
HAL Id: hal-00262312
https://hal.science/hal-00262312v1

Preprint submitted on 11 Mar 2008 (v1), last revised 4 Sep 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Quantifier Elimination Algorithm for Linear Real
Arithmetic

David Monniaux

To cite this version:
David Monniaux. A Quantifier Elimination Algorithm for Linear Real Arithmetic. 2008. �hal-
00262312v1�

https://hal.science/hal-00262312v1
https://hal.archives-ouvertes.fr

ha
l-

00
26

23
12

, v
er

si
on

 1
 -

 1
1

M
ar

 2
00

8

A Quantifier Elimination Algorithm for Linear

Real Arithmetic

David Monniaux

CNRS / VERIMAG

Abstract. We propose a new quantifier elimination algorithm for the
theory of linear real arithmetic. This algorithm uses as subroutine satis-
fiability modulo this theory, a problem for which there are several imple-
mentations available. The quantifier elimination algorithm presented in
the paper is compared, on examples arising from program analysis prob-
lems, to several other implementations, all of which cannot solve some
of the examples that our algorithm solves easily.

1 Introduction

Consider a logic formula F , possibly with quantifiers, whose variables lay within
a certain set S and whose atomic predicates are relations over S. The models of
this formula are assignments of values in S for the free variables of F . Quantifier

elimination is the act of providing another formula F ′, without quantifiers, such
that F and F ′ are equivalent, that is, have exactly the same models. If F has
no free variables, then F ′ is a ground (quantifier-free, variable-free) formula. In
most practical cases such formulas can be easily decided to be true or false;
quantifier elimination thus provides a decision procedure for quantified formulas.

In this paper, we only consider relations of the form L(x, y, z, . . .) ≥ 0
where L is a linear affine expression (an arithmetic expression where multi-
plication is allowed only by a constant factor). We can thus deal with any for-
mula over linear equalities or inequalities. Our algorithm transforms any for-
mula of the form ∃x1, . . . , xn F , where F has no quantifiers, into a quantifier-
free formula F ′ in disjunctive normal form. Nested quantifiers are dealt with
by syntactic induction. Universal quantifiers are converted to existential ones
(∀x1, . . . , xn F ≡ ¬∃x1, . . . , xn ¬F), yet our algorithm avoids the combinatorial
explosion over negations that hinders some other methods.

Our method can be understood as an improvement over the approach of con-
verting to DNF through ALL-SAT and performing projection. We compared our
implementation with commercial and noncommercial quantifier elimination pro-
cedures over some examples arising from practical program analysis cases, and
ours was the only one capable of processing them without exhausting memory or
time, or failing altogether due to the impossibility of handling large coefficients.

2 The Algorithm

We first describe the datatypes on which our algorithm operates, then the off-
the-shelf subroutines that it uses, then the algorithm and its correctness proof,
then possible alterations.

2.1 Generalities

We operate on unquantified formulas built using ∧, ∨, ⇒, ¬ or other logical
connectives such as exclusive-or (the exact set of connectives allowed depends
on the satisfiability tester being used, see below; in this paper we shall only use
∧, ∨ and ¬), and on quantified formulas built with the same connectives and the
existential (∃) and universal (∀) quantifiers. It is possible to quantify not only
on a single variable but also on a set of variables, represented as a vector v; the
algorithm is sensitive to the ordering of the variables in this vector. The atoms
are linear inequalities, that is, formulas of the form c + cxx + cyy + czz · · · ≥ 0
where c ∈ Q is the constant coefficient and cv ∈ Q is the coefficient associated
with variable v. It is trivially possible to represent equalities or strict inequalities
using this formula language.

The models of a formula F are assignments a of rational numbers to the free
variables of F such that a satisfies F (written a |= F). F is said to be satisfiable

if a model exists for it. If F has no free variables, then F is said to be true if F
is satisfiable, false otherwise. Two formulas A and B are said to be equivalent,
noted A ≡ B, if they have the same models. Formula A is said to imply formula
B, noted ⇛ B, if any model of A is a model of B.

Algorithm 1 Generalize1(a, F): Generalize a model a of a formula F to a
conjunction

Require: a |= F

M ← true

for all P ∈ AtomicPredicates(F) do

if a |= P then

M ←M ∧ P

else

M ←M ∧ ¬P

end if

end for

Ensure: M ⇛ F

Consider a quantifier-free formula F , whose atomic predicates are linear
inequalities, and variables x1, . . . , xn. We wish to obtain a quantifier-free for-
mula F ′ equivalent to ∃x1, . . . , xn F . Let us temporarily forget about effi-
ciency. F can be put into disjunctive normal form (DNF) C1 ∨ · · · ∨ Cm (by
recursive application of distributivity), and ∃x1, . . . , xn F is thus equivalent to

Algorithm 2 Generalize2(G, M): Remove useless constraints from conjunc-
tion M so that G ∧ M ≡ false

Require: G ∧M is not satisfiable
for all c conjunct in M do

if (G \ {c}) ∧M is not satisfiable (call Smt) then {G \ {c} denotes G with the
conjunct c taken out}

remove c from M

end if

end for

Ensure: G ∧M is not satisfiable

Algorithm 3 ExistElim: Existential quantifier elimination
H ← F

G← ¬F

O ← false

while H is satisfiable (call Smt) do {(∃v F) ≡ (O ∨ ∃v H) and G ≡ ¬(F ∨O) and
H ∧ O ≡ false and O does not mention variables from v}

a← a model of H {a |= H}
M1 ← Generalize1(H, a) {M1 ⇛ H}
M2 ← Generalize2(G, M1) {¬(M2 ∧G)}
π ← Project(M2, v) {π ≡ ∃v M2}
O← O ∨ π

H ← H ∧ ¬π

G← G ∧ ¬π

end while

Ensure: O ≡ ∃v F

(∃x1, . . . , xn C1) ∨ · · · ∨ (∃x1, . . . , xn Cm). Various methods exist for finding a
conjunction C′

i equivalent to ∃x1, . . . , xn Ci, among which Fourier-Motzkin elim-
ination (see § 3.1). We therefore obtain F ′ in DNF. For a universal quantifier,
through De Morgan’s laws, we obtain a formula in conjunctive normal form
(CNF).

Such a naive algorithm suffers from an obvious inefficiency, particularly if
applied recursively to formulas with alternating quantifiers. Consider ∃x∀y F .
The algorithm will compute a CNF formula equivalent to ∀y F , then convert
this formula to DNF. Conversion from CNF to DNF through the application of
distributivity of ∧ over ∨ is extremely inefficient, even on propositional formulas.
Furthermore, many conjunctions in the DNF are likely to be contradictory; that
is, they will express incompatible linear constraints. It is therefore a waste of time
and space to generate them. Finally, the DNF form obtained by distributivity
may be needlessly complex; for instance, (x < 0 ∧ x ≥ 0) ∧ y > 0 gets turned
into (x < 0 ∧ y > 0) ∨ (x ≥ 0 ∧ y > 0) whereas one should have merged both
conjuncts into the more general y > 0.

The basic ideas of our algorithm are: to only generate conjunctions that
are actually useful: no contradictory conjunctions, and no conjunctions that add

nothing to the already computed DNF; and to generalize the conjunctions before
further processing.

2.2 Building blocks

If one has propositional formulas with a large number of variables, one never
converts formulas naively from CNF to DNF, but one uses techniques such as
propositional satisfiability (SAT) solving. Even though SAT is NP-complete,
there now exist algorithms and implementations that can deal efficiently with
many large problems arising from program verification. In our case, we apply
SAT modulo the theory of linear real inequalities (SMT), a problem for which
there also exist algorithms, implementations, standard benchmarks and even a
competition. Likewise SAT, SAT modulo linear inequalities is NP-complete. A
SMT solver takes as an input a formula F where the literals are linear equalities
or inequalities, and answers either “not satisfiable”, or a model of F , assigning
a rational number to each variable in F . We assume we have such an algorithm
Smt at our disposal as a building block

Another needed building block is quantifier elimination over conjunctions,
named Project(C, v): given a conjunction C a conjunction C of linear in-
equalities over variables v = v1, . . . , vN , obtain a conjunction C′ equivalent to
∃v1, . . . , vn C. For efficiency reasons, it is better if C′ is minimal (no conjunct can
be removed without adding more models), or at least “small”. Fourier-Motzkin
elimination is a simple algorithm, yet, when it eliminates a single variable, the
output conjunction can have a quadratic number of conjuncts compared to the
input conjunction, thus a pass of simplification would be needed for practical
efficiency (our algorithm Generalize2 provides such simplification). For our
implementations, we rather used libraries implementing geometrical transforma-
tions: C defines a convex polyhedron1 in QN , and finding C′ amounts to com-
puting the inequalities defining the projection of this polyhedron into QN−n.
This can be achieved by computing the set of generators of the polyhedron de-
fined by C using Chernikova’s algorithm, projecting these generators and thus
obtaining generators for the projected polyhedron, and then computing minimal
constraints from these generators.

2.3 Algorithm and Correctness Proof

Consider a quantifier-free formula F . The truth value of F on an assignment a of
its variables only depends on the truth value of the atomic predicates of F over

1 A good bibliography on convex polyhedra and the associated algorithms can be found
in the documentation of the Parma Polyhedra Library. [1] By convex polyhedron,
we mean, in a finite-dimension affine linear real space, an intersection of a finite
number of half-spaces each delimited by a linear inequality, that is, the set of solutions
of a finite system of linear inequalities. In particular, such a polyhedron can be
unbounded. In the rest of the paper, the words “polyhedron” must be understood to
mean “convex polyhedron” with that definition.

projection of A

A

B

C

Fig. 1. Subsumption of one generalized model by another

a. Let us note NF = |AtomicPredicates(F)|, where |X | denotes the cardinal
of the set X . These truth assignments therefore define at most 2NF equivalence
classes. There can be fewer than 2NF equivalence classes, because some truth
assignments can be contradictory (for instance, x ≥ 1 assigned to true and x ≥ 0
assigned to false). One can immediately generalize a model of a formula to its
equivalence class, which motivates our algorithm Generalize1. Its output is a
conjunction of literals from F .

This conjunction may itself be insufficiently general. Consider the formula
F = (x ≥ 0 ∧ y ≥ 0) ∨ (¬x ≥ 0 ∧ y ≥ 0). x 7→ 0, y 7→ 0 is a model of F .
Generalize1 will output the conjunction x ≥ 0∧ y ≥ 0. Yet, the first conjunct
could be safely removed. Generalize2(¬(F ∨ O), M) will remove unnecessary
conjuncts from M while preserving the property that M ⇛ F ∨ O.

Generalize2(G, M), where M is a conjunction such that G ∧ M is unsat-
isfiable, works as follows:

– It attempts removing the first conjunct from M (thus relaxing the M con-
straint). If G∧M stays unsatisfiable, the conjunct is removed. If it becomes
satisfiable, then the conjunct is necessary and is kept.

– The process is continued with the following conjuncts.

Note that the results of this process depend on the order of the conjuncts
inside the conjunction M , and that some orders may perform better than oth-
ers; the resulting set of conjuncts is minimal with respect to inclusion, but not
necessarily with respect to cardinality.

This is the case even if we consider a purely propositional case. As an example,
consider F = A ∨ (B ∧ C). M = A ∧ B ∧ C ⇛ F , otherwise said M ∧ ¬F is not
satisfiable. If one first relaxes the constraint A, one gets the conjunction B ∧C,
which still implies F ; this conjunction has two propositional models (A∧B ∧C
and ¬A ∧ B ∧ C). Yet, one could have chosen to relax B and obtain A ∧ C,
and then to relax C and obtain A (which still implies F); this formula has
four propositional models. This dependency on propositional variable ordering
is similar to that of binary decision diagrams. In terms of formulas where the
atoms are linear inequalities, the propositional models that are satisfiable with
respect to linear arithmetic correspond to equivalence classes of models over the

reals. Informally, this means that depending on the order by which the conjuncts
inside M are ordered, a smaller or bigger“chunk”of state space may be obtained.

The main algorithm is ExistElim(F, v) which computes a DNF formula
equivalent to ∃v F . v is a vector of variables. v can be empty, and then the
algorithm simply computes a “simple”DNF form for F . The algorithm computes
generalized models of F and projects them one by one, until exhaustion. It
maintains three formulas G, H and O. O is a DNF formula containing the
projections of the models processed so far. H contains the models yet to be
processed; it is initially equal to F . G is maintained so that it is equivalent to
¬(F ∨ O). For each generalized model M , its projection π is added to O and
removed from H .

The partial correctness of the algorithm ensues from the loop condition and
loop invariants given in the description of the algorithm. The only nontrivial
invariant condition is (∃v F) ≡ O ∨ (∃v H). Let us write O′ = O ∨ π and
H ′ = H ∧ ¬π. An important property is that both π (and thus ¬π) and O do
not depend on v, therefore for any X , ∃v(π ∧ X) ≡ (∃v X) ∧ π (respectively
for ¬π and O). O′ ∨ ∃v H ′ = π ∨ O ∨ ∃v(H ∧ ¬π) ≡ π ∨ O ∨ (∃v H) ∧ ¬π ≡
π ∨ O ∨ (∃v H). false ≡ M2 ∧ G ≡ M2 ∧ (F ∨ O), otherwise said M2 ⇛ F ∨ O,
thus π = (∃vM2) ⇛ (∃vF) ∨ O. It follows that O′ ∨ (∃v H ′) ≡ (∃v F).

Given a formula φ, we note W (φ) the number of equivalence of classes induced
by the atomic predicates of F with nonempty intersection with the models of φ.
Termination is ensured because W (H) decreases by at least one at each iteration:
M1 defines exactly one equivalence class, M2 defines a union of equivalence
classes which includes the one defined by M1, and the models of π include those
of M2 thus also at least one equivalence class. The number of iterations is thus
at most 2NF . Note that Generalize2 is needed neither for correctness nor for
termination, but only for efficiency: otherwise, the number of iterations would
always be the number of nonempty equivalence classes, which can be huge.

2.4 Possible Changes and Extensions

Certain SMT solvers provide, in addition to an unsatisfiability result, an unsat-

isfiable core (from A1 ∧ · · · ∧ An extract an unsatisfiable subset, minimal with
respect to inclusion). This procedure can replace Generalize2.

The algorithm would still be correct if M was removed from H instead of π. It
then becomes equivalent to performing ALL-SAT (obtaining all satisfying assign-
ments) then projection. On the one hand, with this modified algorithm (mod1)
set of atomic formulas of H would stay stay included in that of F throughout
the iterations, while this set can grow larger with the original algorithm since
the set of atomic formulas of the projection of F can be much larger than the
set of atomic formulas in F (see §3.1). On the other hand, the original algorithm
may need fewer iterations because π may subsume several generalized models,
as shown by Fig. 1 : A is the first generalized model being generated, and its
projection subsumes B; thus, the original algorithm will not have to generate B,
while the modified algorithm will generate B. Our experience is that the original
algorithm performs better in practice than the modified algorithm.

AB C

O

D

Fig. 2. The gray area is the set of points matched by formula F = y ≥ −1∨(y ≥
−2 ∧ x ≥ −1 ∧ x ≤ 1). Point O = (0, 0) is found as a model. This model is first
generalized to y ≥ −1 ∧ y ≥ −2 ∧ x ≥ −1 ∧ x ≤ 1 according to its valuations
on the atomic boolean formulas. Depending on whether one first tries to relax
x ≥ −1 or y ≥ −1, one gets either a half plane (one conjunct) or a vertical
band (three conjuncts); the former is “simpler” than the second. The simplicity
of the formula output by Generalize2 thus depends on the ordering of the
input conjuncts.

A

B

C

Fig. 3. A is the first generalized model selected. If G0
def
= ¬F , the initial value of

G, is replaced at the next iteration by G1
def
= ¬F ∧¬π0 where π0 is the projection

of A, then it is possible to generate a single generalized model encompassing both
B and C (for instance x ≥ −1 ∧ y ≥ 0 ∧ y ≤ 2. If G stays constant, then the
x ≥ 1 constraint defining the left edge of C cannot be relaxed.

Another possible change (mod2) is to leave G = ¬F constant across itera-
tions. This allows less generalization of models than the original algorithm, as

shown by Fig. 3. The modified algorithm tries to generalize M to a conjunction
that implies F , but in fact this is too strict a condition: the original algorithm
tries to generalize F to a conjunction that implies F ∨O. If at least one variable
is projected out, and F actually depends on that variable, then the models of F
are strictly included in those of the final value of O, which is equivalent to ∃v F .

The algorithm can be easily extended to quantifier elimination modulo an
assumption T on the free variables of F . All definitions stay the same except

that ⇛ is replaced by ⇛T , defined as P ⇛T Q
def
= (P ∧ T) ⇛ (Q ∧ T) and

≡ is replaced by ≡T , defined as (P ≡T Q)
def
= (P ∧ T ≡ Q ∧ T). ExistElim

is modified by replacing the initialization of G and H by ¬F ∧ T and F ∧ T
respectively. Intuitively, T defines a universe of validity such that values outside
of the models T are irrelevant to the problem being studied.

3 Comparison with Other Algorithms

3.1 Complexity bounds

1

2 3

4

A

B

H

Fig. 4. This 7-face polyhedron in tridimensional space, shown using technical
drawing conventions, projects to a 10-edge polygon.

Projecting a convex polyhedron from and to a representation using con-
straints (linear inequalities defining the facets of the polyhedron) is a hard prob-
lem; the number of facets can grow exponentially with the number of dimensions
being projected out.

Lemma 1. There exist a family of polyhedra in tridimensional space, indexed

by n, with n + 3 facets such that their projection onto a plan has 2n + 2 facets.

Proof. The construction is shown in Fig. 4 for n = 4. One first draws a n + 1
edge convex polygon in the (x, z) plane (shown in bold at bottom of the figure:

edges H , 1, . . . , n), including a z = 0 edge and other edges more or less in a
semicircular shape (one can for instance take half a 2n-edge regular polygon).
This polygon is extruded along the y axis, and the resulting infinite prism is cut
at at angle at both ends (the bold lines A and B at the right of the figure), thus
producing a polyhedron with n + 3 facets. Its projection on the (x, y) plane has
2n + 2 facets, as shown on the figure.

Corollary 1. For any 0 < α < 2 there exists a family of polyhedra indexed by

k in 3k-dimensional space, with a number fk of facets, such that there exists

a choice of dimensions such that their projection on 2k-dimensional space has

more than fkαk facets.

Proof. In a 3k-dimensional space, consider the product of k polyhedra of tridi-
mensional space with n + 3 facets as produced by the preceding lemma. This
product is a polyhedron with (n + 3)k facets. Its projection, leaving one every

third dimension, has (2n + 2)k facets. With n large enough, (2n+2)k

(n+3)k > αk.

Methods for eliminating variables from systems of linear inequalities (that
is, eliminating an existential quantifier from a conjunction of linear inequalities)
have long been studied. The simplest method is Fourier-Motzkin elimination.
Consider a system S of wide or strict linear inequalities, from which we wish
to eliminate variable x (meaning that we wish to eliminate the quantifier from
∃x S). There exist three kind of inequalities in S: those equivalent to inequalities
of the form x ≥ L+

i (y, z, . . .) or x > L+
i (y, z, . . .) (where x does not appear in

L), which we group in a sub-system S+; those equivalent to inequalities of the
form x ≤ L−

j (y, z, . . .) or x < L−
j (y, z, . . .) (where x does not appear in L),

grouped as S−; and those in which x does not appear, grouped as S0.
Assume for a moment, for the sake of simplicity, that S only contains wide

inequalities; the algorithm for mixed strict and wide inequalities is almost the
same. S+ is equivalent to x ≥ max(L+

1 (y, z, . . .), . . . , L+
|S+|(y, z, . . .)) and S− is

equivalent to x ≤ max(L−
1 (y, z, . . .), . . . , L−

|S
−
|(y, z, . . .)). ∃x S is thus equivalent

to

S0 ∧ ∃x max(L+
1 (y, z, . . .), . . . , L+

|S+|(y, z, . . .)) ≤ x ≤

min(L−
1 (y, z, . . .), . . . , L−

|S
−
|(y, z, . . .)),

thus equivalent to

S0 ∧ max(L+
1 (y, z, . . .), . . . , L+

|S+|(y, z, . . .)) ≤

min(L−
1 (y, z, . . .), . . . , L−

|S
−
|(y, z, . . .)),

thus in the end equivalent to S0 and all inequalities of the form L+
i (y, z, . . .) ≤

L−
j (y, z, . . .). The number of such inequalities can be as large as |S|2/4 if S is split

evenly between S+ and S−. Thus, with the Fourier-Motzkin method without a
simplification step, the size of the system of inequalities can grow quadratically

for each variable being eliminated, thus a complexity bound of 22cn

where n is
the size of the original formula. The size of the coefficients of the inequalities
can double. We have not been able to find results that close the gap between our
single exponential lower bound obtained from Cor. 1 and the double exponential
upper bound obtained from Fourier-Motzkin. However, this is of little practical
importance, as discussed later.

The“classical”algorithm for quantifier elimination over real or rational arith-
metic is Ferrante and Rackoff’s method [2][3, §7.3]. This algorithm can be un-
derstood as an extension of Fourier-Motzkin’s algorithm to formulas with dis-
junctions: in addition to checks for unbounded intervals, one looks at all couples
(L+

i , L−
j), defining intervals, and checks that the middle point (or, for the mat-

ter, any point of the inside) verifies the formula. The complexity is, again, 22cn

.
Note that Ferrante and Rackoff’s algorithm never simplifies formulas.

Our algorithm uses satisfiability testing over the theory of rational linear in-
equalities, which is an NP-complete problem. It is NP-hard because any boolean
satisfiability problem can be straightforwardly converted to a linear equality
problem by replacing each boolean variable by a real variable with values con-
strained in {0, 1}. It is NP because one can solve this problem by looking non-
deterministically for a boolean truth assignment for the atomic formulas, then
check that this truth assignment is consistent. Each truth assignment determines
a conjunction of linear inequalities, and checking whether such a conjunction de-
fines a nonempty set of solutions is a linear programming problem with a null
objective function. Linear programming can be solved in polynomial time. This
result only applies to unquantified formulas; the decision problem for quantified
formulas over rational linear inequalities requires at least exponential time. [3,
§7.4][4, Th. 3]

For each quantifier elimination step, the number of atoms in the formula
can grow at most quadratically, following the Fourier-Motzkin bounds. The final
number of atomic formulas is thus at most 22cn

. The number of iterations of the
final quantifier elimination loop is at most exponential in the number of these
atoms, as is the cost of running the satisfiability tests. The overall complexity is

thus bounded by 222cn

.

One could at first assume that the complexity bounds for our algorithm
are asymptotically worse than Ferrante and Rackoff’s (triple exponential com-
pared to double exponential). Our algorithm, however, outputs results in CNF
or DNF form, while Ferrante and Rackoff’s algorithm does not. If we add a step
of transformation to CNF or DNF to their algorithm, then we also obtain a triple
exponential.

Our opinion is that when it comes to complexity in towers of exponential,
comparisons of upper bounds on the worst case are of no practical importance. If
an algorithm really exhibits such complexity in practice, it is useless, regardless
of whether the bound has two or three exponentials.

3.2 Practical results

We implemented our method twice: first as a proof-of-concept using a quickly
assembled SMT-solver, then, as the Mjollnir tool, using the state-of-the-art
Yices solver2 and the Apron3 polyhedron library. We investigated examples
produced from problems of program analysis following our method for the para-
metric computation of least invariants. [5] To summarize, each formula expresses
the fact that a set of program states (such as a product of intervals for the numer-
ical variables) is the least invariant of a program, or the strongest postcondition
if there is no fixed point involved. Most of the examples, being extracted by hand
from simple subprograms, are easily solved, but one of them, defining the least
invariant of a rate limiter, proved to be tougher to solve, and we selected it as a
benchmark. We have two versions of this example: the first for a rate limiter op-
erating over real numbers4, the second over floating-point numbers, abstracted
using real numbers. The floating-point version is considerably tougher to process
than the real example. We also tested our system on examples procured from
the Lira designers.

We compared our proof-of-concept implementation with the home-made
SMT-solver, the Mjollnir tool, Lira5, a tool based on Büchi automata, and
two symbolic algebra packages, Mathematica6 and Reduce 3.87 + Redlog8,
see Tab. 1. Profiling shows that most of the time is spent in the SMT-solver
and only a few percents in the projection algorithm. The fact that the proof-of-
concept implementation, with a very naive SMT-solver, performs decently on an
example where other algorithms exhaust memory shows that the performance of
our algorithm cannot be solely explained by the good quality of Yices.

4 Conclusion and Future Work

We have proposed a new quantifier elimination algorithm for the theory of linear
inequalities over the real or rational numbers. Our motivation was the practical
application of a recent result of ours on program analysis, stating that formulas
for computing the least invariants of certain kinds of systems can be obtained
through quantifier elimination [5]. This algorithm is efficient on examples ob-
tained from this program analysis technique, as well as other examples, whereas
earlier published algorithms, as well as several commercial packages, all exhaust
time or memory resources. Our algorithm leverages the recent progresses on
satisfiability modulo theory solvers (SMT) and, contrary to older algorithms,

2 http://yices.csl.sri.com/
3 http://apron.cri.ensmp.fr/library/
4 Available in the Lira input syntax from
http://www-verimag.imag.fr/~monniaux/download/rlim_nofloat_instanciated.lira .

5 http://lira.gforge.avacs.org/
6 http://www.wolfram.com/
7 http://www.uni-koeln.de/REDUCE/
8 http://www.algebra.fim.uni-passau.de/~redlog/

http://yices.csl.sri.com/
http://apron.cri.ensmp.fr/library/
http://www-verimag.imag.fr/~monniaux/download/rlim_nofloat_instanciated.lira
http://lira.gforge.avacs.org/
http://www.wolfram.com/
http://www.uni-koeln.de/REDUCE/
http://www.algebra.fim.uni-passau.de/~redlog/

Benchmark r. lim. R r. lim. float prsb23 blowup5

Mjollnir 1.5 34 0.07 negligible
proof-of-concept n/a 823 n/a n/a
Mjollnir (mod1)a 1.6 77b 0.06 negligible
Mjollnir (mod2)c 1.4 17 0.06 negligible
Mjollnir Ferrante-Rackoff o-o-m o-o-m o-o-m negligible
Lira o-o-m o-o-m 8.1 0.6
Reduce rlqe 182 o-o-m 1.4 negligible
Reduce rlqe+rldnf o-o-m o-o-m n/a n/a
Mathematica Reduce (> 12000) o-o-m (> 780) 7.36

a -no-block-projected-model in Mjollnir
b Memory consumption grows to 1.1 GiB.
c -no-add-blocking-to-g in Mjollnir

Table 1. Timings (in seconds, on an AMD Turion TL-58 64-bit Linux system)
for eliminating quantifiers from our benchmarks. The first line is the algorithm
described in this paper, the two following linear variants from §2.4, then other
packages. Reduce has rlqe (quantifier elimination) and rlqe+rldnf (same,
followed by conversion to DNF). (> t) means that the computation was killed
after t seconds because it was running too long. The prsb23 and following are
decision problems, the output is true or false, thus DNF form does not matter.
Out-of-memory is noted “o-o-m”.

performs on-the-fly simplifications of formulas that keep formula sizes manage-
able.

Our algorithm is described for rational or real linear arithmetic, but it can be
extended to any theory for which there is an efficient satisfiability testing algo-
rithm for unquantified formulas and a reasonably efficient projection algorithm
for conjunctions. Among extensions that could be interesting from a practical
point of view would be on the one hand the nonlinear case for real arithmetic
(polynomials), and on the other hand the mixed integer / real problems. Of
course, nonlinear integer arithmetic cannot be considered, since Peano arith-
metic is undecidable.

Tarski showed that the theory of the real closed fields (inequalities of poly-
nomial expressions) admits quantifier elimination, [6] however his algorithm had
impractical (non-elementary) complexity. Later, the cylindrical algebraic decom-

position (CAD) [7, Ch. 11] method was introduced, with doubly exponential
complexity, which is unavoidable in the worst case [7, §11.4]. Our experiments
with both Mathematica and qepcad, both of which implement CAD, as well
as with Reduce/Redlog, which implement various algorithms for quantifier
elimination, showed us that combinatorial blowup occurs very quickly. For such
techniques to be interesting in practice, practical complexity should be lowered.
Perhaps our technique could help. There are, however, significant difficulties in
that respect. Our technique starts with some single model of the target formula
over the rational numbers; but a system of nonlinear inequalities needs not have

rational models when it is not full-dimensional (for instance, X2 = 2). Our tech-
nique reduces the geometrical computations to computations on conjunctions;
but in the nonlinear case, single inequalities can be reduced to disjunctions. As
an example, X2 ≥ 4 is reduced to X ≤ −2 ∨ X ≥ 2. Most importantly, our
technique relies at several steps on the availability of a decision procedure that
stays efficient even when the answer is negative.

Regarding the mixed integer / real problems, the Lira tool implements quan-
tifier elimination using a weak form of Büchi automata matching the b-ary ex-
pression of the integers or reals, where b is an arbitrary base. [8] The output of
the process is an automaton and not a readable formula. While it is possible to
decide a closed formula, and to obtain one model from a satisfiable non-closed
formula, it is an open problem how to efficiently reconstruct a quantifier-free
formula from the resulting automaton. The automaton construct is unsuitable
for large coefficients (as our examples obtained from the analysis of floating-
point programs). Even on examples with small coefficients, the tool was unable
to complete quantifier elimination without blowing up. We think therefore that
it would be interesting to be able to apply our technique to the mixed integer /
real problems, but there are difficulties: the algorithms on integer polyhedra is
considerably more complex than on rational polyhedra.

A classical objection to automatic program analysis tools meant to prove
the absence of bugs is that these tools could themselves contain bugs. Our
method uses complex algorithms (SMT-solving, polyhedron projection) as sub-
procedures. We consider developing techniques so that the algorithm outputs
easily-checkable proofs or “proof witnesses” of the correctness of its computa-
tion.

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library, version 0.9.
available from http://www.cs.unipr.it/ppl.

2. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real
addition with order. SIAM Journal of Computation 4(1) (March 1975) 69–76

3. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer (October 2007)

4. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of presburger arithmetic.
In Karp, R., ed.: Complexity of Computation. Number 7 in SIAM–AMS proceedings,
American Mathematical Society (1974) 27–42

5. Monniaux, D.: Optimal abstraction on real-valued programs. In Filé, G., Nielson,
H.R., eds.: Static analysis (SAS ’07). Number 4634 in LNCS, Springer (2007) 104–
120

6. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press (1951)

7. Basu, S., Pollack, R., Roy, M.F.: Algorithms in real algebraic geometry. Algorithms
and computation in mathematics. Springer (2003)

8. Becker B., Dax C., E.J., F., K.: LIRA: handling constraints of linear arithmetics
over the integers and the reals. In: Computer Aided Verification (CAV). Number
4590 in LNCS (2005) 312–315

http://www.cs.unipr.it/ppl

	A Quantifier Elimination Algorithm for Linear Real Arithmetic

