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Abstract 

An abstract mathematical framework is presented in this paper as a unification of several 

deformed or generalized algebra proposed recently in the context of generalized statistical theories 

intended to treat certain complex thermodynamic or statistical systems. It is shown that, from 

mathematical point of view, any bijective function can be used in principle to formulate an algebra 

in which the conventional algebraic rules are generalized.  
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1 Introduction 

In the last two decades, statistical physics has experienced several extensions from the 

conventional Boltzmann-Gibbs-Shannon (BGS) formalism to other seemingly more general 

formalisms. Among these extensions, there are two ones called the nonextensive statistical 

mechanics (NSM) [1][2] and the κ-statistical mechanics (KSM)[3]. Both of them overcome, among 

others, the limitative rule of additivity of energy and entropy, a paradigm governing the 

conventional statistical mechanics. Due to the strong relationship between non extensive statistical 

physics and fractal geometry [4] it has been claimed that these statistics can be used to describe 

complex systems whose anomalous behaviors cannot be interpreted within BGS statistics. Since the 

proposition of these extensions, much pros and cons has been written from the physical point of 

view. We will not enter into the physical debate here. The present work is limited in the pure 

mathematical study of some algebraic aspects related to the mathematical functionals used in the 

extended statistics. 

The first functional have been used in NSM and called −q exponential ( ) ax
a ax 11e +=  and 

logarithm−q
a

xx
a

a
1ln −

=  where qa −= 1  or 1−= qa . They are inverse functions of one 

another. When q  tends toward 1, or when a  tends toward 0, the −q exponential tends toward the 

usual exponential function and the logarithm−q tends toward the usual logarithm. From 

mathematical point of view, these functions have interesting properties which extend partially those 

of the corresponding usual functions. For example, the usual exponential and logarithm entails the 

usual algebraic operators such as addition, subtraction, multiplication and division. In mimicking 

the related morphisms, an extended algebra has been defined from x
ae  and xaln  using generalized 

operators [5][6]. Further development shows application in the derivation of factorial−q  and 

−q multinomial coefficient [7].  

The second functional called −κ exponential are used in KSM. In that case 

{ } ( ) κ

κ κκ
1

221)(exp xxx ++=  and logarithm−κ
κ

κκ

κ 2
ln xxx

−−
= . They are also inverse function 

of one another. In the case of κ  tends toward 0, these generalized functions recover the usual ones. 

An extended algebra−κ  is also developed from these functions [3].  

Other deformations or extensions of conventional statistics with extended algebra [8][9] were 
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also proposed. A common character of extended algebra is to use a generalization of exponential 

function or its inverse to expand the morphism of, say, a usual algebraic operator […]. For 

example, using ( ) ax
a ax 11e += , if we calculate the usual product of two exponential, we find 

yx
a

y
a

x
a

a+=× eee  where the operator a+  is the generalized q-addition given by axyyxyx a ++=+ .  

The present work is an extension of this logic within a more general mathematical framework. It 

will be shown that the same methodology can be carried out at least with any bijection, not only 

with the generalized exponentials. The concomitant mathematical structure can yield different 

algebraic rules according to the choice of different functions and different field of their functional 

definition. We think that this formulation of the extended algebra may be beneficial for further 

development and understanding of the new mathematical tendency stimulated by the development 

of physics.  

2 Structure of generalized group and ring 

2.1 Preliminaries  

Let X  and Y  be two nonempty sets, and let ∗  and ⊥  be two binary operations on X  and Y  

respectively. We denoted by X1  and Y1  the neutral element (when this exists) of ( )∗,X  and ( )⊥,Y  

respectively, and by 1−x  the inverse of x  if x  is invertible in ( )∗,X  or in ( )⊥,Y . We mean by ϕ  a 

bijection of ( )∗,X  in ( )⊥,Y  and by ψ  the inverse function of ϕ . 

 

2.2 Definitions and theorem 

a) The functions ),( ⊥+ ϕ  and ),( ⊥− ϕ  defined on XX ×  by : 

( ) XXxx ×∈∀ ', , ( ))'()('),( xxxx ϕϕψϕ ⊥=+ ⊥ . 

( ) XXxx ×∈∀ ', , ( )( )1
),( )'()(' −

⊥ ⊥=− xxxx ϕϕψϕ  (when this exists) 

 

are binary operations (laws) on X  ; 

b) The functions ),( ∗× f  and ),( ∗÷ f  defined on YY ×  by 

( ) YYyy ×∈∀ ', , ( ))'()('),( yyyy ψψϕϕ ∗=× ∗ . 

( ) YYyy ×∈∀ ', , ( )( )1
),( )'()(' −
∗ ∗=÷ yyyy ψψϕϕ  (when this exists) 

are binary operations (laws) on Y  ; 
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c) ϕ  is an homomorphism of ( )),(, ⊥+ ϕX  in ( )⊥,Y , and ψ  is an homomorphism of ( )),(, ∗× ϕY  in 

( )∗,X  ; 

d) When ϕ  is an homomorphism of ( )∗,X  in ( )⊥,Y  then ∗=+ ⊥),(ϕ  and =⊥× ∗),(ϕ . In particular, ϕ  

becomes an isomorphism of ( )),(, ⊥+ ϕX  into ( )),(, ∗× ϕY . 

 

2. 3 Examples 

a) When ( ) ( )+=∗ ,, RX , ( ) ( )×=⊥ ∗
+ ,, RY  and exp=ϕ , then ln=ψ . 

We have for all ( ) XXxx ×∈',  and ( ) YYyy ×∈',  

( ) ( ) ''expexpln)'()('),( xxxxxxxx +=×=×=+ ⊥ ϕϕψϕ  

( )( ) '
'exp

expln)'()(' 1
),( xx

x
xxxxx −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=×=− −

⊥ ϕϕψϕ  

( ) ( ) ''lnlnexp)'()('),( yyyyyyyy ×=+=+=× ∗ ψψϕϕ  

( ) ( ) ''lnlnexp)'()('),( yyyyyyyy ÷=−=−=÷ ∗ ψψϕϕ . 

we find thus the ordinary operations. 

b) Let ∗
+∈Ra  and we consider the set ⎢⎣

⎡
⎥⎦
⎤ +∞−= ,1

a
X  with the law additive, here +=∗ ), and 

( ) ( )×=⊥ ∗
+ ,, RY . We mean by ϕ  the function of X  in ( )⊥,Y  defined in [4] [5] by 

( ) x
a

aaxx e1)( 1 =+=ϕ . 

It’s easy to check that ϕ  is a bijection of X  into Y , and that the inverse function of ϕ  is 

defined by 

Yx∈∀ , 
a

xxx
a

a
1ln)( −

==ψ . 

In this case, we have for all ( ) XXxx ×∈',  and ( ) YYyy ×∈',  according to generalized 

operations [5][6]  

( ) ''')'()('),( xxaxxxxxxxx a+=++=×=+ ⊥ ϕϕψϕ  

( )( ) '
'1
')'()(' 1

),( xx
ax
xxxxxx a−=

+
−

=×=− −
⊥ ϕϕψϕ  

( ) ( ) '1')'()('
1

),( yyyyyyyy a
aaa ×=−+=+=× ∗ ψψϕϕ  

( )( ) ( ) '1')'()('
11

),( yyyyyyyy a
aaa ÷=−−=+=÷ −

∗ ψψϕϕ . 
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c) Let ∗
+∈Rκ  and we consider ( ) ( )+=∗ ,, RX , ( ) ( )×=⊥ ∗

+ ,, RY . Let ϕ  the function of X  in ( )⊥,Y  

defined by 

Xx∈∀ , ( ) { } )(exp1)(
1

22 xxxx κ

κ
κκϕ =++= . 

ϕ  is bijective of X  into Y , and that the inverse function of ϕ  is defined by 

Yx∈∀ , { } κ
ψ

κκ

κ 2
)(ln)(

−−
==

xxxx . 

In this case, we have all ( ) XXxx ×∈',  and ( ) YYyy ×∈',  

( ) ''1'1)'()(' 2222
),( xxxxxxxxxx

κ

ϕ κκϕϕψ ⊕=+++=×=+ ⊥  

( )( ) ''1'1)'()(' 22221
),( xxxxxxxxxx

κ

ϕ κκϕϕψ Θ=+−+=×=− −
⊥  

( ) ( ) ( )( ) ''argshargshsh1)'()('),( yyyyyyyy
κ

ϕ κκ
κ

ψψϕ ⊗=+=+=× ∗  

we find thus the operations introduced by Kaniadakis [3][8]. 

d) Let ∗
+∈Rκ  and we consider [ ]κκ ,−∈r , ( ) ( )+=∗ ,, RX , ( ) ( )×=⊥ ∗

+ ,, RY . Let ψ  the function of 

Y  in ( )∗,X  defined by 

Yx∈∀ , { } κ
ψ

κκ

κ 2
)(ln)( ,

−+ −
==

rr

r
xxxx . 

We check easily that ψ  is bijective of Y  into X  (ψ  is continuous and strictly increasing on 

Y ). We denote by { } )(e)(: , xxx rκϕϕ =a  the inverse function of ψ . 

We note that ψ  verifies the following property 

Yyy ∈∀ ', , )'()(2)(')'()'( yyyyyyyy rr ψκψψψψ κκ −+= ++ . 

Its follows that for all ( ) XXxx ×∈', , we have 

( ) ')'()('
,

),( xxxxxx
rκ

ϕ ϕϕψ ⊕=×=+ ⊥ . 

See [8]. 

e) Let ∗
+∈Rγ  and we consider 

2
3 γκ = , 

2
γ

=r , ( ) ( )+=∗ ,, RX , ( ) ( )×=⊥ ∗
+ ,, RY . Let ψ  the function 

of Y  in ( )∗,X  defined by 

Yx∈∀ , { } γκ
ψ

γγκκ

κγ 32
)(ln)(ln)(

2

,

−−+ −
=

−
===

xxxxxxx
rr

r . 
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We denote by )(e)(: xxx γϕϕ =a  the inverse function of ψ , then ϕ  is defined by 

Xx∈∀ , 

γ

γ
γγ

ϕ

/13/1
33

3/1
33

2
411

2
411

)(e)(
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −+
==

xx
xx  

We note that ψ  verifies the following property 

Yyy ∈∀ ', , )'()(3)(')'()'( yyyyyyyy ψγψψψψ −+= . 

Its follows that for all ( ) XXxx ×∈', , we have 

( ) ')'()('),( xxxxxx
γ

ϕ ϕϕψ ⊕=×=+ ⊥ . 

 See [8].  

f) Let ∗
+∈Rγ  and we consider ( ) ( )+=∗ ,, RX , ( ) ( )×=⊥ ],1,0],Y . Let ϕ  the function of ( )+,X  into 

( )⊥,Y  defined in [10][11][12] by 

Xx∈∀ , ( )γϕ xx −= exp)(  

The inverse function ψ  of ϕ  is defined by  

Yx∈∀ , 
γ

ψ

1

1ln)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

x
x  

We check easily that for all ( ) XXxx ×∈',  and ( ) YYyy ×∈', , we have 

( ) ( )γγγ
ϕ ϕϕψ

1

),( ')'()(' xxxxxx +=×=+ ⊥  

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=× ∗

γ

γγ

ϕ

11

),( '
1ln1lnexp'
yy

yy . 

As an example, see the following operation for 2=γ : 

( ) ∗
+

∗
+ ×∈∀ RR', xx , 22

),( '' xxxx +=+ ⊥ϕ . 

We observe that the Gauss distribution is related to Pythagoras relation on the circle. This 

observation is a key observation to fully understand the relation between diffusion process and 

2D fractal Dynamics [4]. 

2.4 Remarks  

a) Let 0>a . We show that x
axx e)(: =ϕϕ a  is the unique function defined on ⎢⎣

⎡
⎥⎦
⎤ +∞−= ,1

a
X , 

differentiable at 0 with 1)0(' =ϕ  and verifies for all ( ) XXxx ×∈',  
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)'()()'( xxxx a ϕϕϕ ×=+ . 

b) Let 0>κ . We show that { } )(exp)(: xxx κϕϕ =a  is the unique function defined on R , 

differentiable at 0 with 1)0(' =ϕ  and verifies for all ( ) XXxx ×∈',  

)'()()'( xxxx ϕϕϕ
κ

×=⊕ . 

2.5 Proposition  With the previous notations, we have 

∗=+
∗× ),( ),(ϕϕ    and   =⊥×

⊥+ ),( ),(ϕϕ . 

 

2.6 Proposition  Let Xxxx ∈'',', , we have the following properties 

( )( ) ( ))''()'()(''' ),(),( xxxxxx ϕϕϕϕ ϕϕ ⊥×=+∗ ∗⊥  

( )( ) ( ) )()''()'(''' ),(),( xxxxxx ϕϕϕϕ ϕϕ ∗⊥ ×⊥=∗+ . 

 

2.7 Remarks 

a) The commutativity of the law ∗  (respectively ⊥ ) implies the commutativity of the law ),( ∗× ϕ  

(respectively ),( ⊥+ ϕ ). 

b) The associativity of the law ∗  (respectively ⊥ ) implies the associativity of the law ),( ∗× ϕ  

(respectively ),( ⊥+ ϕ ). 

c) The existence of a neutral element of ( )∗,X  (respectively of ( )⊥,Y ), implies the existence of a 

neutral element ( )),(, ∗× ϕY  (respectively of ( )),(, ⊥+ ϕX ). 

d) Due to the fact that the two laws are not defined in the same set there is no reason to consider the 

distributivity of ),( ∗× ϕ  with respect to ),( ⊥+ ϕ  or conversely. 

We can therefore make the following proposition. 

 

2.8 Proposition 

With the previous notations, we have 

a) ),( ⊥Y  is an abelian group if and only if ( )),(, ⊥+ ϕX  is an abelian group ; 

b) ( )∗,X  is an abelian group if and only if ( )),(, ∗× ϕY  is an abelian group ; 

c) ( )o,,⊥Y  is a ring if and only if ( )),(),( ,, oϕϕ ++ ⊥X  is a ring ; 

d) ( )),(,, ∗×⊥ ϕY  is a ring if and only if ( )∗+ ⊥ ,, ),(ϕX  is a ring. 
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3. Structure of generalized vector space 
3.1 Definition and theorem. Let X  and Y  be two nonempty sets, on law external a   • Y , We 

mean by ϕ  a bijection of X  in Y  and by ψ  the inverse function of ϕ . 

The function ),( •• ϕ  defined on X×K  by 

( ) Xx ×∈∀ R,λ , ( ))(),(),( xx ϕλψλϕ •=• •  

is a external law on X . 

We denote ),(),( xλϕ ••  by x),( •• ϕλ . 

 

3.2 Applications 

a) When RK = , R=X , ∗
+= RY  and •  is the law defined on Y  by 

( ) Yx ×∈∀ R,λ , λλ xx =• . 

If we consider the function ϕ  of X  in Y  defined by 

Xx∈∀ , xx  exp)( =ϕ . 

Then for all ( ) Xx ×∈R,λ ,  

( ) xxx λϕλλ ϕ =•=• • )(ln),( . 

In this case we denote )(exp,••  in stead of ),( •• ϕ . 

We find thus the ordinary multiplication. 

b) Let ∗
+∈Ra . When ⎢⎣

⎡
⎥⎦
⎤ +∞−= ,1

a
X , RK = , ∗

+= RY  and •  is the law defined on Y  by 

( ) Yx ×∈∀ R,λ , λλ xx =• . 

If we consider the function ϕ  from X  in Y  defined by 

Xx∈∀ , ( ) x
a

aaxx e1)( 1 =+=ϕ . 

Then for all ( ) Xx ×∈R,λ , 

( ) ( )
a

axxx 11)(),(
−+

=•=• •

λ

ϕ ϕλψλ . 

In this case we denote ),( •• a  in stead of ),( •• ϕ . 

We find thus the operation defined in [4][5]. 

c) Let ∗
+∈Rκ . When RK = , R=X , ∗

+= RY  and •  is the law defined on Y  by 

( ) Yx ×∈∀ R,λ , λλ xx =• . 

If we consider the function ϕ  from X  in Y  defined by 
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Xx∈∀ , ( ) { } )(exp1)(
1

22 xxxx κ

κ
κκϕ =++= . 

Then for all ( ) Xx ×∈R,λ , 

{ }( ) ( ) ( )
κ

κκκκϕλλ
λλ

κϕ 2
11)(ln

2222

),(

−

•
++−++

=•=•
xxxxxx  

In this case we denote { }( )•• ,κ  in stead of ),( •• ϕ . 

 

3.3 Remarks 

a) We show that xxx  exp)(: =ϕϕ a  is the unique function defined on R , differentiable at 0 with 

1)0(' =ϕ  and verifies 

( ) RR ×∈∀ x,λ , ( ) ( )λϕλϕ )()(exp, xx =• • . 

b) Let 0>a . We show that x
axx e)(: =ϕϕ a  is the unique function defined on ⎢⎣

⎡
⎥⎦
⎤ +∞−= ,1

a
X , 

differentiable at 0 with 1)0(' =ϕ  and verifies 

( ) Xx ×∈∀ R,λ , ( ) ( )λϕλϕ )(),( xxa =• • . 

c) Let 0>κ We show that { } )(exp)(: xxx κϕϕ =a  is the unique function defined on R , 

differentiable at 0 with 1)0(' =ϕ  and verifies 

( ) Xx ×∈∀ R,λ , { }( )( ) ( )λκ ϕλϕ )(, xx =• • . 

 

3.4 Theorem 

If ( )•⊥,,Y  is a vector space on K , then ( )),(),( ,, •⊥ •+ ϕϕX  is a vector space on K . 

4 Conclusion 

This paper reportes a general framework which unifies all the extended algebra recently 

proposed from physical considerations. Our main conclusion is that (at least) any bijective function 

can be the characteristic function of an algebra which may generalize the conventional algebra 

characterized by the usual exponential function.  

It is for algebraic and functional reasons that the exponential function play a major role both in 

mathematics and in physics. This role is essentially rightly related with elementary mathematical 

manipulations and the fitting with the behaviour of separable physical phenomena. Nevertheless the 

physics of complex media breaks this relevance in different way: nonextensivity, correlation and 
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coupling, scaling properties etc [10]. In that case the exponential function and all related properties 

loss their physical accuracy and are transformed into power laws. The present mathematical 

analysis shows not only how this accuracy is lost but moreover what are the key factors which must 

rebuild up to handle again the complex problematic.  

It must be observed that the generalisation of exponential analysis suggested in the present paper 

is based on the link between functional definitions and there algebraic and functional fields of 

validities. This link which is a key factor to understand the dynamics of physical phenomena in 

complex geometry is currently in progress. Another work relative to the generalisation of usual 

differential calculus with bijective and non bijective functions will be presented in the near future.  

 

 

References 

[1] C. Tsallis, J. Stat. Phys. 52(1988)479 ; 

C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A, 261(1999)534  

[2] Q. A. Wang, Euro. Phys. J. B, 26(2002)357; 

Q. A. Wang, A. Le Méhauté, L. Nivanen, M. Pezeril, Physica A, 340(2004)117 

[3] G. Kaniadakis, Physica A, 296(2001)405; Phys. Rev. E, 66(2002)056125  

 

[4] 

L. Nivanen, Q. A. Wang and A. Le Méhauté in 

Fractional differentition and its applications. A Le Méhauté, J A Tenreiro 

Machado, J C Trigeassou, J. Sabatier. (209-230) U Books on demand (2005) 

[5] L. Nivanen, A. Le Méhauté and Q. A. Wang, Math. Phys., 52(2003) 437 

[6] E. P. Borges, Physica A, 340(2004)95 

[7] H. Suyari, Physica A, 368(2006) 63-82 ; cond-mat/0401541 

[8] G. Kaniadakis, M. Lissia and A.M. Scarfone, Phys.Rev. E, 71(2005)046128 

[9] A. Lavagno A.M. Scarfone and P. Narayana Swamy, J. Phys. A, 40(2007)8635 

[10] A. Le Méhauté. Les géométries fractales, Hermès, Paris 1990 

A. Le Méhauté. Fractal Geometry. Theory and applications, Penton Press 1991 

[11] G. Williams and D. C. Watts - Transactions of the Faraday Society, 2503(66)1970 

[12] R. Botet and M. Płoszajczak. Universal fluctuations, World Scientific 2002 

 


