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Fractional mean curvature flows

Cyril Imbert1

April 1, 2008

Abstract. This paper is concerned with the study of a geometric flow whose law involves
a singular integral operator. Such an operator is used to define a non-local mean curvature
of a set and for this reason, the flow is referred to as fractional. Such a flow appears in two
important applications: dislocation dynamics and phasefield theory for fractional reaction-
diffusion equations. It is first defined by using the level-set method. It is proved that it can
be also defined in terms of generalized flows (Barles, Souganidis, 1998) so that phasefield
theory for fractional reaction-diffusion can be treated (see the working paper of the author
and Souganidis).
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1 Introduction

In this paper, we define a geometric flow whose law is non-local. A general geometric
flow of a set Ω is defined by imposing the velocity of a point x along its outer normal n(x).
In our case, this velocity does not only depend on x and n but also on a fractional mean
curvature at x. Our motivation comes from two different problems: dislocation dynamics
and phasefield theory for fractional reaction diffusion equations.

1.1 Motivation and existing results

Mathematical study of non-local moving fronts recently attracted a lot of attention
(see in particular [8] and references therein). An important application is the study of
dislocation dynamics [3].

Dislocation dynamics

Dislocations are linear defects in crystals and the study of their motion gives rise to
the study of the non-local geometric flow. In recent years, several papers were dedicated
to this problem; we make next a short review.

A dislocation creates in the whole space R3 an elastic field and this field creates a
force (called the Peach-Koehler force) that acts not only on the dislocation that created
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it (self-force) but also on all dislocations in the material. We restrict ourselves here to
the case of a single curve moving in a plane (called the slip plane).

In [3], the level-set approach is used to describe the dynamics of a dislocation Γt, t > 0.
If Γt is the 0-level set of a function u(t, ·), the following eikonal equation is obtained

∂tu = κ[x, u]|Du|

κ[x, u] is the Peach-Koehler force applied to the curve (N = 2 in this application). The
Peach-Koehler force depends on the curve through the resolution of an elliptic equation
(from linear elasticity). Hence, this integral operator is a Dirichet-to-Neumann operator
associated with an elliptic equation and is thus singular. In order to define solutions
for small times, the authors of [3] consider a physically relevant regularized problem and
κ[x, u] reduces to ∫

{z:u(z)≥0}

c0(z)dz

with c0 ∈ W 1,1(RN).
The major technical difficulty of this first paper is that c0 does not have a constant sign
and consequently, solutions corresponding to ordered initial data are not ordered; in other
words, comparison principle does not hold true. In particular, this is one of the reasons
why solutions are constructed for small times. If c1 is assumed to be large enough, Alvarez,
Cardaliaguet and Monneau [2] managed to prove the existence and uniqueness for large
times.
A second important remark is that solving such parabolic integro-differential equations
does not permit to construct properly a geometric flow. More precisely, if the initial front
Γ0 is described with two different initial functions u0 and v0, it is not sure that the 0-level
sets of the corresponding solutions u and v coincide.

The difficulty related to comparison principle is circumvented in [12] by assuming that
the negative part of c0 is concentrated at the origin. We point out that this is reasonable
if one keeps in mind that the singular operator is a Dirichlet-to-Neuman operator. The
Peach-Koehler force κ[x, u] (in the case of a curve moving alone) is defined in [12] as

∫
sign(u(x + z) − u(x))c0(z)dz

where sign(α) equals 1 if α ≥ 0 and −1 if α < 0. After an approximation procedure, the
problem can be reduced to the study of

∂tU =

[
c1(x) +

∫
(U(x + z) − U(x))c0(z)dz

]
|DU |

where c0 is smooth, non-negative and of finite mass. We used the letter U instead of u
in order to emphasize the fact that a change of unknown function is needed in order to
reduce the original equation to this new one.

Finally, still assuming that the negative part of c0 is concentrated at the origin, a good
geometric definition of the flow is obtained in [10] by regularizing the Green function of
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the Dirichlet-to-Neumann operator. This is achieved by considering a formulation “à la
Slepčev” of the geometric flow. The equation now beams

∂tu =

[
c1(x) +

∫

{z:u(t,x+z)>u(t,x)}

c0(z)dz

]
|Du| . (1)

In this approach, we cannot deal with singular potentials c0.
Notice that in that paper, several fronts move, and they are interacting. The motion of

a single front is a special case. Eventually, [4] gave existence results of very weak solutions
in a very general setting; in particular, uniqueness is generally lost.

In [9], it is proved that if c0(z) is smooth and regular near the origin and behaves
exactly like |z|−N−1 at infinity, then a proper rescaling of (1) converges towards the mean
curvature motion.

Phasefield theory for fractional reaction-diffusion equations

Our second main motivation comes from phasefield theory of fractional reaction-
diffusion equations [14]. If one considers for instance stochastic Ising models with Kacs
potentials with very slow decay at infinity (like a power law with proper exponent), then
the study of the resulting mean field equation (after proper rescaling) is closely related to
phasefield theory for fractional reaction-diffusion equations such as

∂tu
ε + (−∆)α/2uε +

1

ε1+α
f(uε) = 0

where (−∆)α/2 denotes the fractional Laplacian with α ∈ (0, 1) (in the case presented
here) and f is a bistable non-linearity. In particular, it is essential in the analysis to deal
with singular potentials. Indeed, we have to be able to treat the case where

c0(z) =
1

|z|N+α

with α ∈ (0, 1). It is also convenient to use the notion of generalized flows introduced by
Barles and Souganidis [7] in order to develop a phasefield theory for such reaction-diffusion
equations. See [14] for further details and [11] for analogous problems.

1.2 A new formulation

The main contributions of this paper are the following:

• to give a proper level-set formulation of dislocation dynamics for singular interaction
potentials: in particular, sufficient conditions on the singularity to get stability
results and comparison principles are exhibited;

• to shead light on the fact that the integral operator measures in a non-local way the
curvature of the interface;
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• to study the geometric flow in details: consistency of the definition, equivalent
definition in terms of generalized flows, motion of bounded sets etc.

Because ν(dz) = c0(z)dz is singular, we cannot define κ[x, u] as in (1). Indeed, we
must compensate the singularity as it is commonly done in order to get a proper integral
representation of the fractional Laplacian. Here, we must do this in a geometrical way.
This is achieved by defining the integral operator as follows

κ[x, u] =

∫

{z:u(x+z)≥u(x),Du(x)·z≤0}

ν(dz) −
∫

{z:u(x+z)<u(x),Du(x)·z>0}

ν(dz) . (2)

An important example of a singular measure is the following one

νSE(dz) =
dz

|z|N+α

with α ∈ (0, 1).

We can say that this singular integral operator measures in a non-local way the curva-
ture of the “curve”. Indeed, in Formula (2), the first part (resp. the second one) measures
how concave (resp. convex) is the set Ω = {z : u(x + z) > u(x)} “near x”. Because ν
is singular, we refer to κ[x, u] in this setting as the fractional mean curvature of Γ at
x. We explain below in details (see Lemma 2) the rigourous links between the different
formulations we considered up to now.

The variational case

When the singular measure ν(dz) has the form

ν(dz) = −
(
∇ · G(z)

)
dz

for a vectorfield G, the previous singular integral operator can be written as follows

κ[x, u] =

∫

{z:u(x+z)=u(x)}

(
G(z) · ∇u(x + z)

)
σ(dz) − bG · ∇u(x) (3)

where σ denotes the surface measure on the “curve” {z : u(x + z) = u(x)} and where
bG =

∫
{z:∇u(x)·z=0}

G(z)σ(dz) is a fixed vector of RN .

Remark that the example we gave above is of this form. Indeed

dz

|z|N+α
= − 1

α

(
∇ · z

|z|N+α

)
dz .

It is quite clear on this new formula that the singular integral operator is geometric
(in the sense that it only depends on the curve and not and its parametrization u) and
“fractional”.
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Comments and related works

We gave two different formulations in the case of singular potentials. We think that
Formulation (2) is the proper one in order to get a complete level-set formulation of the
geometric flow even if Formulation (3) is somehow more intuitive since it only involves
the curve itself. In particular, the approach proposed by Slepčev [18] can be adapted (see
(11) below).

The level-set equation we study has the following form

∂tu = µ(D̂u)

[
c1(x) + κ[x, u]

]
|Du| in (0, +∞) × RN (4)

supplemented with the following initial condition

u(0, x) = u0(x) in RN (5)

where p̂ denotes p/|p| if p 6= 0, µ denotes the mobility vector field, c1(x) is a driving force
and

Equation (4) is a non-linear non-local Hamilton-Jacobi equation and a lot of papers
are dedicated to the study of such equations. The main technical issues are the definition
of viscosity solutions, the proof of their stability and of a strong uniqueness result. We
somehow use ideas from [18] and combine them with the ones from [5], even if the results
of these two papers do not apply to our equation.

From a physical point of view and as far as dislocation dynamics are concerned, the
measure ν(dz) = c0(z)dz should be ν(dz) = g(z/|z|)|z|−N−1dz but in this case, the frac-
tional mean curvature is not well defined (see Remark 1). It is also physically relevant to
say that close to the dislocation line, in the core of the dislocation, the potential should be
regularized. On the other hand, it is important to assume that ν(dz) ∼ g(z/|z|)|z|−N−1dz,
since this prescribes the long range interaction between dislocation lines. Another way
to understand this difficulty is to say that in the core of the dislocation, the potential is
very singular and the singularity should be compensated at a higher (second) order. This
can explain the loss of inclusion principles for such flows (if one can define them for large
times). Or one can think that in this case, the first term in such an expansion should be
a mean curvature term; but in this case, an inclusion principle still holds true. Curvature
terms are commonly used to describe dislocation dynamics and it can be relevant to add
a curvature term in (4). We choose not to do so in order to avoid technicalities and
keep clear some important points in the proof of the stability result and the comparison
principle.

In order to understand better the properties of the fractional mean curvature flow, a
deterministic zero-sum repeated game is constructed in [13] in the spirit of [16, 15].

Organization of the article. In Section 2, we first give the precise assumptions we make
on the data. We next give the definition(s) of the fractional mean curvature κ[x, ·]. In
Section 3, we first give the definition of viscosity solutions for (4), we then state and prove
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stability results. We next obtain strong uniqueness results by establishing comparison
principles and we finally construct solutions of (4) by Perron’s method. In Section 4, we
verify that the 0-levet set of the solution u we constructed in the previous section only
depends on the 0-level set of the initial condition. This provides a level-set formulation
of the geometric flow. In the last section, we give an alternative geometric definition of
the flow in terms of generalized flows in the sense of [7].

Notation. SN−1 denotes the unit sphere of RN . The ball of radius δ centered at x is
denoted by Bδ(x). If x = 0, we simply write Bδ and if moreover δ = 1, we write B. If
p ∈ RN \ {0}, p̂ = p/|p|. If A is a subset of Rd with d = N, N + 1 for instance, then Ac

denotes its complementary. For two subsets A and B, A t B denotes A ∪ B and means
that A ∩ B = ∅. The function 1A(z) equals 1 if z ∈ A and 0 if not.

Acknoledgments. This paper is partially supported by the ANR grant “MICA”. The
author thanks R. Monneau and P. E. Souganidis for the fruitful discussions they had
together. He also thanks G. Barles for its attentive reading of a preliminary version of
this paper.

2 Preliminaries

In this section, we make precise the assumptions we need on data and we give several
definitions of the fractional mean curvature.

2.1 Assumptions

Here are the assumptions we make on the singular measure throughout the paper.

Assumptions.

• The mobility function µ : SN−1 → (0, +∞) is continuous.

• The driving force c1 : RN → R is Lipschitz continuous.

• The singular measure ν is a non-negative Radon measure satisfying





for all δ > 0, ν(RN \ Bδ) < +∞ ,
for all r > 0, e ∈ SN−1, ν{z ∈ B : r|z · e| ≤ |z − (z · e)e|2} < +∞ ,

δν(RN \ Bδ) → 0 as δ → 0 ,
for all e ∈ SN−1, r ν{z ∈ B : r|z · e| ≤ |z − (z · e)e|2} → 0 as r → 0

(6)
(Bδ denotes the ball of radius δ centered at the origin and B = B1) and the last
limit is uniform with respect to unit vectors e ∈ SN−1.

• The initial datum u0 : RN → R is bounded and Lipschitz continuous.
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Even if the assumptions on the singular measure look technical at first glance, they are
quite natural in the sense that they ensure

• that the measure is bounded away from the origin;

• that the measure is not too singular in order that the fractional mean curvature of
regular curves be well defined;

• model regular curves {z : rzN = |z′|2} can be handled, even when they degenerate
(r → 0).

In particular, the fourth line of (6) is required to prove the discontinuous stability result.

Example 1. The Standing Example for the singular measure is

ν(dz) = g

(
z

|z|

)
dz

|z|N+α

with g : SN−1 → (0, +∞) continuous and α ∈ (0, 1).

2.2 Fractional mean curvature

In this subsection, we make precise the definition of fractional mean curvature. Our
definition extends the ones given in [9, 10] where ν(dz) = c0(z)dz to the case of singular
measures.

Let us define the fractional curvature of a smooth curve Γ = {x ∈ RN : u(x) = 0} =
∂{x ∈ RN : u(x) > 0} associated with ν. If u is C1,1 and Du(x) 6= 0, then the following
quantity is well defined (see Lemma 1 below)

κ∗[x, Γ] = κ∗[x, u] = κ∗
+[x, u] − κ−

∗ [x, u]
κ∗[x, Γ] = κ∗[x, u] = κ+

∗ [x, u] − κ∗
−[x, u]

(7)

where
κ+
∗ [x, u] = ν

(
z : u(x + z) > u(x), Du(x) · z < 0

)

κ−
∗ [x, u] = ν

(
z : u(x + z) < u(x), Du(x) · z > 0

) (8)

and

κ∗
+[x, u] = ν

(
z : u(x + z) ≥ u(x), Du(x) · z ≤ 0

)

κ∗
−[x, u] = ν

(
z : u(x + z) ≤ u(x), Du(x) · z ≥ 0

)
.

We will see later (see Lemma 3 below) that these functions are semi-continuous and this
explains the choice of notation we made. In order to understand the way these quantities
are related to the geometry of the curve {u = u(x)}, it is convenient to write for instance

κ+
∗ [x, u] = ν

(
z : 0 < −Du(x) · z < u(x + z) − u(x) − Du(x) · z

)
.

As shown on Figure 1, κ+[x, u] measures how concave the curve is at x and κ−[x, u] how
convex it is.
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Du(t, x)

x

{u < u(x)}

Ω = {u > u(x)}

Γ = {u = u(x)}

κ−[x, u]

κ+[x, u]

Figure 1: Fractional mean curvature of a curve

Lemma 1 (Fractional mean curvature is finite). If u is C2 and its gradient Du(x) 6=
0, then κ∗

+[x, u] and κ∗
−[x, u] are finite.

Remark 1. One can check that this lemma is false if α = 1 in the Standing Example 1.

Proof. Since ν is bounded on RN \ Bδ for all δ > 0, it is enough to consider

(κ∗
+)1,δ[x, u] = ν

(
z ∈ Bδ : u(x + z) ≥ u(x), Du(x) · z ≤ 0

)

= ν
(
z ∈ Bδ : 0 ≤ re · z ≤ u(x + z) − u(x) + re · z

)

where r = |Du(x)| 6= 0 and e = r−1Du(x). If now zN denotes e · z and z′ = z − zNe, and
if we choose δ such that r − Cδ > 0 with C = ‖D2u‖L∞(B1(x)), we can write

(κ∗
+)1,δ[x, u] ≤ ν

(
z ∈ Bδ : 0 ≤ rzN ≤ Cz2

N + C|z′|2)
≤ ν

(
z ∈ Bδ : 0 ≤ C−1(r − Cδ)zN ≤ |z′|2)

and the result now follows from Condition (6).

The following lemma explains rigourously the link between (4) and (1) and the link
with the formulation used in [10] in the case where ν is a bounded measure.

Lemma 2 (Link with regular dislocation dynamics). Consider c0 ∈ L1(RN) such
that c0(x) = c0(−x). Then

∫

{z:u(t,x+z)>u(t,x)}

c0(z)dz =
1

2

∫
c0 + κ∗[x, u]

∫
sign∗(u(x + z) − u(x))c0(z)dz =

1

2
κ∗[x, u]

∫
sign∗(u(x + z) − u(x))c0(z)dz =

1

2
κ∗[x, u]

with sign∗(r) = 1 (resp. sign∗(r) = 1) if r ≥ 0 (resp. r > 0) and 0 if not and with
ν(dz) = c0(z)dz.
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Since the proof is elementary, we omit it.

3 Viscosity solutions for (4)

3.1 Definitions

The viscosity solution theory introduced in [18] suggests that the good notion of so-
lution for the fractional equation (4) is the following one.

Definition 1 (Viscosity solutions for (4)). 1. An upper semi-continuous function
u : [0, T ] × RN is a viscosity subsolution of (4) if for every smooth test-function φ
such that u − φ admits a global zero maximum at (t, x), we have

∂tφ(t, x) ≤ µ(D̂φ(t, x))

[
c1(x) + κ∗[x, φ(t, ·)]

]
|Dφ|(t, x) (9)

if Dφ(t, x) 6= 0 and ∂tφ(t, x) ≤ 0 if not.

2. A lower semi-continuous function u is a viscosity supersolution of (4) if for every
smooth test-function φ such that u−φ admits a global minimum 0 at (t, x), we have

∂tφ(t, x) ≥ µ(D̂φ(t, x))

[
c1(x) + κ∗[x, φ(t, ·)]

]
|Dφ|(x0, t0) (10)

if Dφ(t, x) 6= 0 and ∂tφ(t, x) ≥ 0 if not.

3. A locally bounded function u is a viscosity solution of (4) if u∗ (resp. u∗) is a
subsolution (resp. supersolution).

Remark 2. Given δ > 0, the global extrema in Definition 1 can be assumed to be strict
in a ball of radius δ centered at (t, x). Such a result is classically expected and the reader
can have a look, for instance, at the proof of the stability result in [5].

If one uses the notation introduced in [18], the equation reads

∂tu + F (x, Du, {z : u(x + z) ≥ u(x)}) = 0 (11)

with, for x, p ∈ RN and K ⊂ RN ,

F (x, p, K) =





−µ(p̂)

[
c1(x) + ν(K ∩ {p · z ≤ 0}) − ν(Kc ∩ {p · z > 0}

]
|p| if p 6= 0 ,

0 if not

where Kc is the complementary set of K. With this notation in hand, one can check that
this non-linearity does not satisfy Assumption (F5) of [18]. The idea is to check that,
somehow, Assumption (NLT) in [5] is satisfied and stability results thus hold true.
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Let us be more precise. We previously associated with κ[·, ·] the following non-local
operators (see the proof of Lemma 1)

(κ+
∗ )1,δ[x, φ] = ν

(
z ∈ Bδ : φ(x + z) > φ(x), z · Dφ(x) < 0

)
,

(κ+
∗ )2,δ[x, p, φ] = ν

(
z /∈ Bδ : φ(x + z) > φ(x), z · p < 0

)
.

(12)

In the same way, we can define

• the negative non-local curvature operators (κ−
∗ )i,δ, i = 1, 2,

• upper semi-continuous envelopes of these four integral operators (κ∗
±)i,δ, i = 1, 2,

• and lower/upper semi-continuous total non-local curvature operators (κ∗)
i,δ, (κ∗)i,δ,

i = 1, 2.

By using the idea of Lemma 2, it is easy to see that
{

(κ∗)2,δ[x, p, u] = ν
(
z /∈ Bδ : u(t, x + z) ≥ u(t, x)

)
− 1

2
ν(Bc

δ) =: (κ∗)2,δ[x, u] ,
(κ∗)

2,δ[x, p, u] = ν
(
z /∈ Bδ : u(t, x + z) > u(t, x)

)
− 1

2
ν(Bc

δ) =: (κ∗)
2,δ[x, u] .

(13)

We can now state an equivalent definition of viscosity solutions of (4).

Definition 2 (Equivalent definition). 1. An upper semi-continuous function u :
[0, T ] × RN is a viscosity subsolution of (4) if for every smooth test-function φ
such that u − φ admits a maximum 0 at (t, x) on Bδ(t, x), we have

∂tφ(t, x) ≤ µ(D̂φ(t, x))

[
c1(x) + (κ∗)1,δ[x, φ(t, ·)] + (κ∗)2,δ[x, u(t, ·)]

]
|Dφ|(t, x) (14)

if Dφ(t, x) 6= 0 and ∂tφ(t, x) ≤ 0 if not.

2. A lower semi-continuous function u is a viscosity supersolution of (4) if for every
smooth test-function φ such that u−φ admits a global minimum 0 at (t, x), we have

∂tφ(t, x) ≥ µ(D̂φ(t, x))

[
c1(x)+(κ∗)

1,δ[x, φ(t, ·)]+(κ∗)
2,δ[x, u(t, ·)]

]
|Dφ|(x0, t0) (15)

if Dφ(t, x) 6= 0 and ∂tφ(t, x) ≥ 0 if not.

3. A continuous function u is a viscosity solution of (4) if it is both a sub and super-
solution.

Remark 3. Equivalent definitions of this type first appeared in [17] and since the proof is
the same, we omit it.

Remark 4. Remark 2 applies to the equivalent definition too.

Remark 5. Definition 2 seems to depend on δ. But since all these definitions are equivalent
to Definition 1, it does not depend on it. Hence, when proving that a function is a solution
of (4), it is enough to do it for a fixed (or not) δ > 0.
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3.2 Stability results

Theorem 1 (Discontinuous stability). • Let (un)n≥1 be a family of subsolutions
of (4) that is locally bounded, uniformly with respect to n. Then its relaxed upper
limit u∗ is a subsolution of (4).

• If moreover, un(0, x) = un
0 (x), then for all x ∈ RN

u∗(0, x) ≤ u∗
0(x)

where u∗
0 is the relaxed upper limit of un

0 .

• Let (uα)α∈A be a family of subsolutions of (4) that is locally bounded, uniformly
with respect to α ∈ A. Then ū, the upper semicontinuous envelope of supα uα is a
subsolution of (4).

Even if this result follows from ideas introduced in [5] together with classical ones, we
give a detailed proof for the sake of completeness.

Proof. We only prove the first part of the theorem since it is easy to adapt it to get a
proof of the third part. The second one is very classical and can be adapted from [1] for
instance.

Consider a test function ϕ such that u∗ − ϕ attains a global maximum at (t, x). We
can assume (see Remark 2) that u∗ − ϕ attains a strict maximum at (t, x) on Bδ(t, x).
Consider a subsequence p = p(n) and xp such that

u∗(t, x) = lim
n→+∞

up(n)(tn, xn) .

Classical arguments show that up−ϕ attains a maximum on Bδ(t, x) at (sp, yp) ∈ Bδ(t, x)
and that

(sp, yp) → (t, x) and up(sp, yp) → u∗(t, x) .

Since up is a subsolution of (4), we have

∂tϕ(sp, yp) ≤

µ( ̂Dϕ(sp, yp))

[
c1(yp) + (κ∗)1,δ[yp, ϕ(sp, ·)] + (κ∗)2,δ[yp, Dxϕ(sp, yp), u(sp, ·)]

]
|Dϕ|(sp, yp)

if Dϕ(tp, xp) 6= 0 and ∂tϕ(tp, xp) ≤ 0 if not. If there exists a subsequence q of p such that
Dϕ(sq, yq) = 0, then it is easy to conclude. We thus now assume that Dϕ(sp, yp) 6= 0
for p large enough. In view of the continuity of µ and c1, the following technical lemma
(whose proof is given in Appendix) permits to conclude.

Lemma 3. Assume that Dϕ(sp, yp) 6= 0 for p large enough.
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• Assume moreover that Dϕ(t, x) 6= 0. Then

(s, y) 7→ (κ∗)1,δ[y, ϕ(s, ·)] and (s, y) 7→ (κ∗)2,δ[y, Dxϕ(s, y), up(s, ·)]

are well defined for i = 1, 2 in a neighbourhood of (t, x) and

lim sup
p

{
(κ∗)1,δ[yp, ϕ(sp, ·)]

}
≤ (κ∗)1,δ[x, ϕ(t, ·)]

lim sup
p

{
(κ∗)2,δ[yp, , Dxϕ(sp, yp), u(sp, ·)]

}
≤ (κ∗)2,δ[x, Dxϕ(t, x), ϕ(t, ·)]

as soon as up(sp, yp) → u(t, x) as p → +∞.

• Assume now that Dϕ(t, x) = 0. Then, for i = 1, 2,
[
(κ∗)1,δ[yp, ϕ(sp, ·)]+(κ∗)2,δ[yp, Dϕ(sp, yp), u(sp, ·)]

]
|Dϕ|(sp, yp) → 0 as p → +∞ .

As we shall see, this lemma is a consequence of the following one.

Lemma 4 ([18]). Consider fp and gp two sequences of measurable functions on a set U
and f ≥ lim sup∗ fp, g ≥ lim sup∗ gp, and ap, bp two sequences of real numbers converging
to 0. Then

ν({fp ≥ ap, gp ≥ bp} \ {f ≥ 0, g ≥ 0}) → 0 as n → +∞ .

We mention that in [18], the measure is not singular and there is only one sequence of
measurable functions but the reader can check that the slightly more general version we
gave here can be proven with exactly the same arguments. An immediate consequence of
the lemma is the following inequality

lim sup
p

ν({fp ≥ ap, gp ≥ bp}) ≤ ν({f ≥ 0, g ≥ 0}) .

Proof of Lemma 3. Let us first assume that Dϕ(t, x) 6= 0. In this case, for (s, y) close to
(t, x), Dϕ(s, y) 6= 0 and all the integral operators we consider here are well defined (see
Lemma 1). Recall next that, for i = 1, 2, (κ∗)i,δ = (κ∗

+)i,δ − (κ−
∗ )i,δ. Hence, it is enough

to prove that

lim sup
p

{
(κ∗

+)1,δ[yp, ϕ(sp, ·)]
}

≤ (κ∗
+)1,δ[x, ϕ(t, ·)] ,

lim inf
p

{
(κ−

∗ )1,δ[yp, ϕ(sp, ·)]
}

≥ (κ−
∗ )1,δ[x, ϕ(t, ·)] ,

lim sup
p

{
(κ∗

+)2,δ[yp, Dxϕ(sp, yp), up(sp, ·)]
}

≤ (κ∗
+)2,δ[x, Dxϕ(t, x), u∗(t, ·)] ,

lim inf
p

{
(κ−

∗ )2,δ[yp, Dxϕ(sp, yp), up(sp, ·)]
}

≤ (κ−
∗ )2,δ[x, Dxϕ(t, x), u∗(t, ·)] .

12



In order to prove the first inequality above for instance, choose fp(z) = ϕ(sp, yp + z)−
ϕ(t, x), ap = ϕ(sp, yp) − ϕ(t, x), gp(z) = −Dϕ(sp, yp) · z, bp = 0 in Lemma 4.

We now turn to the case Dϕ(t, x) = 0. We look for δ = δp that goes to 0 as p → +∞
such that

(κ∗
+)1,δp [yp, ϕ(sp, ·)]|Dϕ(sp, yp)| → 0 and (κ−

∗ )1,δp[yp, ϕ(sp, ·)]|Dϕ(sp, yp)| → 0

as p → +∞. This is enough to conclude since Condition (6) implies that

(κ∗
+)2,δp[yp, Dϕ(sp, yp), u(sp, ·)]|Dϕ(sp, yp)| → 0

(κ−
∗ )2,δp[yp, Dϕ(sp, yp), u(sp, ·)]|Dϕ(sp, yp)| → 0 .

We only prove that the first limit equals zero since the argument is similar for the second
one. If rp denotes |Dϕ(sp, yp)| and ep denotes −r−1

p Dϕ(sp, yp), and zN = eP · z and
z′ = z − zNep, then

(κ∗
+)1,δ[yp, ϕ(sp, ·)]|Dϕ(sp, yp)|

= rpν(z ∈ Bδp
: 0 ≤ rpep · z ≤ ϕ(sp, yp + z) − ϕ(sp, yp) + rpep · z)

≤ rpν(z ∈ Bδp
: 0 ≤ rpzN ≤ C|z′|2 + Cz2

N )

≤ rpν(z ∈ Bδp
: 0 ≤ rpzN ≤ C|z′|2 + CδpzN )

where C is a bound for second derivatives of ϕ around (t, x). Now if we choose δp =
rp/(2C), we get

(κ∗
+)1,δ[yp, ϕ(sp, ·)]|Dϕ(sp, yp)| ≤ rpν(z ∈ Bδp

: 0 ≤ (rp/2C)zN ≤ |z′|2)
≤ rpν(z ∈ B : 0 ≤ (rp/2C)zN ≤ |z′|2)

and the last limit in (6) permits now to conclude.

3.3 Existence and uniqueness results

Let us first state a strong uniqueness result.

Theorem 2 (Comparison principle). Assume that ν satisfies (6). Assume moreover
that for all e ∈ SN−1 and r ∈ (0, 1)

r ν{z ∈ Bδ : r|z · e| ≤ |z − (z · e)e|2} → 0 as δ → 0 (16)

uniformly in e and r ∈ (0, 1) and

ν(dz) = J(z)dz with J ∈ W 1,1(RN \ Bδ) for all δ > 0 . (17)

Consider a bounded and Lipschitz continuous function u0. Let u (resp. v) be a bounded
subsolution (resp. bounded supersolution) of (4). If u(0, x) ≤ u0(x) ≤ v(0, x), then u ≤ v
on (0, +∞) × RN .

13



The proof is quite classical. The main difficulty is to deal with the singularity of the
measure.

Proof of Theorem 2. We classically consider M = supt,x{u(t, x) − v(t, x)} and argue by
contradiction by assuming M > 0. We next consider the following approximation of M

M̃ε,α = sup
t,s>0,x,y∈RN

{u(t, x) − v(s, y) − (t − s)2

2γ
− eKt |x − y|2

2ε
− ηt − α|x|2} .

Since u and v are bounded, this supremum is attained at a point (t̃, s̃, x̃, ỹ). We first
observe that M̃ε,α ≥ M/2 ≥ 0 for η and α small enough. Since u and v are bounded, this
implies in particular

eKt |x̃ − ỹ|2
2ε

+ α|x̃|2 ≤ C0 (18)

where C0 = ‖u‖∞ + ‖v‖∞.
Classical results about penalization imply that (t̃, s̃, x̃, ỹ) → (t̄, t̄, x̄, ȳ) as γ → 0 and

(t̄, t̄, x̄, ȳ) realizes the following supremum

Mε,α = sup
t>0,x,y∈R

{u(t, x) − v(t, y) − eKt |x − y|2
2ε

− ηt − α|x|2} .

We claim next that this supremum cannot be achieved at t = 0 if ε, α, η are small enough.
To see this, remark first that Recall that Mε,α ≥ M/2 ≥ 0 for η and α small enough and,
if t̄ = 0, use the fact that u0 is Lipschitz continuous and get

0 <
M

2
≤ sup

x,y∈RN

{u0(x) − u0(y) − |x − y|2
2ε

} ≤ sup
r>0

{C0r −
r2

2ε
} =

1

2
C2

0ε

and this is obviously false if ε is small enough. We conclude that, if the four parameters
are small enough, t̃ > 0 and s̃ > 0. Hence, we can write two viscosity inequalities, for all
δ > 0,

η +
t̃ − s̃

γ
+ KeLt̃ |x̃ − ỹ|2

2ε
≤

(
c(x̃) + (κ∗)1,δ[x̃, φu(t̃, ·)] + (κ∗)2,δ[x̃, u(t̃, ·)]

)
|p̃ + 2αx̃|

t̃ − s̃

γ
≥

(
c(ỹ) + (κ∗)

1,δ[ỹ, φv(s̃, ·)] + (κ∗)
2,δ[ỹ, v(s̃, ·)]

)
|p̃|

where p̃ = eKt̃ x̃−ỹ
ε

and

φu(t, x) =
(t − s̃)2

2γ
+ eKt |x − ỹ|2

2ε
+ ηt + α|x|2 ,

φv(s, y) = −(s − t̃)2

2γ
− eKt̃ |y − x̃|2

2ε
− ηt̃ − α|x̃|2 .

14



Substracting these inequalities yield

η + KeKt̃ |x̃ − ỹ|2
2ε

≤ ‖Dc‖∞eKt̃ |x̃ − ỹ|2
ε

+ 2‖c‖∞α|x̃| + Tnl (19)

where

Tnl =

(
(κ∗)1,δ[x̃, φu(t̃, ·)] + (κ∗)2,δ[x̃, u(t̃, ·)]

)
|p̃ + 2αx̃|

−
(

(κ∗)
1,δ[ỹ, φv(s̃, ·)] + (κ∗)

2,δ[ỹ, v(s̃, ·)]
)
|p̃| .

Our task is now to find δ = δ(α, ε) so that the right hand side of this inequality is small
when the four parameters are small. We distinguish two cases.

Assume first that there exists a sequence αn → 0 and εn → 0 such that

p̃ = p̃n → 0 .

In this case, we simply choose δ = 1 and we pass to the limit as n → +∞ in (19) and we
get the desired contradiction: η ≤ 0.

Assume now that for α and ε small enough, we have a constant Cε independent of α
such that

|p̃| ≥ Cε > 0 . (20)

In this case, the following technical lemma holds true.

Lemma 5. By using (16), we have

Tnl ≤
1

ε
oδ(1) + C

√
α

δ
+ oα(1)[ε] + Cδe

Kt̃ |x̃ − ỹ|2
ε

where C only depends on ν and ‖u‖∞ + ‖v‖∞ and Cδ only depends on J and δ (we
emphasize that the third term goes to 0 as α → 0 for fixed ε).

The proof of this lemma is postponed. We thus get (recall that p̃ = (x̃ − ỹ)/ε)

η + KeKt̃ |x̃ − ỹ|2
2ε

≤ C

(
eKt̃ |x̃ − ỹ|2

ε
+
√

α +

√
α

δ

)
+

1

ε
oδ(1) + oα(1)[ε] + Cδe

Kt̃ |x̃ − ỹ|2
ε

where C only depends on c, ν and ‖u‖∞ + ‖v‖∞ and Cδ is given by the lemma. By
choosing K = 2(C + Cδ), we get

η ≤ C(
√

α +

√
α

δ
) +

1

ε
oδ(1) + oα(1)[ε] .

By letting successively α and δ go to 0, we thus get a contradiction. This achieves the
proof of the comparison principle.
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Proof of Lemma 5. We first write

Tnl ≤ |(κ∗)1,δ|[x̃, φu(t̃, ·)]|p̃ + 2αx̃| + |(κ∗)
1,δ|[ỹ, v(s̃, ·)]|p̃|

+2|(κ∗)2,δ|[x̃, u(t̃, ·)]|αx̃| +
(

(κ∗)2,δ[x̃, u(t̃, ·)] − (κ∗)
2,δ[ỹ, v(s̃, ·)]

)
|p̃| .

We thus estimate the right hand side of the previous inequality. We start with the first
integral terms.

|(κ∗)1,δ|[x̃, φu(t̃, ·)] ≤ (κ∗
+)1,δ[x̃, φu(t̃, ·)] + (κ−

∗ )1,δ[x̃, φu(t̃, ·)]
≤ ν(z ∈ Bδ : 0 ≤ −(p̃ + 2αx̃) · z ≤ (α + 1/(2ε))|z|2)

+ν(z ∈ Bδ : 0 > −(p̃ + 2αx̃) · z > (α + 1/(2ε))|z|2)
≤ ν(z ∈ Bδ : |εp̃ + 2εαx̃||e · z| ≤ |z|2) .

If now rα,ε denotes |εp̃ + 2εαx̃| and we choose δ ≤ 1
2
rα,ε, (16) implies we get

|(κ∗)1,δ|[x̃, φu(t̃, ·)]|p̃+2αx̃| ≤ 1

ε

{
sup

e∈SN−1

ν(z ∈ Bδ : rα,ε|e·z| ≤ |z−(e·z)e|2)
}

rα,ε =
1

ε
oδ(1) .

Since αx̃ → 0, we can choose

δ ≤ 1

4
ε|p̃| .

Arguing similarly, we get for δ < 1
2
r′ε = 1

2
ε|p̃|,

|(κ∗)
1,δ|[ỹ, φv(s̃, ·)]|p̃| ≤

1

ε

{
sup

e∈SN−1

ν(z ∈ Bδ : r′α,ε|e · z| ≤ |z − (e · z)e|2)
}

r′ε =
1

ε
oδ(1) .

As far as the third integral term is concerned, we simply write

2|(κ∗)2,δ|[x̃, u(t̃, ·)]|αx̃| ≤ 2ν(Bc
δ)|αx̃| ≤ C̃0

δ

√
α

(we used (18)). We now turn to the last integral terms. In view of (13), we can write

T̃nl = (κ∗)2,δ[x̃, u(t̃, ·)] − (κ∗)
2,δ[ỹ, v(s̃, ·)] = ν(z /∈ Bδ : u(t̃, x̃ + z) ≥ u(t̃, x̃))

−ν(z /∈ Bδ : v(s̃, ỹ + z) > v(s̃, ỹ)) .

Here, we have to use (17):

T̃nl =

∫

Bc
δ

J(z − x̃)1{u(t̃,·)>u(t̃,x̃)}(z)dz −
∫

Bc
δ

J(z − ỹ)1{v(s̃,·)>u(s̃,ỹ)}(z)dz

Remark next that the definition of (t̃, s̃, x̃, ỹ) implies the following inequality: for all
z ∈ RN ,

u(t̃, z) − u(t̃, x̃) ≤ v(s̃, z) − v(s̃, ỹ) + α(|z|2 − |x̃|2) − eKt̃ |x̃ − ỹ|2
2ε

.
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This implies that for |z| ≤ Rα,ε, we have

1{u(t̃,·)>u(t̃,x̃)}(z) ≤ 1{v(s̃,·)>u(s̃,ỹ)}(z)

where

R2
α,ε =

1

α

(
α|x̃|2 + eKt̃ |x̃ − ỹ|2

2ε

)
≥ εC2

ε

2α

where Cε appears in (20) (we used that α|x̃|2 → 0 as α → 0). Hence, we have

T̃nl ≤
∫

|z|≥Rα,ε

J(z − x̃)dz +

∫

δ≤|z|≤Rα,ε

|J(z − x̃) − J(z − ỹ)|dz

≤
∫

|z|≥
εC2

ε
4α

J(z)dz + Cδ|x̃ − ỹ| = oα(1)[ε] + Cδ|x̃ − ỹ|

where we used that α|x̃| → 0 as α → 0.

We now turn to the existence result.

Theorem 3 (Existence). Let u0 be Lipschitz continuous and bounded. There then exists
a unique bounded uniformly continuous viscosity solution u of (4).

Proof. We first construct a solution for regular initial data. Precisely, we first assume
that u0 ∈ C2

b (R
N ) (the function and its first and second derivatives are bounded).

Because we can apply Perron’s method, it is enough to construct a sub- and a su-
persolution u± to (4) such that (u+)∗(0, x) = (u−)∗(0, x) = u0(x). We assert that
u±(t, x) = u0(x) ± Ct are respectively a super- and a subsolution of (4) for C large
enough. To see this, we first prove that there exists C0 = C0(‖D2u0‖∞) such that for all
x ∈ RN such that Du0(x) 6= 0, we have

(|κ∗|[x, u0] + |κ∗|[x, u0])|Du0(x)| ≤ C0 . (21)

In order to prove this estimate, we simply write for x such that Du0(x) 6= 0

((κ∗
+)1,δ[x, u0] + (κ∗

−)1,δ[x, u0])|Du0(x)| ≤ 2ν(z ∈ Bδ : r|e · z| ≤ 1

2
‖D2u0‖∞|z|2)r

≤ 2ν(z ∈ Bδ : r|e · z| ≤ C|z − (e · z)e|2)r ≤ Cν

where r = |Du0(x)|, C = max(‖Du0‖∞, 1) and e = Du0(x)/r and δ = r/(2C) and Cν is
given by (6). On the other hand

((κ∗
+)2,δ[x, u0] + (κ∗

−)2,δ[x, u0])|Du0(x)| ≤ Cν

δ
r = 2CνC .

We thus get Estimate (21).
If now u0 is not regular, we approximate it with un

0 ∈ C2
b (RN) and can prove that the

corresponding sequence of solutions un converges locally uniformly towards a solution u.
Since this is very classical, we omit details (see for instance [1]).
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4 The level-set approach

In the previous section, we proved that we are able to solve (4) in the case of singular
measures satisfying (6), (16) and (17). In the present section, we prove that it permits to
define a geometric flow. Precisely, we first prove (Theorem 4) that if u and v are solutions
of (4) associated with two different initial data u0 and v0 that have the same 0-level sets,
then so have u and v. Hence, the geometric flows is obtained by considering the 0-level
sets of the solution u of (4) for any (Lipschitz continuous) initial datum. We also describe
(Theorem 5) the maximal and minimal discontinuous solutions of (4) associated with an
important class of discontinuous initial data.

Theorem 4 (Consistency of the definition). Let u0 and v0 be two bounded and Lip-
schitz continuous functions and consider the viscosity solutions u, v associated with these
initial conditions. If

{x ∈ RN : u0(x) > 0} = {x ∈ RN : v0(x) > 0}
{x ∈ RN : u0(x) < 0} = {x ∈ RN : v0(x) < 0}

then, for all time t > 0,

{x ∈ RN : u(t, x) > 0} = {x ∈ RN : v(t, x) > 0}
{x ∈ RN : u(t, x) < 0} = {x ∈ RN : v(t, x) < 0}

In view of the techniques used to prove the consistency of the definition of local
geometric fronts (see for instance [6]), it is clear that this result is a straightforward
consequence of the following proposition.

Proposition 1 (Equation (4) is geometric). Consider u : [0, +∞) × RN a bounded
subsolution of (4) and θ : R → R a upper semi-continuous non-decreasing function. Then
θ(u) is also a subsolution of (4).

Such a proposition is classical by now. It is proved by regularizing θ (in a proper way)
with a strictly increasing function θn, by remarking that κ∗[x, θn(u)] = κ∗[x, u] in this
case, and by using discontinuous stability. Details are left to the reader.

Thanks to Theorem 4, we can define a geometric flow in the following way. Given
(Γ0, D

+
0 , D−

0 ) such that Γ0 is closed, D±
0 are open and RN = Γ0 t D+

0 t D−
0 , we can write

D+
0 = {x ∈ RN : u0(x) > 0}, D−

0 = {x ∈ RN : u0(x) < 0}, Γ0 = {x ∈ RN : u0(x) = 0}
for some bounded Lipschitz continuous function u0 (for instance the signed distance func-
tion). If u is the solution of (4) submitted to the initial condition u(0, x) = u0(x) for
x ∈ RN , then Theorem 4 precisely says that the sets

D+
t = {x ∈ RN : u(t, x) > 0}, D−

t = {x ∈ RN : u(t, x) < 0}, Γt = {x ∈ RN : u(t, x) = 0}
does not depend on the choice of u0.

The next theorem claims that there exists a maximal subsolution minimal supersolu-
tion of (4) associated with the apropriate discontinuous initial data.
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Theorem 5 (Maximal subsolution and minimal supersolution). Assume that (6)
and (16) hold true. Then the function 1D+

t ∪Γt
−1D−

t
(resp. 1D+

t
−1D−

t ∪Γt
) is the maximal

subsolution (resp. minimal supersolution) of (4) submitted to the initial datum 1D+

0
∪Γ0

−
1D−

0
(resp. 1D+

0
− 1D−

0
∪Γ0

).

This result is a consequence of Proposition 1 together with discontinuous stability and
the comparison principle. See [6, p. 445] for details.

We conclude this section by showing that a bounded front propagates with finite speed.

Proposition 2 (Evolution of bounded sets). Let Ω0 be a bounded open set of RN :
there exists R > 0 such that Ω0 ⊂ BR. Then the level-set evolution (Γt, D

+
t , D−

t ) of
(∂Ω0, Ω0, (Ω̄0)

c) satisfies D+
t ∪ Γt ⊂ B̄R+Ct with

C = ‖c1‖∞ − inf
e∈SN−1

ν(z ∈ RN : 0 ≤ e · z ≤ |z|2)

as long as R + Ct > 0.

Remark 6. Another consequence of this proposition is that, if there are no driving force
(c1 = 0), then the set shrinks till it disappears.

Proof. The proof consists in constructing a supersolution of (4), (5). It is easy to check
that C is chosen such that

u(t, x) = Ct +
√

ε2 + R2 −
√

ε2 + |x|2

is a supersolution of (4). Since B̄R = {x ∈ RN : u(0, x) ≥ 0}, we conclude that D+
t ∪

Γt ⊂ {x ∈ RN : u(t, x) ≥ 0} = B̄Rε(t) with Rε(t) =
√

(Ct +
√

ε2 + R2)2 − ε2. Hence,

D+
t ∪ Γt ⊂ ∩ε>0B̄Rε(t) = B̄R+Ct.

5 Generalized flows

In this section, we follow [7] and give an equivalent definition of the flow by, freely
speaking, replacing smooth test functions with smooth test fronts.

In order to give this equivalent definition, we use the geometrical non-linearities we
partially introduced in Section 2 above. For all x, p ∈ RN and all closed set F ⊂ RN and
open set O ⊂ RN

F∗(x, p,F) =





−µ(p̂)

[
c1(x) + ν(F ∩ {p · z ≤ 0}) − ν(F c ∩ {p · z > 0}

]
|p| if p 6= 0 ,

0 if not ,

F ∗(x, p,O) =





−µ(p̂)

[
c1(x) + ν(O ∩ {p · z < 0}) − ν(Oc ∩ {p · z ≥ 0}

]
|p| if p 6= 0 ,

0 if not .

We can now give the definition of a generalized flow.
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Definition 3 (Generalized flows). The family (Ot)t∈(0,T ) of open subsets of RN (resp.
(Ft)t∈(0,T ) of closed subsets of RN) is a generalized super-flow (resp. sub-flow) of (4) if for
all (t0, x0) ∈ (0, +∞)×RN , r > 0, h > 0, and for all smooth function φ : (0; +∞)×RN →
R such that

1. ∂tφ + F ∗(x, Dφ, {z : φ(t, x + z) > φ(t, x)}) ≤ −δφ in [t0, t0 + h] × B̄(x0, r)

(resp. ∂tφ + F∗(x, Dφ, {z : φ(t, x + z) ≥ φ(t, x)}) ≥ −δφ in [t0, t0 + h] × B̄(x0, r))

2. Dφ 6= 0 in {(s, y) ∈ [t0, t0 + h] × B̄(x0, r) : φ(s, y) = 0},
3. {y ∈ RN : φ(t0, y) ≥ 0} ⊂ O1

t0
,

(resp. {y ∈ RN : φ(t0, y) ≤ 0} ⊂ RN \ Ft0),

4. {y /∈ B̄(x0, r) : φ(s, y) ≥ 0} ⊂ O1
s for all s ∈ [t0, t0 + h],

(resp. {y /∈ B̄(x0, r) : φ(s, y) ≤ 0} ⊂ RN \ Fs for all s ∈ [t0, t0 + h]),

then {y ∈ B̄(x0, r) : φ(t0 + h, y) > 0} ⊂ O1
t0+h (resp. {y ∈ B̄(x0, r) : φ(t0 + h, y) < 0} ⊂

RN \ Ft0+h).

Loosely speaking about generalized super-flows, Condition 1 says that in a prescribed
neighbourhood V around (t0, x0), the normal velocity of the test front {φ > 0} is strictly
smaller than the one of the front O; Condition 2 asserts that the front {φ = 0} is smooth
in V; Conditions 3 and 4 assert that the test front is inside the front O outside V. The
conclusion is that the test front is inside the neighbourhood O at time t + h.

Remark 7. As far as local geometric fronts are considered, Conditions 3 and 4 impose
that the test front is inside O on the parabolic boundary of the neighbourhood. Here,
because the front is not local, the test front has to be inside O everywhere outside the
neighbourhood.

The next theorem asserts that Definition 3 of the flow coincides with the level-set
formulation of Section 4.

Theorem 6 (Generalized flows and level-set approach). Let (Ot)t∈(0,T ) be a fam-
ily of open subsets of RN (resp. (Ft)t∈(0,T ) of closed subsets of RN) such that the set
∪t∈(0,T ){t} × Ot is open in [0, T ] × RN (resp. ∪t∈(0,T ){t} × Ft is closed in [0, T ] × RN).

Then (Ot)t∈(0,T ) (resp. (Ft)t∈(0,T )) is a generalized super-flow (resp. sub-flow) of (4) if
and only if χ(t, x) = 1Ot

(x)−1RN \Ot
(x) (resp. χ(t, x) = 1Ft

(x)−1RN \Ft
(x)) is a viscosity

supersolution (resp. subsolution) of (4), (5).

Since the proof of [7] can be readily adapted, we omit it. We give a straightforward
corollary of Theorems 5 and 6 that is used in [14].

Corollary 1 (Abstract method). Assume that (Ot)t and (Ft)t are respectively a gener-
alized super-flow and generalized sub-flow and suppose there exists two open sets D+

0 , D−
0

such that RN = ∂O0 t D+
0 t D−

0 and such that D+
0 ⊂ O0 and D−

0 ⊂ F c
0 . Then if

(Γt, D
+
t , D−

t ) denotes the level-set evolution of (∂O0, D
+
0 , D−

0 ), we have for all time t > 0

D+
t ⊂ Ot ⊂ D+

t ∪ Γt, D−
t ⊂ F c

t ⊂ D−
t ⊂ Γt .
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Remark 8. One can check that under the assumptions of the previous corollary, we have
in fact D+

0 = O0 and D−
0 = F c

0 .
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