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Abstract. In cancer diseases, the appearance of metastases is a very pejorative fore-
cast. Chemotherapies are systemic treatments which aim at the elimination of the
micrometastases produced by a primitive tumour. The efficiency of chemotherapies
closely depends on the protocols of administration. Mathematical modeling is an in-
valuable tool to help in evaluating the best treatment strategy. Iwata and al [11] pro-
posed a partial differential equation (PDE) that describes the metastatic evolution of
an untreated tumour. In this article, we conducted a thorough mathematical analysis
of this model. Particularly, we provide an explicit formula for the growth rate param-
eter, as well as a numerical resolution of this PDE. By increasing our understanding
of the existing model, this work is crucial for further extension and refinement of
the model. It settles down the framework necessary for the consideration of drugs
administration effects on tumour developpment.
Keywords: Von Foerster equation, semigroup approach, asymptotic behaviour, charac-
teristic scheme, metastatic tumors

1. Introduction

Optimal management of cancer chemotherapy requires today a throughout
and upgraded understanding of cancer cell kinetic and biochemestry. In order
to manage most available information at the same time, since several years, nu-
merous authors attempted by using mathematical modelling to optimize cancer
therapy. Particularly, modelling is all the more useful with combined use today
both cytotoxic agents and biologic agents (for example, such as trastuzumab
(Herceptin) and antiangionesis agents). In the cancer disease, evidence for the
existence of occult micrometastases at the time of diagnosis is overwhelming
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[10] ; it is clear that a systemic therapy is the only treatment which may have
an impact on the problem of disseminated tumors [9]. Dose-dense schedules
may have an advantage over conventional schedules of drug administration [12]
and we have already developed in [3] a mathematical model able to calculate
the densified administration protocols in order to minimize the size of primary
tumours while limiting the toxicity effects [3]. Recently, this methodology was
applied to the metastatic breast cancer in phase I trial [7].

In order to improve the efficacy of adjuvant chemotherapy to prevent dis-
seminating tumors, it seems interesting to develop a mathematical model de-
scribing the number of tumors whose size is below the detection threshold,
and predicting the behaviour of metastases in patients. An interesting work
was done by Iwata and al [11] that gives a partial differential equation (PDE),
with initial and boundary conditions, which from a primary tumour with one
cell, calculates the colony size distribution v(x, t) of metastatic tumors without
treatment. Here x is the tumour size, t the time and v(x, t) the number of cells
of size x at time t. In their paper the authors manage to obtain an analytical
solution of their PDE using the Laplace transformation method, however such
solutions are not numerically tractable.

Aiming to prevent the emergence of the micrometastases, anti-tumor agents
must be used. Accordingly, the Iwata’s model has to be modified to incorporate
the effect of chemotherapy in order to detect which is the best protocol which
will minimize the number of metastases, by using the method of optimization
developed in [7]. The so obtained new PDE being analytically nonsolvable, it
appears essential to us to have appropriate numerical schemes of resolution, it
is why in this paper we propose first to begin by giving a thorough mathematic
analysis of Iwata’s model.

Reader’s guide

We precise in section 2 the model under study: a Von Foerster equation
with Gompertzian growth. It is a linear transport equation with a non local
boundary condition combined with a singular source. The mathematical anal-
ysis of such an equation is developped in section 3. We in particular derive
the asymptotic behaviour of the solution. We exhibit a Malthus parameter λ0

that gives the growth rate of metastatic sites. This explicit formula that gives
this parameter shows a deep dependance on clinical characteristic data of the
patient. We propose in section 4 an algorithm to approximate the solutions of
such an equation. We give a theoritical validation of the numerical model for
long time intervals. We finally give in section 4 some numerical results. Our re-
sults are first compared to the ones of [11]. Numerical simulations also confirm
the theoritical asymptotic growth of the number of metastases. We conclude
this section by a sensibility analysis with respect to the clinical characteristic
data of the patient.
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2. Presentation of the model

We present in this section the mathematical model describing the dynamics
of the metastatic colony size distribution introduced in [11]. In this model we
suppose that the primary tumor is generated by a single cell at t = 0 and
grows with the rate g(x) per unit time where x is the tumor size represented
by the number of cells in the tumor. The growing tumor emits metastatic cells
with the rate β(x). Each metastatic cell develops into a new tumor, which
also grows at rate g(x) and emits new nuclei of metastasis just as the primary
tumor does. Let v(x, t) represent the colony size distribution with cell number
x at time t, actually v(x, t)dx means the number of metastatic tumors whose
sizes range from x and x+dx at time t. In the case considered here we suppose
that the nuclei of colonization are located far enough from each other so that
their ranges do not overlap for a long time period. The dynamics of the colony
size distribution is given by the following Mac-Kendrick Von Foerster equation:



∂
∂tv(x, t) + ∂

∂x [g(x)v(x, t)] = 0, x ∈ [1, b), t ≥ 0

g(1)v(1, t) =
∫ b
1
β(x)v(x, t)dx + β(xp(t)),

v(0, x) = 0.

(1)

We have to deal with a transport equation with a non local boundary condi-
tion and an initial data equals to zero which supposes that there is no metastatic
tumor at time t = 0. The boundary condition means that the number of
metastatic cells newly created per unit time at time t is the total rate of oc-
curences of metastases due to metastatic tumors (corresponding to the integral
term) and the primary tumor.

In the Iwata’s model the data xp, g and β are precised as follows.

1) The number of cells xp(t) in the primary tumor at time t is the solution
of the Cauchy problem:

{
d
dtxp(t) = g(xp(t))
xp(0) = 1.

(2)

2) A Gompertzian growth rate g is adopted:

g(x) = ax ln
(
b

x

)
, (3)
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where a denotes a growth rate constant and b > 1 the maximum tumor
size.
We can solve explicitely the equation (2) which gives:

xp(t) = b1−e
−at

. (4)

3) The colonization rate β(x) is choosen as:

β(x) = mxα, (5)

where m is the colonization coefficient and α is the fractal dimension
of blood vessels infiltrating the tumor. The parameter α expresses how the
blood vessels geometrically distribute in or on a tumor. If the vascularity is
superficial the fractal dimension α is assigned to be 2/3 because we suppose
that the tumor has the shape of a sphere hence the surface area is proportional
to 2/3. Else if the vascularization is homogeneously distributed in the whole
tumor, α is supposed to be equal to 1.

3. Mathematical analysis of the Von Foerster equation with
Gompertzian growth

We are now interested by mathematical analysis of the equation (1). We
study in this section the existence and uniqueness of solutions as well as the
long time behaviour of these solutions.

We consider the equation (1) in a more general case where the initial con-
dition is non zero:

∂
∂tv(x, t) + ∂

∂x [g(x)v(x, t)] = 0, x ∈ (1, b), t ≥ 0

g(1)v(1, t) =
∫ b
1
β(x)v(x, t)dx + f(t), t > 0

v(x, 0) = v0(x).

(6)

3.1. Existence of solutions

In the sequel, we suppose that g is given by (3), β by (5) and f(t) = β(xp(t))
where xp the number of cells in primary tumor is defined in (4). In particular,
we have ∫ b

1

β(x)
g(x)

dx = +∞. (7)

Let us introduce the operator A and its domain:

A = −∂x(g(x).),

D(A) =

{
v ∈ L1(1, b), gv ∈W 1,1(1, b), lim

x→b−
(gv)(x) = 0, (gv)(1) =

∫ b

1

β(x)v(x) dx

}
.
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In order to prove the existence of solutions for the considered equation (6),
we first need to state with some spectral properties of the operator A.

3.1.1. Spectral properties of A

We derive in this section some properties of the point spectrum σp(A), the
set of the eigenvalues of (A,D(A)).

Theorem 1. There exists a unique real eigenvalue λ0 ∈]0,+∞[ of the operator
(A,D(A)). Moreover there exists ε > 0 such that

σp(A) ⊂ {0 < Reλ < λ0 − ε} ∪ {λ0}.

Proof.

Step 1: The eigenvectors are given by V (x) = g(1)V (1)
g(x) e

−

∫ x

1

λ

g(y)
dy

and
σp(A) ⊂ R+.

We recall that λ ∈ σp(A) if and only if there exists, V 6= 0 such that{
V ∈ D(A)
AV = λV, in (1, b)

The solutions of

A = ∂x(g(x)V ) = −λV, in (1, b)

are given by:

V (x) =
g(1)V (1)
g(x)

e
−

∫ x

1

λ

g(y)
dy
. (8)

The boundary condition

g(1)V (1) =
∫ b

1

β(x) V (x)dx

then reads

g(1)V (1) =
∫ b

1

g(1)V (1)
β(x)
g(x)

e
−

∫ x

1

λ

g(y)
dy
dx (9)

First of all, notice that the function gV defined in (8) is in W 1,1(1, b) and
limx→b−(gV )(x) = 0 if and only if Reλ > 0. Moreover, direct computations
show that

e

−λ

∫ x

1

dy

ay ln b
y =

(
ln b

x

ln b

)λ
a

,
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and therefore

V (x) =
V (1)
x

(
ln b

x

ln b

)λ
a−1

.

Thus V ∈ L1(1, b) if and only if Reλ > 0. Therefore, to be in the spectrum
of (A,D(A)), Reλ has to be greater than 0.
We can remark that if V (1) = 0 then V = 0, so V (1) 6= 0 to ensure that V 6= 0
and dimKer(A− λI) = 1.

We deduce that λ ∈ C is an eigenvalue of (A,D(A)) if and only if Reλ > 0
and from (9):

F (λ) :=
∫ b

1

β(x)
g(x)

e
−

∫ x

1

λ

g(y)
dy
dx = 1. (10)

Let us introduce:

G(x) =
∫ x

1

dy

g(y)
. (11)

Thanks to the properties of g the function G is strictly increasing, C1 and
one to one from (1, b) to (0,+∞). As G′(x) 6= 0,∀x ∈ (1, b), G is a C1 diffeo-
morphism. We can write F (λ) as follows:

F (λ) =
∫ ∞

0

β(G−1(x))e−λx dx.

Then, setting θ = β ◦G−1, we remark that:

F (λ) =
∫ +∞

0

θ(y) e−λydy.

F is the Laplace transform of the function θ = β ◦ G−1 ∈ L∞(0,∞), we
deduce that F is well defined and holomorphic (Laplace transform property)
in the complex half plane Ω = {λ ∈ C, Re λ > 0}. Thus the solutions of the
equation F (λ) = 1 are all isolated. We have:

V (G−1(x)) = g(1)V (1)G′(G−1(x))e−λx for all x ∈ (0,+∞).

Step 2:
There exists a unique real eigenvalue λ0 of (A,D(A)). Moreover, its algebraic
multiplicity is 1.

We will look at the solutions of (10) on the real line. Remark that F is
continuous and strictly decreasing on R+ with F (0) > 1 thanks to (7) and:
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lim
λ→+∞

F (λ) = 0.

Therefore by the intermediate value theorem, (10) admits a unique solution
λ0 ∈ R+.
As λ0 > 0, we prove in the last step that ker(A− λ0I) = RV for V defined by
(8). In the sequel, we fix V (1) > 0.

Let us now show ker(A − λ0I)2 = ker(A − λ0I) = RV . A function ϕ ∈
ker(A− λ0I)2 if and only if ϕ ∈ D(A) and there exists c ∈ R such that:

{
Aϕ = λ0ϕ− cV, in (1, b)
g(1)ϕ(1) =

∫ b
1
β(x) ϕ(x)dx

.

As previously this system is equivalent to:

∂x(g(x)ϕ) = −λ0ϕ+ cV, in (1, b) (12)

g(1)ϕ(1) =
∫ b

1

β(x) ϕ(x)dx (13)

Solving the differential equation (12) we obtain for ϕ:

ϕ(x) =
g(1)ϕ(1)
g(x)

e
−

∫ x

1

λ0

g(y)
dy

+
c

g(x)

∫ x

1

e
−

∫ x

τ

λ0

g(y)
dy
V (τ)dτ.

One can deduce (since F (λ0) = 1):

∫ b

1

β(x) ϕ(x)dx = g(1)ϕ(1) + c

∫ b

1

β(x)
g(x)

∫ x

1

e
−

∫ x

τ

λ0

g(y)
dy
V (τ)dτdx

In order to fulfill the condition (13) the condition:

c

∫ b

1

β(x)
g(x)

∫ x

1

e
−

∫ x

τ

λ0

g(y)
dy
V (τ)dτdx = 0

is required. As β, g, V are positive functions on [1, b) we deduce that c = 0 and:

ϕ(x) =
g(1)ϕ(1)
g(x)

e
−

∫ x

1

λ0

g(y)
dy

= δV (x),

with δ = ϕ(1)
V (1) , the conclusion follows.Therefore the algebraic multiplicity of λ0

is 1.
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Step 3:
There is a unique eigenvalue whose real part is equal to λ0.

Let λ0 the real solution of F (λ0) = 1. If λ = λ0+iα, α ∈ R, is an eigenvalue
of (A,D(A)) since θ = β(G−1) is real valued we have:

F (λ) = 1 if and only if


∫∞
0
θ(x)e−λ0x cos(αx)dx = 1∫∞

0
θ(x)e−λ0x sin(αx)dx = 0

Since F (λ0) = 1, one can deduce that:∫ ∞
0

θ(x)e−λ0x(1− cos(αx))dx = 0.

Considering that θ > 0 almost everywhere, this can be true if and only if
1− cos(αx) = 0, for all x ∈ R. Therefore α = 0.

Step 4:
There is no eigenvalue whose real part is bigger than λ0.

Indeed if λ ∈ {Reλ > λ0} then |F (λ)| < F (λ0) = 1 and then λ /∈ σp(A).

Step 5:
There is at most a finite number of eigenvalues of real part in a compact of
(0, λ0) and there exists ε > 0 such that σp(A)\{λ0} ⊂ {0 < Reλ ≤ λ0 − ε} .

Let λ = a+ ib with 0 < a < λ0,

F (λ) = 1 if and only if


∫∞
0
θ(x)e−ax cos(bx)dx = 1∫∞

0
θ(x)e−ax sin(bx)dx = 0

.

According to the Riemann-Lebesgue theorem, we have:

∫ ∞
0

θ(x)e−ax cos(bx)dx →
b→+∞

0,

uniformly in a on any compact of {z ∈ C;Re(z) ∈ (0, λ0)}.

As the eigenvalues are isolated, there can exist only a finite number over
each compact of {0 < Reλ < λ0}. Consequently:

∃ε > 0 ; F (λ) = 1 and λ 6= λ0 ⇒ Reλ /∈]λ0 − ε, λ0[.

Thus σp(A)\{λ0} ⊂ {0 < Reλ ≤ λ0 − ε}.
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Proposition 2 (see [2]).

1) The domain D(A) is dense in L1(1, b).
2) For Reλ ∈ {λ ∈ C, Reλ ∈]λ0 − ε, λ0[ } ∪ {λ ∈ C; Reλ > λ0}, the range

R(λI −A) = L1(1, b) and

{λ ∈ C, Reλ ∈]λ0 − ε, λ0[ } ∪ {λ ∈ C; Reλ > λ0} ⊂ ρ(A).

As D(A) is dense in L1(1, b), one can define (A∗, D(A∗)), the adjoint of
(A,D(A)):

A∗w(x) = g(x)∂xw(x)− β(x),

D(A∗) = {w ∈ L∞(1, b), g∂xw ∈ L∞(1, b)} .

Moreover, one has

Proposition 3. There exists a unique triplet (λ0, φ, V ) ∈]0,+∞[×D(A∗) ×
D(A) such that {

AV = λ0V, A∗φ = λ0φ

φ ≥ 0, φ(1) = 1, and
∫ b
1
V (x)φ(x)dx = 1.

More precisely, as β(x) = mxα then

φ ∈ C0([1, b)), 1 ≥ φ ≥ mbα

λ0
> 0. (14)

Proof. We solve A∗φ = λ0φ and get

φ(x) = eλ0G(x)

(∫ b

x

β(y)
g(y)

e−λ0G(y)dy

)

with G defined in (11). Recall that θ = β(G−1), one deduces

φ(x) = eλ0G(x)

(∫ +∞

G(x)

θ(z)e−λ0z dz

)
> 0 (15)

Moreover,

φ ∈ C0([1, b)), φ ≥ mbα

λ0
> 0.

We finally choose V (1) such that
∫ b
1
V (x)φ(x)dx = 1.
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3.1.2. The homogeneous problem via a semigroup approach

Consider

∂
∂tv(x, t) + ∂

∂x [g(x)v(x, t)] = 0, x ∈ (1, b), t ≥ 0.

g(1)v(1, t) =
∫ b
1
β(x)v(x, t)dx t > 0

v(x, 0) = v0(x).

(16)

We recall at first some properties about semigroups, let (X, ‖.‖) a Banach
space (see [8] for more details):

Definition 4. An operator (A,D(A)) on a Banach space X is said to be dis-
sipative if:

‖(λI −A)x‖ ≥ λ ‖x‖ ,

Actually we have a more practical criterion in order to establish the dissi-
pativity of an operator. For all x ∈ X, we define the dual set of x by:

J(x) = {x′ ∈ X ′; 〈x, x′〉X,X′ = ‖x‖2 = ‖x′‖2},

and we are going to use the following result:

Proposition 5. (A,D(A)) is dissipative if and only if for all x ∈ D(A), there
is j(x) ∈ J(x) such that:

Re〈Ax, j(x)〉X,X′ ≤ 0. (17)

Let us show now the main theorem

Theorem 6. The operator (A,D(A)) generates a semigroup on L1(1, b).

The theorem 6 is a consequence of the following theorem:

Theorem 7 ([8]). Let (A,D(A)) a dissipative operator on a Banach space X
such that there exists λ > 0 such that (λI − A) is onto, then the restriction of
A to D(A) generates a contraction semigroup on D(A).
In particular:

D(A) = X
∀λ > 0, R(λI −A) = X

∃ω ∈ R; (A− ωI)is dissipative

⇒ (A,D(A)) generates a semigroup on X.

The first two points come from Proposition 2. We just have to check the
dissipativity condition:
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Proposition 8. For all ω ≥ ‖β‖L∞ , A− ωI is dissipative.

Proof. Let v ∈ L1(1, b) and E = {x ∈ (1, b); v(x) = 0}. The function j(v) =
v
|v|1Ec‖v‖L1(1,b) belongs to J(v). We have j(v) ∈ L∞ with ‖j(v)‖L∞ ≤ ‖v‖L1 .
In addition:

〈v, j(v)〉L1(1,b),L∞(1,b) =
∫ b

1

v2

|v|
1Ec ‖v‖L1(1,b) = ‖v‖2L1(1,b) = ‖j(v)‖2L∞(1,b) .

Furthermore,

〈Av − ωv, j(v)〉L1(1,b),L∞(1,b) = −
∫ b

1

j(v)∂x(gv)dx− w
∫ b

1

vj(v)dx

= −
∫ b

1

j(v)∂x(gv)dx− w ‖v‖2L1(1,b) .

We use now lemma 24 proved in the appendix and we get:

〈Av − ωv, j(v)〉L1(1,b),L∞(1,b) = g(1) ‖v‖L1(1,b) |v(1)| − ω ‖v‖2L1(1,b)

Using the boundary condition (v ∈ D(A)), we get

〈Av − ωv, j(v)〉L1(1,b),L∞(1,b) = ‖v‖L1(1,b)

∣∣∣∣∣
∫ b

1

β(x)v(x)dx

∣∣∣∣∣− ω ‖v‖2L1(1,b)

≤
(
‖β‖L∞(1,b) − ω

)
‖v‖2L1(1,b) ·

It is sufficient to choose ‖β‖L∞(1,b) ≤ ω in order to obtain (17). Hence we
have proved that (A,D(A)) generates a semigroup denoted etA.

Let us recall some definitions of semigroup solutions (see [13] for more de-
tails).

Definition 9. Let X a Banach space and (A,D(A)) a generator of a C0-
semigroup on X, denoted etA. Let{

y′(t) = Ay(t), t ∈ (0, T )
y(0) = x

. (18)

We call

– weak solution (mild solution) of (18), a function y ∈ C([0,+∞[;X) given
by

y(t) = etAx. (19)
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– strong solution (classical solution) of (18) a function y ∈
C([0,+∞];X) ∩ C1((0,+∞[;X) given by (19) such that y(t) ∈ D(A) for all
t ∈ (0,+∞[ and satisfying (18) in [0,+∞[.

Moreover one has

Theorem 10. [13] Let etA a C0-semigroup on X of generator (A,D(A)). Then:

– for all x ∈ X (18) has a unique weak solution,
– for all x ∈ D(A) (18) has a unique strong solution.

Therefore we have the main result of this subsection :

Theorem 11.

– For any v0 ∈ D(A) and T > 0 there exists an unique strong solution
v ∈ C([0, T ], D(A))∩ C1(]0, T ], L1(1, b)). It satisfies the system (16) in L1(1, b)

– For any v0 ∈ L1(1, b) and T > 0, there exists an unique weak solution
v ∈ C([0, T ], L1(1, b)) such that (16) is verified in the distribution sense.

This ends the existence of solutions of the homogeneous problem associated
to (6). In the next subection we will construct a solution (weak) of (6) for zero
initial data. Then we conclude by noticing that the unique solution of (6) is
the sum of the the homogeneous and this previous.

3.1.3. The non homogeneous problem via a fixed point argument

Consider 
∂tv + ∂x (gv) = 0 , x ∈ (1, b), t > 0,

g(1)v(1, t) =
∫ b
1
β(x)v(x, t)dx+ f(t), t > 0,
v(x, 0) = 0

. (20)

We define

Definition 12. We call a strong solution on [0, T ] of system (20) a function
v ∈ C1([0, T ];L1(1, b)) such that gv ∈ C([0, T ];W 1,1(1, b)) , lim

x→b−
(gv)(x, t) = 0

for all t ∈ [0, T ] and v satisfies (20). This function v can be viewed as a linear
function T of the source term v = T f .

One has

Theorem 13. For any f ∈ C1([0,+∞[) such that f(0) = 0 there exists a
unique strong solution of system (20). Moreover, the operator T defined on
{f ∈ C1([0,+∞[); f(0) = 0} satisfies the positivity property:

f ≥ 0⇒ T f ≥ 0.
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Proof. We are going to construct the strong solution by a fixed point argument.
As we have to use a bootstrap argument in time, we have to consider a more
general initial data than 0.

Lemma 14. For any v0 ∈ L1(1, b) such that gv0 ∈ W 1,1(1, b), lim
x→b−

(gv0) = 0

and for all function f ∈ C1([0,+∞[) such that f(0) = g(1)v0(1)−
∫ b
1
β(y)v0(y)dy,

there exists a unique strong solution v of
∂tv + ∂x(gv) = 0

g(1)v(1, t) =
∫ b
1
β(y)v(y, t)dy + f(t)

v(., 0) = v0.

Proof.

For 0 ≤ T0 < T , and u ∈ L1(1, b) let us define

XT0
T (u) = {w ∈ C1([T0, T ];L1(1, b));w(., T0) = u(.)}.

and
X0
T (v0) = {w ∈ C1([0, T ];L1(1, b));w(., 0) = v0(.)} = XT .

We endow the set XT with the distance associated by :

‖v‖XT = sup
t∈[0,T ]

‖v‖L1(1,b) + sup
t∈[0,T ]

‖∂tv‖L1(1,b)

Thus XT is a complete metric space. Define Tv0,f (w) = v by:

v(x, t) =


1

g(x)

(∫ b
1
β(y)w (y, t−G(x)) dy + f(t−G(x))

)
, G(x) < t

1
g(x) (gv0)(G−1(G(x)− t)), G(x) > t,

where we recall that G(x) =
∫ x
1

dy
g(y) . Direct computations show that

‖v(t)‖L1(1,b) ≤ t ‖β‖L∞(1,b) sup
t∈[0,T ]

‖w(t)‖L1(1,b) + T sup
t∈[0,T ]

|f(t)|+ ‖v0‖L1(1,b),

and
lim
x→b−

(gv)(x, t) = 0. (21)

Moreover we observe that v is continuous on [1, b)× [0, T ]\{t = G(x)} and from
the hypothesis on w we deduce that for all x0 ∈ [1, b):

lim
G(x)<t

(x,t)→(x0,G(x0))

(gv)(x, t) = lim
G(x)<t

(x,t)→(x0,G(x0))

(∫ b

1

β(y)w (y, t−G(x)) dy + f(t−G(x))

)

=

(∫ b

1

β(y)w (y, 0) dy + f(0)

)
.
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By the compatibility conditions satisfied by v0, f, w(., 0), one gets

lim
G(x)<t

(x,t)→(x0,G(x0))

(gv)(x, t) = (gv0)(1).

Besides, one has as gv0 ∈W 1,1(1, b)

lim
G(x)<t

(x,t)→(x0,G(x0))

(gv)(x, t) = lim
G(x)<t

(x,t)→(x0,G(x0))

(gv0)(G−1(G(x)− t))

= (gv0)(G−1(0)).

Recall that G−1(0) = 1, so one deduces

lim
G(x)>t

(x,t)→(x0,G(x0))

(gv)(x, t) = (gv0)(1).

Therefore gv ∈ C([1, b)× [0, T ]) and v(., 0) = v0. Furthermore, as w ∈ XT and
gv0 ∈W 1,1(1, b), we have for x < b

∂tv(x, t) =


1

g(x)

(∫ b
1
β(y)∂tw (y, t−G(x)) dy + f ′(t−G(x))

)
,

if G(x) < t

− 1
g(x) (g(G(x)− t))∂x(gv0)(G−1(G(x)− t))), if G(x) > t

and

∂x(gv)(x, t) =


− 1
g(x)

(∫ b
1
β(y)∂tw (y, t−G(x)) dy + ∂tf(t−G(x))

)
,

if G(x) < t

1
g(x) (g(G(x)− t))∂x(gv0)(G−1(G(x)− t))), if G(x) > t

We have
∂tv, ∂x(gv) ∈ C([0, T ];L1(1, b)), (22)

and

∂tv + ∂x(gv) = 0. (23)

So v ∈ XT . Moreover, we note

(Tv0,f (w1)− Tv0,f (w2))(x, t)

=
1

g(x)

(∫ b

1

β(y)(w1 − w2)(y, t−G(x))dy

)
1G(x)≤t,
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and

∂t(Tv0,f (w1)− Tv0,f (w2))(x, t)

=
1

g(x)

(∫ b

1

β(y)∂t(w1 − w2)(y, t−G(x))dy

)
1G(x)≤t,

what gives

‖Tv0,f (w1)− Tv0,f (w2)‖XT ≤ T ‖β‖∞ ‖w1 − w2‖XT .

Consequently, for T < 1
‖β‖∞ , the considered application is a contraction

on XT and has therefore a unique fixed point. Define T1 = 1
2‖β‖∞ . Let us

denote by v this unique fixed point on [0, T1]. It satisfies Tv0,f (v) = v on XT1 .
One has that f(T1) = g(1)v(1, T1) −

∫ b
1

(β(y)v(y, T1)dy, so one can define the
operator Tv(.,T1),f on XT1

2T1
(v(., T1)) and, as T1 depends only on ‖β‖∞, the same

arguments show that it has a unique fixed point on [T1, 2T1]. We can iterate
the procedure in any interval of length T1 and therefore in [0,+∞[. This ends
the proof of the lemma.

The positivity property is a direct consequence of the fact that w ≥ 0 and,
f ≥ 0 implies that T0,f (w) ≥ 0. This ends the proof of the theorem.

Proposition 15. For any T > 0, T is a linear continuous map from the space
{f ∈ C1([0, T ]); f(0) = 0}, endowed with the L1(0, T ) norm, to C([0, T ];L1(1, b)).

Proof. By theorem 13, T is defined from {f ∈ C1([0,+∞)); f(0) = 0} to
C([0, T ], L1(1, b)) by T f = v where v is the solution constructed above. More-
over from (22), one can apply lemma 24, and as v satisfies (21), (23), we get
that

0 = 〈∂tv + ∂x(gv), j(v)〉L1,L∞ .

thus,

∂t

∫ b

1

|v(x, t)| dx−

∣∣∣∣∣
∫ b

1

β(y)v(y, t)dy + f(t)

∣∣∣∣∣ = 0.

So

‖v(t)‖L1(1,b) ≤ ‖β‖L∞(1,b)

∫ t

0

‖v(s)‖L1(1,b) ds+
∫ t

0

|f(s)| ds.

Therefore, by Gronwall lemma, we have

‖v(t)‖L1(1,b) ≤ e
t‖β‖L∞(1,b)

∫ T

0

|f(s)| ds, ∀t ≤ T.
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Thus one gets

‖T f‖C([0,T ];L1(1,b)) ≤ eT‖β‖L∞(1,b)‖f‖L1(0,T ). (24)

Now we are able to construct a weak solution of system (20).

Definition 16. We say that v is a weak solution of system (20) if there exists a
sequence (fn ⊂ C1([0,+∞)) such that fn(0) = 0 that converges to f in L1(0, T )
for any T > 0 and (T fn) converges to v in C([0, T ];L1(1, b)).

Therefore by proposition 15, one has

Proposition 17. For any f ∈ L1
loc(0,+∞) there exists a unique weak solution.

We still denote T the extension of T to L1
loc(0,+∞).

Proof. It suffices to notice that if f ∈ L1
loc(0,+∞) there exists a sequence

fn ∈ C1([0,+∞[) such that fn(0) = 0 that converges toward f in L1
loc(0,+∞)

and to use (24).

3.1.4. Application to Von Foerster equation with Gompertzian growth

From the last subsections one can deduce an existence and uniqueness result
for the global problem (6) :

Theorem 18. For any v0 ∈ L1(1, b) and f ∈ C([0,+∞[), there exists an unique
weak solution v ∈ C([0,+∞[;L1(1, b)) of system (6) given by

v(t) = etAv0 + T f(t). (25)

Moreover if v0 ∈ D(A) and if f ∈ C1([0,+∞[) such that f(0) = 0, there exists
a unique strong solution v, still given by (25), such that f(t) = g(1)v(1, t) −∫ b
1
β(y)v(y, t)dy, for all t ∈ [0,+∞[.

3.2. Asymptotic behaviour of weak solutions

3.2.1. The homogeneous problem

We start considering the homogeneous problem (16). What follows is an
adaptation of ideas, that can be found in [14]. Let us decompose the space
L1(1, b) into :

L1(1, b) = RV ⊕ (Rφ)⊥,

where

(Rφ)⊥ =

{
u ∈ L1(1, b), 〈u, φ〉L1,L∞ =

∫ b

1

uφ = 0

}
.
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and φ is the eigenfunction defined in proposition 3. Actually let L1
φ(1, b) be

the space:

L1
φ(1, b) = L1((1, b);φdx)

endowed with the norm ‖u‖φ :=
∫ b
1
|u(x)|φ(x)dx. Any u ∈ L1(1, b), can be

decomposed into

u = 〈u, φ〉L1,L∞V + (u− 〈u, φ〉L1,L∞V )

Thanks to the proposition 3, ‖.‖φ defines a norm equivalent to the L1 norm.
We state the asymptotic behaviour of the weak solutions in the space L1

φ.

We state now an important proposition giving some properties of the weak
solutions:

Theorem 19. For any initial data in L1(1, b), the weak solution of the homo-
geneous problem (16) satisfies

1) Decreasing of the norm L1
φ(1, b)

‖v(t)‖L1
φ(1,b) ≤ e

λ0t ‖v0‖L1
φ(1,b) . (26)

2) Conservation of the mean value in L1
φ(1, b)∫ b

1

e−λ0tv(t)φ(x)dx =
∫ b

1

v0(x)φ(x)dx ,∀t ≥ 0. (27)

3) Comparison principle

v0,1 ≤ v0,2 ⇒ v1(t) ≤ v2(t).

Proof. Let v0 ∈ D(A) and ṽ(t) = e−λ0tv(t), we have
∂tṽ + ∂x (g(x)ṽ ) + λ0ṽ = 0 , x ∈ (1, b), t > 0,

g(1)ṽ(1, t) =
∫ b
1
β(x)ṽ(x, t)dx, t > 0,

ṽ(x, 0) = v0(x).
.

But φ satisfies

{
−g(x)∂xφ(x) + λ0φ(x) = β(x) , x ∈ (1, b),
φ > 0, φ(1) = 1, and

∫ b
1
V (x)φ(x)dx = 1.

Therefore we have

∂t(ṽφ)(x, t) + ∂x(gṽφ)(x, t) = − βṽ(x, t), x ∈ (1, b), t > 0. (28)
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One can remark that ṽ ∈ C([0,+∞[;D(A))∩C1([0,+∞[;L1(1, b)) and so as for
ṽφ. Using this fact, and Lemma 24 we obtain

d

dt

∫ b

1

|ṽ|φdx+
∫ b

1

∂x(g |ṽφ|)dx = −
∫ b

1

β |ṽ(x, t)| dx, t > 0.

Integrating by parts and taking into account the boundary condition on ṽ , we
get

d

dt

∫ b

1

|ṽ|φ dx−

∣∣∣∣∣
∫ b

1

βṽ(x, t)dx

∣∣∣∣∣ = −
∫ b

1

β |ṽ(x, t)| dx, t > 0, (29)

hence
d

dt

∫ b

1

|ṽ|φ dx =

∣∣∣∣∣
∫ b

1

βṽdx

∣∣∣∣∣−
∫ b

1

β |ṽ| dx ≤ 0, as β > 0.

Integrating in time we get:∥∥ e−λ0tv(t)
∥∥
L1
φ(1,b)

≤ ‖v0‖L1
φ(1,b) ,∀t ≥ 0,∀v0 ∈ L1(1, b).

Hence the inequality (26) follows immediately for any v0 ∈ D(A). By
density of D(A) in L1(1, b) we deduce that (26) holds for any initial data in
L1(1, b). In order to get (27) one integrates (28) with respect to x

d

dt

∫ b

1

ṽφ dx+
∫ b

1

∂x(ṽφ g)dx = −
∫ b

1

βṽ(x, t)dx.

Using the boundary condition, we finally obtain:

d

dt

∫ b

1

ṽφ dx = 0.

Let us show the positivity property:
We start again from the equation (28). We first prove that if v0 ≤ 0 then
v(t) ≤ 0,∀t ≥ 0, for v0 ∈ D(A). Let us consider the function

sgn+(v) =
max(v, 0)
|v|

1Ec .

As in lemma 24 one gets:∫ b

1

∂x(gv)sgn+(v)dx = −g(1)‖v‖L1(1,b)v+(1)

We multiply now the equation (28) by sgn+(ṽ) and we obtain:

d

dt

∫ b

1

ṽ+φdx ≤ 0,
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integrating in time we have∫ b

1

ṽ+(x, t)φ(x)dx ≤
∫ b

1

v+(x, 0)φ(x)dx,

and as v+(x, 0) = 0, we derive∫ b

1

ṽ+φdx = 0,∀t ≥ 0.

As we have already shown that φ ≥ mbα

λ0
, one gets

ṽ+(x, t) = 0,∀t ≥ 0, or v(t) ≤ 0.

Thus we have proved the monotony property for all initial data in D(A) and
then by density for any initial data in L1(1, b).

We state now our principal result concerning the asymptotic behaviour in
the case of the model. As in [14], one has

Theorem 20. There exists γ > 0 such that β(x) ≥ γφ(x),∀x ∈ [1, b]. Moreover
for any v0 ∈ (Rφ)⊥, one has∥∥e−λ0tetAv0

∥∥
L1
φ(1,b)

≤ e−γt ‖v0(t)‖L1
φ(1,b) .

Therefore for any v0 ∈ L1(1, b) we have:

lim
t→+∞

e(−λ0+γ
′)t
∥∥∥etAv0 − eλ0t 〈v0, φ〉L1,L∞ V

∥∥∥
L1
φ(1,b)

= 0, ∀γ′ < γ.

Proof. From the definition of φ (see (15)) direct computations show that there
exists γ ≥ m such that β(x) ≥ γφ(x),∀x ∈ [1, b]. Let v0 ∈ (Rφ)⊥, as v(t) =
e−λ0tetAv0 has zero mean value in L1

φ(1, b), from (29) one can deduce

d

dt

∫ b

1

|v(t)|φdx =

∣∣∣∣∣
∫ b

1

βv(x, t)dx

∣∣∣∣∣−
∫ b

1

β |v(x, t)| dx

=

∣∣∣∣∣
∫ b

1

(β − γφ)v(x, t)dx

∣∣∣∣∣−
∫ b

1

β |v(x, t)| dx

≤
∫ b

1

|(β − γφ)v(t)| dx −
∫ b

1

β |v(x, t)| dx

≤
∫ b

1

(β − γφ) |v(x, t)| dx −
∫ b

1

β |v(x, t)| dx

≤ −γ
∫ b

1

|v(x, t)|φdx ,
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therefore ∫ b

1

∣∣e−λ0tetAv0
∣∣φdx ≤ e−γt ∫ b

1

| v0|φdx. (30)

As we have seen before, we can write L1(1, b) = RV ⊕ (Rφ)⊥ and conse-
quently we can also write that:

v0 = 〈v0, φ〉L1,L∞V + (v0 − 〈v0, φ〉L1,L∞V )

so
etAv0 = 〈v0, φ〉L1,L∞e

λ0tV + etA(v0 − 〈v0, φ〉L1,L∞V ).

Then we have:

e−λ0tetAv0 = 〈v0, φ〉L1,L∞V + e−λ0tetA(v0 − 〈v0, φ〉L1,L∞V )

Therefore, taking the norm and using (30), we obtain

‖e−λ0tetAv0 − 〈v0, φ〉L1,L∞V ‖L1
φ(1,b) ≤ e−γt‖v0 − 〈v0, φ〉L1,L∞V ‖L1

φ(1,b)

which implies that

e−λ0t‖etAv0 − eλ0t〈v0, φ〉V ‖L1
φ(1,b) ≤ e−γt‖v0 − 〈v0, φ〉L1,L∞V ‖L1

φ(1,b)

and concludes the proof of the theorem.

3.2.2. The non homogeneous problem

We focus now on the asymptotic behaviour of the weak solutions for the
non homogeneous problem.

Theorem 21. For all initial data v0 ∈ L1(1, b) and f ∈ C([0,+∞[) the unique
weak solution of (20) satisfies for all t ≥ 0:∫ b

1

e−λ0tT f(x, t)φ(x)dx−
∫ t

0

e−λ0τf(τ)dτ = 0.

Moreover,

‖T f(t)‖L1
φ(1,b) ≤ e

λ0t

∫ t

0

e−λ0τ |f(τ)| dτ, ∀t ≥ 0.

Proof. Consider fn ∈ {C1[0,+∞[; fn(0) = 0} such that fn → f in L1
loc(0,+∞).

From (22), one has

d

dt

(∫ b

1

e−λ0tT fn(x, t)φ(x)dx−
∫ t

0

e−λ0τfn(τ)dτ

)
= 0.
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Integrating in time, passing to the limit and taking into account the continuity
of T , we deduce the first item.

Besides, still by (22) one can apply lemma 24 to eλ0tT fn:∫ b

1

φe−λ0t|T fn(x, t)|dx ≤
∫ t

0

e−λ0τ |fn(τ)|dτ.

Once again, passing to the limit we obtain the second item. This ends the
proof of the theorem.

We can deduce now the principal result:

Theorem 22 (Asymptotic behaviour of weak solutions).

i) For any v0 ∈ (Rφ)⊥, the unique weak solution of (20) verifies

lim
t→+∞

e−λ0t ‖v(t)‖L1
φ(1,b) ≤ lim

t→+∞

∫ t

0

e−λ0τ |f(τ)| dτ.

ii) There exists γ > 0 such that for any v0 ∈ L1
φ(1, b)

∥∥∥e−λ0tv(t) − 〈v0, φ〉L1,L∞ V
∥∥∥
L1
φ(1,b)

≤ e−γt ‖v0‖L1
φ(1,b) +

∫ t

0

e−λ0τ |f(τ)| dτ

Proof. Recall that v(t) = etAv0 + T f(., t). From theorem 20 and theorem 21,
one deduces the two items.

3.2.3. Application to Von Foerster equation with Gompertzian growth

In the model of growing metastatic tumors we have v0 = 0 and f > 0, the
unique solution of (1) is nonnegative and we have:

‖v(t)‖L1
φ(1,b) = eλ0t

∫ t

0

e−λ0τf(τ)dτ = eλ0t

∫ t

0

e−λ0τβ(xp(τ))dτ.

The source f(t) is equal to mxαp (t) = mbα(1−e−at). We define now an
interesting quantity for clinical applications. For a clinician, a useful data to
know is without a doubt the total number N1 of metastases and in particular
the number of large size metastases that is to say for example the tumors whose
size is larger than 109 cells, which correspond approximately to a tumor of 30g.

Nbmin(t) =
∫ b

bmin

v(x, t)dx. (31)
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We can give an estimate of N1. By (14) we have φ ≥ mbα

λ0
and φ ≤ 1.

Therefore, as

1
maxφ

‖v‖L1
φ
≤ N1(t) =

∫ b

1

1
φ(x)

v(x, t)φ(x) dx ≤ 1
minφ

‖v‖L1
φ

we get

mbαeλ0t

∫ t

0

e−λ0τ b−αe
−aτ

dτ ≤ N1(t) ≤ λ0e
λ0t

∫ t

0

e−λ0τ b−αe
−aτ

dτ

We derive that for all t ≥ 0,

mbα−1 e
λ0t − 1
λ0

≤ N1(t) ≤ eλ0t. (32)

We can bring this to light in next section, with the numerical simulations.

An interesting fact to observe is that if we neglect the effect of the growth
due to the metastases itself for small times, that is to say:

∂

∂t
ρ(x, t) +

∂

∂x
(g(x)ρ(x, t)) = 0,∀x ∈ [1, b], ∀ t ≥ 0

g(1)ρ(1, t) = β(xp(t)), ∀ t ≥ 0,

ρ(0, x) = 0, ∀x ∈ [1, b].

,

one obtains:

Nρ(t) :=
∫ b

1

v(x, t)dx =
∫ t

0

β(xp(τ))dτ = m

∫ t

0

bα
(

1
b

)αe−aτ
dτ.

We will see in the numerical simulations that N1(t) does not exceed 1 while
more than one year and that the influence of the emission of metastases by
metastases itself is also long to appear.

4. Numerical analysis

We propose in this section a numerical approximation of problem (1) for
data coming from clinical observations of a metastatic hepatocarcinoma, (see
[11]):

a = 0.00286, b = 7.3× 1010, α =
2
3
,m = 5.3× 10−8.
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4.1. A characteristics scheme

Due to various scales imposed by the clinical data, we observed that classical
upwind finite volume schemes require a very fine discretization in order to be
stable for long time. That is why we prefered to use a different approach
using the behaviour of the solution of (1) along the characteristic curves. Such
methods have been investigated in [1] for more general growth speed g but
for space intervals of length 1. In the case of Gompertz growth, the scheme
derivation is made easier, by the explicit expression of the solutions of the
characteristics (2).

Let k be a constant time step discretization, k = T
N on this interval [0, T ]:

0 = t1 < · · · < tn = (n− 1)k < · · · < TN+1 = T.

The spatial discretization can be restricted to the interval [1, xp(T )], since we
saw in the section 3.1.3 that the solution vanishes for (t, x), x ≥ xp(T ). Let
xn = xp(tn) this discretization:

1 = x1 < x2 < · · · < xN < xN+1 = xp(T ).

We then denote by vni an approximation of the solution v of problem (1) at the
point (xi, tn).

The key point of the construction of this scheme is that the points (xi, tn)
and (xi+1, tn+1) belong to the same characteristic for any n ≥ 0 and i ≥
0. For all n ≥ 0, we solve explicitely the transport equation on the time
interval [tn, tn+1] and we use a first order quadrature method to take into
account the boundary condition. Computing the characteristics between the
point (tn, xi−1) and (tn+1, xi), we obtain the following scheme:



v0
1 =

1
g(1)

β(xp(0)), v0
i = 0, 2 ≤ i ≤ N + 1

vn+1
i = vni−1e

akfi−1(k), i = 2, · · · , N + 1, n = 1, · · · , N

vn+1
1 =

1
g(1)

β(xp(tn+1)) +
1
g(1)

N∑
i=2

hiβ(xi)vn+1
i , n = 1, · · · , N

(33)

where fi(k) =
(
xi
b

)1−e−ak and hi = xi − xi−1.

4.2. Convergence analysis

We show in this section the convergence of the characteristics scheme. We
denote eni = v(xi, tn)−vni the error of the scheme. Remarking that if one starts
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from the exact solution at the points (xi, tn) then the scheme is exact at the
points (xi, tn+1):

v(xi, tn+1) = v(xi−1, tn)fi−1(k)eak

we derive 
en+1
i = eni−1fi−1(k)eak

en+1
1 = 1

g(1)

N∑
i=2

hiβie
n+1
i + rn+1

e0i = 0

The truncation error only comes from the quadrature error; one can estimate
rn as soon as the function βv is smooth:

|rn| ≤ hn(xp(tn)− 1)|∂x(βv)(ηi, tn)|, for ηi ∈ [xi−1, xi]

We have the following result:

Theorem 23 (Error estimates). Let ΩT = {(x, t) ∈ [1, b)×
[
0, Ta

]
; x ≤ xp(t)}

and v ∈ C1(ΩT ). There exists CT = C(T, β, v) such that

‖en‖1
def
=

N∑
i=1

hi|eni | ≤ CTFn(k)eλ0tn ,

with Fn(k) →
k→0

0 uniformly in n such that tn ∈ ΩT .

Note that the weak solution of the problem (1) fullfills the assumptions
of this theorem and thus the convergence of the characteristic scheme (33) is
proved for the problem (1) for long time intervals.

Proof. We have

‖en+1‖1 = h1|en+1
1 |+ eak

N∑
i=2

hi|eni−1|fi−1(k)

= h1|en+1
1 |+ eak

N−1∑
i=1

hi+1|eni |fi(k)

with

h1|en+1
1 | ≤ h1

a ln b

N∑
i=2

hiβi|en+1
i |+ h1|rn+1|

≤ h1

a ln b

N−1∑
i=1

hi+1βi+1e
akfi(k)|eni |+ h1|rn+1|.
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Hence we obtain

‖en+1‖1 ≤ h1|rn+1|+
N−1∑
i=1

hi|eni |eakfi(k)
hi+1

hi

(
1 + h1

βi+1

a ln b

)
. (34)

Remark that:

• There exists k0 such that for all k ≤ k0

h1βi
a ln b

≤ 2kmbα.

This is a corollary of the mean value theorem:

h1 = xp(k)− 1 = b1−e
−ak
− 1 ≤ ak ln(b)e− ln(b)(1−e−x) ≤ 2ak ln(b)

as soon as k ≤ k0 where k0 = 1
a ln

(
1

1− ln(2)
ln(b)

)
∼ 0.98.

• For any k > 0 and any i ≥ 0,

fi(k)
hi+1

hi
≤ 1

Indeed, we can write

hi = eln(b)(1−e−aik)
(

1− eln(b)e−aik(1−eak)
)

hi+1 = eln(b)(1−e−aik)
(
eln(b)e−aik(1−e−ak) − 1

)
Hence,

fi(k)
hi+1

hi
= e− ln(b)e−iak(1−e−ak) e

ln(b)e−aik(1−e−ak) − 1
1− eln(b)e−aik(1−eak)

=
1− ze−ak

1− z

with z = e− ln(b)e−aik(eak−1) ≤ 1 and then 1− ze−ak ≤ 1− z.

The estimate (34) becomes for k ≤ k0:

‖en+1‖1 ≤ 2ak ln(b)(xp(tn)− 1)hn‖∂x(βv)‖∞ + ‖en‖1eak (1 + 2kmbα)

≤ 2ak ln(b)(xp(tn)− 1)hn‖∂x(βv)‖∞ + ‖en‖1ek(a+2mbα).

Using a discrete Gronwall lemma we get:

‖en‖1 ≤ 2ak ln(b)‖∂x(βv)‖∞
n−1∑
l=0

hl(xp(tl)− 1)e(n−1−l)k(a+2mbα).
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‖en‖1 ≤ 2ak ln(b)‖∂x(βv)‖∞(xp(tn)− 1)hn
e(a+2mbα)tn − 1
e(a+2mbα)k − 1

,

≤ 2ak ln(b)‖∂x(βv)‖∞hn(xp(tn)− 1)
e(a+2mbα)tn − 1

(a+ 2mbα)k

Now remark that 2mbα ≤ λ0, we obtain for tn ≤ T
a

‖en‖1 ≤ 2 ln(b)eT ‖∂x(βv)‖∞hn(xp(tn)− 1)eλ0tn .

We conclude using the fact that Fn(k) = hn(xp(tn) − 1) converges towards 0
uniformly on n ≤ T

ak as k tends to 0.

4.3. Numerical results

4.3.1. Influence of the production of metastases by metastases previously
created

The figure 1 and figure 2 gives some comparisons between Nbmin and Nρ
(see (31) for their definition) for different times. We observe that the influence
of the previously created metastases, that is to say the influence of the integral
term in the boundary condition, is hardly visible before almost three years, as
we could expect.
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Figure 1. Number of metastases after 3 years with k = 2 hours (left) and
k = 1 hours. (right)

4.3.2. Evolution of the metastases number following the tumor size

We compare the evolution of the metastases number for large size tumors.
The figure 3 shows that before three years, there are very few metastases greater
than 108 cells. In the figure 4, we compare the number of metastases N108 and
N109 . In these figures the time step is k = 1 hour.
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Figure 2. Number of metastases after 5 years

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100

120

140

Time in years

N
(T

)

Number of metastases created

 

 

N
1

N
10e8

Figure 3. Comparison of the total number of metastases and the number of
metastases larger than 108 cells after 3 years

4.3.3. Asymptotic behaviour of N1 and comparison with theoritical results

We compare in table 1 the values of N1(T ), that we obtain with the one
obtained in [11]. We observe a good agreement between our results.

Time in years N1(T ) [11] N1(T ) authors
T = 3 135 134
T = 3.4 263 260
T = 3.6 396 396
T = 3.8 712 718

Table 1. Comparative results of N1(T )

Let us now check the lower bound of N1 given in (32). We choose two
differents values of a (see [11]) and we compute the associated theoritical λ0

using the results obtained in [11]. In the figure 5, we observe that the function
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Figure 4. Comparison of the number of metastases larger than 108 cells and
larger than 109 cells after 3 and 5 years

ln(N1(t)) becomes linear after some time. Using (32) the slope s of the straight
line is given by:

s = p× λ0 (35)

where the number p is such that a = p
365 . These slope gives an very good

approximation of λ0,as shown in Table 2:

a Theoritical λ0 λ0 obtained with (35)
a = .00286 2.03 2.02
a = .0143 1.41 1.43

Table 2. Comparative results of λ0
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Figure 5. Log of the number of metastases after 5 years with a = .00286 (left)
and a = .0143 (right)

In figure 6, we compare the solution obtained by the characteristics scheme
and the theoritical profile given in [6] and [11]:
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Figure 6. Comparison of the approximate solution and the theoritical solution
after 2000 days with λ0 = 2.02995

v(x, t) w
a

mbα ln b
eλ0t

(
1− lnx

ln b

)λ0−1 1
c(λ0)

, x ∈ [1, xp(t)]

where

c(λ0) =
∞∑
n=0

(−α ln b)n

n!(λ0 + n)2
.

For α = .4, we observed in figure 7 the "U-shaped" profile claimed in [11].
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Figure 7. Solution with α = .4

5. Conclusion

Even if this model is a simplification of a more complicated phenomena,
its asymptotic gives interesting informations about the evolution of metastatic
sites. In particular it shows that for large time, the exponential growth of the
density of metastases is given by a parameter λ0. The knowledge of this param-
eter is therefore fundamental. As its defintion shows (see (10)) , λ0 depends
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on a, b, α,m. An interesting problem would be to identify these coefficents by
suitable observations on the patient. The first question could be: can we find
a one to one correspondance between clinical observations and the parameters
a, b, α,m that we use in the model? This leads to a mathematical uniqueness
problem that we plan to investigate. The minimization of λ0 with respect to the
parameters a, b, α,m is another important question that can give informations
on the target of therapies.

6. Appendix

We finally give in this section the proof of a technical result that we previ-
ously used:

Lemma 24. For any function v ∈ L1(1, b) such that gv ∈W 1,1(1, b), we have:∫ b

1

∂x(gv)j(v)dx = − g(1) ‖v‖L1(1,b) |v(1)| .

Proof. Let us consider the following sequence:

Γn(s) =

 1 if s ≥ 1
n

−1 if s ≤ − 1
n

ns otherwise
,

For any function v ∈ D(A), we have g∂xv ∈ L1(1, b) and g∂xvΓ′n(v) ∈ L1(1, b).
Furthermore {x ∈ (1, b); Γ′n(v(x)) 6= 0} = { |v| ≤ 1

n}. Hence vg∂xv Γ′n(v) ∈
L1(1, b) and∫ b

1

∂x(gv)Γn(v) = −
∫ b

1

vg∂xv Γ′n(v)dx− g(1)v(1)Γn(v(1)).

By Lebesgue’s theorem, one can deduce:

∂x(gv)Γn(v) −−−−−→
n→+∞

∂x(gv)
j(v)

‖v‖L1(1,b)

and moreover
Γn(v(1)) −−−−−→

n→+∞
|v(1)| .

Moreover, as g∂xv ∈ L1(1, b), we conclude that

g(∂xv)vΓ′n(v) −−−−−→
n→+∞

0 in L1(1, b).
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