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Abstract. In cancer diseases, the appearance of metastases is a very pejorative fore-
cast. Chemotherapies are systemic treatments which aim at the elimination of the
micrometastases produced by a primitive tumour. The efficiency of chemotherapies
closely depends on the protocols of administration. Mathematical modeling is an in-
valuable tool to help in evaluating the best treatment strategy. Iwata and al [11] pro-
posed a partial differential equation (PDE) that describes the metastatic evolution of
an untreated tumour. In this article, we conducted a thorough mathematical analysis
of this model. Particularly, we provide an explicit formula for the growth rate param-
eter, as well as a numerical resolution of this PDE. By increasing our understanding
of the existing model, this work is crucial for further extension and refinement of
the model. It settles down the framework necessary for the consideration of drugs
administration effects on tumour developpment.
Keywords: Von Foerster equation, semigroup approach, asymptotic behaviour, charac-
teristic scheme, metastatic tumors

1. Introduction

Primary tumors after reaching a critical volume may be at the origin of
several metastatic tumors disseminated in the human body. At early stages,
metastatic tumors are of small size and not detectable by medicinal apparatus,
like in the case of the breast cancer, but evidence for the existence of occult
micrometastases at diagnosis is overwhelming [10]. Metastases grow rapidly,
escape any therapeutic treatment and often lead to the patient’s death. This
is the fate of an uncontrolled disease process.
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Because metastases, the systemic therapy is the only therapeutic treatment
which may have an impact on the problem of disseminated tumors [9]. The
adequate systemic therapy is chemotherapy based on the combination of cy-
totoxic, cytostatic or other biologic agents. Any chemotherapeutic treatment
must be initiated before intensive disseminating process, in order to prevent
the emergence of micrometastases. It is the so-called adjuvant chemotherapy
given despite undetectable tumor masses. This is the by the chemotherapy
disturbance of tumor growth process.

Disease monitoring joint to chemotherapy constitutes not only a high com-
plex but also constrained process because of the undesirable toxic adverse events
that limit the applicability of chemotherapy. Optimal management of cancer
requires today thorough and upgraded tools integrating current information
about cancer cell kinetic pharmacokinetics and efficacy-toxicity pharmacody-
namics.

Since several years numerous authors attempted to optimize anticancer
chemotherapy by using mathematical modeling [3]. Dose-dense schedules may
have an advantage over conventional schedules of drug administration [13], and
we have already developed mathematical models computing the features of an
administration protocol so that the size of primary tumor is minimized while
the toxicity effects are controlled. These features concern the drug amounts
(intensification) and their distribution over a treatment cycle (densification).
This approach was applied to the metastatic breast cancer in phase I trial [7].

Recently, disease models were also developed describing the dissemination
dynamics of metastatic tumors [11]. In this line, Iwata et al. developed a
metastatic disease model as a partial differential equation with initial and
boundary conditions. Starting from a primary tumor with one cell, this equa-
tion calculates the colony size distribution v(x, t) of metastatic tumors with cell
numbers x at time t. The authors obtain an analytical solution of this equa-
tion using Laplace transform; however the obtained solution is not numerically
tractable.

In contrast to all these developments, no models are available for the disease
and treatment joint processes. Especially for micrometrastases, these models
could describe the number and sizes of tumors below the detection threshold,
predict the behavior of metastases in patients and thus allow the design of
adjuvant chemotherapy.

Accordingly, we propose to revisit the Iwata’s model in order to incorporate
the effect of chemotherapy and pharmacokinetics and pharmacodynamics of
antitumor agents. The purpose of this paper will be a thorough mathematical
analysis of the so obtained new partial differential equation. This analysis will
be followed by the presentation of a numerical scheme of resolution. Aiming to
prevent the emergence of the micrometastases, accordingly the Iwata’s model
has to be modified to incorporate the effect of chemotherapy in order to to de-
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sign an administration protocol which will minimize the number of metastases,
by using the method of optimization developed in [7].

Reader’s guide

We precise in section 2 the model under study: a Von Foerster equation
with Gompertzian growth. It is a linear transport equation with a non local
boundary condition combined with a singular source. The mathematical anal-
ysis of such an equation is developped in section 3. We, in particular, derive
the asymptotic behaviour of the solution. We exhibit a Malthus parameter λ0

that gives the growth rate of metastatic sites. This explicit formula that gives
this parameter shows a deep dependance on clinical characteristic data of the
patient. We propose in section 4 an algorithm to approximate the solutions of
such an equation. We give a theoritical validation of the numerical model for
long time intervals. We finally give in section 4 some numerical results. Our re-
sults are first compared to the ones of [11]. Numerical simulations also confirm
the theoritical asymptotic growth of the number of metastases. We conclude
this section by a sensibility analysis with respect to the clinical characteristic
data of the patient.

2. Presentation of the model

We present in this section the mathematical model describing the dynamics
of the metastatic colony size distribution introduced in [11]. In this model we
suppose that the primary tumor is generated by a single cell at t = 0 and
grows with the rate g(x) per unit time where x is the tumor size represented
by the number of cells in the tumor. The growing tumor emits metastatic cells
with the rate β(x). Each metastatic cell develops into a new tumor, which
also grows at rate g(x) and emits new nuclei of metastasis just as the primary
tumor does. Let v(x, t) represent the colony size distribution with cell number
x at time t, actually v(x, t)dx means the number of metastatic tumors whose
sizes range from x and x+dx at time t. In the case considered here we suppose
that the nuclei of colonization are located far enough from each other so that
their ranges do not overlap for a long time period. The dynamics of the colony
size distribution is given by the following Mac-Kendrick Von Foerster equation:



∂
∂tv(x, t) + ∂

∂x [g(x)v(x, t)] = 0, x ∈ [1, b), t ≥ 0

g(1)v(1, t) =
∫ b
1
β(x)v(x, t)dx + β(xp(t)),

v(0, x) = 0.

(1)

We have to deal with a transport equation with a non local boundary condi-
tion and an initial data equals to zero which supposes that there is no metastatic
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tumor at time t = 0. The boundary condition means that the number of
metastatic cells newly created per unit time at time t is the total rate of oc-
curences of metastases due to metastatic tumors (corresponding to the integral
term) and the primary tumor.

In the Iwata’s model the data xp, g and β are precised as follows.

1) The number of cells xp(t) in the primary tumor at time t is the solution
of the Cauchy problem:

{
d
dtxp(t) = g(xp(t))
xp(0) = 1.

(2)

2) A Gompertzian growth rate g is adopted:

g(x) = ax ln
(
b

x

)
, (3)

where a denotes a growth rate constant and b > 1 the maximum tumor
size.
We can solve explicitely the equation (2) which gives:

xp(t) = b1−e
−at

. (4)

3) The colonization rate β(x) is choosen as:

β(x) = mxα, (5)

where m is the colonization coefficient and α is the fractal dimension
of blood vessels infiltrating the tumor. The parameter α expresses how the
blood vessels geometrically distribute in or on a tumor. If the vascularity is
superficial the fractal dimension α is assigned to be 2/3 because we suppose
that the tumor has the shape of a sphere hence the surface area is proportional
to 2/3. Else if the vascularization is homogeneously distributed in the whole
tumor, α is supposed to be equal to 1.

3. Mathematical analysis of the Von Foerster equation with
Gompertzian growth

This section is devoted to the mathematical analysis of System 1. We are
going to use a semigroup approach. This will give the existence and uniqueness
of solutions as well as the long time behaviour of these solutions. Apart from
the construction of the semigroup, the main ideas can be found in [15],[12]. We
would like also to refer to [6] for another approach.
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Let us consider the equation (1) in a more general case where the initial
condition is non zero:

∂
∂tv(x, t) + ∂

∂x [g(x)v(x, t)] = 0, x ∈ (1, b), t ≥ 0

g(1)v(1, t) =
∫ b
1
β(x)v(x, t)dx + f(t), t > 0

v(x, 0) = v0(x).

(6)

3.1. Existence of solutions

In the sequel, we suppose that g is given by (3), β by (5) and f(t) = β(xp(t))
where xp the number of cells in primary tumor is defined in (4). In particular,
we have ∫ b

1

β(x)
g(x)

dx = +∞. (7)

Let us introduce the operator A and its domain:

A = −∂x(g(x).),

D(A) =

{
v ∈ L1(1, b), gv ∈W 1,1(1, b), lim

x→b−
(gv)(x) = 0, (gv)(1) =

∫ b

1

β(x)v(x) dx

}
.

In order to prove the existence of solutions for the considered equation (6),
we first need to state with some spectral properties of the operator A.

3.1.1. Spectral properties of A

We derive in this section some properties of the point spectrum σp(A), the
set of the eigenvalues of (A,D(A)).

Theorem 1. There exists a unique real eigenvalue λ0 ∈]0,+∞[ of the operator
(A,D(A)). More precisely :

m < λ0 < mbα. (8)

Moreover there exists ε > 0 such that

σp(A) ⊂ {0 < Reλ < λ0 − ε} ∪ {λ0}.

Proof.

Step 1:The eigenvectors are given by V (x) = g(1)V (1)
g(x) e

−

∫ x

1

λ

g(y)
dy

and σp(A) ⊂
R+.
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We recall that λ ∈ σp(A) if and only if there exists, V 6= 0 such that{
V ∈ D(A)
AV = λV, in (1, b)

The solutions of the differential equation

AV = ∂x(g(x)V ) = −λV, in (1, b)

are given by:

V (x) =
g(1)V (1)
g(x)

e
−

∫ x

1

λ

g(y)
dy
. (9)

The boundary condition

g(1)V (1) =
∫ b

1

β(x) V (x)dx

then reads

g(1)V (1) =
∫ b

1

g(1)V (1)
β(x)
g(x)

e
−

∫ x

1

λ

g(y)
dy
dx (10)

First of all, notice that the function gV defined in (9) is in W 1,1(1, b) and
limx→b−(gV )(x) = 0 if and only if Reλ > 0. Moreover, direct calculations
show that

e

−λ

∫ x

1

dy

ay ln b
y =

(
ln b

x

ln b

)λ
a

,

and therefore

V (x) =
V (1)
x

(
ln b

x

ln b

)λ
a−1

.

Thus V ∈ L1(1, b) if and only if Reλ > 0. Therefore, to be in the spectrum
of (A,D(A)), Reλ has to be greater than 0.
We can remark that if V (1) = 0 then V = 0, so V (1) 6= 0 to ensure that V 6= 0
and dim(Ker(A− λI)) = 1.

We deduce that λ ∈ C is an eigenvalue of (A,D(A)) if and only if Reλ > 0
and from (10):

F (λ) :=
∫ b

1

β(x)
g(x)

e
−

∫ x

1

λ

g(y)
dy
dx = 1. (11)

Let us introduce

G(x) =
∫ x

1

dy

g(y)
. (12)
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Thanks to the properties of g the function G is strictly increasing, C1 and
one to one from (1, b) to (0,+∞). As G′(x) 6= 0,∀x ∈ (1, b), G is a C1 diffeo-
morphism. We can rewrite F (λ) as follows:

F (λ) =
∫ +∞

0

β(G−1(y))e−λy dy.

Then, setting θ = β ◦G−1, we remark that:

F (λ) =
∫ +∞

0

θ(y) e−λydy.

F is the Laplace transform of the function θ = β ◦ G−1 ∈ L∞(0,∞), we
deduce that F is well defined and holomorphic (Laplace transform property)
in the complex half plane Ω = {λ ∈ C, Re λ > 0}. Thus the solutions of the
equation F (λ) = 1 are all isolated. We have:

V (G−1(x)) = g(1)V (1)G′(G−1(x))e−λx for all x ∈ (0,+∞).

Step 2:
There exists a unique real eigenvalue λ0 of (A,D(A)). Moreover, its algebraic
multiplicity is 1.

We will look at the solutions of (11) on the real line. Remark that F is
continuous and strictly decreasing on R+ with F (0) > 1 thanks to (7) and:

lim
λ→+∞

F (λ) = 0.

Therefore by the intermediate value theorem, (11) admits a unique solution
λ0 ∈ R+.
As λ0 > 0, we prove in the last step that ker(A− λ0I) = RV for V defined by
(9). In the sequel, we fix V (1) > 0.

Let us now show ker(A − λ0I)2 = ker(A − λ0I) = RV . A function ϕ ∈
ker(A− λ0I)2 if and only if ϕ ∈ D(A) and there exists c ∈ R such that:

{
Aϕ = λ0ϕ− cV, in (1, b)
g(1)ϕ(1) =

∫ b
1
β(x) ϕ(x)dx

.

As previously this system is equivalent to:

∂x(g(x)ϕ) = −λ0ϕ+ cV, in (1, b) (13)

g(1)ϕ(1) =
∫ b

1

β(x) ϕ(x)dx (14)



8

Solving the differential equation (13) we obtain for ϕ:

ϕ(x) =
g(1)ϕ(1)
g(x)

e
−

∫ x

1

λ0

g(y)
dy

+
c

g(x)

∫ x

1

e
−

∫ x

τ

λ0

g(y)
dy
V (τ)dτ.

One can deduce (since F (λ0) = 1):

∫ b

1

β(x) ϕ(x)dx = g(1)ϕ(1) + c

∫ b

1

β(x)
g(x)

∫ x

1

e
−

∫ x

τ

λ0

g(y)
dy
V (τ)dτdx

In order to fulfill the condition (14) the condition:

c

∫ b

1

β(x)
g(x)

∫ x

1

e
−

∫ x

τ

λ0

g(y)
dy
V (τ)dτdx = 0

is required. As β, g, V are positive functions on [1, b) we deduce that c = 0 and:

ϕ(x) =
g(1)ϕ(1)
g(x)

e
−

∫ x

1

λ0

g(y)
dy

= δV (x),

with δ = ϕ(1)
V (1) , the conclusion follows.Therefore the algebraic multiplicity of λ0

is 1.

It remains to prove (8). From (11), one has :

F (λ0) =
∫ +∞

0

β(G−1(x))e−λ0x dx = 1.

As m < β(x) < mbα for x ∈ (1, b), one gets that

m

λ0
< 1 <

∫ +∞

0

mbαe−λ0x dx =
mbα

λ0
,

so
m < λ0 < mbα.

As we will see in the sequel, λ0 gives the asymptotic behaviour.

Step 3:
There is a unique eigenvalue whose real part is equal to λ0.

Let λ0 the real solution of F (λ0) = 1. If λ = λ0+iα, α ∈ R, is an eigenvalue
of (A,D(A)) since θ = β(G−1) is real valued we have:

F (λ) = 1 if and only if


∫∞
0
θ(x)e−λ0x cos(αx)dx = 1∫∞

0
θ(x)e−λ0x sin(αx)dx = 0



9

Since F (λ0) = 1, one can deduce that:∫ ∞
0

θ(x)e−λ0x(1− cos(αx))dx = 0.

Considering that θ > 0 almost everywhere, this can be true if and only if
1− cos(αx) = 0, for all x ∈ R. Therefore α = 0.

Step 4:
There is no eigenvalue whose real part is bigger than λ0.

Indeed if λ ∈ {Reλ > λ0} then |F (λ)| < F (λ0) = 1 and then λ /∈ σp(A).

Step 5:
There is at most a finite number of eigenvalues of real part in a compact of
(0, λ0) and there exists ε > 0 such that σp(A)\{λ0} ⊂ {0 < Reλ ≤ λ0 − ε} .

Let λ = a+ ib with 0 < a < λ0,

F (λ) = 1 if and only if


∫∞
0
θ(x)e−ax cos(bx)dx = 1,∫∞

0
θ(x)e−ax sin(bx)dx = 0.

According to the Riemann-Lebesgue theorem, we have:

∫ ∞
0

θ(x)e−ax cos(bx)dx →
b→+∞

0,

uniformly in a on any compact of {z ∈ C;Re(z) ∈ (0, λ0)}.

As the eigenvalues are isolated, there can exist only a finite number over
each compact of {0 < Reλ < λ0}. Consequently:

∃ε > 0 ; F (λ) = 1 and λ 6= λ0 ⇒ Reλ /∈]λ0 − ε, λ0[.

Thus σp(A)\{λ0} ⊂ {0 < Reλ ≤ λ0 − ε}.

Proposition 2 (see [2]).

1) The domain D(A) is dense in L1(1, b).
2) {λ ∈ C, Reλ ∈]λ0 − ε, λ0[ } ∪ {λ ∈ C; Reλ > λ0} ⊂ ρ(A), where ρ(A) is

the resolvent set of A.
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As D(A) is dense in L1(1, b), one can define (A∗, D(A∗)), the adjoint of
(A,D(A)):

A∗w(x) = g(x)∂xw(x)− β(x)w(1),

D(A∗) = {w ∈ L∞(1, b), g∂xw ∈ L∞(1, b), } .

Moreover, one has

Proposition 3. There exists a unique triplet (λ0, φ, V ) ∈]0,+∞[×D(A∗) ×
D(A) such that {

AV = λ0V, A∗φ = λ0φ

φ ≥ 0, φ(1) = 1, and
∫ b
1
V (x)φ(x)dx = 1.

More precisely, as β(x) = mxα then

φ ∈ C0([1, b)), φ ≥ m

λ0
> 0. (15)

Proof. We solve A∗φ = λ0φ and get

φ(x) = eλ0G(x)

(∫ b

x

β(y)
g(y)

e−λ0G(y)dy

)
,

with G defined in (12). Recall that θ = β(G−1), one deduces

φ(x) = eλ0G(x)

(∫ +∞

G(x)

θ(z)e−λ0z dz

)
> 0. (16)

So φ ∈ C0([1, b)). Moreover, as β is increasing in [1, b], one has

mxα
e−λ0G(x)

λ0
≤
∫ +∞

G(x)

θ(z)e−λ0z dz ≤ mbα e
−λ0G(x)

λ0
,

so one deduces
β(x)
λ0
≤ φ(x) ≤ mbα

λ0
. (17)

We finally choose V (1) such that
∫ b
1
V (x)φ(x)dx = 1.

3.1.2. The homogeneous problem via a semigroup approach

Consider

∂
∂tv(x, t) + ∂

∂x [g(x)v(x, t)] = 0, x ∈ (1, b), t ≥ 0,

g(1)v(1, t) =
∫ b
1
β(x)v(x, t)dx t > 0,

v(x, 0) = v0(x).

(18)
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We recall at first some properties about semigroups, let (X, ‖.‖) a Banach
space (see [8] for more details):

Definition 4. An operator (A,D(A)) on a Banach space X is said to be dis-
sipative if:

‖(λI −A)x‖ ≥ λ ‖x‖ ,

Actually we have a more practical criterion in order to establish the dissi-
pativity of an operator. For all x ∈ X, we define the dual set of x by:

J(x) = {x′ ∈ X ′; 〈x, x′〉X,X′ = ‖x‖2 = ‖x′‖2},

where X ′ is the dual set of X and we recall the result of [8]:

Proposition 5. (A,D(A)) is dissipative if and only if for all x ∈ D(A), there
is j(x) ∈ J(x) such that:

Re〈Ax, j(x)〉X,X′ ≤ 0. (19)

Let us show now the main theorem

Theorem 6. The operator (A,D(A)) generates a semigroup on L1(1, b).

The theorem 6 is a consequence of the following theorem:

Theorem 7 ([8]). Let (A,D(A)) a dissipative operator on a Banach space X
such that there exists λ > 0 such that (λI − A) is onto, then the restriction of
A to D(A) generates a contraction semigroup on D(A).
In particular:

D(A) = X
∀λ > 0, R(λI −A) = X

∃ω ∈ R; (A− ωI)is dissipative

⇒ (A,D(A)) generates a semigroup on X.

The first two points come from Proposition 2. We just have to check the
dissipativity condition:

Proposition 8. For all ω ≥ ‖β‖L∞ , A− ωI is dissipative.

Proof. Let v ∈ D(A) and E = {x ∈ (1, b); v(x) = 0}. The function j(v) =
v
|v|1Ec‖v‖L1(1,b) belongs to J(v). We have j(v) ∈ L∞ with ‖j(v)‖L∞ ≤ ‖v‖L1 .
In addition:

〈v, j(v)〉L1(1,b),L∞(1,b) =
∫ b

1

v2

|v|
1Ec ‖v‖L1(1,b) = ‖v‖2L1(1,b) = ‖j(v)‖2L∞(1,b) .
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Furthermore,

〈Av − ωv, j(v)〉L1(1,b),L∞(1,b) = −
∫ b

1

j(v)∂x(gv)dx− w
∫ b

1

vj(v)dx

= −
∫ b

1

j(v)∂x(gv)dx− w ‖v‖2L1(1,b) .

We use now lemma 25 proved in the appendix and we get:

〈Av − ωv, j(v)〉L1(1,b),L∞(1,b) = g(1) ‖v‖L1(1,b) |v(1)| − ω ‖v‖2L1(1,b)

Using the boundary condition (v ∈ D(A)), we get

〈Av − ωv, j(v)〉L1(1,b),L∞(1,b) = ‖v‖L1(1,b)

∣∣∣∣∣
∫ b

1

β(x)v(x)dx

∣∣∣∣∣− ω ‖v‖2L1(1,b)

≤
(
‖β‖L∞(1,b) − ω

)
‖v‖2L1(1,b) ·

It is sufficient to choose ‖β‖L∞(1,b) ≤ ω in order to obtain (19). Hence we
have proved that (A,D(A)) generates a semigroup denoted etA.

Let us recall some definitions of semigroup solutions (see [14] for more de-
tails).

Definition 9. Let X a Banach space and (A,D(A)) a generator of a C0-
semigroup on X, denoted etA. Let{

y′(t) = Ay(t), t ∈ (0, T )
y(0) = x

. (20)

We call

– weak solution or mild solution of (20), a function y ∈ C([0,+∞[;X)
given by

y(t) = etAx. (21)

– strong solution or classical solution of (20) a function y ∈
C([0,+∞];X) ∩ C1((0,+∞[;X) given by (21) such that y(t) ∈ D(A) for all
t ∈ (0,+∞[ and satisfying (20) in [0,+∞[.

Moreover one has

Theorem 10. [14] Let etA a C0-semigroup on X of generator (A,D(A)). Then:

– for all x ∈ X (20) has a unique weak solution,
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– for all x ∈ D(A) (20) has a unique strong solution.

Therefore we have the main result of this subsection :

Theorem 11.

– For any v0 ∈ D(A) and T > 0 there exists a unique strong solution v ∈
C([0, T ], D(A)) ∩ C1(]0, T ], L1(1, b)). It satisfies the system (18) in L1(1, b)

– For any v0 ∈ L1(1, b) and T > 0, there exists a unique weak solution
v ∈ C([0, T ], L1(1, b)) such that (18) is verified in the distribution sense.

This ends the existence of solutions of the homogeneous problem associated
to (6). In the next subsection we will construct a solution (weak) of (6) for
zero initial data. Then we conclude by noticing that the unique solution of (6)
is the sum of the homogeneous and this previous.

3.1.3. The non homogeneous problem via a fixed point argument

Consider 
∂tv + ∂x (gv) = 0 , x ∈ (1, b), t > 0,

g(1)v(1, t) =
∫ b
1
β(x)v(x, t)dx+ f(t), t > 0,
v(x, 0) = 0.

(22)

Definition 12. We call a strong solution on [0, T ] of system (22) a function
v ∈ C1([0, T ];L1(1, b)) such that gv ∈ C([0, T ];W 1,1(1, b)) , lim

x→b−
(gv)(x, t) = 0

for all t ∈ [0, T ] and v satisfies (22). This function v can be viewed as a linear
function T of the source term f : v = T f .

One has

Theorem 13. For any f ∈ C1([0,+∞[) such that f(0) = 0 there exists a
unique strong solution of system (22). Moreover, the operator T defined on
{f ∈ C1([0,+∞[); f(0) = 0} satisfies the positivity property:

f ≥ 0⇒ T f ≥ 0.

Proof. We are going to construct the strong solution by a fixed point argument.
As we have to use a bootstrap argument in time, we have to consider a more
general initial data than 0.

Lemma 14. For any v0 ∈ L1(1, b) such that gv0 ∈ W 1,1(1, b), lim
x→b−

(gv0) = 0

and for all function f ∈ C1([0,+∞[) such that f(0) = g(1)v0(1)−
∫ b
1
β(y)v0(y)dy,

there exists a unique strong solution v of
∂tv + ∂x(gv) = 0

g(1)v(1, t) =
∫ b
1
β(y)v(y, t)dy + f(t)

v(., 0) = v0.
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Proof.

For 0 ≤ T0 < T , and u ∈ L1(1, b) let us define

XT0
T (u) = {w ∈ C1([T0, T ];L1(1, b));w(., T0) = u}.

and
X0
T (v0) = {w ∈ C1([0, T ];L1(1, b));w(., 0) = v0} = XT .

We endow the set XT with the distance associated by :

‖v‖XT = sup
t∈[0,T ]

‖v‖L1(1,b) + sup
t∈[0,T ]

‖∂tv‖L1(1,b)

The space XT is a complete metric space. For w ∈ X0
T (v0), define Tv0,f (w) = v

by:

v(x, t) =


1

g(x)

(∫ b
1
β(y)w (y, t−G(x)) dy + f(t−G(x))

)
, G(x) < t

1
g(x) (gv0)(G−1(G(x)− t)), G(x) > t,

where we recall that G(x) =
∫ x
1

dy
g(y) . Direct computations show that

‖v(t)‖L1(1,b) ≤ t ‖β‖L∞(1,b) sup
t∈[0,T ]

‖w(t)‖L1(1,b) + T sup
t∈[0,T ]

|f(t)|+ ‖v0‖L1(1,b),

and
lim
x→b−

(gv)(x, t) = 0. (23)

Moreover we observe that v is continuous on [1, b)× [0, T ]\{t = G(x)} and from
the hypothesis on w we deduce that for all x0 ∈ [1, b):

lim
G(x)<t

(x,t)→(x0,G(x0))

(gv)(x, t) = lim
G(x)<t

(x,t)→(x0,G(x0))

(∫ b

1

β(y)w (y, t−G(x)) dy + f(t−G(x))

)

=

(∫ b

1

β(y)w (y, 0) dy + f(0)

)
.

By the compatibility conditions satisfied by v0, f, w(., 0), one gets

lim
G(x)<t

(x,t)→(x0,G(x0))

(gv)(x, t) = (gv0)(1).

Besides as gv0 ∈W 1,1(1, b), one has

lim
G(x)<t

(x,t)→(x0,G(x0))

(gv)(x, t) = lim
G(x)<t

(x,t)→(x0,G(x0))

(gv0)(G−1(G(x)− t))

= (gv0)(G−1(0)).
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Recall that G−1(0) = 1, so one deduces

lim
G(x)>t

(x,t)→(x0,G(x0))

(gv)(x, t) = (gv0)(1).

Therefore gv ∈ C([1, b)× [0, T ]) and v(., 0) = v0. Furthermore, as w ∈ XT and
gv0 ∈W 1,1(1, b), we have for x < b

∂tv(x, t) =


1

g(x)

(∫ b
1
β(y)∂tw (y, t−G(x)) dy + f ′(t−G(x))

)
,

if G(x) < t

− 1
g(x) (g(G(x)− t))∂x(gv0)(G−1(G(x)− t))), if G(x) > t

and

∂x(gv)(x, t) =


− 1
g(x)

(∫ b
1
β(y)∂tw (y, t−G(x)) dy + ∂tf(t−G(x))

)
,

if G(x) < t

1
g(x) (g(G(x)− t))∂x(gv0)(G−1(G(x)− t))), if G(x) > t.

Therefore
∂tv, ∂x(gv) ∈ C([0, T ];L1(1, b)), (24)

and

∂tv + ∂x(gv) = 0. (25)

So v = Tv0,f (w) ∈ XT . Moreover, we remark

(Tv0,f (w1)− Tv0,f (w2))(x, t)

=
1

g(x)

(∫ b

1

β(y)(w1 − w2)(y, t−G(x))dy

)
1G(x)≤t,

and

∂t(Tv0,f (w1)− Tv0,f (w2))(x, t)

=
1

g(x)

(∫ b

1

β(y)∂t(w1 − w2)(y, t−G(x))dy

)
1G(x)≤t,

what gives

‖Tv0,f (w1)− Tv0,f (w2)‖XT ≤ T ‖β‖∞ ‖w1 − w2‖XT .

Consequently, for T < 1
‖β‖∞ , the considered application is a contraction

on XT and has therefore a unique fixed point. Define T1 = 1
2‖β‖∞ . Let us
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denote by v this unique fixed point on [0, T1]. It satisfies Tv0,f (v) = v on XT1 .
One has that f(T1) = g(1)v(1, T1) −

∫ b
1

(β(y)v(y, T1)dy, so one can define the
operator Tv(.,T1),f on XT1

2T1
(v(., T1)) and, as T1 depends only on ‖β‖∞, the same

arguments show that it has a unique fixed point on [T1, 2T1]. We can iterate
the procedure in any interval of length T1 and therefore in [0,+∞[. This ends
the proof of the lemma.

The positivity property is a direct consequence of the fact that w ≥ 0 and,
f ≥ 0 implies that T0,f (w) ≥ 0. This ends the proof of the theorem.

Proposition 15. For any T > 0, T is a linear continuous map from the space
{f ∈ C1([0, T ]); f(0) = 0}, endowed with the L1(0, T ) norm, to C([0, T ];L1(1, b)).

Proof. By theorem 13, T is defined from {f ∈ C1([0,+∞)); f(0) = 0} to
C([0, T ], L1(1, b)) by T f = v where v is the solution constructed above. More-
over from (24), one can apply lemma 25, and as v satisfies (23), (25), we get
that

0 = 〈∂tv + ∂x(gv), j(v)〉L1,L∞ .

thus,

∂t

∫ b

1

|v(x, t)| dx−

∣∣∣∣∣
∫ b

1

β(y)v(y, t)dy + f(t)

∣∣∣∣∣ = 0.

So

‖v(t)‖L1(1,b) ≤ ‖β‖L∞(1,b)

∫ t

0

‖v(s)‖L1(1,b) ds+
∫ t

0

|f(s)| ds.

Therefore, by Gronwall lemma, we have

‖v(t)‖L1(1,b) ≤ e
t‖β‖L∞(1,b)

∫ T

0

|f(s)| ds, ∀t ≤ T.

Thus one gets

‖T f‖C([0,T ];L1(1,b)) ≤ eT‖β‖L∞(1,b)‖f‖L1(0,T ). (26)

Now we are able to construct a weak solution of system (22).

Definition 16. We say that v is a weak solution of system (22) if there exists a
sequence (fn ⊂ C1([0,+∞)) such that fn(0) = 0 that converges to f in L1(0, T )
for any T > 0 and (T fn) converges to v in C([0, T ];L1(1, b)).

Notice that by (26) the limit is independently of the choice of the sequence
(fn). Therefore by proposition 15, one has
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Proposition 17. For any f ∈ L1
loc(0,+∞) there exists a unique weak solution.

We still denote T the extension of T to L1
loc(0,+∞).

Proof. It suffices to notice that if f ∈ L1
loc(0,+∞) there exists a sequence

fn ∈ C1([0,+∞[) such that fn(0) = 0 that converges toward f in L1
loc(0,+∞)

and to use (26).

3.1.4. Application to Von Foerster equation with Gompertzian growth

From the last subsections one can deduce an existence and uniqueness result
for the global problem (6) :

Theorem 18. For any v0 ∈ L1(1, b) and f ∈ C([0,+∞[), there exists an unique
weak solution v ∈ C([0,+∞[;L1(1, b)) of system (6) given by

v(t) = etAv0 + T f(t). (27)

Moreover if v0 ∈ D(A) and if f ∈ C1([0,+∞[) such that f(0) = 0, there exists
a unique strong solution v, still given by (27), such that f(t) = g(1)v(1, t) −∫ b
1
β(y)v(y, t)dy, for all t ∈ [0,+∞[.

3.2. Asymptotic behaviour of weak solutions

3.2.1. The homogeneous problem

We start considering the homogeneous problem (18). What follows is an
adaptation of ideas that can be found in [15],[12]. Let us decompose the space
L1(1, b) into :

L1(1, b) = RV ⊕ (Rφ)⊥,

where

(Rφ)⊥ =

{
u ∈ L1(1, b), 〈u, φ〉L1,L∞ =

∫ b

1

uφ = 0

}
.

and φ is the eigenfunction defined in proposition 3. Any u ∈ L1(1, b), can
be decomposed into

u = 〈u, φ〉L1,L∞V + (u− 〈u, φ〉L1,L∞V )

Actually let L1
φ(1, b) be the space:

L1
φ(1, b) = L1((1, b);φdx)

endowed with the norm ‖u‖φ :=
∫ b
1
|u(x)|φ(x)dx. Thanks to the proposition

3, ‖.‖φ defines a norm equivalent to the L1 norm. We state now an important
proposition giving some properties of the weak solutions:
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Theorem 19. For any initial data in L1(1, b), the weak solution of the homo-
geneous problem (18) satisfies

1) Decreasing of the norm L1
φ(1, b)∥∥e−λ0tv(t)
∥∥
L1
φ(1,b)

≤ ‖v0‖L1
φ(1,b) . (28)

2) Conservation of the mean value in L1
φ(1, b)∫ b

1

e−λ0tv(t)φ(x)dx =
∫ b

1

v0(x)φ(x)dx ,∀t ≥ 0. (29)

3) Comparison principle

v0,1 ≤ v0,2 ⇒ v1(t) ≤ v2(t).

Proof. Let v0 ∈ D(A) and ṽ(t) = e−λ0tv(t), we have
∂tṽ + ∂x (g(x)ṽ ) + λ0ṽ = 0 , x ∈ (1, b), t > 0,

g(1)ṽ(1, t) =
∫ b
1
β(x)ṽ(x, t)dx, t > 0,

ṽ(x, 0) = v0(x).

But φ satisfies

{
−g(x)∂xφ(x) + λ0φ(x) = β(x) , x ∈ (1, b),
φ > 0, φ(1) = 1, and

∫ b
1
V (x)φ(x)dx = 1.

Therefore we have

∂t(ṽφ)(x, t) + ∂x(gṽφ)(x, t) = − βṽ(x, t), x ∈ (1, b), t > 0. (30)

One can remark that ṽ ∈ C([0,+∞[;D(A))∩C1([0,+∞[;L1(1, b)) and so as for
ṽφ. Using this fact, and Lemma 25 we obtain

d

dt

∫ b

1

|ṽ|φdx+
∫ b

1

∂x(g |ṽφ|)dx = −
∫ b

1

β |ṽ(x, t)| dx, t > 0.

Integrating by parts and taking into account the boundary condition on ṽ , we
get

d

dt

∫ b

1

|ṽ|φ dx−

∣∣∣∣∣
∫ b

1

βṽ(x, t)dx

∣∣∣∣∣ = −
∫ b

1

β |ṽ(x, t)| dx, t > 0, (31)

hence
d

dt

∫ b

1

|ṽ|φ dx =

∣∣∣∣∣
∫ b

1

βṽdx

∣∣∣∣∣−
∫ b

1

β |ṽ| dx ≤ 0, as β > 0.
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Integrating in time we get:∥∥ e−λ0tv(t)
∥∥
L1
φ(1,b)

≤ ‖v0‖L1
φ(1,b) ,∀t ≥ 0,∀v0 ∈ L1(1, b).

Hence the inequality (28) follows immediately for any v0 ∈ D(A). By
density of D(A) in L1(1, b) we deduce that (28) holds for any initial data in
L1(1, b). In order to get (29) one integrates (30) with respect to x

d

dt

∫ b

1

ṽφ dx+
∫ b

1

∂x(ṽφ g)dx = −
∫ b

1

βṽ(x, t)dx.

Using the boundary condition, we finally obtain:

d

dt

∫ b

1

ṽφ dx = 0.

Let us show the positivity property:
We start again from the equation (30). We first prove that if v0 ≤ 0 then
v(t) ≤ 0,∀t ≥ 0, for v0 ∈ D(A). Let us consider the function

sgn+(v) =
max(v, 0)
|v|

1Ec .

As in lemma 25 one gets:∫ b

1

∂x(gv)sgn+(v)dx = −g(1)‖v‖L1(1,b)v+(1)

We multiply now the equation (30) by sgn+(ṽ) and we obtain:

d

dt

∫ b

1

ṽ+φdx ≤ 0,

integrating in time we have∫ b

1

ṽ+(x, t)φ(x)dx ≤
∫ b

1

v+(x, 0)φ(x)dx,

and as v+(x, 0) = 0, we derive∫ b

1

ṽ+φdx = 0,∀t ≥ 0.

As we have already shown that φ ≥ mbα

λ0
, one gets

ṽ+(x, t) = 0,∀t ≥ 0, or v(t) ≤ 0.

Thus we have proved the monotony property for all initial data in D(A) and
then by density for any initial data in L1(1, b).
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We state now our principal result concerning the asymptotic behaviour in
the case of the model. As in [15], one has

Theorem 20. There exists γ > 0 such that β(x) ≥ γφ(x),∀x ∈ [1, b]. Moreover
for any v0 ∈ (Rφ)⊥, one has∥∥e−λ0tetAv0

∥∥
L1
φ(1,b)

≤ e−γt ‖v0‖L1
φ(1,b) .

Therefore for any v0 ∈ L1(1, b) we have:

lim
t→+∞

e(−λ0+γ
′)t
∥∥∥etAv0 − eλ0t 〈v0, φ〉L1,L∞ V

∥∥∥
L1
φ(1,b)

= 0, ∀γ′ < γ.

Proof. From (17)) one can verify that γ ≥ λ0
bα . Let v0 ∈ (Rφ)⊥, as e−λ0tetAv0

has zero mean value in L1
φ(1, b), from (31) one can deduce

d

dt

∫ b

1

∣∣e−λ0tetAv0
∣∣φdx =

∣∣∣∣∣
∫ b

1

βe−λ0tetAv0dx

∣∣∣∣∣−
∫ b

1

β
∣∣e−λ0tetAv0

∣∣ dx
=

∣∣∣∣∣
∫ b

1

(β − γφ)e−λ0tetAv0dx

∣∣∣∣∣−
∫ b

1

β
∣∣e−λ0tetAv0

∣∣ dx
≤

∫ b

1

∣∣(β − γφ)e−λ0tetAv0
∣∣ dx − ∫ b

1

β
∣∣e−λ0tetAv0

∣∣ dx
≤

∫ b

1

(β − γφ)
∣∣e−λ0tetAv0

∣∣ dx − ∫ b

1

β
∣∣e−λ0tetAv0

∣∣ dx
≤ −γ

∫ b

1

∣∣e−λ0tetAv0
∣∣φdx ,

therefore ∫ b

1

∣∣e−λ0tetAv0
∣∣φdx ≤ e−γt ∫ b

1

| v0|φdx. (32)

As for all v0 ∈ L1(1, b)

v0 = 〈v0, φ〉L1,L∞V + (v0 − 〈v0, φ〉L1,L∞V ),

one gets

etAv0 = 〈v0, φ〉L1,L∞e
λ0tV + etA(v0 − 〈v0, φ〉L1,L∞V ).

Then we have:

e−λ0tetAv0 = 〈v0, φ〉L1,L∞V + e−λ0tetA(v0 − 〈v0, φ〉L1,L∞V ).
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Therefore, taking the norm and using (32), we obtain

‖e−λ0tetAv0 − 〈v0, φ〉L1,L∞V ‖L1
φ(1,b) ≤ e−γt‖v0 − 〈v0, φ〉L1,L∞V ‖L1

φ(1,b)

which implies that

e−λ0t‖etAv0 − eλ0t〈v0, φ〉V ‖L1
φ(1,b) ≤ e−γt‖v0 − 〈v0, φ〉L1,L∞V ‖L1

φ(1,b)

and concludes the proof of the theorem.

3.2.2. The non homogeneous problem

We focus now on the asymptotic behaviour of the weak solutions for the
non homogeneous problem.

Theorem 21. For all initial data v0 ∈ L1(1, b) and f ∈ C([0,+∞[) the unique
weak solution of (22) satisfies for all t ≥ 0:

i) ∫ b

1

e−λ0tT f(x, t)φ(x)dx =
∫ t

0

e−λ0τf(τ)dτ.

ii)

‖T f(t)‖L1
φ(1,b) ≤ e

λ0t

∫ t

0

e−λ0τ |f(τ)| dτ, ∀t ≥ 0.

Proof. Consider fn ∈ {C1[0,+∞[; fn(0) = 0} such that fn → f in L1
loc(0,+∞).

From (24), one has

d

dt

(∫ b

1

e−λ0tT fn(x, t)φ(x)dx−
∫ t

0

e−λ0τfn(τ)dτ

)
= 0.

Integrating in time, passing to the limit and taking into account the continuity
of T , we deduce the first item. Besides, still by (24) one can apply lemma 25
to eλ0tT fn: ∫ b

1

φe−λ0t|T fn(x, t)|dx ≤
∫ t

0

e−λ0τ |fn(τ)|dτ.

Once again, passing to the limit we obtain the second item. This ends the
proof of the theorem.

We can deduce now the principal result:

Theorem 22 (Asymptotic behaviour of weak solutions).

i) For any v0 ∈ (Rφ)⊥, the unique weak solution of (22) verifies

e−λ0t ‖v(t)‖L1
φ(1,b) ≤

∫ t

0

e−λ0τ |f(τ)| dτ.
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ii) There exists γ > 0 such that for any v0 ∈ L1
φ(1, b)∥∥∥e−λ0tv(t) − 〈v0, φ〉L1,L∞ V

∥∥∥
L1
φ(1,b)

≤ e−γt ‖v0‖L1
φ(1,b) +

∫ t

0

e−λ0τ |f(τ)| dτ.

Proof. Recall that v(t) = etAv0 + T f(., t). From theorem 20 and theorem 21,
one deduces the two items.

3.2.3. Application to Von Foerster equation with Gompertzian growth

In the model of growing metastatic tumors we have v0 = 0 and f > 0, the
unique solution of (1) is nonnegative and we have:

‖v(t)‖L1
φ(1,b) = eλ0t

∫ t

0

e−λ0τf(τ)dτ = eλ0t

∫ t

0

e−λ0τβ(xp(τ))dτ.

We define now an interesting quantity for clinical applications. For a clinician,
a useful data to know is without a doubt the total number N1 of metastases
and in particular the number of large size metastases that is to say for example
the tumors whose size is larger than 109 cells, which correspond approximately
to a tumor of 30g.

Nbmin(t) =
∫ b

bmin

v(x, t)dx. (33)

We can give an estimate of N1. By (17) we have m
λ0
≤ φ ≤ mbα

λ0
. Therefore,

as
1

maxφ
‖v‖L1

φ
≤ N1(t) =

∫ b

1

1
φ(x)

v(x, t)φ(x) dx ≤ 1
minφ

‖v‖L1
φ

we get

λ0e
λ0t

∫ t

0

e−λ0τ b−αe
−aτ

dτ ≤ N1(t) ≤ λ0b
αeλ0t

∫ t

0

e−λ0τ b−αe
−aτ

dτ

We derive that for all t ≥ 0,

mb−1eλ0t − 1 ≤ N1(t) ≤ bαeλ0t. (34)

We can bring this to light in next section, with the numerical simulations.

An interesting fact to observe is that if we neglect the effect of the growth
due to the metastases itself for small times, that is to say:

∂

∂t
ρ(x, t) +

∂

∂x
(g(x)ρ(x, t)) = 0,∀x ∈ [1, b], ∀ t ≥ 0

g(1)ρ(1, t) = β(xp(t)), ∀ t ≥ 0,

ρ(0, x) = 0, ∀x ∈ [1, b].

,
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one obtains:

Nρ(t) :=
∫ b

1

v(x, t)dx =
∫ t

0

β(xp(τ))dτ = m

∫ t

0

bα
(

1
b

)αe−aτ
dτ.

We will see in the numerical simulations that N1(t) does not exceed 1 while
more than one year and that the influence of the emission of metastases by
metastases itself is also long to appear.

4. Numerical analysis

We propose in this section a numerical approximation of problem (1) for
data coming from clinical observations of a metastatic hepatocarcinoma, (see
[11]):

a = 0.00286, b = 7.3× 1010, α =
2
3
,m = 5.3× 10−8.

4.1. A characteristics scheme

Due to various scales imposed by the clinical data, we observed that classical
upwind finite volume schemes require a very fine discretization in order to be
stable for long time. That is why we prefered to use a different approach
using the behaviour of the solution of (1) along the characteristic curves. Such
methods have been investigated in [1] for more general growth speed g but
for space intervals of length 1. In the case of Gompertz growth, the scheme
derivation is made easier, by the explicit expression of the solutions along the
characteristics (2).

Let k be a constant time step discretization, k = T
N on this interval [0, T ]:

0 = t1 < · · · < tn = (n− 1)k < · · · < TN+1 = T.

The spatial discretization can be restricted to the interval [1, xp(T )], since we
saw in the section 3.1.3 that the solution vanishes for (t, x), x ≥ xp(T ). Let
xn = xp(tn) this discretization:

1 = x1 < x2 < · · · < xN < xN+1 = xp(T ).

We then denote by vni an approximation of the solution v of problem (1) at the
point (xi, tn).

The key point of the construction of this scheme is that the points (xi, tn)
and (xi+1, tn+1) belong to the same characteristic for any n ≥ 1 and i ≥
1. For all n ≥ 1, we solve explicitely the transport equation on the time
interval [tn, tn+1] and we use a first order quadrature method to take into
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account the boundary condition. Computing the characteristics between the
point (tn, xi−1) and (tn+1, xi), we obtain the following scheme:



v0
1 =

1
g(1)

β(xp(0)), v0
i = 0, 2 ≤ i ≤ N + 1

vn+1
i = vni−1e

akfi−1(k), i = 2, · · · , N + 1, n = 1, · · · , N

vn+1
1 =

1
g(1)

β(xp(tn+1)) +
1
g(1)

N∑
i=2

hiβ(xi)vn+1
i , n = 1, · · · , N

(35)

where fi(k) =
(
xi
b

)1−e−ak and hi = xi − xi−1.

Note that vni = 0 for all i = n+ 2, . . . , N + 1.

4.2. Convergence analysis

We prove in this section the convergence of the characteristics scheme. We
denote eni = v(xi, tn)−vni the error of the scheme. Remarking that if one starts
from the exact solution at the points (xi, tn) then the scheme is exact at the
points (xi, tn+1):

v(xi, tn+1) = v(xi−1, tn)fi−1(k)eak

we derive 
en+1
i = eni−1fi−1(k)eak

en+1
1 = 1

g(1)

N∑
i=2

hiβie
n+1
i + rn+1

e0i = 0

with rn = 1
g(1)

(∫ b
1
β(x)v(x, tn) dx−

∑N
i=2 hiβ(xi)v(xi, tn)

)
. The truncation

error of the quadrature rn only comes from the quadrature error; one can
estimate rn as soon as the function βv is smooth:

Proposition 23 (Truncation error). Let ΩT = {(x, t) ∈ [1, b) ×
[
0, Ta

]
; x ≤

xp(t)} and v ∈ C1(ΩT ). There exists CT = C(T, b) such that

|rn| ≤ kCT sup
[1,xp(tn)]

|∂x(βv)(. . . , tn)|, ∀tn ≤
T

a
.
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Proof. Using the fact that v(x, tn) = 0 for all x > xp(tn), we can write that

rn =
1
g(1)

(
n+1∑
i=2

∫ xi

xi−1

(β(x)v(x, tn)− β(xi)v(xi, tn)) dx

)

=
1
g(1)

(
n+1∑
i=2

∫ xi

xi−1

∫ x

xi−1

∂x(β v(· , tn))(s) ds dx

)

≤
sup[0,xp(tn)] |∂x(β v(· , tn))|

2g(1)

(
n+1∑
i=2

(xi − xi−1)2
)

Let us define the function Ψ(x) = x

(
1−

(
b
x

)1−eak) and remark that xi −

xi−1 = Ψ(xi). We derive that

n+1∑
i=2

(xi − xi−1)2 =
n+1∑
i=2

(xi − xi−1)Ψ(xi−1).

The function Ψ is a concave on [1, b], it increases on [1, x∗] with x∗ = be
− ak

eak−1

and decreases on [x∗, b].

While xp(tn+1) < x∗, that is while atn+1 < ln(ln(b)),

n+1∑
i=2

(xi − xi−1)2 ≤ (xp(tn+1)− 1)Ψ(xp(t))

≤ (b1−e
−atn − 1)b1−e

−atn
(

1− be
−atn (1−eak)

)
≤ 2(b1−e

−T
− 1)b1−e

−T
e−Tak ln(b)

If atn+1 ≥ ln(ln(b)), the estimate becomes

n+1∑
i=2

(xi − xi−1)2 ≤ 2(xp(tn)− 1)Ψ(x∗) ≤ (b1−e
−atn − 1)bak.

This conclude the proof with CT = (b1−e
−T −1)b1−e

−T
e−T if T < ln(ln(b)) and

CT = b
ln(b) (b1−e

−T − 1) else.

The convergence of the scheme is a consequence of the following error esti-
mates:

Theorem 24 (Error estimates). Let ΩT = {(x, t) ∈ [1, b)×
[
0, Ta

]
; x ≤ xp(t)}

and v ∈ C1(ΩT ).
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1) There exists CT = C(T, β, v, b) and k0 such that for all k ≤ k0

‖en‖1
def
=

N∑
i=1

hi|eni | ≤ CT keλ0tn .

2) There exists CT = C(T, β, v) such that

‖en‖1,φ
def
=

N∑
i=1

hi|eni φ(xi)| ≤ CT keλ0tn .

Note that strong solutions of the problem (1) fullfills the assumptions of this
theorem and thus the convergence of the characteristic scheme (35) is proved
for the strong solutions of problem (1) for long time intervals.

Proof.

1) Error estimate in L1 norm
We have

‖en+1‖1 = h1|en+1
1 |+ eak

N∑
i=2

hi|eni−1|fi−1(k)

= h1|en+1
1 |+ eak

N−1∑
i=1

hi+1|eni |fi(k)

with

h1|en+1
1 | ≤ h1

a ln b

N∑
i=2

hiβi|en+1
i |+ h1|rn+1|

≤ h1

a ln b

N−1∑
i=1

hi+1βi+1e
akfi(k)|eni |+ h1|rn+1|.

Hence we obtain

‖en+1‖1 ≤ h1|rn+1|+
N−1∑
i=1

hi|eni |eakA1
i A

2
i . (36)

with A1
i = fi(k)hi+1

hi
and A2

i =
(

1 + h1
βi+1
a ln b

)
. Remark that:

• For any k > 0 and any i ≥ 1, A1
i ≤ 1.

Indeed, we can write

hi = eln(b)(1−e−aik)
(

1− eln(b)e−aik(1−eak)
)

hi+1 = eln(b)(1−e−aik)
(
eln(b)e−aik(1−e−ak) − 1

)
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Hence,

fi(k)
hi+1

hi
= e− ln(b)e−iak(1−e−ak) e

ln(b)e−aik(1−e−ak) − 1
1− eln(b)e−aik(1−eak)

=
1− ze−ak

1− z
≤ 1

as z = e− ln(b)e−aik(eak−1) ≤ 1 and then 1− ze−ak ≤ 1− z.
• There exists k0 such that for all k ≤ k0, A2

i ≤ 1 + 2kmbα ≤ e2kmbα .
This is indeed a corollary of the mean value theorem:

h1 = xp(k)− 1 = b1−e
−ak
− 1 ≤ ak ln(b) sup

x∈[0,ak]

(e−xeln(b)(1−e−x)) ≤ 2ak ln(b)

as soon as k ≤ k0 where k0 = 1
a ln

(
1

1− ln(2)
ln(b)

)
∼ 0.98.

The estimate (36) becomes for k ≤ k0:

‖en+1‖1 ≤ 2ak ln(b)rn+1 + ‖en‖1ek(a+2mbα).

Using a discrete Gronwall lemma we get:

‖en‖1 ≤ 2ak ln(b)
n−1∑
l=0

rle
(n−1−l)k(a+2mbα).

so that

‖en‖1 ≤ 2ak ln(b) max
l=1,...,n

rl
e(a+2mbα)tn − 1
e(a+2mbα)k − 1

,

We conclude using Proposition 23 and the fact that 2mbα︸ ︷︷ ︸
∼1.851488869

≤ λ0.

2) Error estimate in L1
φ norm

Now we have

‖en+1‖1,φ = h1φ(x1)|en+1
1 |+ eak

N∑
i=2

hiφ(xi)|eni−1|fi−1(k)

= h1φ(1)|en+1
1 |+ eak

N−1∑
i=1

hi+1φ(xi+1)|eni |fi(k)
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with as φ(1) = 1

h1φ(1)|en+1
1 | ≤ h1

g(1)

N∑
i=2

hiβi|en+1
i |+ h1|rn+1|

≤ h1

g(1)

N−1∑
i=1

hi+1βi+1e
akfi(k)|eni |+ h1|rn+1|.

Hence we obtain

‖en+1‖1,φ ≤ h1|rn+1|+
N−1∑
i=1

hiφ(xi)|eni |eakA1
iA

3
i . (37)

with

A1
i = fi(k)

hi+1

hi
, A3

i =
1

φ(xi)

(
φ(xi+1) + h1

βi+1

g(1)

)
.

Remark that

- For any k > 0 and any i ≥ 1,

A1
i ≤ 1 (38)

- There exists k0 > 0 such that for any k < k0

A3
i ≤ ekλ0+C2ak

2
. (39)

Estimate (38) is proved in the first part of this proof. To prove (39), we recall
that

g(x)φ′(x) + β(x) = λ0φ(x)

so we get

A3
i = 1 +

1
φ(xi)

(
φ(xi+1)− φ(xi) +

h1

g(1)
(λ0φ(xi+1)− g(xi+1)φ′(xi+1))

)
= 1 +

1
Φ(ti)

(
Φ(ti+1)− Φ(ti) +

h1

g(1)
(λ0Φ(ti+1)− Φ′(ti+1))

)
where Φ = φ ◦ xp. As h1

g(1) = k+ ak2C1 and as φ(ti) ≥ mbα

λ0
, we obtain that for

k small enough
A3
i ≤ ekλ0+C2ak

2
.

The estimate (37) becomes for k ≤ k0:

e−(λ0+C2ak)tn+1‖en+1‖1,φ ≤ 2ak ln(b)e−(λ0+C2ak)tn+1rn+1 + e−(λ0+C2ak)tn‖en‖1,φ.
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Using a discrete Gronwall lemma we get:

‖en‖1,φ ≤ e(λ0+C2ak)tn2a ln(b)
n∑
l=1

ke−(λ0+C2ak)tlrl

≤ 2a ln(b)k
e(λ0+C2ak)tn − 1
e(λ0+C2ak)k − 1

max
l=1,...,n

rl

≤ 2a ln(b)
λ0

e(λ0+C2ak)tn max
l=1,...,n

rl.

We conclude the proof using Proposition 23.

4.3. Numerical results

4.3.1. Influence of the production of metastases by metastases previously
created

The figure 1 and figure 2 gives some comparisons between Nbmin and Nρ
(see (33) for their definition) for different times. We observe that the influence
of the previously created metastases, that is to say the influence of the integral
term in the boundary condition, is hardly visible before almost three years, as
we could expect.
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Figure 1. Number of metastases after 3 years with k = 2 hours (left) and
k = 1 hours. (right)

4.3.2. Evolution of the metastases number following the tumor size

We compare the evolution of the metastases number for large size tumors.
The figure 3 shows that before three years, there are very few metastases greater
than 108 cells. In the figure 4, we compare the number of metastases N108 and
N109 . In these figures the time step is k = 1 hour.
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Figure 2. Number of metastases after 5 years
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Figure 3. Comparison of the total number of metastases and the number of
metastases larger than 108 cells after 3 years

4.3.3. Asymptotic behaviour of N1 and comparison with theoritical results

We compare in table 1 the values of N1(T ), that we obtain with the one
obtained in [11]. We observe a good agreement between our results.

Time in years N1(T ) [11] N1(T ) authors
T = 3 135 134
T = 3.4 263 260
T = 3.6 396 396
T = 3.8 712 718

Table 1. Comparative results of N1(T )

Let us now check the lower bound of N1 given in (34). We choose two dif-
ferents values of a (see [11]) and we compute the approximation of λ0 obtained
in [11] and [6] by some Laplace transformations. In the figure 5, we observe
that the function ln(N1(t)) becomes linear after some time. These slope gives
a very close approximation of λ0, as shown in Table 2:
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Figure 4. Comparison of the number of metastases larger than 108 cells and
larger than 109 cells after 3 and 5 years

a λ0 estimated in [11] λ0 obtained with scheme (35)
a = .00286 0.058 0.055
a = .0143 0.0201 0.0204

Table 2. Comparative results of λ0

In figure 6, we compare the solution obtained by the characteristics scheme
and the theoritical profile given in [6] and [11]:

v(x, t) w
a

mbα ln b
1
x
eλ0t

(
1− lnx

ln b

)λ0
a −1 1

c(λ0)
, x ∈ [1, xp(t)]

where

c(λ0) =
∞∑
n=0

(−α ln b)n

n!(λ0
a + n)2

.
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Figure 5. Log of the number of metastases after 5 years with a = .00286 (left)
and a = .0143 (right). The asymptotic slope of these curves corresponds to
λ0 ∗ 365.
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Figure 6. Comparison of the approximate solution and the theoritical solution
after 2000 days with λ0 = 2.02995

For α = .4, we observed in figure 7 the "U-shaped" profile claimed in [11].
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Figure 7. Solution with α = .4

5. Conclusion

Even if this model is a simplification of a more complicated phenomena,
its asymptotic gives interesting informations about the evolution of metastatic
sites. In particular it shows that for large time, the exponential growth of
the density of metastases is given by a parameter λ0. The knowledge of this
parameter is therefore fundamental. As its defintion shows (see (11)) , λ0

depends on a, b, α,m. An interesting problem would be to identify these co-
efficents by suitable observations on the patient. The first question could be:
can we find a one to one correspondance between clinical observations and the
parameters a, b, α,m that we use in the model? This leads to a mathemati-
cal uniqueness problem that we plan to investigate. The minimization of λ0
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with respect to the parameters a,m, α is another important question. One can
define H(λ, a,m, α) :=

∫ +∞
0

β(G−1(x))e−λ0x dx. Computing G leads to

H(λ, a,m, α) := mbα
∫ +∞

0

b−αe
−ax

e−λx dx.

Direct computations show that H(λ0, a,m, α) = 1.

The Malthus parameter λ0 is then an increasing function of all the param-
eters a,m, α.

It would be interesting to obtain a sharper estimate where dependence on
these parameters is expressed. Finding theoretical estimates is an open prob-
lem.

6. Appendix

We finally give in this section the proof of a technical result that we previ-
ously used:

Lemma 25. For any function v ∈ L1(1, b) such that gv ∈W 1,1(1, b), we have:∫ b

1

∂x(gv)j(v)dx = − g(1) ‖v‖L1(1,b) |v(1)| .

Proof. Let us consider the following sequence:

Γn(s) =

 1 if s ≥ 1
n

−1 if s ≤ − 1
n

ns otherwise
,

For any function v ∈ D(A), we have g∂xv ∈ L1(1, b) and g∂xvΓ′n(v) ∈ L1(1, b).
Furthermore {x ∈ (1, b); Γ′n(v(x)) 6= 0} = { |v| ≤ 1

n}. Hence vg∂xv Γ′n(v) ∈
L1(1, b) and∫ b

1

∂x(gv)Γn(v) = −
∫ b

1

vg∂xv Γ′n(v)dx− g(1)v(1)Γn(v(1)).

By Lebesgue’s theorem, one can deduce:

∂x(gv)Γn(v) −−−−−→
n→+∞

∂x(gv)
j(v)

‖v‖L1(1,b)

and moreover
Γn(v(1)) −−−−−→

n→+∞
|v(1)| .

Moreover, as g∂xv ∈ L1(1, b), we conclude that

g(∂xv)vΓ′n(v) −−−−−→
n→+∞

0 in L1(1, b).
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