N

N
N

HAL

open science

A new class of transport distances between measures

Jean Dolbeault, Bruno Nazaret, Giuseppe Savaré

» To cite this version:

Jean Dolbeault, Bruno Nazaret, Giuseppe Savaré. A new class of transport distances between mea-

sures. Calc. Var. Partial Differential Equations, 2009, 34 (2), pp.193-231. hal-00262455

HAL Id: hal-00262455
https://hal.science/hal-00262455
Submitted on 11 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00262455
https://hal.archives-ouvertes.fr

A new class of transport distances between measures

Jean Dolbeault - Bruno Nazaret - Giuseppe Savaé

March 11, 2008

Abstract We introduce a new class of distances between nonnegatifenRaeasures in
RY. They are modeled on the dynamical characterization of thetétovich-Rubinstein-
Wasserstein distances proposed lBNBMOU-BRENIER[7] and provide a wide family in-
terpolating between the Wasserstein and the homogeNqﬁbg-Sobolev distances.

From the point of view of optimal transport theory, thesdatises minimize a dynamical
cost to move a given initial distribution of mass to a final figuration. An important dif-
ference with the classical setting in mass transport thisottyat the cost not only depends
on the velocity of the moving particles but also on the déesibf the intermediate configu-
rations with respect to a given reference meagure

We study the topological and geometric properties of thesedistances, comparing them
with the notion of weak convergence of measures and the wtdblished Kantorovich-
Rubinstein-Wasserstein theory. An example of possibléagions to the geometric theory
of gradient flows is also given.

Keywords Optimal transport Kantorovich-Rubinstein-Wasserstein distan€&ontinuity
equation Gradient flows

1 Introduction

Starting from the contributions by Y.BENIER, R. MCCANN, W. GANGBO, L.C. EVANS,

F. OrTO, C. VILLANI [9,18,25,17,27], the theory of Optimal Transportation reeived
a lot of attention and many deep applications to various eratiical fields, such as PDE’s,
Calculus of Variations, functional and geometric inediedi, geometry of metric-measure
spaces, have been found (we refer here to the monograpi$[38, 3,31]). Among all pos-
sible transportation costs, those inducing the so-cdlRe&K ANTOROVICH-RUBINSTEIN-
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WASSERSTEINdistance®Vy (Lo, H1), p € (1,4), between two probability measurgsv €
P(RY)

Wo (Lo, H1) 1=i”f{</Rded |y—X\de)5 : ZEF(UOJ&)} (1.2)

play a distinguished role. Hefe( L, 111) is the set of altouplingsbetweenuy and s : they
are probability measures on RY x RY whose first and second marginals are respectively
Ho andpy, i.e. X (B x RY) = pp(B) andZ (RY x B) = iy (B) for all Borel setsB € B(RY).

It was one of the most surprising achievement of [24,25,8PtRat many evolution
partial differential equations of the form

5‘/) iNRY % (0,4%),  (L.2)

a—2g\ _ _
ap+0-(plETPE) =0 £=-0(%;

can be, at least formally, interpreted gdient flowsof suitable integral functionals?
with respect toV, (see also the general approach developed in [30,3,31[L.M&.# /5p
is the Euler first variation of#, q:= p/(p— 1) is the Holder’s conjugate exponent pf
andt — p; (a time dependent solution of (1.2)) can be interpreted asaadf probability
measuregk = p; 2% with densityp, with respect to the Lebesgue measifé in RY.
Besides showing deep relations with entropy estimateswamtibnal inequalities [27],
this point of view provides a powerful variational methodptove existence of solutions to
(1.2), by the so-calletinimizing movemergcheme [19, 13, 3]: given a time step- 0 and
an initial datumgy = pp.29, the solutiory, = p.29 at timet ~ nt can be approximated by
the discrete solutiop obtained by a recursive minimization of the functional

B S WE LM + F (), k=01 L.3)
The link between the Wasserstein distance and equatioiilsitaxtp the characteristic struc-
ture of (1.2) (in particular the presence of the diffusiorfficient p, the fact thai is a
gradient vector field, and the presence ofdrduality mapé — |&|9-2&), is well explained
by thedynamic characterizationf W, introduced by BENAMOU-BRENIER[7]: it relies in
the minimization of the “action” integral functional

(o, ) = it { / / X) [ve (x)[P et :

(1.4)
dpr+0-(ovy) =0inRY x (0,1), po= p|t:0.ffd, Uy = p|t:1.ffd}.

Towards more general cost functionald.one is interested to study the more general class

of diffusion equations

0F )

-2
ap+0-(hp) € *6) =0, £=-0(F;

in RY x (0, 4-0), (1.5)
obtained from (1.2) replacing the mobility coefficigmby an increasing nonlinear function

h(p), h: [0, +) — [0, +) whose typical examples are the functidiip) = p, a > 0, it
is then natural to investigate the properties of the “distdn

uo,ul |nf // X)) |ve (x)|P dxct :

(1.6)
dprm-((pr)vt):OlanX(O,l), Ho=p|,_o 2", ulzp\tzlfd}-



In the limiting casex = 0, h(p) = 1, one can easily recognize that (1.6) provides an equiv-
alent description of the homogeneous (dh'P(RY) Sobolev (pseudo)-distance

[[Ho — Ha[ly-1.p(ay == SUP{ /Rdzd(ﬂo—ﬂl) 1 € CE(RY), /Rd IDZ[Ydx < 1}~ 1.7)

Thus the distances defined by (1.6) foOa < 1 (we shall see that this is the natural
range for the parameter) can be considered as a natural “interpolating” family testw
the Wasserstein and the (dual) Sobolev ones.

Notice that if one wants to keep the usual transport intéagicen given by a “dynamic
cost” to be minimized along the solution of the continuityation, one can simply introduce

the velocity vector field := p; th(p;)v; and minimize the cost

" pt(e)[Poxet, where f P\ 18
% |Pdxdt, where == . .

DI )= (f25) (18)

Therefore, in this model the usugtenergy [ra or|Vt|Pdx of the moving massepg; with
velocity V; results locally modified by a factdr(p;) depending on the local density of the

mass occupied at the timeDifferent non-local models have been considered in [8,4].
In the present paper we try to present a systematic studgséttamilies of intermediate
distances, in view of possible applications, e.g., to theysbf evolution equations like (1.5),

the Minimizing movement approach (1.3), and functionatjuredities.

Examples: PDE'’s as gradient flow&.et us show a few examples evolution equations which
can beformally interpreted as gradient flows of suitable integral funaierin this setting:
the scalar conservation law

dp—0-(p?0OV) =0 corresponds to the linear functional7 (p) := /RdV(x)pdx,

for some smooth potenti® : RY — R andp = 2. Choosing fom > 0

m
(m+1-a)(m—a)’

p=2, ZF(p)= Ca,m/perlia dx, Cam:=
one gets the porous media/fast diffusion equation

ap—

m
m-—a

0-(p%0p™ %) =dp—Lp™ =0, (1.9)
and in particular the heat equation for the entropy funai(?ﬂa)l(ﬂ [ p? % dx. Choosing

© m+2g9-3-a m(q — l)q
Z = - =
F(p) Ca,m,q/p T dX, Camg: (m+29—3—a)(m+q—2-a)’

one obtains the doubly nonlinear equation
dp—mO- (p™ *0p|%20p) =0 (1.10)

and in particular the evolution equation for the_aplacian whermrm = 1. The Dirichlet
integral forp=2

y(p):%/\mp\zdx yields ap+0- (p?04p) =0, (1.11)

a thin-film like equation.



The measure-theoretic point of view: Wasserstein distalée present now the main points
of our approach (see also, in a different context, [10])stFaf all, even if the language of
densities and vector fields (@sandv,V in (1.4) or (1.6)) is simpler and suggests inter-
esting interpretations, the natural framework for consiggthe variational problems (1.4)
and (1.6) is provided by time dependent families of Radonsmess inRY. Following this
point of view, one can replage, by a continuous curvee [0,1] — i (4 = p 2% in the
absolutely continuous case) in the spM%C(Rd) of nonnegative Radon measuresRf
endowed with the usual weakopology induced by the duality with functions @ (R9).

The (Borel) vector fieldv; in (1.4) induces a time dependent family of vector measures
Vi = LkVt < L. In terms of the coupléu, v) the continuity equation (1.4) reads

G +0-ve =0 inthe sense of distributions i’ (RY x (0,1)), (1.12)
and it is now dinear equation. Since; = dv;/dy; is the density o, w.r.t. i, the action

functional which has to be minimized in (1.4) can be written a

p

W17 . (1.13)

du

Notice that in the case of absolutely continuous measuréssrespect tazd, i.e. u = p.#¢
andv = w.24, the functionaldy 1 can also be expressed as

1 .
Soaluv) = [ Boalevod, Gpa(v)i= [

p
(1.14)

Ppa(p.v) = /Rd ®a(p.W)d2(X),  @alp.w):=p '%

Denoting bye&(0,1) the class of measure-valued distributional solutigne of the con-
tinuity equation (1.12), we end up with the equivalent chazation of the Kantorovich-
Rubinstein-Wasserstein distance

W (o, i) = inf{@ﬁp,l(u,v) (V) € CE(0,1), H),_o = Mo, Hly_y = Ul}~ (1.15)

Structural properties and convexity issueihe density functiop = ¢ 1 : (0,400) x RY -
RY appearing in (1.14) exhibits some crucial features

1. w— @(-,w) is symmetric, positive (whemw # 0), and p-homogeneous with respect
to the vector variablev: this ensures thai, is symmetric and satisfies the triangular
inequality.

2. @is jointly convex in(0, +) x RY: this ensures that the function@d, 1 (and therefore
also&) defined in (1.13) is lower semicontinuous with respect téoleak convergence
of Radon measures. It is then possible to show that the infimuh 15) is attained, as
soon as it is finite (i.e. when there exists at least one c(uye) € €&(0, 1) with finite
energyé (U, V) joining o to py); in particulatp (o, p1) = 0 yieldsp = ;. Moreover,
the distance magpo, u1) — Wp(Ho, 1) is lower semicontinuous with respect to the
weak convergence, a crucial property in many variational proisiénvolvingW,, as
(1.3).

3. @is jointly positively 1-homogeneous: this a distinguisHedture of the Wasserstein
case, which shows that the functior® ; depends only op, v and not on the Lebesgue
measureZd, even if it can be represented as in (1.14). In other wordspase that
u = py andv = Wy, wherey is another reference (Radon, nonnegative) measugé.in
Then

@p1(4.v) = [ Gpa(B.0) 0. (1.16)



As we will show in this paper, the 1-homogeneity assumptieldg also two “quantita-
tive” properties: ifg is a probability measure, then any solutign v) of the continuity
equation (1.12) with finite energy(u,v) < 4o still preserves the magg (RY) = 1
for every timet > 0 (and it is therefore equivalent to assume this conditiothéndef-
inition of €£(0,1), see e.g. [3, Chap. 8]). Moreover, if tiemoment ofuy my (L) =
Jra IX|P duo(x) is finite, thenWp (Lo, 1) < o0 if and only if mp(p1) < +oo.

Main definitions. Starting from the above remarks, it is then natural to carside more
general case when the density functiogel (0, +) x RY — [0, +o0) still satisfies 1. -
homogeneity w.r.iw) and 2. (convexity), but not 3. (1-homogeneity). Due to tas choice,
the associated integral function@lis no more independent of a reference measwanad it
seems therefore too restrictive to consider only the cagieedfebesgue measuye= .29,

In the present paper we will thus introduce a further nontiegeeferenceRadon mea-
surey € M;;.(RY) and a general convex function@l: (0, +c) x RY — [0, +e0) which is
p-homogeneous w.r.t. its second (vector) variable and ngertate (i.e@(p,w) > 0 if
w = 0). Particularly interesting examples of density funcéitsnp, corresponding to (1.6),

are given by
p

i (1.17)

o(p.w) == h(p) \@

whereh : (0,4») — (0,4+) is an increasing andoncavefunction; the concavity of
is a necessary and sufficient condition for the convexityah (1.17) (see [29] ang3).
Choosingh(p) := p?, a € (0,1), one obtains

p
—| =p%PWwP, 6:=(l-a)p+ac(Lp),  (L18)

@.a(p,w) :=p* o

which is jointly 8-homogeneous ifp, w).
In the case, e.g., whem < 1 in (1.18) or more generally ligi.. h(p)/p = 0, thereces-
sion functionof ¢ satisfies

9" (p.w) = lim A o(Ap Aw) =+e0if p,w#£0, (1.19)
+o0
so that the associated integral functional reads as
D(u,vly) = /Rd ep,w)dy p=py+pu’, v=wy<y, (1.20)

extended ter-co whenv is not absolutely continuous with respecitor supg ) ¢ supfy).
Notice that only the densitp of the y-absolutely continuous part @f enters in the func-
tional, but the functional could be finite evenyif has a singular pami. This choice is
crucial in order to obtain a lower semicontinuous functlora.t. weak convergence of
measures. The associategl y)-Wasserstein distance is therefore

We .y (Ho, pi1) := inf {‘Dﬁrp,v(MV) H(M,v) € €E(0,1), Wi _q= Ho, H}_y = I—ll}» (1.21)

where the energy, , of a curve(u,v) € C€(0,1) is

1
Epy(H,V) ::/0 (e, vely)dt. (1.22)



The most important case associated to the functional (td&rves the distinguished nota-
tion
Woaiy(+5) :=Wepay(+:°)- (1.23)

The limiting casex = 6 = 1 corresponds to tHeP-Wasserstein distance, the Sobdfqﬁl’p
corresponds t@ = 0, 6 = p. The choice ofy allows for a great flexibility: besides the
Lebesgue measure &, we quote

—y:= ffd|Q, Q being an open subset BF. The measures are then supporte@ﬁitand,

with the choice (1.17) and = w/h(p), (1.12) is a weak formulation of the continuity
equation £ being the exterior unit normal @®Q)

ap+0- (h(p)vi) =0 iNQx(0,1), Vi-ngo=0 0ondQ. (1.24)

This choice is useful for studying equations (1.9) (see)j1(1].10), (1.11) in bounded
domains with Neumann boundary conditions.

— y:=e V.29 for someC! potentialV : RY — R. With the choice (1.17) and=w/h(p)
(1.12) is a weak formulation of the equation

apr+0- (h(p)ve) —h(p) DV v =0 inRY x (0,1). (1.25)

Whenh(p) = p%, p = 2, the gradient flow ofZ (u) := m Jra p?~%dyis the
Kolmogorov-Fokker-Planck equations [15]

p—Bu—0-(UOV) =0, dp—ABp+V-Tp=0,

which in the Wasserstein framework is generated by the iibgaic entropy ([19, 3, 5]).
—yi= %"“M, M being a smoottk-dimensional manifold embedded Rf with the Rie-

mannian metric induced by the Euclidean distané&;denotes th&-dimensional Haus-
dorff measure. (1.12) is a weak formulation of

dpr +diviyg (h(p)vi) =0 onM x (0,1). (1.26)

Thanks to Nash embedding theorems [22, 23], the study ofahirwity equation and of
the weighted Wasserstein distances on arbitrary Riemamménmifolds can be reduced
to this case, which could be therefore applied to study égus(1.9), (1.10), (1.11) on
Riemannian manifolds.

Main results. Let us now summarize some of the main propertie$\gt.(-,-) we will
prove in the last section of the present paper. In order td wWith distances (instead of
pseudo-distances, possibly assuming the vaiud, for a nonnegative Radon measure
we will denote byM, q;y[0] the set of all measurgs with Wy o;(1t, 0) < +c endowed
with theW, o, ~-distance.

1. Mp.a:y[0] is a complete metric space (Theorem 5.7).

2. Wy induces a stronger convergence than the usual e (Theorem 5.5).

3. Bounded sets iM, q;y[0] are weakly relatively compact (Theorem 5.5).

4. The map(Ho, U1) — Wp,a;y(Ho, H1) is weakly lower semicontinuous (Theorem 5.6),
convex (Theorem 5.11), and subadditive (Theorem 5.12jttys some useful mono-
tonicity properties with respect tg (Proposition 5.14) and to convolution (Theorem
5.15).



5. The infimum in (1.15) is attained\, q:/[0] is a geodesic space (Theorem 5.4), and
constant speed geodesics connecting two meaggres are unique (Theorem 5.11).
6. If

P __9
1= @20

/ X PO Vdy(x) <+ 6= (1-a)p+a,

[x>1
ando € P(RY), thenMp o:y[0] C P(RY) (Theorem 5.8). If moreovey satisfies stronger
summability assumptions, then the distan®gs,., provide a control of various mo-
ments of the measures (Theorem 5.9). Comparison resuhlsWyiandV'V*lﬁp are also
discussed i§5.4.

7. Absolutely continuous curves w.iY, 4, can be characterized in completely analogous
ways as in the Wasserstein cag®.8).

8. In the casg = .9 the functional

; 2-a _ d d
o i—a) de dx U=pZL K2, (1.28)

Y (Hly) == (
is geodesically convex w.r.t. the distandg ;. .« and the heat equation iR? is its
gradient flow, as formally suggested by (1.95.6: we prove this property in the case
a > 1-2/d, whenP(RY) is complete W.r.tW, ;. a.)

Plan of the paper.Section 2 recalls some basic notation and preliminary falotait weak
convergence and integral functionals of Radon measurgse2alls a simple duality result
in convex analysis, which plays a crucial role in the analpdithe integrandp(p,w).

The third section is devoted to the class of admissible adtitegral functionalsp like
(1.20) and their density. Starting from a few basic structural assumptionspome deduce
its main properties and we present some important exampsdtion 3.2. The correspond-
ing properties ofP (in particular, lower semicontinuity and relaxation widspect to weak
convergence, monotonicity, etc) are considered in Se&tign

Section 4 is devoted to the study of measure-valued sokitibthe continuity equation
(1.12). It starts with some preliminary basic results, whéxtend the theory presented in
[3] to the case of general Radon measures: this extensiootigated by the fact that the
class of probability measures (and therefore with finite shastoo restrictive to study the
distancedMVp,q.y, in particular whery(RY) = +o as in the case of the Lebesgue measure.
We shall see (Remark 5.27) tHatRY) with the distanceV, ;. .4 is not complete ifd >
p/(6—1)=q/(1—a). We consider in Section 4.2 the class of solutions of (1.1g) finite
energy&y,y (1.22), deriving all basic estimates to control their mass momentum.

As we briefly showed, Section 5 contains all main results efghper concerning the
modified Wasserstein distances.

2 Notation and preliminaries

Here is a list of the main notation used throughout the paper:

Br The open ball (in som&M) of radiusR centered at 0
B(R")  (resp.Bc(R")) Borel subsets oR" (resp. with compact closure)
P(RM) Borel probability measures iR"

MR (resp M (R")  Finite (resp. Radon), nonnegative Borel measureRbn

loc

P(RM) Borel probability measures iR"
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M(RM;R™) R™M-valued Borel measures with finite variation

Mioc (R R™) R™M-valued Radon measures

[I2]| Total variation ofy € Mjoc(R™;R™), see (2.2)

Co(RM) Continuous andoundedreal functions

mp (1) p-moment fza [X|Pdu of p € M+ (RM)

(1) Recession function apy, see (2.4)

Wnly), ®(u,vly) Integral functionals on measures, see 2.2 and 3.3
B0, (1.0), (.) the integralsfza £ djt, fad -dp

CE(0,T),CE4py(0,T), Classes of measure-valued solutions of the continuity
CE(O,T; o — M) equation, see Def. 4.2 and Sec. 4.2.

2.1 Measures and weak convergence

We recall some basic notation and properties of weak coaweryof (vector) radon mea-
sures (see e.g. [2]). A Radon vector measuréviige(R";R™) is a R™-valued mapy :
B¢(R") — R™ defined on the Borel sets &" with compact closure. We identify ¢
M|OC(Rh;Rm) with a vector(ut, y?, - -, u™) of mmeasures iM|0c(Rh): its integral with a
continuous vector valued function with compact supgoet C¢(R", R™) is given by

way= [ 2= [ Zooaco, 1)

It is well known thatMoc(R";R™) can be identified with the dual @2(R";R™) by the
above duality pairing and it is therefore endowed with theesponding of weaktopology.
If || - || is a norm inRY with dual|| - || (in particular the euclidean norf|) for every open
subsetA C R" we have

i) =sup{ [ Z-du: supp@) c A [Z(9). <1 ¥xeR'}.  (@2)

|u|| is in fact a Radon positive measuredfy,.(R") andu admits the polar decomposition
U = w| u|| where the Borel vector field belongs td_i . (||u|; R™). We thus have

loc

W)= [ - du= [ Z-wdlul. 23)

If (M )ken is @ sequence itVioc(RMR™) with sup, ||p||(Br) < +o for every open ball
Br, then it is possible to extract a subsequepgeweakly: convergent tq € M(RM;R™M),
whose total variatioriy,_|| weakly: converges ta € M* (R") with [u|| < A.

2.2 Convex functionals defined on Radon measures

Lety : R™— [0, +o0] be a convex and lower semicontinuous function wjit{®) = 0, whose
proper domaim () := {x€ R™: y(X) < +oo} has non empty interior. ltecession function
(see e.g. 2]~ : R™ — [0, +] is defined as

W)= tim L) gpY) (2.4)

r—+o0o [ r~0 I




Y is still convex, lower semicontinuous, and positively Isfageneous, so that its proper
domainD (™) is a convex cone always containing 0. We say that

Y has asuperlinear growthif ¢*(y) = = for everyy = 0: D(¢*) = {0},

25
Y has asublinear growthif ¢/*(y) = 0 for everyy € R™. 29

Let nowy € M, (R") andp € Mo (R"; R™) with supi{pt) C supg(y); the Lebesgue decom-
position ofg w.r.t. yreadgu = 3 y+u*, where® = du/dy. We can introduce a nonnegative

Radon measure € M} .(R") such thap* =80 < 0, e.g.0 = |u*| and we set

VAuly) = [

Rh

Y@ X)dy(x),  ¥*(uly) = /ﬂéh Yo (S8 (y) da(y), (2.6)
and finally

W(uly) :=¥3(uly) + 9= (uly); W(u|y) =+ if supp(i) ¢ supdy). (2.7)

Sincey” is 1-homogeneous, the definition¥f* depends oty only through its support and
it is independent of the particular choicemfn (2.6). Wheny has a superlinear growth then
the functionalt is finite iff u < y and¥?2(u|y) is finite; in this casé’(u|y) = ¥2(u|y).

Theorem 2.1 (L.s.c. and relaxation of integral functionalof measures [1, 2]et us con-
sider two sequenceg € Mt (R"), u,, € Mioc(R"; R™) weakly converging toy € M;: (R")

loc loc

and € Mioc(RM™R™) respectively. We have
Iigplgf W(Upl¥h) > ¥(Hly). (2.8)

Let conversely, y be such that/(p|y) < +. Then there exists a sequenge= 9,y < y
weakly converging tqu such that

Jim W (aly) = lim | @(Fn(X)dy(x) = (ply). (2.9)

Theorem 2.2 (Montonicity w.r.t. y) If 3 < then
Y(uly) <W¥(uly)- (2.10)

Proof Thanks to Theorem 2.1, itis sufficient to prove the aboveuaéty for p < yt. Since
¥ = By, with densityf < 1 y-a.e., we haver = 3'y' with 92 = 691, and therefore

[ wendn=[ w6 92)00n> [ w2 (2.11)
R R R

where we used the propery(6-1x) > (x) for 6 < 1, beingy(0) = 0. O

Theorem 2.3 (Monotonicity with respect to convolution)If k € C2(RY) is a convolution
kernel satisfying ) >0, [rak(X)dx =1, then

W (uxkly=k) < ¥ (uly). (2.12)

The proof follows the same argument of [3, Lemma 8.1.10], by observivag the map
(x,y) — xy(y/x) is convex and positively 1-homogeneoug@+) x R,
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2.3 A duality result in convex analysis

Let X,Y be Banach spaces and kebe an open convex subsetXf We consider a convex
(and a fortiori continuous) functiop: A x Y — R and its partial Legendre transform

P(x,Y") = §gYp<Y*,y> —@(x,y) € (—,+], VXeA y €Y (2.13)

The following duality result is well known in the framework minimax problems [29].
Theorem 2.4 @is a l.s.c. function and there exists a convex setY* such that

PXY) <+ & Yy eY, (2.14)
so that@(-,y*) = +o for every y € Y* \'Yg and ¢ admits the dual representation formula

DY) = SUD {Y') ~9(xy’) VXeA yeY. (2.15)

For every ¥ € Y5 we have
themap »— (f)(x,y*) is concave (and continuous) in A (2.16)

Conversely, a functiop: AxY — R is convex if it admits the dual representati@15)for
a functiong satisfying(2.16).

Proof Let us first show that (2.16) holds. For a fixgde Y*, xo,x1 > 0, 6 € [0,1], and
arbitraryy; € Y, we get

P((1=9)x0+Ix,y") =y, (1-9)yo+ Y1) — @((1— )Xo+ 9%, (1—F)yo+ V1)
> (1-9) (1", y0) — 90%0.Y0) ) + 3 ((y",y2) — @0k, y1) ).
Taking the supremum with respectyig y; we eventually get
P(1—=9)x0+9%.,y") = (1-9)9(x0,Y") + 9 @(x1.y") (2.17)
and we conclude tha(-,y*) is concave. In particular, if it takes the valyeo at some point
it should be identically+ so that (2.14) holds.

The converse implication is even easier, since (2.15) éshjbas a supremum of con-
tinuous and convex functions (jointly ine Ajy € Y). ad

3 Action functionals

The aim of this section is to study some property of integnatfionals of the type

<Da(u,vw)::/Rd<p(p,W)dv, H=pyeM(RY), v=wye Moc(REGRY)  (3.1)

and their relaxation, whegq satisfies suitable convexity and homogeneity properties.
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3.1 Action density functions
Let us therefore consider a nonnegative density funatiof0, +) x RY — [0, +e0) and an
exponentp € (1, +) satisfying the following assumptions

@ is convex and (a fortiori) continuous, (3.2a)

w — @(-,w) is homogeneous of degreei.e. (3.2b)
@(p,AwW) = [A[Pp(p,w) Vp>0,A €R,weR", '
dpo>0: @(po,-) isnondegenerate,i.e. @(po,w)>0 VYwe RY \{0}. (3.2c)

Let = p/(p—1) € (1,+) be the usual conjugate exponent mfWe denote byp :
(0,400) x RY — (—co, +oo] the partial Legendre transform

%(To(p,z) ::vvsel%%z-w—%;(p(p,w) Vp>0,zeRY. (3.2d)
We collect some useful properties of such functions in thieviéng result.

Theorem 3.1 Let@: (0, +o) x RY — R satisfy(3.2a,b,c) Then

1. For everyp > 0the functiorw — ¢(p,w)¥P is a norm ofRY whose dual norm is given

byz— ¢@(p,2)¥9, i.e.

@(p,2)"% = sup 9(p,w)"/P = sup— (3.3)

_wz _wz
w20 @(p,W)Y/P’ 240 0(p,2)Y/9"

In particular @(-,z) is g-homogeneous with respectzto
2. The marginal conjugate functiaptakes its values ifD, +o) and for everyz € RY

the mapp — @(p,z) is concave and non decreasiimg(0, +). (3.4)
In particular, for everyw € RY
the mapp — @(p,w) is convex and non increasing (0, +). (3.5)
3. There exist constantsta> 0 such that
9(p,2) < (a+bp)|zl%,  @(p,2) > (a+bp) PW|P  Vp>0,zweR? (3.6)

4. For every closed intervapg, p1] C (0,+) there exists a constant€ Cp, o, > 0 such
that for everyp € [po, p1]

CHwlP < g(p,w) <Clw[®, Clz%<(p,2) <Clz" Vw,zeR’  (37)
Equivalently, a functiorp satisfieq3.2a,b,c)f and only if it admits the dual representation

formula

Lo(o.w) = supw z— 23(p,2) Vp>OweRY, (3.8)
P zeRd q

where: (0,+) x RY — (0, +w) is a nonnegative function which is convex and g-homogeneous
w.r.t. z and concavewith respect tq.
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Proof Let us first assume thap satisfies (3.2a,b,c). The functiom — @(p,w)¥/P is 1-
homogeneous and its sublevels are convex, i.e. it is theeghugtion of a (symmetric)
convex set and therefore it is a (semi)-norm. The concavitg éollows from Theorem
2.4; takingw = 0 in (3.2d), we easily get that is nonnegative; (3.2c) yields, for a suitable
constantcy > 0,

®(po,W) > colw|P YweRY, sothat @(po,z) <colzl9 <+ VzeRY  (3.9)
Still applying Theorem 2.4, we obtain that— (To(p,z) is finite, strictly positive and nonde-
creasing in the intervgl0, +). Sinceg(p,0) = 0 we easily get
9(p,2) < 9(po,2) < colz|? VzEeRY, p € (0,p0); (3.10)

o(p,2) < % ®(po,2) < %p\ZIq VzZeRY, p € (po, +0). (3.11)
0

Combining the last two bounds we get (3.6). (3.7) follows bynlegeneity and by the fact
that the continuous map has a maximum and a strictly positive minimum on the compact
set[po, p1] x {w e RY: |w| = 1}.

The final assertion concerning (3.8) still follows by Theur2.4. ad

3.2 Examples

Example 3.20ur main example is provided by the function
Pa(p,W) = g—f, Qa(p,2):=p%2?, O0<a<l (312
Observe thatp 4 is positively8-homogeneousy :=2—a, i.e.
®a(Ap,Aw) =A%p(p,w) VA,p>0 weRY (3.13)
It can be considered as a family of interpolating densitetsvben the case = 0, when
®o(p, W) := |w|?, (3.14)
anda = 1, corresponding to the 1-homogeneous functional
®1(p,W) = %- (3.15)

Example 3.3More generally, we introduce a concave function{0, +) — (0, +c0), which
is a fortiori continuous and nondecreasing, and we congiigedensity function

) |W|2 ~ ) 2
P(p,w) == )’ ®(p,2) :=h(p)|wl|*. (3.16)

If his of classC?, we can express the concavity condition in terms of the fana(p) :=
1/h(p) as
hisconcave < d’(p)g(p) > 2(g’(p))2 Vp >0, (3.17)

which is related to a condition introduced in [6, Section 22212c)] to study entropy func-
tionals.
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Example 3.4We consider matrix-valued functioms G : (0, +o0) — M9*4 such that
H(p),G(p) are symmetric and positive definité(p) = G"*(p) Vp>0. (3.18)
They induce the action density: (0, 4-0) x R4 — [0, +-00) defined as
@(p,W) = (G(p)w,w) = (H™*(p)w,w). (3.19)
Taking into account Theorem 3.¢,satisfies conditions (3.2) if and only if the maps
p — (H(p)w,w) are concave iff0,+) Yw e RY (3.20)
Equivalently,
H((1-38)po+9p1) > (1—3)H(po) +9H(p1) as quadratic forms. (3.21)
WhenG is of classC? this is also equivalent to ask that
G"(p) > 2G'(p)H(p)G'(p)  Vp >0, (3.22)

in the sense of the associated quadratic forms. In facgréiftiatingH = G~ with respect
to p we get
H'=—-HGH, H'=-HG"H+2HG HG'H,
so that
d2
?p

we eventually recall thatl(p) is invertible for everyp > 0.

(H(p)w,w) = — (G"W,W) 4+ 2(G'HG'W,W) where W :=Hw;

Example 3.5Let || - || be any norm irRY with dual norm||- |, and leth : (0, 4-c0) — (0, +-o0)
be a concave (continuous, nondecreasing) function as impbea3.3. We can thus consider

p

TN Ge.2)=hp)z]. (3.23)

h(p)
See [20,21] for a in-depth study of this class of functions.

®(p,w) :=h(p)

Example 3.6 ((@-6)-homogeneous functionalb) the particular cask(p) := p? the func-
tional ¢ of the previous example is jointly positive-homogeneous, with := o + (1—
a)p. This is in fact the most general example@homogeneous functional, sincegifis
6-positively homogeneous,4 0 < p, then
_ -0

@(p.w) = p*p(Lw/p) = p°Po(Lw) = p7[w/p? P, a =L (329
where||w| := @(1,w)¥P is a norm inRY by Theorem 3.1. The dual marginal densjiyn
this case takes the form

o(p,2) =pz|? Vp>0,zeRY, (3.25)
and itisq+ a-homogeneous. Notice thatand6 are related by
9,94 (3.26)
P q
In the particular case whep || = || - ||« = | - | is the Euclidean norm, we set as in (3.16)
p ~
Poa(0,W) :=p" sa | Palp2) = plz%,  O0<a<l 3.27)
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3.3 The action functional on measures

Lower semicontinuity envelope and recession functibimanks to the monotonicity prop-
erty (3.5), we can exteng also forp = 0 by setting for everyv € R

. . . ¢(0,0) =0,
O,w) =su ,w) = lim ,W); in particular . 3.28
o0W) p>(;))(p(p ) pio(p(p ) P {(p(o,w) >0 ifw#D0. ( )

Whenp < 0 we simply setp(p,w) = +o, observing that this extension is lower semicon-
tinuous inR x RY. It is not difficult to check thatp(0, -) satisfies an analogous formula

®(0,2) = supz-w—@(0,w) = inf @(p,z) =lim@(p,z)  VzeR". (3.29)
p>0 pl0

weRd

Observe that, as in ther-6)-homogeneous case of Example 3.6 with- 0,

~ +oo ifw=#£0
0,2)=0 o,w) = 3.30
902=0 = 0w {0 w0 (3.30)
As in (2.4), we also introduce threcession functional
w 1 1 . 1
¢ (p,w) =sup=@(Ap,Aw) = lim —@(Ap,Aw) = lim AP @(Ap,w).  (3.31)
A>0)\ )\T+oo)\ AT+oo

@” is still convex,p-homogeneous w.riv, and I.s.c. with values if0, +-c]; moreover, it is
1-homogeneous so that it can be expressed as

Lt =pemw/p)  ifp#0,

. (3.32)
+o0 if p=0andw # 0,

»*(p,w) = {

whereg® : RY — [0, +o] is a convex angi-homogeneous function which is non degenerate,
i.e.p(w) > 0if w#£ 0. ¢ admits a dual representation, based on

1~

oy el o 1
$%(2) = Alr;fo 3Pz = A'%Tw 3 #(Ap.2). (3.33)

> is finite, convex, nonnegative, aruihomogqneous, so thét”(z) 19 is a seminorm,
which does not vanish ate RY if and only if p — @(p, z) has a linear growth whem 1 +-o.
It is easy to check that

¢ (w)YP = sup{w- z:6%(2) < 1}. (3.34)

In the casep has a sublinear growth w.rp, as for (a-0)-homogeneous functionals with
o < 1 (see Example 3.6), we have in particular

+00 if w=£0,

3.35
0 if w=0. ( )

when$®(z) =0, B (w) :{
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The action functional.Let y,u € M%C(Rd) be nonnegative Radon measures andvlet

Mioc(RY;RY) be a vector Radon measureRf We assume that sufy), supgv) C supgy),
and we write their Lebesgue decomposition with respectdgdference measuye

wi=py+ut, vi=wy+vt (3.36)

We can always introduce a nonnegative Radon measa@a(+ (Q) such thau' = pto <«
o,vt=wlo < 0, e.q.0:=put +|vi|. We can thus define treetion functional

Ovly) = O (uIY) + O (uvly) = [ olpwdy+ [ ¢7(p"whydo. (337)

Observe that, being® 1-homogeneous, this definition is independentofWe will also
use a localized version @b: if B ¢ B(RY) we set
Ouvly.B) = [olp.wdy+ [ ¢"(p*.w")do. (338)

Lemma 3.7 Let u = py+ ut,v = wy+ v be such thabd(u,v|y) is finite. Therw* =
whut <« pt and

O (uvly) = [ 07wt o(uvly) = [ otpwdy+ [ o7w)dut. (3.39

Moreover, if@ has asublinear growth with respect to (e.g. in the(a-8)-homogeneous
case of Example 3.6, with < 1) then$*(-) = 0 and

DY) <+ = v=woy<y. Ov) = (uv)= [ plowdy,  (3.40)

independently on the singular paut-.

Proof Let & € M,/ (RY) any measure such that- < &, |v*| < & so thatd™(u,v|y) can

be represented as
: il om e oay duto dvt
00 _ 00~ | & | 1 _ 1L _
® <u,v\v>—/Rd(p (B"WH)ds, Bt =Zm W =

Wheno®(u,v]y) <+, (3.32) yieldsi* (x) = 0 for &-a.e x such thap (x) = 0. It follows
that

DO(U,V) <o = vi<put, (3.41)
so that one can always choode= u't, p- = 1, and decompose asw'u+ obtaining
(3.39). (3.40) is then an immediate consequence of (3.35). ad

Remark 3.8When ¢(0,z) = 0 (e.g. in the(a-8)-homogeneous case of Example 3.6, with
a > 0) the densityw of v w.r.t. y vanishes ifp vanishes, i.e.
O(u,vly) <+ = w(x)=0if p(x) =0, for y-a.exc RY. (3.42)
In particularv? is absolutely continuous also with respectto
Applying Theorem 2.1 we immediately get

Lemma 3.9 (Lower semicontinuity and approximation of the ation functional) The
action functional is lower semicontinuous with respect &ait convergence of measures,
ie.if

Pn—"l, Yo"y weakly in M (RY),  va—'v in Miec(R%GRY) as nt +oo,
then

iminf & (s, Vol ) > P(1.v]y).
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Equiintegrability estimate We collect in this section some basic estimategpawhich will
turn to be useful in the sequel. Let us first introduce thetimta

2]l = @(1,2)Y9, | := @(L,w)¥P,  n~Yz| < ||zl < nlz, (3.43)

o= {(a, b): sup @(p,z) <a+ bp}, h(p) = inf{a+ bp: (a,b) ’_co}» (3.44)
I2).=1

H(s.p):=sh(p/s) =inf {as+bp : (a.b) € Fy}. (3.45)

Observe thah is a concave increasing function definedmo), satisfying, in the homo-
geneous case(p) = h(p) = p?. It provides the bounds

@(p,2) <h(p)|z|%  |w|| <h(p)"%(p,w)*/P,

6@ <Hzf i < ()G )R, iR = i A () >

o, (346)

Observe that wheh® = 0 then@® = 0 and¢*(w) is given by (3.35).

Proposition 3.10 (Integrability estimates)Let{ be a nonnegative Borel function such that
M= / 29y and y(29) = / 2%y are finite
Rd Rd
and let Z:= {x e R: {(x) > O}. If ®(u,v|y) < +w we have

L4 800dIVI00 < P (k. v]y.Z) HYA(y(3). 1(E)). (3.47)
In particular, for every Borel set & B(RY) we have

[VI[(A) < OYP(u, vy, A) HYI(y(A), u(A)). (3.48)

Proof It is sufficient to prove (3.47). Observe that# b) € I, thena > 0, andh® < b so
that by (3.46) we have

/Rdz(@dlIVII(X) S/ZZHWHdv+/26||wi||o|uL
< (Aw(p,W)dv)l/p(/z'iqh(p)dv)l/q+(/z'¢°°(wﬂduL)l/p(hw/Z'zqduL>l/q

< (¢(u,v|y,2)>l/p(a/§d 29y + b/ﬂ%d ZQdu)l/q,

Taking the infimum of the last term over all the couplasb) € I, we obtain (3.48). O
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4 Measure valued solutions of the continuity equation irR¢

In this section we collect some results on the continuityatign
e +0-vi=0  inRYx(0,T), (4.1)
which we will need in the sequel. Herg, v; are Borel families of measures (see e.g. [3]) in

Mt (RY) andMoc(RY; RY) respectively, defined fdrin the open interval0, T), such that

T T
/0 14 (BR) dt < +co, vR::/0 W|(BR)dt <t YR>DO, 4.2)

and we suppose that (4.1) holds in the sense of distribytiens

T T
| [yacocndmeoa+ [ [ 0t avid =0 (4.3)

for every € C(RY x (0,T)). Thanks to the disintegration theorem [14, 4, 111-70], we can
identify (Vi)ie(o1) With the measure = f§ vidt € Mioe(RY x (0,T);RY) defined by the
formula

,2) / (/ Z(xt) - dvi(x ))dt VZ eCORIx (0,T);RY).  (4.4)

4.1 Preliminaries

Let us first adapt the results of [3, Chap. 8] (concerning alfaaf probability measures
Lk) to the more general case of Radon measures. First of all eal iome (technical)
preliminaries.

Lemma 4.1 (Continuous representative) et L, v; be Borel families of measures satisfy-
ing (4.2) and (4.3). Then there exists a uniqueeakly* continuouscurve te [0, T] — [i €
M, (RY) such tha, = fiy for #*-a.e.tc (0,T);if { € CL(RYx[0,T])and g <tp € [0, T],

loc
we have

/Rd thdﬂtz—/Rd Ztldﬂtﬁ/t:z/Rd atzolut(x)o|t+/:/]Rd 0Z-dvi(x)dt,  (4.5)

and the mass gi; can be uniformly bounded by

S[UIO] [i(Br) < fis(Bzr) +2R "Vor  Vs€[0,T]. (4.6)
te[0,T

Moreover, iffis(RY) < +oo for some s [0, T] andlimg;.. R"1Vk = 0, then the total mass
Bk (RY) is (finite and) constant.

Proof Let us take{ (x,t) = n(t){(x), n € CX(0,T) andZ € C?(RY) with supp C Bg; we

have
T d O -d
[ ( [, a0dme)a= [Tnw( [, 0209 awoo)a
so that the map— (4 ({) = [za { di belongs toN11(0, T) with distributional derivative

/ 0Z(x)- dvy(x) for £t-a.ete (0,T), (4.7)
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satisfying
T
| (0)] < VR(t)suplOq], VR(t) := [vt|(Br), / VR(t)dt = Vr < +oo. (4.8)
Rd 0

If L; is the set of its Lebesgue points, we know ti#t((0,T)\ L;) = 0. Let us now take
an increasing sequengg := 2" | +c and countable se%, C C(Bg,) which are dense in
C3(Br,) := {¢ € CY(RY) : sup({) C Br, }, the closure ofc}(Bg,) with respect the usual
C! norm || ||c1 = supa(|<],|0Z]). We also setz := Npey zez, L~ The restriction of the
curveu to Lz provides a uniformly continuous family of functionals orclaa;pac@é(BRn),
since (4.8) shows

t
()~ i) < [<les [ V) A VsteLz VE €z

Therefore, for everyn € N it can be extended in a unique way to a continuous curve
{B }eor) in [C3(Bg,)]" which is uniformly bounded and satisfies the compatibilionc
dition

i"(Z)=f"(¢) if m<nand € C3(Bg,). (4.9)

If { € C}(RY) we can thus define
[ (Z) = [i"({) foreveryn e N such that sup@) C Bg,. (4.10)

If we show that{ 1 (BR, ) }tcL, is uniformly bounded for every € N, the extension provides
a continuous curve in(,)_(RY). To this aim, let us consider nonnegative, smooth functions

& :RY — [0,1], such that gy (x) := Zo(x/29), (4.11a)
L) =1if x| <2¢  Z&(x) =0if |x| > 2 |0%(x)| < A27K, (4.11b)

for some constarA > 1. Itis not restrictive to suppose théte Zy.1. Applying the previous
formula (4.7), fort, s€ Lz we have

T
|t () — ps( Q)| < @y = 24K /0 Vi|(Br \Br)dr <A2"Vog.  (4.12)

It follows that

i (Br) < Mi(dk) < Hs(Zk) +A2 MVor, < Us(Br) +A2 Vog, Vielz.  (4.13)
Integrating with respect tewe end up with the uniform bound

‘ T
L(Br) < A2 VRM+/O ps(Bor ) ds < e WLy,

Observe that the extensigip satisfies (4.13) (and therefore, in a completely analogays w
(4.6)) and (4.12) for everg,t € [0, T].

Now we show (4.5). Let us choogec CL(RY x [0, T]) andne € C®(t1,to) such that

0 S r,S(t) S 17 l:_% r,S(t) = X(tl,tg)(t) Vt S [OvTL I%!‘Tg r’}/: = 6[1 - 6[2
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in the duality with continuous functions {0, T]. We get
T T
o— [ [ andma+ [ [ Oxned)- vt
o Jrd o Jrd

:/OTns(t)/RdﬁtZdlltdtJr/oTne(t)/RdDXZ~dvtdt+/0Tn§(t)/RdZdﬂtdt.

Passing to the limit as vanishes and invoking the continuity gf, we get (4.5).
Finally, if limg;;« R 1Vkr = 0 we can pass to the limit @& 1 4+ in the inequality
(4.12), which also holds for evetys € [0, T] if we replaceyu by fi, by choosings so that

m:= fis(RY) = klmlo Fis(di) < +eo.

It follows that fit (RY) = limy .« fis(k) = mfor everyt € [0, T]. 0

Thanks to Lemma 4.1 we can introduce the following class aftems of the continuity
equation.

Definition 4.2 (Solutions of the continuity equation)We denote byc& (0, T) the set of
time dependent measur@# )ic (o1}, (Vt)te(o,1) Such that

1.t i is weakly continuous i\, _(RY) (in particular, SUR-(o.7] Mt (Br) < 4o for
everyR > 0),

2. (Vt)ie(o) is @ Borel family with/o.T [vi|(Br) dt < 400 VR>0;

3. (u,Vv) is a distributional solution of (4.1).

C&(0,T; 0 — n) denotes the subset (fi, v) € CE(0,T) such thatlp = o, 1 =1n.
Solutions of the continuity equation can be rescaled intime

Lemma 4.3 (Time rescaling)Lett :se [0,T'] — t(s) € [0, T| be a strictly increasing ab-
solutely continuous map with absolutely continuous irerers- t—X. Then(u,v) is a distri-
butional solution of(4.1) if and only if

fl:i=pot, V:=t'(vot), isadistributional solution of4.1)on (0,T").

We refer to [3, Lemma 8.1.3] for the proof.
The proof of the next lemma follows directly from (4.5).

Lemma 4.4 (Glueing solutions)et (u',v') € €€(0,Ty), i = 1,2, with uf = pg. Then the
new family(pt, Vi)ie01,+1,) defined as

1 ifo<t< 1 ifo<t<
ut:—{“t fO<t<Ty vt:—{"t fO<t<Ty 4.14)

ply fTI<t<Ti+T Vig M<t<Ti+T
belongs ta2& (0, T1 + Ta).

Lemma 4.5 (Compactness for solutions of the continuity equ#n (1)) Let(u",v") be a
sequence itRE (0, T) such that

1. forsome & [0,T] supeyHE(Br) <+ VR>O0;
2. the sequence of maps-+ |v{'|(Bg) is equiintegrable in0, T), for every R> 0.
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Then there exists a subsequence (still indexed by n) and@ecu,v:) € €€(0,T) such
that (recall (4.4))

=" weakly in M (RY) Vte[0,T],

R ) (4.15)
v'—*v  weakly in Mioc(R® x (0,T); RY).
(4.15)yields in particular
T
| ety < nmmf/ (VI o (4.16)

for every sequence of Radon measuyf@s:*y in Mgc(]Rd) where® is an integral func-
tional as in(3.37)

Proof Sincev" := [J vI'dt and u? have total variation uniformly bounded on each com-
pact subset oRY x [0, T], we can extract a subsequence (still denotegihw™) such that
UD—* s in Mioc(RY) andv™—*v in Mjoe(RY x [0, T];RY). The estimate (4.6) shows that

supy'(Br) <+ Vte[0,T], R>0. (4.17)

neN

The equiintegrability condition om" shows thav satisfies
IV|(Brx 1) = /mR(t)dt V1€ B(0,T), R>0, forsomemge L1(0,T),
[

so that by the disintegration theorem we can represent\'rtasfoT v; for a Borel family
{Vt}ie(o) still satisfying (4.2). Let us now consider a functi¢re CL(RY) and for a given
intervall = [to,t1] C [0, T] the time dependent functidf(t, x) := X, (t)0J{(X). Since the dis-
continuity set of is concentrated oN = RY x {to,t;} and|v|(N) = 0, general convergence
theorems (see e.g. [3, Prop. 5.1.10] yields

lim //dDZ(x)-dv{‘(x)dt: lim Z-dv(t,x)

n—oeo fI JR n—oo Rd (OT
- Z-dv(t,x) / / 02 (%) - dvy (X
RIx(0,T)

Applying (4.5) with { (t,x) := {(X) andtp := s and the estimate (4.17) we thus obtain the
weak convergence gi{" to a measurgy € M*(RY) for everyt € [0, T]. It is immediate to
check that the coupléu, v;) belongs ta2€(0, T). (4.16) follows now by the representation

(4.18)

T .
/0 D(,vily)dt = @(u,vly), u —/ pedt, y=y@ 2 e M (R x (0,T))

and the lower semicontinuity property stated in Theorem 2.1 ad
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4.2 Solutions of the continuity equation with finite ®-energy

For all this section we will assume th@t (0, +o) x R4 — (0, +) is an admissible action

density function as in (3.2a,b,c) for sompec (1,+®), y € Mgc(]Rd) is a given reference

Radon measure, andt is the corresponding integral functional as in (3.37). Weata
study the properties of measure valued solutign®) of the continuity equation (4.1) with
finite ®-energy

T
E ::/O O (1, Viy) ct < +oo. (4.19)

We denote by & (0, T) the subset oBE(0, T) whose element§u, v) satisfies (4.19).

Remark 4.61f (Lt )ic(o1) is weakly continuous invi;t (RY) and (4.19) holds, thep,v;

loc

also satisfy (4.2): in fact, the weakontinuity of i yields for everyR> 0 sup¢jo 1) Ht(Br) =
Mg < +00, and the estimate (3.48) yields (recall (3.43))

T
VR<n / [vel|(Br) dt < n TYIEYPH(y(Br), Mr)9 < +eo. (4.20)
0
Recalling that the function is defined by (3.44), we also introduce the concave function
s 1 , 1 .
) _/0 Tl CO=0 WE= o Imoly = e (@2
In the homogeneous caggp, z) = p°|z||¢ we have
S
— [ajag — 94 g-a/a_ Pgrp
w(s) /0 r=9/9dr P asl 55" (4.22)

For given nonnegativé € C1(RY) andu € M5 (RY) we will use the short notation

Z:=supDO) C RS, Gy(Q):= [ Pdy, D(Q):=sup|DL]l. (4.23)
R

Theorem 4.7 Let { € C}(RY) be a nonnegative function with @({),D({) defined as in
(4.23) and letu,v € C€ (0, T). Setting

T
Ey = /0 O, vi]y,Z) ot < E < +oo, (4.24)

we have
1 414(2P)] < PD(Q) Dk, |y, Z)YPH (Gp (), e (Z)) Y. (4.25)

In particular, there exists a constat > 0 only depending (in a monotone way) o/mp, T
such that

sup 1(¢”) < Cu(ko(¢P) +D(()Gp(()UEP+DP(Q)Ez).  (426)
te[0,T]

Moreover, if G({) > 0,
| 3w (1 (P)/Gp(Q))| < 1/p O, vi|y.Z)YP fora.e.te (0,T). (4.27)
In particular, in the(a-e)-homogeneous case, for evérg s<t < T we have

't
)”ZHEP(M)_HZHEPQJS) — ( )”ZHLP (v.2) /S (D(Ur7Vr|Vyz)1/pdr~ (428)
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Proof Settingm := 1k ({P), G= Gp({), D = D({) we easily have by (3.47)

d d -
—m = —/ {Pdy; = p/ 2P 107 -dvy < pD D (i, vily, 2)YPH (G,my) Y,
dt dt Jrd z

since({P~1)9 = ZP. SinceH (G,m) = Gh(m /G), we get

1/q(mt/G) m < pDGY9d(p, vy, Z)YP

Recalling that%w(r) =h~Y9(r) we get (4.27).
In order to prove (4.26) we s& := sup o) M and we choose constar(ia b) € Iy;
integrating (4.25) we get

te[0,T]

By using the inequalitxy < p~1xP 4-g~1y% we obtain
1ag1/p , 1 p-1p p/q
M <mo-+pD(aT 6)" %7 P+ M+ pP 0P (bT) "z (4.30)

which yields (4.26) withCy := pmax(1, p(aT)¥9, pP~1(bT)P/9).
Finally, let us assume that satisfies th€a-8)-homogeneity condition, so thai(s) =
£s9/P as in (4.22). It follows that

“1..\v_ Pyse -0
(G m) = EHZHLP(M) HZHLp<yﬁz)~ (4.31)
Integrating (4.27) we conclude. ad

We extend the definition ofi, (i) also for negative values ofby setting
+/ X" d :/ (1vIX) du(x) vreR. (4.32)
Rd

Notice thatmip(u) = p(RY) andmy (i) < iy (1) < p(By) 4 my (1) whenr > 0.

Theorem 4.8 Let us assume thah, (y) < +4-co for some r< p and let(u,v) € C€4(0,T)
satisfy(4.19) For everyd < 1+r/q, if mg(lo) < +o then alsoms (L) < +o and there
exists a constant, only depending in a monotone way lorp, T, A, |d| such that

s (k) < Ca (s (o) + i (y)IEYP +E). (4.33)

Moreover, if r> —q andpo(RY) < 40, thenpy (RY) is finite and constant for everyt[0, T].

Proof Let us first set

Kn :=2"y(Boni1 \ Bon) (4.34)
observing that
+-00
Kn < Z}K,— <2 m(y), limsupK,=0. (4.35)
p— nT-+oco

We consider the usual cutoff functiodggs € C?(Rd) asin (4.11a,b) and we set

Dn = D(¢n) = SUp|DZnll. A2, Gn=Gp(Zn) < V(Byri1 \Bar) =2 Ky, (4.36)
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By (4.26) we obtain

sup i (Ban) < cl(uo(Bzm) L A2 /K /AL | AP 2*”95); (4.37)
te[0,T]

in particular, ifr > —qandpp(RY) < 4, we can derive the uniform upper boupdRY) <
C1 Ho(RY) letting n 1 +o0. We can then deduce that(RY) is constant by applying the
estimate (4.25), which yields after an integration in timel &or every(a,b) € I’y

sup [4(Z9) — Ho(Z2)| < PATYIENP2 ™" (a2 ™ Ky +bC1po(RY)) V.
te[0,T]

In order to show (4.33), we argue as before, by introduciegigw family of test functions
induced byuy(x) := ug(x/2") € CZ(RY)

Un(X)=1 if2" < |x| <2m1

—Nn
Un(X) =0 if [x < 2" 1or|x >2™2 IDonll. < A2 (4.38)

0 S Un S 17 {
Observe that ¥ 5 (un(x))” < 3 and for some constaA > 1
+oc0
AP < S 2 (0n(0)P < As[X® WXERT, x| >2. (4.39)
n=1

As before, setting/, := Kny1+ Kn_1, we haveD(u,) < A2 " and
Gp(Un) < (2*<”+1)rKn+1+ 2’(”’1>rKn,1) <2k (4.40)
Applying (4.26) we get for evert/e [0, T]
2 1 (Uf) < Ca (2% po(Uf) + A1~ E1 /N () /A () P+ AP 2O PINEL ),

where .
En:= /0 (e, vily,Bonea \ Ban)dlt,  Epi=Eni1+En. (4.41)

Sinced < 1+r/gandd < p, summing up with respect toand recalling (4.37) we get
ms (L) < Cz (515(110)+(ﬁ“r(V))l/qu/erE) O (4.42)

In the theB-homogeneous case we have a more refined estimate:

Theorem 4.9 Let us assume thap is 8-homogeneous for sontee (1, p|, the measure
satisfies the r-moment conditighy (y) < -+, and let(u,v) € C€y(0,T) satisfy(4.19)
For everyd < & := 4 p+(1— 2)r, if ms(Ho) < +o0 thenfmg () is finite and there exists a
constantCz > 0 such that

s () < Ca (g o) + i ()1 /PEY?). (4.43)

Moreover, if > 0 (i.e. r > —p/(6 — 1)) and o (RY) < +0 thenpi (RY) is finite and constant
fort e [0, T].
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Proof We argue as in the proof of Theorem (4.9), keeping the sansiontand using the
crucial estimate (4.28). i, are the test functions of (4.11a,b),

— 6— 4.36) 5 _ -1
12nlEogy gy = G /P 22O () I, (4.4)

so that, since?@/p =1+4+(60—-1)r/p, (4.28) yields
(1 (@8) P (Ho(€8)) P < AB290NP () O~V PP, (4.45)

Sinced > 0, passing to the limit as T c and recalling (4.35), we gek (RY) = pio(RY).
Concerning the moment estimate, we replgcby vy, defined by in (4.38), obtaining

‘(M(U#))WP B (UO(U#))G/p‘ < C3‘12"§6n/p (Ké)<9*1)/P(Er/1)1/P’ (4.46)

and therefore B
K () < Caz(Ho(u) +27°" () " O () V7). (4.47)

Multiplying this inequality by 29, summing up w.r.tn, and recalling (4.39), we obtain
(k) < Ca (s (ko) + e () YPEY?). O (4.48)

Corollary 4.10 (Compactness for solutions of the continuit equation (I1)) Let (u",v")
be a sequence i@E (0, T) and lety"—*yin M, _(RY) such that

loc

T
suppg (Br) <+ VR> 0, sup[ @(p" vy dt < +oo. (4.49)
neN neN~/0

Then conditions 1. and 2. of Lemma 4.5 are satisfied and thrertfere exists a subsequence

(still indexed by n) and a couplg,vt) € C&€¢,,(0,T) such that

= weakly in M (RY) Vte[0,T],

_ ) ) (4.50)
v'—*v  weakly in Mioc(R? x (0,T); RY),
T T
/ cD(ut,vt|y)dt§Iiminf/ (U, Vi) ct. (4.51)
0 ni+e Jo

Suppose moreover tha (RY) — po(RY) and sup, i (Y") < 4o wherek = —q or K =
—p/(6 — 1) in the 8-homogeneous case, then (along the same subsequef@y) —
e (RY) for every te [0, T].

Proof SinceRg := sup, y"(Br) < + for everyR > 0, the estimate (4.33) fod = 0 and
the assumption (4.49) show thdk = Supycy tcjo.1) H'(Br) < +oo for everyR > 0. We can
therefore obtain a bound ¢¥7||(Br) by (3.48), which yields

1Vl (Br) < H(Pr, M) (1, vi|y) /P,

so that the maps— ||v}'||(Br) are uniformly bounded by a function Iit’(0, T). The last
assertion follows by the fact that- y'(RY) is independent of time, thanks to Theorem 4.9
(in the (a-6)-homogeneous case) or Theorem 4.8 (for general densityidms@). ad
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5 The (¢-y)-weighted Wasserstein distance

As we already mentioned in the IntroductionE®aMouU-BRENIER [7] showed that the
Wasserstein distand®, (1.1) can be equivalently characterized by a “dynamic” poin
view through (1.15), involving the 1-homogeneous actiamcfional (1.13). The same ap-
proach can be applied to arbitrary action functionals.

Definition 5.1 (Weighted Wasserstein distanced)et y € Mgc(Rd) be a fixed reference

measure ang@ : (0,+) x RY — [0, ) a function satisfying Conditions (3.2a,b,c). The
(@, y)-Wasserstein (pseudo-) distance betwggmn; € M (RY) is defined as

loc
. 1
Wey(Hos 1) :=lnf{/0 P, vely)dt:  (H,v) € @8(0»1#10—’”1)} (5.1)

We denote by, ,[Ho] the set of all the measurgse M (RY) which are at finitew,, -
distance fromip.

Remark 5.2Let us recall the notatiow, o, of (1.23) in the casey o (0, W) = p|w/p?|P.

Whena = 0 we find the dual homogeneous Sobolev (pseudo-)distanceaid in the case
a =1 and supfy) = RY we get the usual Wasserstein distance:

| o — 1 HWV—Lp =Wh,0;y(Ho, Ha), Wo (Mo, 1) =W, 1.y (Mo, H1)-

Remark 5.3Taking into account Lemma 4.3, a linear time rescaling shibas

T
W2, (o pir) = {TP [T 0 vily)dt: (wv) € CEQTipo— pr) | (5:2)

Theorem 5.4 (Existence of minimizers\Whenever the infimum if5.1) is a finite value
W <+, it is attained by a curvép,v) € €€y (0, 1) such that

O (,vily) =W for.zt-ae. te (0,1). (5.3)

The curve(fk )ic(o,1) @ssociated to a minimum f¢5.1)is a constant speed mimimal geodesic
for Wy since it satisfies

Woy(Hs, ) = [t =S| Woy(Ho. ) Vste0,1]. (5.4)

We have also the equivalent characterization

Woy(om=int{ [ (@(wwin) " @y cce0Tio-m}. 69

Proof WhenW, (Lo, 1) < +, Corollary 4.10 immediately yields the existence of a min-
imizing curve(u,v). Just for the proof of (5.5), let us denote By, (o, n) the infimum

of the right-hand side of (5.5). Holder inequality immeeis shows thatW,, ,(o,n) >
Woy(0,n). In order to prove the opposite inequality, we argue as in_gBnma 1.1.4],
defining for(u,v) € C€(0,T;0 —n)

set) = [ (4 @uwln) "o, teoT] (5.6)
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s¢ is strictly increasing withs, > €, s:(0,T) = (0,S) with S; :=s,(T), so that its inverse
mapte : [0,S] — [0, T] is well defined and Lipschitz continuous, with

, -1/p .
tgosg = (s+ cD(ut,vt)) a.e.in(0,T). (5.7)

If if = pote,V® :=t,Vote, we know that(1¢, V%) € €€(0,S:;0 — n) so that

(K VElY) e
< - - -z
J(o.n)<s” / P(pE,vely)ds= S~ /£+¢ut,vtg|y)(£+¢(“tavt)> dt,

the latter integral being less th&l. Passing to the limit as | 0, we get
T
Woy(0,) < / O vily) VPt V() eee@Tio—n),  (58)

and thereforéVy ,(0,n) < Wy (a,n). If (4,v) € €€4(0,1; o — p1) iS a minimizer of
(5.1), then (5.8) yields

1 e 1
WYP =Wy (o, 1) = (/0 (D(IJt,VtW)dt) :/o (e, ve|y)Y P,

so that (5.3) holds. ad

5.1 Topological properties

Theorem 5.5 (Distance and weak convergenc&he functionaW, , is a (pseudo)-distance
on Mgc(]Rd) which induces a stronger topology than the weake. Bounded sets with re-

spect tow,, , are weakly relatively compact.

Proof It is immediate to check thatv,,, is symmetric (sincep(p, —w) = @(p,w)) and
Woy(0,n)=0 = g =n.The triangular inequality follows as well from the chaexiza-
tion (5.5) and the gluing Lemma 4.4.

From (4.27) (keeping the same notation (4.23)) and (5.5)maediately get for every

Lo, 1 € M5, (RY) and nonnegativé € CL(RY) with ||{]|ip(y) > O
<9

| (11(¢P)/Gp(0)) — @(Ho(EP)/Gp(Q))| < o - Wey(0.n),

‘_ 1€]ILe(y)

which shows the last assertion, sirwés strictly increasing and the set
{2P:7eCiRY), 720, |llny >0}

is dense in the space of nonnegative continuous functiotisasimpact support (endowed
with the uniform topology). ad

Theorem 5.6 (Lower semicontinuity) The map(to, 1) — W (Mo, 1) is lower semi-
continuous with respect to weakonvergence nM,oc(]Rd). More generally, suppose that

y'—*yin MEC(R") ¢" is monotonically increasing w.r.t. n and pointwise conveggo ¢,

and pi—* to, U —* g in M5 (RY) as nT +o. Then

loc

Ilppmf Won o (Hg, UT) > We,y(Ho, H1)- (5.9)
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Proof It is not restrictive to assume thay (U3, ') < S< +o, so that we can find a
sequencéu”,v") € CE€gn 0 (0,1; uf — pi') such that

o™y vy") <S a.e.in(0,1), Vm<neN, (5.10)

where®™ denotes the integral functional associateg'o We can apply Theorem 4.10 and
we can extract a suitable subsequence (still denoted™bu™) and a limit curve(u,v) €
CEyy(0,1; o — p1) such that (4.50) holds. We eventually have

1
Won, (o, ) < [ O™, vily) ot < (5.11)

Passing to the limit w.r.m | 4-c we conclude. ad

Theorem 5.7 (Completenessljor everyo € Mgc(]Rd) the spaceMy [o] endowed with
the distanceW , is complete.

Proof Let (un)nen be a Cauchy sequenceliy ,[o] w.r.t. the distanceV, ,; in particular,
(un) is bounded so that we can extract a suitable convergencequdrscei, weakly*
converging top, in M%C(Rd). Thanks to Theorem 5.6 we easily g8ty ,(tm, Ho) <
liminfx—c We,y(Hm, Un, ), and therefore, taking into account the Cauchy condition,

lim Supy e Wy (Hm, too) < iMSUR, oo Wey (Um, Hn) = O SO thatu, converges t@h,. O

Let us now consider the case of measures with finite masddgjtigtthe constant, probability
measures iP(R?)). We introduce the parameter

-1 1-a (5.12)

501 =0 otherwise.

{ P L I @is (a-8)-homogeneous

K:=

Theorem 5.8 (Distance and total masd)et us assume thai_ (y) < +o and let us sup-
pose thato € P(RY). ThenM,,, (0] C P(RY), the weighted Wasserstein distanég, , is
stronger than the narrow convergence #RY), and P(RY) endowed with the (pseudo-)

distanceW,, , is a complete (pseudo-)metric space.

Proof If n € Mg[o] then Theorem 4.9 (in th@-homogeneous case) or 4.8 (in the gen-
eral case) yieldg (RY) = o(RY) = 1, so thatvy (0] C P(RY). Since the narrow topology
coincide with the weakone in?(RY), Theorem 5.5 proves the second statement. The com-
pleteness of (RY) with respect to the (pseudo) distanég, , follows by Theorem 5.7. O

We can also prove some useful moment estimates.

Theorem 5.9 (Moment estimates).et us assume that;, (y) < +o for some re R and let

us set

_ 1 _Ly_p if ois 6-
6:_{9p+(1 5)r = 5(1+r/k) if @is 8-homogeneous (5.13)

1+r/g<p otherwise.

If ms(0) < +oo for somed < §, andn € Mgy,[0], thenms(n) is finite and there exists a
constantC only depending owp, 6 such that

s (1) < C(s(0) +fr(y) + W5, (0,1))
() < C(s(0) + () WD (a,m)).

Moreover, wherd > 1, the topology induced by, in Mg ,[0] is stronger than the one
induced by the Wasserstein distancg W

(5.14)
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Proof Let us first consider the general case: applying (4.33) wéyealstain (5.14). In
order to prove the assertion about the convergence of theemisrinduced bW, , (which
is equivalent to the convergenceWy whend > 1), a simple modification of (4.42) yields

5 5 ~ 1/q p
[P <Co( [ WP Ao (1) Wy (o) WY (o). (.19)

which shows that every sequengg converging tooc hasd-moments equi-integrable and
therefore it is relatively compact with respect to th&Vasserstein distance whér> 1.
The 68-homogeneous case follows by the same argument and Theodem 4 ad

Remark 5.10There are interesting particular cases covered by thequrevesult:

1. Wheny(RY) < 4o thenW,, , is always stronger than the 1-Wasserstein distivcén
the 6-homogeneous caséy, o.y also controls th&\, ¢ distance.

2. Whenmp(y) < +o, thenW,, , is always stronger than,.

3. Wheng is 6-homogeneous witl§ > 1 andy is a probability measure with finite mo-
ments of arbitrary orders (this is the case of a log-concavkability measure), then all
the measuree € My, ,[y] have finite moments of arbitrary orders and the convergence
with respect toV, , yields the convergence ihs(RY) for everyd > 0.

5.2 Geometric properties

Theorem 5.11 (Convexity of the distance and uniqueness of@daesics)\/vz_’y(-, -)is con-
vex, i.e. for everys) € M (RY),i,j = 0,1, andt € [0,1], if u’ = (1— T)u0+ T,

loc
Wh (K, K1) < (L=T)WE (13, 1) + TWh (15, 1) (5.16)

If ¢ is strictly convex andp has a sublinear growth w.r.ip (i.e. . = 0), then for ev-

ery Ho, th € Mt (RY) with W (Lo, pl1) < +o there exists ainiqguemimimizer(p,v) €

€E¢,y(0,1) of (5.1).
Proof Let (ul,vl) € €€4(0, 1;;13 — ulj) be two minimizers of (5.1)j = 0,1. Fort € [0, 1]

we sety’ := (1—- 1)l + Tud, vi := (1—1)vQ + v, Since(uT,vT) € CE(0,1;uf — 1i),
the convexity ofp yields

1 1
Wh (kD) < [ o Vil < [ (=10 ey + 1ot viy) d
= (l_ T)Wgy(ﬂg»ﬂf) + ngy(ﬂé»ﬂll)

Let us now suppose that is strictly convex and sublinear. Setting, as uspgl= ply+
(5)*, vi =w]y, we have for a.e.€ (0,1)

Qv <@-1) [ ol wdidy+r [ elptwdidy  (5.17)

and the inequality is strict unleg® = pt andw? = w! for y-a.e.x € RY. If pd = pd and
uf = pi, two minimizers should satisfy

P2 (X) = pt(x), Wwo(x) =wi(x) y-ae., vP=v} forztaete(0,1).
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Since(u',v') are solutions of the continuity equation, taking the défeze we obtain
@((UtO)L - (I"tl)L) =a(u—pH)=-0-(v-v) =0 inR?x(0,1).

The difference(u®)* — (ut)* is then independent of time and vanishes at0, so that
ud = it for everyt € [0,1]. 0

Theorem 5.12 (Subadditivity) For everyuij e Mt (RY),i,j=0,1, we have

loc
Wy (K5 + Ho, HE + Hi) < Woy(HG, D) +Wey(Ho, i)- (5.18)
In particular

Woy(Ho+ 0,1 +0) <Wey(Ho, t) Vo €M (RY). (5.19)

Proof Let (ul,vi)e €&y y(0, 1;u(§ — ulj) be as in the proof of the previous Theorem. Since
(K04 pt,vO 4 vh) € €E(0, 1318 + kg — pP + pf), we get

1 1/p
Woy(p§+ .18+ < [ (@(u0+ it vP+vily))
1 1/p 1/p
< [ (@it vf) "+ (0w + i) a
1 1/p 1/p
< [, [(@wevem)™ + (@ vin)" "] o = W . ) + 00,4 ). 0

Proposition 5.13 (RescalingFor everypo, u1 € M (RY) andA > 0we have

loc

WP (Ao, A ) = AWE (1o, i), (5.20)

p p i
{ww(/\ Mo Apir) < APWP (o) ifA >1 (5.21)

WP (Ao, Apy) < AWD (po,py)  ifA <1

Proof (5.20) follows from the corresponding prope@(A 1, Av|Ay) = A ®@(u,v|y). Anal-
ogously, the monotonicity and homogeneity propertieg gield

P(Ap,Aw) < @(p,Aw) = APgp(p,w) if A >1;
the convexity ofp and the fact thag(0,0) = 0 yield
P(Ap,Aw) <Ag@(p,w) ifA <L
(5.21) follows immediately by the previous inequalities. ad

Proposition 5.14 (Monotonicity) If y1 > y» and @ < @, then for everyp, 1y € Mgc(]Rd)
we have
Wy (Ho, H1) < W,y (Ho, Ha).- (5.22)

Theorem 5.15 (Convolution)Let k€ C?(RY) be a nonnegative convolution kernel with
Jra k(x)dx = 1 and let k(x) := e9Kk(x/€). For everypo, g € M;5 (RY) we have

loc

W, yike (Mo *Ke, Hy % Ke) < Wo (Lo, 1) V&> 0; (5.23)
|£iT8 W yike (Ho* Ke, 1+ Ke) = We (Mo, Ha)- (5.24)
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Proof Let (u,v) € €€4(0,1; o — K1) be an optimal connecting curve as in Theorem 5.11
and let us seif = i ke, Vf 1= vy xke. Since(p®,v¥) € CE(0,1;u§ — pf), (5.23) then
follows by (2.12) whereas (5.24) is a consequence of The&.ém ad

Remark 5.16 (Smooth approximatiof&)r a given curvép,v) € €€4(0,1) the convolu-
tion technique of the previous Theorem exhibits an apprations(u®,v¥) in €& ¢(0,1),
¥ := yx ke, which enjoy some useful properties:

1. uf = pt2d, ve = wé 29 with p& wé € C*(RY); if p(RY) < +oo andmi_(y) < +
(recall Theorem 5.8), thepf is also uniformly bounded.

2. If suppk) C By then p®,w® are supported itG¢ := {x € RY : dist(x,G) < €}, G =
supy).

3. p&,weE are classical solution of the continuity equation
apf+0-we =0 inRYx(0,1).
4. If (u,v) is also a geodesic .d o(pE,wE)dyr < @(pr,vily) = Wz y(Ho, pia) for every
- :
te[0,1].

5.3 Absolutely continuous curves and geodesics

We now study absolutely continuous curves with resped®tg, and their length. Let us
first recall (see e.g. [3, Chap. 1]) that a cutves Lk € Mioc(RY), t € [0,T], is absolutely
continuous w.r.tW,,, if there exists a functiom € L1(0, T) such that

t
Way (b ) < / "mit)ydt VO<ty<t;<T. (5.25)
to

The curve has finitgp-energy if moreovem € LP(0,T). The metric derivativeé’| of an
absolutely continuous curve is defined as

W Hi+h, U
)= m%, (5.26)

and itis possible to prove thit/| exists and satisfiggy/| < m(t) for #*-a.et € (0,T). The
length of i is then defined as the integral jpf | in the interval(O,T).

Theorem 5.17 (Absolutely continuous curves and their metd velocity) A curve t— L,
t € [0,T], is absolutely continuous with respect9,,, if and only if there exists a Borel
family of measurev;)ic o) in Mioc(R%;RY) such that(p,v) € €€4,(0,T) and

T 1/p
/0 (@(vily)) "t < +eo (5.27)
In this case we have
IW|P < ®(u,vily) for Ll-ae.te (0,T), (5.28)
and there exists a unique Borel famity such that

|W|P = &(,Vy) for Ll-ae.te (0,T). (5.29)
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Proof One implication is trivial: if(u,v) € €€4,,(0,T) and (5.27) holds, then (5.5) yields

t 1/p
Wy (bt Hiy) < /t (‘D(Ilt»VtW)) dt, (5.30)
0

so thatu is absolutely continuous and (5.28) holds.

Conversely, let us assume thatis an absolutely continuous curve with lendthA
standard reparametrization results [3, Lemma 1.1.4] slioatst is not restrictive to assume
that 1 is a Lipschitz map. We fix an integét > 0, a step size := 2-NT, and a family of
geodesicg N, vkN) € €€y ((K—1)T,KT; U1y — Mic), K= 1,---,2V, such that

KN kN 1-py\\/P ke /1P
TO(U v |Y) =T PWo  (Hic-1)7: Hir) < /(kil)r“*“ . (5.31)

Let(uN,vN) € €&4,,(0, T) be the curve obtained by gluing together all the geodésity, vkN).
Applying Corollary 4.10, we can find a subsequerigéh,vNn) and a couple(p,v) €

€ ¢.(0,T) such thatu\"—* i, for everyt e [0, T] andv™—*v in Moe(RY x (0, T); RY).

It is immediate to check that; = [i; for everyt € [0,T] and

L. o T Ny Ny T T e
| pd = timint [* o vibya > [T o@ovdyd> [P,
0 ht+e Jo 0 0

which concludes the proof. ad

Corollary 5.18 (Geodesics}or everyu € M- _(RY) the spacéviy,y[1] is a geodesic space,

loc
i.e. every couplelo, 1 € Mg [u] can be connected by a (minimal, constant speed) geodesic

t €[0,1] — p € Mg,y [H] such that

Woy(Hs, ) = [t =S| Woy(Ho. ) Vs te(0,1]. (5.32)

All the (minimal, constant speed) geodesics satisfies thiéneity equation(4.1)for a Borel
family of vector valued measurég; ), 1) such that

(i, vely) = Wy, (Ho, k1) for a.e. te (0,1). (5.33)
If @ is strictly convex and sublinear, geodesics are unique.

Remark 5.19 (A formal differential characterization of desics)Arguing as in [27, Chap.
3], it would not be difficult to show that a geodegig = ;. with respect O, 4. d

should satisfy the system of nonlinear PDE'&®ifix (0,1)

ap+0-(p?0y) =0,
a
ay+ 5 oyl =0,
for some potentialy. Unlike the Wasserstein case, however, the two equatienscapled,

and it is not possible to solve the second Hamilton-Jacobagon iny independently of
the first scalar cosnervation law. In the present paper, weotlexplore this direction.
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We can give a more precise description of the vector measwatisfying the optimality
condition (5.29). For every measynec M%C(Rd) we set
Tarng,(H) i= {V € Migo(RERY) - d(,v]y) < +eo,

(5.34)
®(u,vly) < P(UV-+RIY) VR € Moc(RERY) : 00 =0},

Observe that for every € Mioc(RY;RY) such thatd(u,v|y) < +o there exists a unique
v :=Tr1(v) € Tary,y (1) such thafl- (¥ —v) = 0. In fact, the se(v) := {V' € Mjoc(R%RY) :
O(v'—v) =0} is weakly closed and, by the estimate (3.47) the sublevels of theifurait
V' — @(u,V'|y) are weakly relatively compact. Therefore, a minimiz&rexists and it is
also unique, being (U, -|y) strictly convex.

Corollary 5.20 Let(u,v) € C€4(0,T) so thatu is absolutely continuous w.rwy . The
vector measure satisfies the optimality conditiofd.29)if and only ifv; € Tany, () for
Zlae. tc (0,T).

Let us consider the particular case of Example 3.5 in the chadlifferentiable nornj| - ||
with associated duality majg = D|| - ||. We denote byjp(w) = ||w||P~2j1(w) the p-duality
map, i.e. the differential o% |I-||P and we suppose that the concave functioriO, 4-c0) —
[0, +) satisfies

. _ . 71 _

I:?a h(r) = rIT|r+nmr h(r)=0. (5.35)
For every nonnegative Radon measure Mgc(]Rd) whose support is a subset of sgpp
we define the Radon measumgu|y) by

du

h(uly) :=h(p)-y wherep := ay’ (5.36)

Observe thah(u|y) < yeven ifu is singular w.r.ty.
Theorem 5.21 Let u € M;-_(RY) and ¢ as in(3.23)with h satisfying’5.35) A vector mea-

loc
surev satisfies®(u,v|y) < +« iff v = vh(u|y) for some vector field € Lﬁ(“M(Rd;Rd).

Moreoveryv € Tany, (1) if and only if the vector field satisfies

jo(v) € 07 ¢ € Coray mum ™5 (5.37)

Proof Beingh sublinear, the functionaP admits the representation

o(uvly) = [ otow)dy= [ n(p)w/n(p)Pdy= [ IvIPan(uly).  (5.:38)

wherey = py+ pt andv = wy = h(p)vy. The conditiorw = vh(p|y) € Tan, () is then
equivalent to

LaviPontuly) < [ v+zPaniuly) vz e LP(huly): O (2h(uly) =O.

Thanks to the convexity df - |

P, the previous condition is equivalent to
L o) zeh(uly) =0 vzelp, RUGRY: [ z.0Cdnly) =0 (539)

i.e. jp(V) belongs to the closure ¢f1 : { € CZ(RY)} in Lﬁmly)(]R{d;]R{d). 0
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5.4 Comparison with Wasserstein and/V P distances.

Theorem 5.22 If y(RY) < + then for everyo, 1 € M, (RY) anda < 1 we have

Wiy 6 (Ho, H1) < W/ 1y (Ho, H1) < Y(RY)Y Wy gy (Ho, 1), (5.40)

where, asusua = (1—a)p+a.

Proof Let (u,v) € C€¢y,, y(0,1; o — p1) be an optimal curve, so that
1 S 0
Weay(Ho.i) = [ @palivod= [ [ (@) PwPayat, (5.4
wherep := pry+ Ui, vi = Wy < y. Holder inequality yields

1,
W gy (Howin) < [ /Rd<p[>1*p/9 [wi /€ dyett < y(RYS Y OWEe (o, pr). D

Theorem 5.23 Let us suppose thai_g(y) <+, k =p/(0 —1) =q/(1—a), let kg, 41 €
P(RY), and letk* = k /(k — 1) be the Hblder’s conjugate exponent &f Then

1Mo — kil -1xe =Wicr oy (Ho, Ha) < Wo.ary(Ho, Ha)- (5.42)

Proof We keep the same notation of the previous Theorem, setting

O ST S B ol
T=p/r:i=14+p-0, T'fr—lfler—e’ x=(1%) “Tip_@
Observing thapy € P(RY) thanks to Theorem 4.9, we obtain
Wiy (ko) < [ [ \wtrdvdt // e dyct
< [F([Lomrran)a= ([ [ 0% P|wt|dedt) =W gy (Ko, ). O

Theorem 5.24 (Comparison withW,) Assume thay Mgc(Rd) is a bounded pertur-
bation of a log-concave measure (eyg= fe V.9, where V is a convex function and f
nonnegative and bounded).pif = sy € P(RY) with § € L*(y) andmp(L) < L < +o0 then

Wo,y(Ho, H1) < +o0 and there exists a consta@tonly depending on L, andy such that

Wy (Ho, H1) < CWp(Ho, H1)- (5.43)

Proof It is not restrictive to assume thgis log-concave. We can then consider the optimal
planZ € M*(RY x RY) induced by theo-Wasserstein distance (1.1) betwggrandyy and
the interpolanf; defined as

p(A) = Z({(x0,x1) €ERIXRY: (1-t)xo+1tx €A}) VA€ B(RY). (5.44)

It is possible to prove (see e.g. [3, Theorems 7.2.2, 8.34112]) thatL; is the geodesic
interpolant betweepp and 1, it satisfies the continuity equation

Gy +0-vi=0 inRYx(0,1)
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with respect to a vector valued measuge= v iy < Uy where the vector field; satisfies

o a=[" [ Ptk (x) ct = WP
| @omvoct= [ [ P ok =W (ro. )

and finally pr = sty with ||st|=(y) < L := max([[SollL=(y). [IStllL=(y)) - Observe that, being
s(x) <L for y-a.ex € RY andg(0,0) = 0, Theorem 3.1 yields

|

P(s,5vt) < —o(L,Lv) < CLsw|P  y-aee,

so that
@ (i, vt) :/ O(s,5vt) dy(x) < CL/ \vt\”stdv:CL/ vt P dpt,
Rd Rd Rd

and therefore

1 1
Wh, (to.k) < [ @it < [ [ wiPdudt = COWg(ko. ). O
’ 0 0 JRd

Corollary 5.25 If y = .29 € P(RY) have |*-densities with compact support (or, more
generally, finite p-momentum), th&n, c.a (Lo, 1) < +eo.

Theorem 5.26 If 1 = sy with § > L > 0 y-a.e. inRY, then there exists a constant C de-
pending on L andp such that

We,y(Ho: 1) < Cil[Ho — Kl vo- (5.45)

Proof Let us first observe that ifpip — u1\|wy71_p < +oo then there existsv € L)(R%RY)
such that

—0-v=p1—po, v:i=wy, / L W(Pdy = [0 — pllf 1. (5.46)
R Y
In fact, in the Banach spacé:= Lj(R%;RY) we can consider the linear spate= {DC :
(e C&(Rd)} and the linear functional

0y = AdZd(ul—uo) if y=D¢ for some{ € CL(RY).

¢is well defined and satisfig$(, y)| < [[to — pully, 1ellYlL9ra.ro) for everyy € Y. Hahn-
v :

Banach Theorem and Riesz representation Theorem yielckisierce ofw € LP(RY;RY)
such that(¢,y) = [paW-ydy, which yields (5.46). Settingy = (1—t)Lo +tpy, it is then
immediate to check thdi,v) € C€(0,1; o — H1); we can then compute

1, . .
wh (ko)< [ [ o(@-tsortswydyae< [ o(twdy=Ce [ wiPay,
’ 0 JRrd Rd Rd

where we used the fact that —t)sy +ts; > L y-almost everywhere and the map—
@(p,w) is nonincreasing. O
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5.5 The casey = .29 and the Heat equation as gradient flow

One of the most interesting cases corresponds to the choice
y:=2% ha(p):=p", 0<a<l  @alp,w):=p%w/p%P (5.47)

In this case the expression of the weighted Wassersteendistbecomes

1
WP (Ho. ) = min{/o/det"|vt|dedt: i+ O (p9v) = 0inRY x (0,1)

o= oLl W= Ho, By = b}
The metricW,, ;. ,.a restricted taP(R?) is complete ifd < k = 485 = 1%

Remark 5.27 ¥(RY) is not complete w.r.t. W a if d > k) The above condition is almost
sharp; here is a simple counterexample in the dase<. We consider an initial probability
measure with compact supp@ = po-29, po € L*(RY), and, fort > 0, the family

p=p2d, p(x)i=e Mpo(ex),  vei=xp = xpr (027 (5.48)

It is easy to check thaiu,v) € C&(0,+w), tk(RY) = 1. Evaluating the functionad; :=
®p.a (i, vi|27) we get

o = [P PloPax= [ e pf(e )P
R
:edt—d6t+pt/Rd etpd (e tx)|e x| P dx — eld(1-0) 4Pt / o8 (y)ly|Pdy

so that
< 4o ifd>K.

1/p_ce<1 a/K)t / (Dl/pdt—cd

If d > k we obtain a curve — € P(RY) of finite length W.LtW, o. a (in particular
(Un)nen is @ Cauchy sequence) such ttqat Jin= 0 in the weak topology.
+o0

In the remaining part of this section, we want to study theprtes o, ;. o-a With respect
to the heat flow. We thus introduce

000 = 100 = e 000 = e X = ),

and for everyu € M} (RY) with mg(H) <+ for somed < 0, we set
Silu] = pxg =w2z?, w(x)=SH(X):= /Rdgt(X—y) du(y). (5.49)
It is well known thatu € C*(RY x (0, +0)) and

du—Au=0 inRYx(0,+w),  S[u—*u ast]O. (5.50)

Theorem 5.28 (Contraction property) Let uO, ut e Mt (RY) with ms(u') < 4 and

loc
(p_gd(l.l ,U?) < 4oo. If yl == 8[u'] are the corresponding solutions of the heat flow, then

Wo, za (b HE) < W za(u' 4% V>0, (5.51)
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Proof It sufficient to approximate the Gaussian kergddy a family of C* kernelsk" with
compact support and then apply Theorem 5.15, observindgthayd = .29, a

We consider now the particular case of tvg,. ..« weighted distance witir > 1—2/d.
Let us first introduce the convex density function (recaldylL

1 _ 1 _
Ya(p) = mpz “, suchthat yg(p)= hp) ~ P, (5.52)
and the corresponding entropy functional
Wy (1) = Yo (u.2%) : / Wa(p)dx, if p=psd < 29 (5.53)

We also introduce the s@t:= {1 € P(RY) : W(u) < +oo}.

Theorem 5.29 If u € P(RY) then iy = $;[u] = w29 € Q for every t> 0, the map t—
W, (L) is nonincreasing, and it satisfies the energy identity

t
Ll-’a(ut)+/ @y (Ur, O ) dr = Wy (ls) VO <S<t< foo; (5.54)
S

wheny € Q then the previous identity holds even foe$. Moreover,; satisfies the Evo-
lution Variational Inequality

1d*

55t Woaz0(H,0) + Ya(th) < ¥a(0) V=20, voeo. (5.55)

Proof Sincey, (u) =u~?, adirect computation shows

d d . _
&/Rd lI’a(Ut)dXZ*a/Rd Dut-Dwa(ut)dXZ/Rd\Dutlzut @ dx = Bz (u, D).

Concerning (5.55), we use the technique introduced by {22, we consider a geodesic
(0s,Vs)scpo) € CE(0,1;0 — ), which satisfiews(RY) = 1 by Theorem 4.9. We set

08 = U5 2% 1= 8eist0], VG =WELLY 1= SeistVs], W, 1= WE, —tOUE,.
It is not difficult to check that
OsuS, +0-wE =0 inR%x (0,1), (5.56)
so that

1 .
sza-_z)d(UEH»U) < / Aids, A ::/ (Ugt) a|W§.t‘2dX: (DZ,G(Usg,t’Vgt‘f/d)-
thall 0 g ? Rd t t ] ]

We thus evaluate
A;t = /]Rd (Uét)ia(_ ZtDUi,t 'Wg,t + ‘Wg,t|2 _tZ‘DU§,t|2) dx
. €N\ 0, £ . €\ 0 xeE 2
2t Rd (us,t) Dust'Wsth"'/ us,t) |Ws,t| dx
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where we used the facts

(5.56) (5.52) _
55/ Wa (ugy) dx / Oy (Ugy) - We, dx o (ug) aDUi,t-Witdx,

/Rd (Ug,t)ia|wét‘2dx: (Dz,a(as*ge+st7Vs*gs+St‘fd) < @5 4(0s, Vs|$d)

thanks to the convolution contraction property of Theorerd. Integrating (5.57) with
respect tos from O to 1 and recalling thatds, Vs)sc(o,1 IS @ minimal geodesic and that
O} = Mgt andag, = 0, we get

1
/0 AS dS-+ 2 W (Lo 1) < 2%y (0) + W2, a(H,0). (5.58)
We deduce that

Passing to the limit as | 0 and then at | O after dividing the inequality bywe get (5.55)
att = 0. Recalling the semigroup property of the heat equationobtain (5.55) for every
timet > 0. O

(5.55) is the metric formulation of the gradient flow of theggesically convex) functional
W, in the metric spaceQ,W, ;. 1), see [3, Chap. 4]. Applying [12, Theorem 3.2] we even-
tually obtain: '

Corollary 5.30 (Geodesic convexity oM,) Leta > 1—2/d, y = p.2% € P(RY) with
W, g, a (Ho, H1) < +o0 and [ga 0; ~%dx < 400, and let, t € [0,1], be the minimal speed
geodesic connectingo to pi1 W.r.t. W ;. .o Then for every € [0, 1] p = pd < 29

/ @ gx < (1 —t/ e "’dx—H/ pZ (5.60)
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