∞(·)≡ 0 and

Φ(µ,ννν) < +∞ ⇒ ννν = w · γ ≪ γ , Φ(µ,ννν) = Φa(µ,ννν) =

∫

Rd
φ(ρ ,w)dγ , (3.40)

independently on the singular partµ⊥.

Proof Let σ̃ ∈ M
+
loc(R

d) any measure such thatµ⊥ ≪ σ̃ , |ννν⊥| ≪ σ̃ so thatΦ∞(µ,ννν|γ) can
be represented as

Φ∞(µ,ννν|γ) =

∫

Rd
φ ∞(ρ̃⊥, w̃⊥)dσ̃ , ρ̃⊥ =

dµ⊥

dσ̃
, w̃⊥ =

dννν⊥

dσ̃
.

WhenΦ∞(µ,ννν|γ) < +∞, (3.32) yieldsw̃⊥(x) = 0 for σ̃ -a.e.xsuch that̃ρ⊥(x) = 0. It follows
that

Φ(µ,ννν) < +∞ ⇒ ννν⊥ ≪ µ⊥, (3.41)

so that one can always chooseσ̃ = µ⊥, ρ̃⊥ = 1, and decomposeννν⊥ asw⊥µ⊥ obtaining
(3.39). (3.40) is then an immediate consequence of (3.35). ⊓⊔
Remark 3.8When φ̃(0,z) ≡ 0 (e.g. in the(α-θ)-homogeneous case of Example 3.6, with
α > 0) the densityw of ννν w.r.t. γ vanishes ifρ vanishes, i.e.

Φ(µ,ννν|γ) < +∞ ⇒ w(x) = 0 if ρ(x) = 0, for γ-a.e.x∈ R
d. (3.42)

In particularνννa is absolutely continuous also with respect toµ.

Applying Theorem 2.1 we immediately get

Lemma 3.9 (Lower semicontinuity and approximation of the action functional) The
action functional is lower semicontinuous with respect to weak∗ convergence of measures,
i.e. if

µn⇀
∗µ, γn⇀

∗γ weakly∗ in M
+
loc(R

d), νννn⇀
∗ννν in Mloc(R

d;Rd) as n↑ +∞,

then
liminf

n↑∞
Φ(µn,νννn|γn) ≥ Φ(µ,ννν|γ).
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Equiintegrability estimate.We collect in this section some basic estimates onφ which will
turn to be useful in the sequel. Let us first introduce the notation

‖z‖∗ := φ̃(1,z)1/q, ‖w‖ := φ(1,w)1/p, η−1|z| ≤ ‖z‖∗ ≤ η |z|, (3.43)

Γφ :=
{

(a,b) : sup
‖z‖∗=1

φ̃(ρ ,z) ≤ a+bρ
}

, h(ρ) := inf
{

a+bρ : (a,b) ∈ Γφ

}
, (3.44)

H(s,ρ) := sh(ρ/s) = inf
{

as+bρ : (a,b) ∈ Γφ

}
. (3.45)

Observe thath is a concave increasing function defined in[0,+∞), satisfying, in the homo-
geneous caseh(ρ) = h(ρ) = ρα . It provides the bounds

φ̃(ρ ,z) ≤ h(ρ)‖z‖q
∗, ‖w‖ ≤ h(ρ)1/qφ(ρ ,w)1/p,

ϕ̃∞(z) ≤ h
∞‖z‖q

∗, ‖w‖ ≤
(
h

∞)1/qϕ∞(w)1/p, if h
∞ := lim

λ↑+∞
λ−1

h(λ ) > 0.
(3.46)

Observe that whenh∞ = 0 thenϕ̃∞ ≡ 0 andϕ∞(w) is given by (3.35).

Proposition 3.10 (Integrability estimates)Letζ be a nonnegative Borel function such that

µ(ζ q) :=
∫

Rd
ζ q dµ and γ(ζ q) :=

∫

Rd
ζ q dγ are finite,

and let Z:=
{

x∈ R
d : ζ (x) > 0

}
. If Φ(µ,ννν|γ) < +∞ we have

∫

Rd
ζ (x)d‖ννν‖(x) ≤ Φ1/p(µ,ννν |γ ,Z

)
H1/q(γ(ζ q),µ(ζ q)

)
. (3.47)

In particular, for every Borel set A∈ B(Rd) we have

‖ννν‖(A) ≤ Φ1/p(µ,ννν |γ ,A
)

H1/q(γ(A),µ(A)
)
. (3.48)

Proof It is sufficient to prove (3.47). Observe that if(a,b) ∈ Γφ thena≥ 0, andh
∞ ≤ b so

that by (3.46) we have

∫

Rd
ζ (x)d‖ννν‖(x) ≤

∫

Z
ζ‖w‖dγ +

∫

Z
ζ‖w⊥‖dµ⊥

≤
(∫

Z
φ(ρ ,w)dγ

)1/p(∫

Z
ζ q

h(ρ)dγ
)1/q

+
(∫

Z
ϕ∞(w⊥)dµ⊥

)1/p(
h

∞
∫

Z
ζ q dµ⊥

)1/q

≤
(

Φ(µ,ννν|γ ,Z)
)1/p(

a
∫

Rd
ζ q dγ +b

∫

Rd
ζ q dµ

)1/q
,

Taking the infimum of the last term over all the couples(a,b) ∈ Γφ we obtain (3.48). ⊓⊔
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4 Measure valued solutions of the continuity equation inRd

In this section we collect some results on the continuity equation

∂tµt +∇ ·ννν t = 0 in R
d × (0,T), (4.1)

which we will need in the sequel. Hereµt ,ννν t are Borel families of measures (see e.g. [3]) in
M

+
loc(R

d) andMloc(R
d;Rd) respectively, defined fort in the open interval(0,T), such that

∫ T

0
µt(BR)dt < +∞, VR :=

∫ T

0
|ννν t |(BR)dt < +∞ ∀R> 0, (4.2)

and we suppose that (4.1) holds in the sense of distributions, i.e.
∫ T

0

∫

Rd
∂tζ (x, t)dµt(x)dt +

∫ T

0

∫

Rd
∇xζ (x, t) · dννν t(x)dt = 0 (4.3)

for everyζ ∈C1
c(Rd × (0,T)). Thanks to the disintegration theorem [14, 4, III-70], we can

identify (ννν t)t∈(0,T) with the measureννν =
∫ T

0 ννν t dt ∈ Mloc(R
d × (0,T);Rd) defined by the

formula

〈ννν ,ζζζ〉 =

∫ T

0

(∫

Rd
ζζζ (x, t) ·dννν t(x)

)
dt ∀ζζζ ∈C0

c(Rd × (0,T);Rd). (4.4)

4.1 Preliminaries

Let us first adapt the results of [3, Chap. 8] (concerning a family of probability measures
µt) to the more general case of Radon measures. First of all we recall some (technical)
preliminaries.

Lemma 4.1 (Continuous representative)Let µt ,ννν t be Borel families of measures satisfy-
ing (4.2) and (4.3). Then there exists a uniqueweakly∗ continuouscurve t∈ [0,T] 7→ µ̃t ∈
M

+
loc(R

d) such thatµt = µ̃t for L
1-a.e. t∈ (0,T); if ζ ∈C1

c(R
d× [0,T]) and t1 ≤ t2 ∈ [0,T],

we have
∫

Rd
ζt2 dµ̃t2 −

∫

Rd
ζt1 dµ̃t1 =

∫ t2

t1

∫

Rd
∂tζ dµt(x)dt +

∫ t2

t1

∫

Rd
∇ζ · dννν t(x)dt, (4.5)

and the mass of̃µt can be uniformly bounded by

sup
t∈[0,T]

µ̃t(BR) ≤ µ̃s(B2R)+2R−1V2R ∀s∈ [0,T]. (4.6)

Moreover, ifµ̃s(R
d) < +∞ for some s∈ [0,T] and limR↑+∞ R−1VR = 0, then the total mass

µ̃t(R
d) is (finite and) constant.

Proof Let us takeζ (x, t) = η(t)ζ (x), η ∈C∞
c (0,T) andζ ∈C∞

c (Rd) with suppζ ⊂ BR; we
have

−
∫ T

0
η ′(t)

(∫

Rd
ζ (x)dµt(x)

)
dt =

∫ T

0
η(t)

(∫

Rd
∇ζ (x) · dννν t(x)

)
dt,

so that the mapt 7→ µt(ζ ) =
∫
Rd ζ dµt belongs toW1,1(0,T) with distributional derivative

µ̇t(ζ ) =
∫

Rd
∇ζ (x) · dννν t(x) for L

1-a.e.t ∈ (0,T), (4.7)
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satisfying

|µ̇t(ζ )| ≤VR(t)sup
Rd

|∇ζ |, VR(t) := |ννν t |(BR),
∫ T

0
VR(t)dt = VR < +∞. (4.8)

If Lζ is the set of its Lebesgue points, we know thatL
1((0,T) \Lζ ) = 0. Let us now take

an increasing sequenceRn := 2n ↑ +∞ and countable setsZn ⊂C∞
c (BRn) which are dense in

C1
0(BRn) := {ζ ∈ C1(Rd) : supp(ζ ) ⊂ BRn}, the closure ofC1

c(BRn) with respect the usual
C1 norm ‖ζ‖C1 = sup

Rd(|ζ |, |∇ζ |). We also setLZ := ∩n∈N,ζ∈ZnLζ . The restriction of the
curveµ to LZ provides a uniformly continuous family of functionals on each spaceC1

0(BRn),
since (4.8) shows

|µt(ζ )−µs(ζ )| ≤ ‖ζ‖C1

∫ t

s
VRn(λ )dλ ∀s, t ∈ LZ ∀ζ ∈ Zn.

Therefore, for everyn ∈ N it can be extended in a unique way to a continuous curve
{µ̃n

t }t∈[0,T] in [C1
0(BRn)]

′ which is uniformly bounded and satisfies the compatibility con-
dition

µ̃m
t (ζ ) = µ̃n(ζ ) if m≤ n andζ ∈C1

c(BRm). (4.9)

If ζ ∈C1
c(R

d) we can thus define

µ̃t(ζ ) := µ̃n
t (ζ ) for everyn∈ N such that supp(ζ ) ⊂ BRn. (4.10)

If we show that{µt(BRn)}t∈LZ is uniformly bounded for everyn∈N, the extension provides
a continuous curve inM+

loc(R
d). To this aim, let us consider nonnegative, smooth functions

ζk : R
d → [0,1], such that ζk(x) := ζ0(x/2k), (4.11a)

ζk(x) = 1 if |x| ≤ 2k, ζk(x) = 0 if |x| ≥ 2k+1, |∇ζk(x)| ≤ A2−k, (4.11b)

for some constantA> 1. It is not restrictive to suppose thatζk ∈Zk+1. Applying the previous
formula (4.7), fort, s∈ LZ we have

|µt(ζk)−µs(ζk)| ≤ ak := 21−k
∫ T

0
|ννν r |

(
B2Rk \BRk

)
dr ≤ A2−kV2Rk. (4.12)

It follows that

µt(BRk) ≤ µt(ζk) ≤ µs(ζk)+A2−kV2Rk ≤ µs(B2Rk)+A2−kV2Rk ∀ t ∈ LZ. (4.13)

Integrating with respect toswe end up with the uniform bound

µt(BRk) ≤ A2−kVRk+1 +
∫ T

0
µs(B2Rk)ds< +∞ ∀ t ∈ LZ.

Observe that the extensionµ̃t satisfies (4.13) (and therefore, in a completely analogous way,
(4.6)) and (4.12) for everys, t ∈ [0,T].

Now we show (4.5). Let us chooseζ ∈C1
c(Rd × [0,T]) andηε ∈C∞

c (t1, t2) such that

0≤ ηε (t) ≤ 1, lim
ε↓0

ηε(t) = χ(t1,t2)(t) ∀ t ∈ [0,T], lim
ε↓0

η ′
ε = δt1 −δt2
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in the duality with continuous functions in[0,T]. We get

0 =

∫ T

0

∫

Rd
∂t(ηεζ )dµt(x)dt +

∫ T

0

∫

Rd
∇x(ηεζ ) · dννν t dt

=

∫ T

0
ηε(t)

∫

Rd
∂tζ dµt dt +

∫ T

0
ηε(t)

∫

Rd
∇xζ · dννν t dt +

∫ T

0
η ′

ε(t)
∫

Rd
ζ dµ̃t dt.

Passing to the limit asε vanishes and invoking the continuity ofµ̃t , we get (4.5).
Finally, if limR↑+∞ R−1VR = 0 we can pass to the limit asRk ↑ +∞ in the inequality

(4.12), which also holds for everyt,s∈ [0,T] if we replaceµ by µ̃, by choosingsso that

m := µ̃s(R
d) = lim

k↑+∞
µ̃s(ζk) < +∞.

It follows that µ̃t(R
d) = limk↑+∞ µ̃s(ζk) = m for everyt ∈ [0,T]. ⊓⊔

Thanks to Lemma 4.1 we can introduce the following class of solutions of the continuity
equation.

Definition 4.2 (Solutions of the continuity equation)We denote byCE(0,T) the set of
time dependent measures(µt)t∈[0,T],(ννν t)t∈(0,T) such that

1. t 7→ µt is weakly∗ continuous inM
+
loc(R

d) (in particular, supt∈[0,T] µt(BR) < +∞ for
everyR> 0),

2. (ννν t)t∈(0,T) is a Borel family with
∫ T

0
|ννν t |(BR)dt < +∞ ∀R> 0;

3. (µ,ννν) is a distributional solution of (4.1).

CE(0,T;σ → η) denotes the subset of(µ,ννν) ∈ CE(0,T) such thatµ0 = σ , µ1 = η .

Solutions of the continuity equation can be rescaled in time:

Lemma 4.3 (Time rescaling)Let t : s∈ [0,T ′] → t(s) ∈ [0,T] be a strictly increasing ab-
solutely continuous map with absolutely continuous inverse s := t

−1. Then(µ,ννν) is a distri-
butional solution of(4.1) if and only if

µ̂ := µ ◦ t, ν̂νν := t
′(ννν ◦ t

)
, is a distributional solution of(4.1)on (0,T ′).

We refer to [3, Lemma 8.1.3] for the proof.
The proof of the next lemma follows directly from (4.5).

Lemma 4.4 (Glueing solutions)Let (µ i ,ννν i) ∈ CE(0,Ti), i = 1,2, with µ1
T1

= µ2
0 . Then the

new family(µt ,ννν t)t∈(0,T1+T2) defined as

µt :=

{
µ1

t if 0≤ t ≤ T1

µ2
t−T1

if T1 ≤ t ≤ T1 +T2
ννν t :=

{
ννν1

t if 0≤ t ≤ T1

ννν2
t−T1

if T1 ≤ t ≤ T1 +T2
(4.14)

belongs toCE(0,T1 +T2).

Lemma 4.5 (Compactness for solutions of the continuity equation (I)) Let (µn,νννn) be a
sequence inCE(0,T) such that

1. for some s∈ [0,T] supn∈N µn
s (BR) < +∞ ∀R> 0;

2. the sequence of maps t7→ |νννn
t |(BR) is equiintegrable in(0,T), for every R> 0.



20

Then there exists a subsequence (still indexed by n) and a couple (µt ,ννν t) ∈ CE(0,T) such
that (recall(4.4))

µn
t ⇀∗µt weakly∗ in M

+
loc(R

d) ∀ t ∈ [0,T],

νννn⇀∗ννν weakly∗ in Mloc(R
d× (0,T);Rd).

(4.15)

(4.15)yields in particular

∫ T

0
Φ(µt ,ννν t |γ)dt ≤ liminf

n↑+∞

∫ T

0
Φ(µn

t ,νννn
t |γn)dt (4.16)

for every sequence of Radon measuresγn⇀∗γ in M
+
loc(R

d), whereΦ is an integral func-
tional as in(3.37).

Proof Sinceνννn :=
∫ T

0 νννn
t dt and µn

s have total variation uniformly bounded on each com-
pact subset ofRd × [0,T], we can extract a subsequence (still denoted byµn

s ,νννn) such that
µn

s ⇀∗µs in Mloc(R
d) andνννn⇀∗ννν in Mloc(R

d × [0,T];Rd). The estimate (4.6) shows that

sup
n∈N

µn
t (BR) < +∞ ∀ t ∈ [0,T], R> 0. (4.17)

The equiintegrability condition onνννn shows thatννν satisfies

|ννν |(BR× I) =

∫

I
mR(t)dt ∀ I ∈ B(0,T), R> 0, for somemR ∈ L1(0,T),

so that by the disintegration theorem we can represent it asννν =
∫ T

0 ννν t for a Borel family
{ννν t}t∈(0,T) still satisfying (4.2). Let us now consider a functionζ ∈C1

c(Rd) and for a given
intervalI = [t0, t1]⊂ [0,T] the time dependent functionζζζ (t,x) := χ I (t)∇ζ (x). Since the dis-
continuity set ofζζζ is concentrated onN = R

d×{t0, t1} and|ννν |(N) = 0, general convergence
theorems (see e.g. [3, Prop. 5.1.10] yields

lim
n→∞

∫

I

∫

Rd
∇ζ (x) ·dνννn

t (x)dt = lim
n→∞

∫

Rd×(0,T)
ζζζ ·dνννn(t,x)

=

∫

Rd×(0,T)
ζζζ ·dννν(t,x) =

∫

I

∫

Rd
∇ζ (x) ·dννν t(x)dt.

(4.18)

Applying (4.5) withζ (t,x) := ζ (x) andt0 := s and the estimate (4.17) we thus obtain the
weak convergence ofµn

t to a measureµt ∈ M
+(Rd) for everyt ∈ [0,T]. It is immediate to

check that the couple(µt ,ννν t) belongs toCE(0,T). (4.16) follows now by the representation

∫ T

0
Φ(µt ,ννν t |γ)dt = Φ(µ,ννν|γ̄), µ :=

∫ T

0
µt dt, γ̄ = γ ⊗L

1 ∈ M
+
loc(R

d × (0,T))

and the lower semicontinuity property stated in Theorem 2.1. ⊓⊔
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4.2 Solutions of the continuity equation with finite Φ-energy

For all this section we will assume thatφ : (0,+∞)×R
d → (0,+∞) is an admissible action

density function as in (3.2a,b,c) for somep ∈ (1,+∞), γ ∈ M
+
loc(R

d) is a given reference
Radon measure, andΦ is the corresponding integral functional as in (3.37). We want to
study the properties of measure valued solutions(µ,ννν) of the continuity equation (4.1) with
finite Φ-energy

E :=
∫ T

0
Φ(µt ,ννν t |γ)dt < +∞. (4.19)

We denote byCEφ ,γ(0,T) the subset ofCE(0,T) whose elements(µ,ννν) satisfies (4.19).

Remark 4.6If (µt)t∈[0,T] is weakly∗ continuous inM+
loc(R

d) and (4.19) holds, thenµt ,ννν t

also satisfy (4.2): in fact, the weak∗ continuity ofµt yields for everyR> 0 supt∈[0,T] µt(BR) =
MR < +∞, and the estimate (3.48) yields (recall (3.43))

VR ≤ η
∫ T

0
‖ννν t‖(BR)dt ≤ η T1/q E1/p H(γ(BR),MR)1/q < +∞. (4.20)

Recalling that the functionh is defined by (3.44), we also introduce the concave function

ω(s) :=
∫ s

0

1

h(r)1/q
dr, ω(0) = 0, ω ′(s) =

1

h(s)1/q
, lim

s→∞
ω(s) = +∞. (4.21)

In the homogeneous caseφ(ρ ,z) = ρα‖z‖q
∗ we have

ω(s) =
∫ s

0
r−α/q dr =

q
q−α

s1−α/q =
p
θ

sθ/p. (4.22)

For given nonnegativeζ ∈C1
c(Rd) andµ ∈ M

+
loc(R

d) we will use the short notation

Z := supp(Dζ ) ⊂ R
d, Gp(ζ ) :=

∫

Z
ζ p dγ , D(ζ ) := sup

Rd
‖Dζ‖∗. (4.23)

Theorem 4.7 Let ζ ∈ C1
c(R

d) be a nonnegative function with Z,G(ζ ),D(ζ ) defined as in
(4.23), and letµ,ννν ∈ CEφ ,γ(0,T). Setting

EZ :=
∫ T

0
Φ(µt ,ννν t |γ ,Z)dt ≤ E < +∞, (4.24)

we have ∣∣ d
dt µt(ζ p)

∣∣ ≤ pD(ζ )Φ(µt ,ννν t |γ ,Z)1/p H
(
Gp(ζ ),µt(ζ p)

)1/q
. (4.25)

In particular, there exists a constantC1 > 0 only depending (in a monotone way) onh, p,T
such that

sup
t∈[0,T]

µt(ζ p) ≤ C1

(
µ0(ζ p)+D(ζ )Gp(ζ )1/qE1/p

Z +Dp(ζ )EZ

)
. (4.26)

Moreover, if Gp(ζ ) > 0,

∣∣ d
dt ω (µt(ζ p)/Gp(ζ ))

∣∣ ≤ pD(ζ )

Gp(ζ )1/p
Φ(µt ,ννν t |γ ,Z)1/p for a.e. t∈ (0,T). (4.27)

In particular, in the(α-θ)-homogeneous case, for every0≤ s≤ t ≤ T we have
∣∣∣‖ζ‖θ

Lp(µt )
−‖ζ‖θ

Lp(µs)

∣∣∣ ≤ θ D(ζ )‖ζ‖θ−1
Lp(γ ,Z)

∫ t

s
Φ(µr ,ννν r |γ ,Z)1/pdr. (4.28)
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Proof Settingmt := µt(ζ p), G = Gp(ζ ), D = D(ζ ) we easily have by (3.47)

d
dt

mt =
d
dt

∫

Rd
ζ p dµt = p

∫

Z
ζ p−1∇ζ ·dννν t ≤ pDΦ(µt ,ννν t |γ ,Z)1/p H

(
G,mt

)1/q
,

since(ζ p−1)q = ζ p. SinceH
(
G,mt) = Gh(mt/G), we get

h
−1/q(mt/G)

d
dt

mt ≤ pDG1/qΦ(µt ,ννν t |γ ,Z)1/p.

Recalling thatd
dr ω(r) = h

−1/q(r) we get (4.27).
In order to prove (4.26) we setM := supt∈[0,T] mt and we choose constants(a,b) ∈ Γφ ;

integrating (4.25) we get

sup
t∈[0,T]

∣∣mt −m0
∣∣ ≤ pDT1/q

((
aG

)1/q
E1/p

Z +
(
bM

)1/q
E1/p

Z

)
. (4.29)

By using the inequalityxy≤ p−1xp +q−1yq we obtain

M ≤ m0 + pD
(
aT G

)1/q
E1/p

Z +
1
q

M + pp−1 Dp(
bT

)p/q
EZ (4.30)

which yields (4.26) withC1 := pmax
(
1, p(aT)1/q, pp−1(bT)p/q

)
.

Finally, let us assume thatφ satisfies the(α-θ)-homogeneity condition, so thatω(s) =
p
θ sθ/p as in (4.22). It follows that

ω(G−1mt) =
p
θ
‖ζ‖θ

Lp(µt )
‖ζ‖−θ

Lp(γ ,Z). (4.31)

Integrating (4.27) we conclude. ⊓⊔

We extend the definition ofmr(µ) also for negative values ofr by setting

m̃r(µ) := µ(B1)+
∫

Rd\B1

|x|r dµ(x) =
∫

Rd

(
1∨ |x|

)r dµ(x) ∀ r ∈ R. (4.32)

Notice thatm̃0(µ) = µ(Rd) andmr(µ)≤ m̃r(µ) ≤ µ(B1)+mr(µ) whenr > 0.

Theorem 4.8 Let us assume that̃mr(γ) < +∞ for some r≤ p and let(µ,ννν) ∈ CEφ ,γ(0,T)
satisfy(4.19). For everyδ ≤ 1+ r/q, if m̃δ (µ0) < +∞ then alsom̃δ (µt) < +∞ and there
exists a constantC2 only depending in a monotone way onh, p,T,A, |δ | such that

m̃δ (µt) ≤ C2

(
m̃δ (µ0)+ m̃r(γ)1/qE1/p +E

)
. (4.33)

Moreover, if r≥−q andµ0(R
d) < +∞, thenµt(R

d) is finite and constant for every t∈ [0,T].

Proof Let us first set
Kn := 2nrγ(B2n+1 \B2n) (4.34)

observing that

Kn ≤
+∞

∑
j=0

K j ≤ 2r−
m̃r(γ), limsup

n↑+∞
Kn = 0. (4.35)

We consider the usual cutoff functionsζn ∈C∞
c (Rd) as in (4.11a,b) and we set

Dn = D(ζn) = sup‖Dζn‖∗ ≤ A2−n, Gn = Gp(ζn) ≤ γ(B2n+1 \B2n) = 2−nr Kn. (4.36)
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By (4.26) we obtain

sup
t∈[0,T]

µt(B2n) ≤ C1

(
µ0(B2n+1)+A2−n(1+r/q)K1/q

n E1/q +Ap 2−npE
)

; (4.37)

in particular, ifr ≥−q andµ0(R
d) < +∞, we can derive the uniform upper boundµt(R

d)≤
C1 µ0(R

d) letting n ↑ +∞. We can then deduce thatµt(R
d) is constant by applying the

estimate (4.25), which yields after an integration in time and for every(a,b) ∈ Γφ

sup
t∈[0,T]

∣∣µt(ζ p
n )−µ0(ζ p

n )
∣∣ ≤ pAT1/q E1/p 2−n(a2−nr Kn +bC1µ0(R

d)
)1/q

.

In order to show (4.33), we argue as before, by introducing the new family of test functions
induced byυn(x) := υ0(x/2n) ∈C∞

c (Rd)

0≤ υn ≤ 1,

{
υn(x) ≡ 1 if 2n ≤ |x| ≤ 2n+1,

υn(x) ≡ 0 if |x| ≤ 2n−1 or |x| ≥ 2n+2,
‖Dυn‖∗ ≤ A2−n. (4.38)

Observe that 1≤ ∑+∞
n=1

(
υn(x)

)p ≤ 3 and for some constantAδ > 1

A−1
δ |x|δ ≤

+∞

∑
n=1

2δn(υn(x)
)p ≤ Aδ |x|δ ∀x∈ R

d, |x| ≥ 2. (4.39)

As before, settingK′
n := Kn+1 +Kn−1, we haveD(υn) ≤ A2−n and

Gp(υn) ≤
(

2−(n+1)r Kn+1 +2−(n−1)r Kn−1

)
≤ 2|r| 2−nr K′

n. (4.40)

Applying (4.26) we get for everyt ∈ [0,T]

2nδ µt(υ p
n ) ≤ C1

(
2nδ µ0(υ p

n )+A2(δ−1−r/q)n(K′
n)

1/q (E′
n)

1/p +Ap 2(δ−p)nE′
n

)
,

where

En :=
∫ T

0
Φ(µt ,ννν t |γ ,B2n+1 \B2n)dt, E′

n := En+1 +En−1. (4.41)

Sinceδ ≤ 1+ r/q andδ ≤ p, summing up with respect ton and recalling (4.37) we get

m̃δ (µt) ≤ C2

(
m̃δ (µ0)+(m̃r(γ))1/qE1/p +E

)
. ⊓⊔ (4.42)

In the theθ -homogeneous case we have a more refined estimate:

Theorem 4.9 Let us assume thatφ is θ -homogeneous for someθ ∈ (1, p], the measureγ
satisfies the r-moment conditioñmr(γ) < +∞, and let(µ,ννν) ∈ CEφ ,γ (0,T) satisfy(4.19).
For everyδ ≤ δ̄ := 1

θ p+(1− 1
θ )r, if m̃δ (µ0) < +∞ thenm̃δ (µt) is finite and there exists a

constantC3 > 0 such that

m̃δ (µt) ≤ C3

(
m̃δ (µ0)+ m̃r(γ)1−1/θ E1/θ

)
. (4.43)

Moreover, ifδ̄ ≥ 0 (i.e. r≥−p/(θ −1)) andµ0(R
d) < +∞ thenµt(R

d) is finite and constant
for t ∈ [0,T].
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Proof We argue as in the proof of Theorem (4.9), keeping the same notation and using the
crucial estimate (4.28). Ifζn are the test functions of (4.11a,b),

‖ζn‖θ−1
Lp(γ ,Zn) = G(θ−1)/p

n
(4.36)
= 2−nr(θ−1)/p(Kn

)(θ−1)/p
, (4.44)

so that, sincēδ θ/p = 1+(θ −1)r/p, (4.28) yields
∣∣∣
(
µt(ζ p

n )
)θ/p−

(
µ0(ζ p

n )
)θ/p

∣∣∣ ≤ Aθ2−δ̄ θn/p(
Kn

)(θ−1)/p
E1/p. (4.45)

Sinceδ̄ ≥ 0, passing to the limit asn ↑ ∞ and recalling (4.35), we getµt(R
d) ≡ µ0(R

d).
Concerning the moment estimate, we replaceζn by υn, defined by in (4.38), obtaining

∣∣∣
(
µt(υ p

n )
)θ/p−

(
µ0(υ p

n )
)θ/p

∣∣∣ ≤ C3.12−δ̄ θn/p(
K′

n

)(θ−1)/p(
E′

n

)1/p
, (4.46)

and therefore
µt(υ p

n ) ≤ C3.2

(
µ0(υ p

n )+2−δ̄n(K′
n

)1−1/θ (
E′

n

)1/θ
)
. (4.47)

Multiplying this inequality by 2nδ , summing up w.r.t.n, and recalling (4.39), we obtain

m̃δ (µt) ≤ C3

(
m̃δ (µ0)+ m̃r(γ)1−1/θ E1/θ

)
. ⊓⊔ (4.48)

Corollary 4.10 (Compactness for solutions of the continuity equation (II)) Let (µn,νννn)
be a sequence inCEφ ,γ (0,T) and letγn⇀∗γ in M

+
loc(R

d) such that

sup
n∈N

µn
0(BR) < +∞ ∀R> 0, sup

n∈N

∫ T

0
Φ(µn

t ,νννn
t |γn)dt < +∞. (4.49)

Then conditions 1. and 2. of Lemma 4.5 are satisfied and therefore there exists a subsequence
(still indexed by n) and a couple(µt ,ννν t) ∈ CEφ ,γ(0,T) such that

µn
t ⇀∗µt weakly∗ in M

+
loc(R

d) ∀ t ∈ [0,T],

νννn⇀∗ννν weakly∗ in Mloc(R
d× (0,T);Rd),

(4.50)

∫ T

0
Φ(µt ,ννν t |γ)dt ≤ liminf

n↑+∞

∫ T

0
Φ(µn

t ,νννn
t |γn)dt. (4.51)

Suppose moreover thatµn
0(Rd) → µ0(R

d) and supn m̃κ (γn) < +∞ whereκ = −q or κ =
−p/(θ − 1) in the θ -homogeneous case, then (along the same subsequence)µn

t (Rd) →
µt(R

d) for every t∈ [0,T].

Proof SincePR := supn γn(BR) < +∞ for everyR > 0, the estimate (4.33) forδ = 0 and
the assumption (4.49) show thatMR = supn∈N,t∈[0,T ] µn

t (BR) < +∞ for everyR> 0. We can
therefore obtain a bound of‖νννn

t ‖(BR) by (3.48), which yields

‖νννn
t ‖(BR) ≤ H(PR,MR)1/qΦ(µt ,ννν t |γ)1/p,

so that the mapst 7→ ‖νννn
t ‖(BR) are uniformly bounded by a function inLp(0,T). The last

assertion follows by the fact thatt 7→ µn
t (Rd) is independent of time, thanks to Theorem 4.9

(in the(α-θ)-homogeneous case) or Theorem 4.8 (for general density functionsφ ). ⊓⊔
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5 The (φ -γ)-weighted Wasserstein distance

As we already mentioned in the Introduction, BENAMOU-BRENIER [7] showed that the
Wasserstein distanceWp (1.1) can be equivalently characterized by a “dynamic” point of
view through (1.15), involving the 1-homogeneous action functional (1.13). The same ap-
proach can be applied to arbitrary action functionals.

Definition 5.1 (Weighted Wasserstein distances)Let γ ∈ M
+
loc(R

d) be a fixed reference
measure andφ : (0,+∞)×R

d → [0,+∞) a function satisfying Conditions (3.2a,b,c). The
(φ ,γ)-Wasserstein (pseudo-) distance betweenµ0,µ1 ∈ M

+
loc(R

d) is defined as

W
p
φ ,γ (µ0,µ1) := inf

{∫ 1

0
Φ(µt ,ννν t |γ)dt : (µ,ννν) ∈ CE(0,1;µ0 → µ1)

}
. (5.1)

We denote byMφ ,γ [µ0] the set of all the measuresµ ∈ M
+
loc(R

d) which are at finiteWφ ,γ -
distance fromµ0.

Remark 5.2Let us recall the notationWp,α ;γ of (1.23) in the caseφp,α(ρ ,w) = ρα |w/ρα |p.
Whenα = 0 we find the dual homogeneous Sobolev (pseudo-)distance (1.7) and in the case
α = 1 and supp(γ) = R

d we get the usual Wasserstein distance:

‖µ0−µ1‖Ẇ−1,p
γ

= Wp,0;γ (µ0,µ1), Wp(µ0,µ1) = Wp,1;γ (µ0,µ1).

Remark 5.3Taking into account Lemma 4.3, a linear time rescaling showsthat

Wp
φ ,γ(µ0,µT) := inf

{
T p−1

∫ T

0
Φ(µt ,ννν t |γ)dt : (µ,ννν) ∈ CE(0,T; µ0 → µT)

}
. (5.2)

Theorem 5.4 (Existence of minimizers)Whenever the infimum in(5.1) is a finite value
W < +∞, it is attained by a curve(µ,ννν) ∈ CEφ ,γ (0,1) such that

Φ(µt ,ννν t |γ) = W forL
1-a.e. t∈ (0,1). (5.3)

The curve(µt)t∈[0,1] associated to a minimum for(5.1) is a constant speed mimimal geodesic
for Wφ ,γ since it satisfies

Wφ ,γ(µs,µt) = |t −s|Wφ ,γ(µ0,µ1) ∀s, t ∈ [0,1]. (5.4)

We have also the equivalent characterization

Wφ ,γ(σ ,η) = inf
{∫ T

0

(
Φ(µt ,ννν t |γ)

)1/p
dt : (µ,ννν) ∈ CE(0,T;σ → η)

}
. (5.5)

Proof WhenWφ ,γ(µ0,µ1) < +∞, Corollary 4.10 immediately yields the existence of a min-
imizing curve(µ,ννν). Just for the proof of (5.5), let us denote bȳWφ ,γ(σ ,η) the infimum
of the right-hand side of (5.5). Hölder inequality immediately shows thatWφ ,γ(σ ,η) ≥
W̄φ ,γ(σ ,η). In order to prove the opposite inequality, we argue as in [3,Lemma 1.1.4],
defining for(µ,ννν) ∈ CE(0,T;σ → η)

sε (t) :=
∫ t

0

(
ε +Φ(µr ,ννν r |γ)

)1/p
dr, t ∈ [0,T]; (5.6)
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sε is strictly increasing withs′ε ≥ ε , sε (0,T) = (0,Sε ) with Sε := sε (T), so that its inverse
maptε : [0,Sε ] → [0,T] is well defined and Lipschitz continuous, with

t
′
ε ◦ sε =

(
ε +Φ(µt ,ννν t)

)−1/p
a.e. in(0,T). (5.7)

If µ̂ε = µ ◦ tε ,ν̂ννε := t
′
ε ννν ◦ tε , we know that(µ̂ε ,ν̂ννε ) ∈ CE(0,Sε ;σ → η) so that

W
p
φ ,γ(σ ,η)≤ Sp−1

ε

∫ Sε

0
Φ(µ̂ε

s ,ν̂ννε
s|γ)ds= Sp−1

ε

∫ T

0

Φ(µε
t ,νννε

t |γ)

ε +Φ(µε
t ,νννε

t |γ)

(
ε +Φ(µt ,ννν t)

)1/p
dt,

the latter integral being less thanSp
ε . Passing to the limit asε ↓ 0, we get

Wφ ,γ (σ ,η)≤
∫ T

0
Φ(µt ,ννν t |γ)1/p dt ∀(µ,ννν) ∈ CE(0,T;σ → η), (5.8)

and thereforeWφ ,γ(σ ,η)≤ W̄φ ,γ(σ ,η). If (µ,ννν) ∈ CEφ ,γ(0,1;µ0 → µ1) is a minimizer of
(5.1), then (5.8) yields

W1/p = Wφ ,γ (µ0,µ1) =
(∫ 1

0
Φ(µt ,ννν t |γ)dt

)1/p
=

∫ 1

0
Φ(µt ,ννν t |γ)1/p dt,

so that (5.3) holds. ⊓⊔

5.1 Topological properties

Theorem 5.5 (Distance and weak convergence)The functionalWφ ,γ is a (pseudo)-distance
on M

+
loc(R

d) which induces a stronger topology than the weak∗ one. Bounded sets with re-
spect toWφ ,γ are weakly∗ relatively compact.

Proof It is immediate to check thatWφ ,γ is symmetric (sinceφ(ρ ,−w) = φ(ρ ,w)) and
Wφ ,γ(σ ,η) = 0 ⇒ σ ≡ η . The triangular inequality follows as well from the characteriza-
tion (5.5) and the gluing Lemma 4.4.

From (4.27) (keeping the same notation (4.23)) and (5.5) we immediately get for every
µ0,µ1 ∈ M

+
loc(R

d) and nonnegativeζ ∈C1
c(Rd) with ‖ζ‖Lp(γ) > 0

∣∣∣ω
(
µ1(ζ p)/Gp(ζ )

)
−ω

(
µ0(ζ p)/Gp(ζ )

)∣∣∣ ≤ pD(ζ )

‖ζ‖Lp(γ)
Wφ ,γ(σ ,η),

which shows the last assertion, sinceω is strictly increasing and the set
{

ζ p : ζ ∈C1
c(R

d), ζ ≥ 0, ‖ζ‖Lp(γ) > 0
}

is dense in the space of nonnegative continuous functions with compact support (endowed
with the uniform topology). ⊓⊔

Theorem 5.6 (Lower semicontinuity)The map(µ0,µ1) 7→ Wφ ,γ(µ0,µ1) is lower semi-
continuous with respect to weak∗ convergence inM+

loc(R
d). More generally, suppose that

γn⇀∗γ in M
+
loc(R

d), φn is monotonically increasing w.r.t. n and pointwise converging to φ ,
andµn

0⇀∗µ0,µn
1⇀∗µ1 in M

+
loc(R

d) as n↑ +∞. Then

liminf
n↑+∞

Wφn,γn(µn
0,µn

1) ≥ Wφ ,γ(µ0,µ1). (5.9)
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Proof It is not restrictive to assume thatWφn,γn(µn
0,µn

1) < S< +∞, so that we can find a
sequence(µn,νννn) ∈ CEφn,γn(0,1;µn

0 → µn
1) such that

Φm(µn
t ,νννn

t |γn) ≤ S a.e. in(0,1), ∀m≤ n∈ N, (5.10)

whereΦm denotes the integral functional associated toφm. We can apply Theorem 4.10 and
we can extract a suitable subsequence (still denoted buµn,νννn) and a limit curve(µ,ννν) ∈
CEφ ,γ(0,1;µ0 → µ1) such that (4.50) holds. We eventually have

W
p
φm,γ (µ0,µ1) ≤

∫ 1

0
Φm(µt ,ννν t |γ)dt ≤ S. (5.11)

Passing to the limit w.r.t.m↑ +∞ we conclude. ⊓⊔
Theorem 5.7 (Completeness)For everyσ ∈ M

+
loc(R

d) the spaceMφ ,γ [σ ] endowed with
the distanceWφ ,γ is complete.

Proof Let (µn)n∈N be a Cauchy sequence inMφ ,γ [σ ] w.r.t. the distanceWφ ,γ ; in particular,
(µn) is bounded so that we can extract a suitable convergence subsequenceµnk weakly∗

converging toµ∞ in M
+
loc(R

d). Thanks to Theorem 5.6 we easily getWφ ,γ(µm,µ∞) ≤
liminf k→∞ Wφ ,γ (µm,µnk), and therefore, taking into account the Cauchy condition,
limsupm→∞ Wφ ,γ(µm,µ∞)≤ limsupn,m→∞ Wφ ,γ (µm,µn) = 0 so thatµn converges toµ∞. ⊓⊔
Let us now consider the case of measures with finite mass (justto fix the constant, probability
measures inP(Rd)). We introduce the parameter

κ :=





p
θ −1

=
q

1−α
if φ is (α-θ)-homogeneous,

p
p−1 = q otherwise.

(5.12)

Theorem 5.8 (Distance and total mass)Let us assume that̃m−κ (γ) < +∞ and let us sup-
pose thatσ ∈ P(Rd). ThenMφ ,γ [σ ] ⊂ P(Rd), the weighted Wasserstein distanceWφ ,γ is
stronger than the narrow convergence inP(Rd), and P(Rd) endowed with the (pseudo-)
distanceWφ ,γ is a complete (pseudo-)metric space.

Proof If η ∈ Mφ ,γ [σ ] then Theorem 4.9 (in theθ -homogeneous case) or 4.8 (in the gen-
eral case) yieldsη(Rd) = σ (Rd) = 1, so thatMφ ,γ [σ ]⊂ P(Rd). Since the narrow topology
coincide with the weak∗ one inP(Rd), Theorem 5.5 proves the second statement. The com-
pleteness ofP(Rd) with respect to the (pseudo) distanceWφ ,γ follows by Theorem 5.7. ⊓⊔
We can also prove some useful moment estimates.

Theorem 5.9 (Moment estimates)Let us assume that̃mr(γ) < +∞ for some r∈ R and let
us set

δ̄ :=

{
1
θ p+(1− 1

θ )r = p
θ (1+ r/κ) if φ is θ -homogeneous,

1+ r/q≤ p otherwise.
(5.13)

If m̃δ (σ ) < +∞ for someδ ≤ δ̄ , andη ∈ Mφ ,γ [σ ], thenm̃δ (η) is finite and there exists a
constantC only depending onφ ,δ such that





m̃δ (η)≤ C

(
m̃δ (σ )+ m̃r(γ)+W

p
φ ,γ(σ ,η)

)

m̃δ (η)≤ C

(
m̃δ (σ )+ m̃r(γ)1−1/θWp/θ

p,α (σ ,η)
)
.

(5.14)

Moreover, whenδ ≥ 1, the topology induced byWφ ,γ in Mφ ,γ [σ ] is stronger than the one
induced by the Wasserstein distance Wδ .
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Proof Let us first consider the general case: applying (4.33) we easily obtain (5.14). In
order to prove the assertion about the convergence of the moments induced byWφ ,γ (which
is equivalent to the convergence inWδ whenδ ≥ 1), a simple modification of (4.42) yields

∫

|x|≥2n
|x|δ dη ≤ C3

(∫

|x|≥2n−1
|x|δ dσ + m̃r (γ)1/q

Wφ ,γ(σ ,η)+Wp
φ ,γ(σ ,η)

)
, (5.15)

which shows that every sequenceηn converging toσ hasδ -moments equi-integrable and
therefore it is relatively compact with respect to theδ -Wasserstein distance whenδ ≥ 1.

Theθ -homogeneous case follows by the same argument and Theorem 4.9. ⊓⊔

Remark 5.10There are interesting particular cases covered by the previous result:

1. Whenγ(Rd) < +∞ thenWφ ,γ is always stronger than the 1-Wasserstein distanceW1; in
theθ -homogeneous case,Wp,α ;γ also controls theWp/θ distance.

2. Whenmp(γ) < +∞, thenWφ ,γ is always stronger thanWp.
3. Whenφ is θ -homogeneous withθ > 1 andγ is a probability measure with finite mo-

ments of arbitrary orders (this is the case of a log-concave probability measure), then all
the measuresσ ∈ Mφ ,γ [γ ] have finite moments of arbitrary orders and the convergence
with respect toWφ ,γ yields the convergence inPδ (Rd) for everyδ > 0.

5.2 Geometric properties

Theorem 5.11 (Convexity of the distance and uniqueness of geodesics)Wp
φ ,γ(·, ·) is con-

vex, i.e. for everyµ j
i ∈ M

+
loc(R

d), i, j = 0,1, andτ ∈ [0,1], if µτ
i = (1− τ)µ0

i + τµ1
i ,

W
p
φ ,γ(µτ

0 ,µτ
1 ) ≤ (1− τ)Wp

φ ,γ(µ0
0 ,µ0

1)+ τW
p
φ ,γ(µ1

0,µ1
1). (5.16)

If φ is strictly convex andφ̃ has a sublinear growth w.r.t.ρ (i.e. ϕ̃∞ ≡ 0), then for ev-
ery µ0,µ1 ∈ M

+
loc(R

d) with Wφ ,γ(µ0,µ1) < +∞ there exists auniquemimimizer(µ,ννν) ∈
CEφ ,γ(0,1) of (5.1).

Proof Let (µ j ,ννν j)∈CEφ ,γ(0,1;µ j
0 → µ j

1) be two minimizers of (5.1),j = 0,1. Forτ ∈ [0,1]
we setµτ

t := (1−τ)µ0
t +τµ1

t , ννντ
t := (1−τ)ννν0

t +τννν1
t . Since(µτ ,ννντ) ∈ CE(0,1;µτ

0 → µτ
1 ),

the convexity ofφ yields

W
p
φ ,γ(µτ

0 ,µτ
1) ≤

∫ 1

0
Φ(µτ

t ,ννντ
t |γ)dt ≤

∫ 1

0

(
(1− τ)Φ(µ0

t ,ννν0
t |γ)+ τΦ(µ1

t ,ννν1
t |γ)

)
dt

= (1− τ)Wp
φ ,γ(µ0

0 ,µ0
1)+ τW

p
φ ,γ(µ1

0 ,µ1
1).

Let us now suppose thatφ is strictly convex and sublinear. Setting, as usual,µτ
t = ρτ

t γ +
(µτ

t )⊥, ννντ
t = wτ

t γ , we have for a.e.t ∈ (0,1)

Φ(µτ
t ,ννντ

t |γ) ≤ (1− τ)

∫

Rd
φ(ρ0

t ,w0
t )dγ + τ

∫

Rd
φ(ρ1

t ,w1
t )dγ (5.17)

and the inequality is strict unlessρ0
t ≡ ρ1

t andw0
t ≡ w1

t for γ-a.e.x ∈ R
d. If µ0

0 = µ1
0 and

µ0
1 = µ1

1 , two minimizers should satisfy

ρ0
t (x) = ρ1

t (x), w0
t (x) = w1

t (x) γ-a.e., ννν0
t = ννν1

t for L
1-a.e.t ∈ (0,1).
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Since(µ i ,ννν i) are solutions of the continuity equation, taking the difference we obtain

∂t
(
(µ0

t )⊥− (µ1
t )⊥

)
= ∂t(µ0

t −µ1
t ) = −∇ · (ννν0

t −ννν1
t ) = 0 in R

d × (0,1).

The difference(µ0
t )⊥ − (µ1

t )⊥ is then independent of time and vanishes att = 0, so that
µ0

t = µ1
t for everyt ∈ [0,1]. ⊓⊔

Theorem 5.12 (Subadditivity)For everyµ j
i ∈ M

+
loc(R

d), i, j = 0,1, we have

Wφ ,γ(µ0
0 + µ1

0 ,µ0
1 + µ1

1) ≤ Wφ ,γ(µ0
0 ,µ0

1)+Wφ ,γ(µ1
0,µ1

1). (5.18)

In particular

Wφ ,γ(µ0 +σ ,µ1 +σ )≤ Wφ ,γ(µ0,µ1) ∀σ ∈ M
+
loc(R

d). (5.19)

Proof Let (µ j ,ννν j)∈ CEφ ,γ(0,1;µ j
0 → µ j

1) be as in the proof of the previous Theorem. Since
(µ0 + µ1,ννν0 +ννν1) ∈ CE(0,1;µ0

0 + µ1
0 → µ0

1 + µ1
1), we get

Wφ ,γ(µ0
0 + µ1

0 ,µ0
1 + µ1

1) ≤
∫ 1

0

(
Φ(µ0

t + µ1
t ,ννν0

t +ννν1
t |γ)

)1/p
dt

≤
∫ 1

0

[(
Φ(µ0

t + µ1
t ,ννν0

t |γ)
)1/p

+
(

Φ(µ0
t + µ1

t ,ννν1
t |γ)

)1/p]
dt

≤
∫ 1

0

[(
Φ(µ0

t ,ννν0
t |γ)

)1/p
+

(
Φ(µ1

t ,ννν1
t |γ)

)1/p]
dt = Wφ ,γ(µ0

0 ,µ0
1)+Wφ ,γ(µ1

0 ,µ1
1). ⊓⊔

Proposition 5.13 (Rescaling)For everyµ0,µ1 ∈ M
+
loc(R

d) andλ > 0 we have

Wp
φ ,λγ (λ µ0,λ µ1) = λW

p
φ ,γ(µ0,µ1), (5.20)

{
Wp

φ ,γ(λ µ0,λ µ1) ≤ λ p
W

p
φ ,γ(µ0,µ1) if λ ≥ 1

Wp
φ ,γ(λ µ0,λ µ1) ≤ λW

p
φ ,γ(µ0,µ1) if λ ≤ 1.

(5.21)

Proof (5.20) follows from the corresponding propertyΦ(λ µ,λννν|λγ) = λΦ(µ,ννν|γ). Anal-
ogously, the monotonicity and homogeneity properties ofφ yield

φ(λρ ,λw) ≤ φ(ρ ,λw) = λ pφ(ρ ,w) if λ > 1;

the convexity ofφ and the fact thatφ(0,0) = 0 yield

φ(λρ ,λw) ≤ λφ(ρ ,w) if λ < 1.

(5.21) follows immediately by the previous inequalities. ⊓⊔

Proposition 5.14 (Monotonicity) If γ1 ≥ γ2 andφ1 ≤ φ2, then for everyµ0,µ1 ∈ M
+
loc(R

d)
we have

Wφ1,γ1(µ0,µ1) ≤ Wφ2,γ2(µ0,µ1). (5.22)

Theorem 5.15 (Convolution)Let k∈ C∞
c (Rd) be a nonnegative convolution kernel with∫

Rd k(x)dx = 1 and let kε (x) := ε−dk(x/ε). For everyµ0,µ1 ∈ M
+
loc(R

d) we have

Wφ ,γ∗kε (µ0∗kε ,µ1∗kε ) ≤ Wφ ,γ (µ0,µ1) ∀ε > 0; (5.23)

lim
ε↓0

Wφ ,γ∗kε (µ0∗kε ,µ1∗kε ) = Wφ ,γ (µ0,µ1). (5.24)
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Proof Let (µ,ννν)∈ CEφ ,γ(0,1;µ0 → µ1) be an optimal connecting curve as in Theorem 5.11
and let us setµε

t = µt ∗ kε ,νννε
t := ννν t ∗ kε . Since(µε ,νννε ) ∈ CE(0,1;µε

0 → µε
1 ), (5.23) then

follows by (2.12) whereas (5.24) is a consequence of Theorem5.6 ⊓⊔

Remark 5.16 (Smooth approximations)For a given curve(µ,ννν) ∈ CEφ ,γ(0,1) the convolu-
tion technique of the previous Theorem exhibits an approximations(µε ,νννε) in CEφ ,γε (0,1),
γε := γ ∗kε , which enjoy some useful properties:

1. µε = ρε
L

d, νννε = wε
L

d with ρε ,wε ∈ C∞(Rd); if µ0(R
d) < +∞ andm̃−κ (γ) < +∞

(recall Theorem 5.8), thenρε is also uniformly bounded.
2. If supp(k) ⊂ B1 then ρε ,wε are supported inGε :=

{
x ∈ R

d : dist(x,G) ≤ ε
}

, G =
supp(γ).

3. ρε ,wε are classical solution of the continuity equation

∂tρε +∇ ·wε = 0 in R
d × (0,1).

4. If (µ,ννν) is also a geodesic,
∫

Rd
φ(ρε

t ,wε
t )dγε ≤ Φ(ρt ,ννν t |γ) = W

p
φ ,γ(µ0,µ1) for every

t ∈ [0,1].

5.3 Absolutely continuous curves and geodesics

We now study absolutely continuous curves with respect toWφ ,γ and their length. Let us
first recall (see e.g. [3, Chap. 1]) that a curvet 7→ µt ∈ Mloc(R

d), t ∈ [0,T], is absolutely
continuous w.r.t.Wφ ,γ if there exists a functionm∈ L1(0,T) such that

Wφ ,γ(µt1,µt0) ≤
∫ t1

t0
m(t)dt ∀0≤ t0 < t1 ≤ T. (5.25)

The curve has finitep-energy if moreoverm∈ Lp(0,T). The metric derivative|µ ′| of an
absolutely continuous curve is defined as

|µ ′
t | := lim

h→0

Wφ ,γ(µt+h,µt)

|h| , (5.26)

and it is possible to prove that|µ ′
t | exists and satisfies|µ ′

t | ≤ m(t) for L 1-a.e.t ∈ (0,T). The
length ofµ is then defined as the integral of|µ ′| in the interval(0,T).

Theorem 5.17 (Absolutely continuous curves and their metric velocity)A curve t7→ µt ,
t ∈ [0,T], is absolutely continuous with respect toWφ ,γ if and only if there exists a Borel
family of measures(ννν t)t∈(0,T) in Mloc(R

d;Rd) such that(µ,ννν) ∈ CEφ ,γ(0,T) and

∫ T

0

(
Φ(µt ,ννν t |γ)

)1/p
dt < +∞. (5.27)

In this case we have

|µ ′
t |p ≤ Φ(µt ,ννν t |γ) for L

1-a.e. t∈ (0,T), (5.28)

and there exists a unique Borel familyν̃νν t such that

|µ ′
t |p = Φ(µt ,ν̃νν t |γ) for L

1-a.e. t∈ (0,T). (5.29)
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Proof One implication is trivial: if(µ,ννν) ∈ CEφ ,γ(0,T) and (5.27) holds, then (5.5) yields

Wφ ,γ (µt1,µt0) ≤
∫ t1

t0

(
Φ(µt ,ννν t |γ)

)1/p
dt, (5.30)

so thatµ is absolutely continuous and (5.28) holds.
Conversely, let us assume thatµ is an absolutely continuous curve with lengthL. A

standard reparametrization results [3, Lemma 1.1.4] showsthat it is not restrictive to assume
that µ is a Lipschitz map. We fix an integerN > 0, a step sizeτ := 2−NT, and a family of
geodesics(µk,N,νννk,N) ∈ CEφ ,γ((k−1)τ ,kτ ; µ(k−1)τ → µkτ), k = 1, · · · ,2N, such that

τΦ(µk,N
t ,νννk,N

t |γ) = τ1−pWp
φ ,γ(µ(k−1)τ ,µkτ) ≤

∫ kτ

(k−1)τ
|µ ′

t |p dt. (5.31)

Let (µN,νννN)∈CEφ ,γ(0,T) be the curve obtained by gluing together all the geodesics(µk,N,νννk,N).
Applying Corollary 4.10, we can find a subsequence(µNh,νννNh) and a couple(µ,ννν) ∈
CEφ ,γ(0,T) such thatµNh

t ⇀∗µ̃t for everyt ∈ [0,T] andνννNh⇀∗ννν in Mloc(R
d × (0,T);Rd).

It is immediate to check thatµt ≡ µ̃t for everyt ∈ [0,T] and

∫ T

0
|µ ′

t |p dt ≥ liminf
h↑+∞

∫ T

0
Φ(µNh

t ,νννNh
t |γ)dt ≥

∫ T

0
Φ(µt ,ννν t |γ)dt ≥

∫ T

0
|µ̃ ′

t |p dt,

which concludes the proof. ⊓⊔

Corollary 5.18 (Geodesics)For everyµ ∈M
+
loc(R

d) the spaceMφ ,γ [µ] is a geodesic space,
i.e. every coupleµ0,µ1 ∈Mφ ,γ [µ] can be connected by a (minimal, constant speed) geodesic
t ∈ [0,1] 7→ µt ∈ Mφ ,γ [µ] such that

Wφ ,γ(µs,µt) = |t −s|Wφ ,γ(µ0,µ1) ∀s, t ∈ [0,1]. (5.32)

All the (minimal, constant speed) geodesics satisfies the continuity equation(4.1) for a Borel
family of vector valued measures(ννν t)t∈(0,1) such that

Φ(µt ,ννν t |γ) = W
p
φ ,γ (µ0,µ1) for a.e. t∈ (0,1). (5.33)

If φ is strictly convex and sublinear, geodesics are unique.

Remark 5.19 (A formal differential characterization of geodesics)Arguing as in [27, Chap.
3], it would not be difficult to show that a geodesicµt = ρtL

d with respect toW2,α ;L d

should satisfy the system of nonlinear PDE’s inR
d × (0,1)





∂tρ +∇ · (ρα ∇ψ) = 0,

∂tψ +
α
2

ρα−1
∣∣∇ψ

∣∣2 = 0,

for some potentialψ . Unlike the Wasserstein case, however, the two equations are coupled,
and it is not possible to solve the second Hamilton-Jacobi equation inψ independently of
the first scalar cosnervation law. In the present paper, we donot explore this direction.
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We can give a more precise description of the vector measureν̃νν satisfying the optimality
condition (5.29). For every measureµ ∈ M

+
loc(R

d) we set

Tanφ ,γ(µ) :=
{

ννν ∈ Mloc(R
d;Rd) : Φ(µ,ννν|γ) < +∞,

Φ(µ,ννν|γ) ≤ Φ(µ,ννν +ηηη |γ) ∀ηηη ∈ Mloc(R
d;Rd) : ∇ ·ηηη = 0

}
.

(5.34)

Observe that for everyννν ∈ Mloc(R
d;Rd) such thatΦ(µ,ννν|γ) < +∞ there exists a unique

ν̃νν := Π (ννν)∈Tanφ ,γ(µ) such that∇ ·(ν̃νν−ννν) = 0. In fact, the setK(ννν) :=
{

ννν ′ ∈Mloc(R
d;Rd) :

∇(ννν ′−ννν) = 0
}

is weakly∗ closed and, by the estimate (3.47) the sublevels of the functional
ννν ′ 7→ Φ(µ,ννν ′|γ) are weakly∗ relatively compact. Therefore, a minimizerν̃νν exists and it is
also unique, beingΦ(µ, ·|γ) strictly convex.

Corollary 5.20 Let (µ,ννν) ∈ CEφ ,γ(0,T) so thatµ is absolutely continuous w.r.t.Wφ ,γ . The
vector measureννν satisfies the optimality condition(5.29) if and only ifννν t ∈ Tanφ ,γ(µt) for
L

1-a.e. t∈ (0,T).

Let us consider the particular case of Example 3.5 in the caseof a differentiable norm‖ · ‖
with associated duality mapj1 = D‖ · ‖. We denote byjp(w) = ‖w‖p−2 j1(w) the p-duality
map, i.e. the differential of1p‖ · ‖p and we suppose that the concave functionh : [0,+∞) →
[0,+∞) satisfies

lim
r↓0

h(r) = lim
r↑+∞

r−1h(r) = 0. (5.35)

For every nonnegative Radon measureµ ∈ M
+
loc(R

d) whose support is a subset of supp(γ),
we define the Radon measureh(µ|γ) by

h(µ|γ) := h(ρ) · γ whereρ :=
dµ
dγ

. (5.36)

Observe thath(µ|γ) ≪ γ even ifµ is singular w.r.t.γ .

Theorem 5.21 Let µ ∈ M
+
loc(R

d) andφ as in(3.23)with h satisfying(5.35). A vector mea-
sureννν satisfiesΦ(µ,ννν|γ) < +∞ iff ννν = vh(µ|γ) for some vector fieldv ∈ Lp

h(µ |γ)(R
d;Rd).

Moreover,ννν ∈ Tanφ ,γ(µ) if and only if the vector fieldv satisfies

jp(v) ∈
{

∇ζ : ζ ∈C∞
c (Rd)

}Lp
h(µ|γ)

(Rd;Rd)
. (5.37)

Proof Beingh sublinear, the functionalΦ admits the representation

Φ(µ,ννν|γ) =

∫

Rd
φ(ρ ,w)dγ =

∫

Rd
h(ρ)‖w/h(ρ)‖p dγ =

∫

Rd
‖v‖p dh(µ|γ), (5.38)

whereµ = ργ + µ⊥ andννν = wγ = h(ρ)vγ . The conditionννν = vh(µ|γ) ∈ Tanφ ,γ (µ) is then
equivalent to

∫

Rd
‖v‖p dh(µ|γ) ≤

∫

Rd
‖v+z‖p dh(µ|γ) ∀z∈ Lp(h(µ|γ)) : ∇ ·

(
zh(µ|γ)

)
= 0.

Thanks to the convexity of|| · ||p, the previous condition is equivalent to
∫

Rd
jp(v) ·zdh(µ|γ) = 0 ∀z∈ Lp

h(µ |γ)(R
d;Rd) :

∫

Rd
z·∇ζ dh(µ|γ) = 0, (5.39)

i.e. jp(v) belongs to the closure of{∇ζ : ζ ∈C∞
c (Rd)} in Lp

h(µ |γ)(R
d;Rd). ⊓⊔
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5.4 Comparison with Wasserstein andẆ−1,p distances.

Theorem 5.22 If γ(Rd) < +∞ then for everyµ0,µ1 ∈ M
+
loc(R

d) andα < 1 we have

Wp/θ (µ0,µ1) ≤Wp/θ ,1;γ (µ0,µ1) ≤ γ(Rd)1/κWp,α ;γ(µ0,µ1), (5.40)

where, as usual,θ = (1−α)p+α .

Proof Let (µ,ννν) ∈ CEφp,α ,γ (0,1;µ0 → µ1) be an optimal curve, so that

Wp
p,α ;γ(µ0,µ1) =

∫ 1

0
Φp,α (µt ,ννν t)dt =

∫ 1

0

∫

Rd
(ρt)

θ−p |wt |p dγ dt, (5.41)

whereµt := ρtγ + µ⊥
t , ννν t = wtγ ≪ γ . Hölder inequality yields

Wp/θ
p/θ ,1;γ (µ0,µ1) ≤

∫ 1

0

∫

Rd
(ρt)

1−p/θ |wt |p/θ dγ dt ≤ γ(Rd)1−1/θWp/θ
p,α ;γ (µ0,µ1). ⊓⊔

Theorem 5.23 Let us suppose that̃m−k(γ) < +∞, κ = p/(θ −1) = q/(1−α), let µ0,µ1 ∈
P(Rd), and letκ∗ = κ/(κ −1) be the Ḧolder’s conjugate exponent ofκ . Then

‖µ0−µ1‖Ẇ−1,κ∗
γ

= Wκ∗,0;γ (µ0,µ1) ≤Wp,α ;γ (µ0,µ1). (5.42)

Proof We keep the same notation of the previous Theorem, setting

τ = p/r := 1+ p−θ , τ∗ :=
τ

τ −1
= 1+

1
p−θ

, x = (τ∗)−1 =
p−θ

1+ p−θ
.

Observing thatµt ∈ P(Rd) thanks to Theorem 4.9, we obtain

Wr
r,0;γ(µ0,µ1) ≤

∫ 1

0

∫

Rd
|wt |r dγ dt =

∫ 1

0

∫

Rd

(
ρt

)x(ρt
)−x|wt |r dγ dt

≤
∫ 1

0

(∫

Rd
ρ−xτ |wt |rτ dγ

)1/τ
dt =

(∫ 1

0

∫

Rd
ρθ−p|wt |p dγ dt

)1/τ
= Wr

p,α ;γ (µ0,µ1). ⊓⊔

Theorem 5.24 (Comparison withWp) Assume thatγ ∈ M
+
loc(R

d) is a bounded pertur-
bation of a log-concave measure (e.g.γ = f e−V

L
d, where V is a convex function and f

nonnegative and bounded). Ifµi = siγ ∈ P(Rd) with si ∈ L∞(γ) andmp(µi) ≤ L < +∞ then
Wφ ,γ(µ0,µ1) < +∞ and there exists a constantC only depending on L, φ , andγ such that

Wφ ,γ(µ0,µ1) ≤ CWp(µ0,µ1). (5.43)

Proof It is not restrictive to assume thatγ is log-concave. We can then consider the optimal
planΣ ∈M

+(Rd×R
d) induced by thep-Wasserstein distance (1.1) betweenµ0 andµ1 and

the interpolantµt defined as

µt(A) = Σ
(
{(x0,x1) ∈ R

d ×R
d : (1− t)x0 + tx1 ∈ A}

)
∀A∈ B(Rd). (5.44)

It is possible to prove (see e.g. [3, Theorems 7.2.2, 8.3.1, 9.4.12]) thatµt is the geodesic
interpolant betweenµ0 andµ1, it satisfies the continuity equation

∂t µt +∇ ·ννν t = 0 in R
d × (0,1)
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with respect to a vector valued measureννν t = vt µt ≪ µt where the vector fieldvt satisfies

∫ 1

0
Φp(µt ,ννν t)dt =

∫ 1

0

∫

Rd
|vt(x)|p dµt(x)dt = Wp

p (µ0,µ1),

and finallyµt = stγ with ‖st‖L∞(γ) ≤ L := max
(
‖s0‖L∞(γ),‖s1‖L∞(γ)

)
. Observe that, being

st(x) ≤ L for γ-a.e.x∈ R
d andφ(0,0) = 0, Theorem 3.1 yields

φ(st ,stvt) ≤
st

L
φ(L,Lvt) ≤ CLst |vt |p γ-a.e.,

so that

Φ(µt ,ννν t) =

∫

Rd
φ(st ,stvt)dγ(x) ≤ CL

∫

Rd
|vt |pst dγ = CL

∫

Rd
|vt |p dµt ,

and therefore

W
p
φ ,γ(µ0,µ1) ≤

∫ 1

0
Φ(µt ,ννν t)dt ≤ CL

∫ 1

0

∫

Rd
|vt |p dµt dt = CLWp

p (µ0,µ1). ⊓⊔

Corollary 5.25 If µi = siL
d ∈ P(Rd) have L∞-densities with compact support (or, more

generally, finite p-momentum), thenWφ ,L d(µ0,µ1) < +∞.

Theorem 5.26 If µi = siγ with si ≥ L > 0 γ-a.e. inR
d, then there exists a constant C de-

pending on L andφ such that

Wφ ,γ(µ0,µ1) ≤CL‖µ0−µ1‖Ẇ−1,p
γ

. (5.45)

Proof Let us first observe that if‖µ0 − µ1‖Ẇ−1,p
γ

< +∞ then there existsw ∈ Lp
γ (Rd;Rd)

such that

−∇ ·ννν = µ1−µ0, ννν := wγ ,

∫

Rd
|w|p dγ = ‖µ0−µ1‖p

Ẇ−1,p
γ

. (5.46)

In fact, in the Banach spaceX := Lq
γ(R

d;Rd) we can consider the linear spaceY :=
{

Dζ :
ζ ∈C1

c(Rd)
}

and the linear functional

〈ℓ,y〉 :=
∫

Rd
ζ d(µ1−µ0) if y = Dζ for someζ ∈C1

c(Rd).

ℓ is well defined and satisfies
∣∣〈ℓ,y〉

∣∣ ≤ ‖µ0− µ1‖Ẇ−1,p
γ

‖y‖Lq
γ (Rd;Rd) for everyy ∈ Y. Hahn-

Banach Theorem and Riesz representation Theorem yield the existence ofw ∈ Lp(Rd;Rd)
such that〈ℓ,y〉 =

∫
Rd w · ydγ , which yields (5.46). Settingµt = (1− t)µ0 + tµ1, it is then

immediate to check that(µt ,ννν) ∈ CE(0,1;µ0 → µ1); we can then compute

W
p
φ ,γ(µ0,µ1) ≤

∫ 1

0

∫

Rd
φ((1− t)s0 + ts1,w)dγ dt ≤

∫

Rd
φ(L,w)dγ ≤CL

∫

Rd
|w|p dγ ,

where we used the fact that(1− t)s0 + ts1 ≥ L γ-almost everywhere and the mapρ 7→
φ(ρ ,w) is nonincreasing. ⊓⊔
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5.5 The caseγ = L d and the Heat equation as gradient flow

One of the most interesting cases corresponds to the choice

γ := L
d, hα(ρ) := ρα , 0 < α < 1, φp,α(ρ ,w) := ρα |w/ρα |p. (5.47)

In this case the expression of the weighted Wasserstein distance becomes

Wp
p,α ;L d(µ0,µ1) := min

{∫ 1

0

∫

Rd
ρα

t |vt |p dxdt : ∂t µ +∇· (ρα v) = 0 in R
d × (0,1)

µt = ρtL
d + µ⊥

t , µ|t=0
= µ0, µ|t=1

= µ1

}
.

The metricWp,α ;L d restricted toP(Rd) is complete ifd < κ = p
θ−1 = q

1−α .

Remark 5.27 (P(Rd) is not complete w.r.t. Wp,α ;L d if d > κ) The above condition is almost
sharp; here is a simple counterexample in the cased > κ . We consider an initial probability
measure with compact supportµ0 = ρ0L

d, ρ0 ∈ L∞(Rd), and, fort ≥ 0, the family

µt := ρtL
d, ρt(x) := e−dtρ0(e

−tx), ννν t := xµt = xρt(x)L
d. (5.48)

It is easy to check that(µ,ννν) ∈ CE(0,+∞), µt(R
d) = 1. Evaluating the functionalΦt :=

Φp,α (µt ,ννν t |L d) we get

Φt =
∫

Rd
ρθ−p

t |ρtx|p dx =
∫

Rd
e−dθ tρθ

0 (e−dtx)|x|p dx

= edt−dθ t+pt
∫

Rd
e−dtρθ

0 (e−dtx)|e−dtx|p dx = e(d(1−θ)+p)t
∫

Rd
ρθ

0 (y)|y|pdy

so that

Φ1/p
t = ce(1−d/κ)t ,

∫ +∞

0
Φ1/p

t dt = c
κ

d−κ
< +∞ if d > κ .

If d > κ we obtain a curvet 7→ µt ∈ P(Rd) of finite length w.r.t.Wp,α ;L d (in particular
(µn)n∈N is a Cauchy sequence) such that lim

t↑+∞
µt = 0 in the weak∗ topology.

In the remaining part of this section, we want to study the properties ofWp,α ;L d with respect
to the heat flow. We thus introduce

g(x) = g1(x) =
1

(4π)d/2
e−|x|2/4, gt(x) :=

1

(4πt)d/2
e−|x|2/4t = t−d/2g1(x/

√
t),

and for everyµ ∈ M
+
loc(R

d) with m̃δ (µ) < +∞ for someδ ≤ 0, we set

St [µ] = µ ∗gt = utL
d, ut(x) = St [µ](x) :=

∫

Rd
gt(x−y)dµ(y). (5.49)

It is well known thatu∈C∞(Rd × (0,+∞)) and

∂tu−∆u = 0 in R
d × (0,+∞), St [µ]⇀∗µ ast ↓ 0. (5.50)

Theorem 5.28 (Contraction property) Let µ0,µ1 ∈ M
+
loc(R

d) with m̃δ (µ i) < +∞ and
Wφ ,L d(µ1,µ2) < +∞. If µ i

t := St [µ i ] are the corresponding solutions of the heat flow, then

Wφ ,L d(µ1
t ,µ2

t ) ≤ Wφ ,L d(µ1,µ2) ∀ t > 0. (5.51)
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Proof It sufficient to approximate the Gaussian kernelg by a family ofC∞ kernelskn with
compact support and then apply Theorem 5.15, observing thatkn ∗L

d = L
d. ⊓⊔

We consider now the particular case of theW2,α ;L d weighted distance withα > 1−2/d.
Let us first introduce the convex density function (recall (1.9))

ψα(ρ) :=
1

(2−α)(1−α)
ρ2−α , such that ψ ′′

α(ρ) =
1

h(ρ)
= ρ−α , (5.52)

and the corresponding entropy functional

Ψα(µ) =Ψα(µ|L d) :=
∫

Rd
ψα(ρ)dx, if µ = ρL

d ≪ L
d. (5.53)

We also introduce the setQ :=
{

µ ∈ P(Rd) : Ψ (µ) < +∞
}
.

Theorem 5.29 If µ ∈ P(Rd) then µt = St [µ] = utL
d ∈ Q for every t> 0, the map t7→

Ψα(µt) is nonincreasing, and it satisfies the energy identity

Ψα(µt)+
∫ t

s
Φ2,α(ur ,∇ur )dr =Ψα(µs) ∀0 < s≤ t < +∞; (5.54)

whenµ ∈ Q then the previous identity holds even for s= 0. Moreover,µt satisfies the Evo-
lution Variational Inequality

1
2

d
dt

+

W2
2,α ;L d(µt ,σ )+Ψα(µt) ≤Ψα(σ ) ∀ t ≥ 0, ∀σ ∈ Q. (5.55)

Proof Sinceψ ′′
α(u) = u−α , a direct computation shows

d
dt

∫

Rd
ψα(ut)dx = − d

dt

∫

Rd
∇ut ·∇ψ ′

α(ut)dx =

∫

Rd
|∇ut |2u−α

t dx = Φ2,α(ut ,∇ut).

Concerning (5.55), we use the technique introduced by [12,§2]: we consider a geodesic
(σs,νννs)s∈[0,1] ∈ CE(0,1;σ → µ), which satisfiesσs(R

d) = 1 by Theorem 4.9. We set

σ ε
s,t = uε

s,tL
d := Sε+st[σs], ν̃ννε

s,t = w̃ε
s,tL

d := Sε+st[νννs], wε
s,t := w̃ε

s,t − t∇uε
s,t .

It is not difficult to check that

∂su
ε
s,t +∇ ·wε

s,t = 0 in R
d × (0,1), (5.56)

so that

W2
2,α ;L d(µε+t ,σ )≤

∫ 1

0
Aε

s,t ds, Aε
s,t :=

∫

Rd

(
uε

s,t

)−α |wε
s,t |2 dx = Φ2,α(σ ε

s,t ,νννε
s,t |L d).

We thus evaluate

Aε
s,t =

∫

Rd

(
uε

s,t

)−α
(
−2t∇uε

s,t ·wε
s,t + |w̃ε

s,t |2− t2|∇uε
s,t |2

)
dx

≤−2t
∫

Rd

(
uε

s,t

)−α ∇uε
s,t ·wε

s,t dx+

∫

Rd

(
uε

s,t

)−α |w̃ε
s,t |2 dx

≤−2t ∂sΨ (σ ε
s,t)+Φ2,α(σs,νννs|L d), (5.57)
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where we used the facts

∂s

∫

Rd
ψα(uε

s,t)dx
(5.56)
=

∫

Rd
∇ψ ′

α(uε
s,t) ·wε

s,t dx
(5.52)
=

∫

Rd

(
uε

s,t

)−α ∇uε
s,t ·wε

s,t dx,

∫

Rd

(
uε

s,t

)−α |w̃ε
s,t |2dx = Φ2,α(σs∗gε+st,νννs∗gε+st|L d) ≤ Φ2,α (σs,νννs|L d)

thanks to the convolution contraction property of Theorem 2.3. Integrating (5.57) with
respect tos from 0 to 1 and recalling that(σs,νννs)s∈[0,1] is a minimal geodesic and that
σ ε

1,t = µε+t andσ ε
0,t = σ , we get

∫ 1

0
Aε

s,t ds+2tΨα(µε+t) ≤ 2tΨα(σ )+W2
2,α ;L d(µ,σ ). (5.58)

We deduce that

1
2W2

2,α(µε+t ,σ )+ tΨ (µε+t) ≤ tΨ (σ )+ 1
2W2

2,α(µ,σ ). (5.59)

Passing to the limit asε ↓ 0 and then ast ↓ 0 after dividing the inequality byt we get (5.55)
at t = 0. Recalling the semigroup property of the heat equation, weobtain (5.55) for every
time t ≥ 0. ⊓⊔

(5.55) is the metric formulation of the gradient flow of the (geodesically convex) functional
Ψα in the metric space(Q,W2,α ;L d), see [3, Chap. 4]. Applying [12, Theorem 3.2] we even-
tually obtain:

Corollary 5.30 (Geodesic convexity ofΨα ) Let α > 1− 2/d, µi = ρiL
d ∈ P(Rd) with

W2,α ;L d(µ0,µ1) < +∞ and
∫
Rd ρ2−α

i dx < +∞, and letµt , t ∈ [0,1], be the minimal speed

geodesic connectingµ0 to µ1 w.r.t. W2,α ;L d . Then for every t∈ [0,1] µt = ρtL
d ≪ L

d

∫

Rd
ρ2−α

t dx≤ (1− t)
∫

Rd
ρ2−α

0 dx+ t
∫

Rd
ρ2−α

1 dx. (5.60)
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