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Nonlinear optimal control synthesis

via occupation measures

Didier Henrion, Jean B. Lasserre and Carlo Savorgnan ∗

March 11, 2008

Abstract

We consider nonlinear optimal control problems (OCPs) for which all problem
data are polynomial. In the first part of the paper, we review how occupation
measures can be used to approximate pointwise the optimal value function of a
given OCP, using a hierarchy of linear matrix inequality (LMI) relaxations. In the
second part, we extend the methodology to approximate the optimal value function
on a given set and we use such a function to constructively and computationally
derive an almost optimal control law. Numerical examples show the effectiveness of
the approach.

1 Introduction

It is well known that solving an optimal control problem (OCP) can be a very hard task
notwithstanding the power of theoretical tools such Pontryagin’s minimum principle and
Hamilton-Jacobi-Bellman optimality condition. This statement is particularly true when
dealing with state and input constraints.

Contribution. In this paper we consider the class of OCPs for which all problem data are
polynomial. The approach we deploy (which was introduced in [4]) is based on moment
theory and consists in deriving a hierarchy of convex linear matrix inequality (LMI)
relaxations of the OCP which give an increasing sequence of lower bounds on the optimal
value. These LMI problems can be solved using off-the-shelf semidefinite programming
(SDP) solvers.

∗The authors are with LAAS-CNRS, University of Toulouse, France. D. Henrion is also with
the Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic. J. B.
Lasserre is also with the Institute of Mathematics of the University of Toulouse, France. E-mail:
{henrion,lasserre,savorgnan}@laas.fr
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The contribution with respect to [4] and its extended version [5] is twofold. First, the
derivation of the relaxation is obtained in a simpler way, starting from basic concepts.
The second and more important contribution is that we show how the methodology can
be applied to approximate the optimal value function on a set and to derive constructively
and computationally a control law. The approach is illustrated on a few simple examples.

Notation. R and N denote respectively the sets of real and integer numbers. R[y] =
[y1, . . . , yn] denotes the ring of polynomials in the variable y. R[y]d = [y1, . . . , yn] denotes
the ring of polynomials of degree at most d in the variable y. When y ∈ R

n and α ∈ N
n,

yα stands for yα1

1 . . . yαn
n . Given a polynomial function ϕ, deg(ϕ) is the maximal degree of

its monomials. Given a differentiable function ϕ(y), ∇y(ϕ) = [ ∂ϕ
∂y1

, . . . , ∂ϕ
∂yn

] is its gradient
with respect to y. δy0

is the Dirac measure at y0. v′ denotes the transpose of v.

2 Problem definition

Consider continuous-time systems described by the differential equation

ẋ(t) = f(t, x(t), u(t)) (1)

where x ∈ R
n and u ∈ R

m are respectively the state vector and input vector. By defining
the cost function

∫ T

0

h(t, x(t), u(t))dt + H(x(T )) (2)

the initial constraint

x(0) ∈ CI = {x : gIj
(x) ≤ 0, j = 1, . . . , nI}

and the final constraint

x(T ) ∈ CF = {x : gFj
(x) ≤ 0, j = 1, . . . , nF}

we can formulate several OCPs. E.g., when CI and CF contain only one point we have the
classical problem of driving the system from an assigned initial condition x(0) = x0 to a
final condition x(T ) = xT by minimizing a given cost.

In the sequel, we will consider all the problems which can be cast in this framework with
the additional constraint on the trajectory (t, x(t), u(t)) ∈ CT , where

CT = {(t, x, u) : gTj
(t, x, u) ≤ 0, j = 1, . . . , nT}.

An important assumption which is necessary for the derivation of the methodology is that
all problem data are polynomial. More precisely:

Assumption 1 The functions f , h, H, gIj
, gTj

and gFj
are polynomial.
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3 The moment approach to optimal control

The key idea underlying the moment approach is that of defining three occupation mea-
sures which convey the information about the initial condition of the system, its trajectory
and the final condition. The OCP is then rephrased in terms of the moments of such mea-
sures. The convex problem obtained contains three ingredients:

• a set of linear equality constraints on the moments which characterize the system
dynamics;

• a set of semidefinite constraints which come from the fact that the moments belong
to a measure;

• a set of semidefinite constraints which translate the constraints induced by CI , CT

and CF on the supports of the measures.

To derive this constraints we assume horizon T is fixed.

3.1 The trajectory constraints

To obtain the trajectory constraints we start from the idea that the system trajectories
can be characterized studying how certain test functions evolve along the trajectories.
For this purpose, we choose functions which are monomials of the form tαxβ. Consider a
trajectory x(t). Using the fundamental theorem of calculus we can write

T αx(T )β = 0αx(0)β +

∫ T

0

d(tαx(t)β)

dt
dt. (3)

The trajectory constraints are obtained by rephrasing equation (3) in terms of three
properly defined occupation measures.

The final occupation measure µF captures the information on the state at time T

x(T )β =

∫

xβδx(T )(dx) =

∫

xβdµF .

The initial occupation measure µI captures the information on the initial condition of the
system

x(0)β =

∫

xβδx(0)(dx) =

∫

xβdµI .

The trajectory occupation measure µT captures the information on the value of t, x(t) and
u(t) along the trajectory

∫ T

0

tγx(t)ηu(t)νdt=

∫ T

0

∫

tγxηuνδx(t),u(t)(dx, du)dt=

∫

xγuηtνdµT .
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Notice that µF and µI are probability measures, their mass is equal to 1.

Next, if f ∈ R[t, x, u] then d(xαtβ)
dt

∈ R[t, x, u] because

d(xαtβ)

dt
=

∂(xαtβ)

∂t
+ ∇x(x

αtβ)f(x, u)=
∑

γ,η,ν

aαβ
γηνx

γuηtν

for some coefficients aαβ
γην that depend on f . The degree of the derivative is deg(xαtβ) −

1 + deg(f). Using previous equations, (3) can be rephrased as

T α

∫

xβdµF = 0α

∫

xβdµI +
∑

γ,η,ν

aαβ
γην

∫

tγxηuνdµT , (4)

i.e., a linear relationship between the moments of µF , µI and µT . Namely, introducing the
notation zβ =

∫

xβdµF , wβ =
∫

xβdµI , yγην =
∫

tγxηuνdµT , we obtain

T αzβ = 0αwβ +
∑

γ,η,ν

aαβ
γηνyγην (5)

for every α, β ∈ N×N
n. Notice that from (5), the mass of µT is T . In compact notation,

consider test functions of degree up to r and the canonical basis of monomials of degree
at most r:

mr(x) = [1, x1, . . . , xn, x
2
1, x1x2, . . . , x

r
1, x

r−1
1 x2, . . . , x

r
n]′.

Define the vectors zr =
∫

mr(x)dµF , wr =
∫

mr(x)dµI and yk =
∫

mk(t, x, u)dµT . Then,

AFzr = AIwr + ATyk (6)

where k ≥ r − 1 + deg(f) and the coefficients of the matrices AF , AI and AT can be
obtained from equation (5).

Define the coefficient vectors ch and cH to be such that

h(t, x, u) = c′hmk(x, t, u), H(x) = c′Hmr(x).

Observe that
∫ T

0

h(t, x(t), u(t))dt + H(x(T )) = c′hyk + c′Hzr, (7)

i.e., the criterion of the OCP is a linear functional on zr and yk.

So far, for a given trajectory x(t), we have characterized linear constraints satisfied by the
moments of the three associated occupation meaures. Now, if the trajectory is unknown,
the three measures are unknown, and we can consider the abstract linear programming
(LP) problem J(µI) = minµT ,µI ,µF

∫

hdµT +
∫

HdµF subject to (4), which aims at finding
the occupation measures associated with the optimal trajectory. The measures µF , µI ,
µT are characterized through their respective truncated moment vectors zr, wr, yk, the
remaining difficulty being finding conditions that ensure that those vectors and indeed
moment vectors of measures with respective supports CF , CI , CT . This is explained in the
next section.
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A nice feature of the approach is that we can play with the initial and final measures. For
instance, if µI = δx0

we retrieve the optimal cost J(δx0
) of the OCP with fixed initial state

x0. Now, if µI is unknown, but with known support CI , then J(µI) = minx0∈CI
J(δx0

).
Finally, if µI is known, but not a Dirac, solving the above LP problem aims at computing
∫

J(δx0
)dµI(x0).

3.2 The moment matrix constraints

There exist linear programming (LP) or semidefinite programming (SDP) necessary and
sufficient conditions for an infinite vector to be a moment vector, i.e., the vector of mo-
ments of some finite Borel measure on a compact basic semi-algebraic set; see e.g. [8].
We chose the latter since it has shown to be more effective for numerical purposes [3].

With r an even number, let

M(zr) =

∫

mr/2(x)mr/2(x)′dµF

be the moment matrix of order r associated with µF . Obviously, M(zr) is positive semidef-
inite, denoted M(zr) � 0. Therefore, in the convex relaxation of the OCP, one imposes

M(zr) � 0, (8)

and similar constraints are imposed on wr and yk.

3.3 The localizing matrix constraints

Similarly to the previous subsection, one may express the support constraints induced by
CI , CT and CF in terms of linear matrix inequalities on zr,wr and yk. To derive such
inequalities, define

dFj
=

{

deg(gFj
(x)) if deg(gFj

(x)) is even
deg(gFj

(x)) + 1 if deg(gFj
(x)) is odd

and the localizing matrix

LgFj
(zr) =

∫

gFj
(x)m(r−dFj

)/2(x)m(r−dFj
)/2(x)′dµF .

The matrix gFj
(x)m(r−dFj

)/2(x)m(r−dFj
)/2(x)′ is positive semidefinite for every value of x

such that gFj
(x) ≥ 0. Hence if µF is supported on CF then LFj

(zr) � 0 for every j.
Therefore, in the convex relaxation of the OCP one imposes the semidefinite constraint

LgFj
(zr) � 0 j = 1, . . . , nF (9)

and similar semidefinite constraints for wr and yk.

Further details on moment and localizing matrix constraints can be found in [2].
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3.4 The convex relaxation

To construct the convex relaxation of the OCP, let r and k be even numbers such that

r ≥ deg(H), k ≥ deg(h), k ≥ r + deg(f).

In this paper, we will assume that the initial probability measure µI is known through its
moments wr.

The convex relaxation is the following truncated moment problem:

min
zr ,yk

c′hyk + c′Hzr

AFzr = AIw̄r + ATyk

M(zr) � 0, LgFj
(zr) � 0, ∀j = 1, . . . , nF

M(yk) � 0, LgTj
(yk) � 0, ∀j = 1, . . . , nT

(10)

where the notation w̄r indicates that the moment vector is known. Two important facts
should be noticed for the moment problem (10):

• the constraints on the moments correspond to necessary conditions and therefore,
in general one only obtains a lower bound on the optimal value of OCP;

• with r̂ > r and k̂ > k, the constraints of the original problem with r and k are a
subset of the constraints of the problem with r̂ and k̂. Therefore, increasing the
value of r and k yields a monotonically nondecreasing sequence of lower bounds on
the optimal value.

Remark 1 If the initial measure µI was unknown, we would have to include the additional
constraints M(wr) � 0, LgIj

(wr) � 0, ∀j = 1, . . . , nI with now wr being an unknown

moment vector with first entry equal to one.

Remark 2 One goal of this paper is to derive the convex relaxation of the OCP starting
from really basic notions. The same optimization problem can be also obtained using as
a starting point the duality between the Banach space of bounded continuous functions on
a compact set K and the Banach space of finite signed Borel measures on K, as done in
[4, 5] where the sequence of lower bounds on the optimal value is shown to converge under
some assumptions on the problem data. The interested reader is referred to these paper
for further details.

4 The dual approach: SOS polynomials

For the developments of the results in sections 5 and 6 and a better understanding of the
moment approach to OCP, it is important to look at its dual formulation which has an
interesting interpretation in terms of SOS polynomials.
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A polynomial p ∈ R[x] of degree 2d is an SOS if p(x) =
∑s

i=1 fi(x)2 for some (fi)
s
i=1 ∈ R[x],

and this implies that p is non-negative. And p is an SOS if and only if there exists a positive
semidefinite matrix Q such that p(x) ≡ md(x)′Qmd(x). Denote by Σ[x] the set of SOS
polynomials and by Σ[x]r (with r even) the set of SOS polynomials of degree at most r.
See [6] for more details.

The SDP dual of (10) is

max
cϕ,S�0,Q�0
Sj�0,Qj�0

(AIw̄r)
′cϕ

− A′
T cϕ + M∗(S) +

nT
∑

j=1

L∗
gTj

(Sj) = ch

A′
F cϕ + M∗(Q) +

nT
∑

j=1

L∗
gFj

(Sj) = cH

(11)

where the symbol ∗ indicates the adjoint operator, cϕ is the dual variable associated with
the (moment) trajectory constraint, S and Q are the dual variables associated with the
moment matrix constraints and Sj and Qj are the dual variables associated with the
localizing matrix constraints. To interpret problem (11) in terms of SOS polynomials,
define the polynomial function

(t, x) 7−→ ϕ(t, x) = cϕmr(t, x).

Explicitating the adjoint operators yields the following problem:

max
ϕ∈R[t,x]r,s∈Σ[t,x,u]k,q∈Σ[x]r

sj∈Σ[t,x,u]k−dTj
,qj∈Σ[x]r−dFj

ϕ(0, x(0))

∂ϕ(x, t)

∂t
+ ∇xϕ(x, t)f(t, x, u) + h(t, x, u) = s(t, x, u) +

nT
∑

j=1

gTj
(t, x, u)sj(t, x, u)

ϕ(x, T ) − H(x) = −q(x) −

nF
∑

j=1

gFj
(x)qj(x).

(12)

Consider the right handsides of the first and second constraints in (12). The first one is a
polynomial non-negative on CT , while the second one is a polynomial non-positive on CF .
In fact, both are Putinar’s SOS representations of their respective left-hand-side [8]. As
a consequence, every feasible solution ϕ of (12) is such that

∂ϕ(x, t)

∂t
+ ∇xϕ(x, t)f(t, x, u) + h(t, x, u) ≥ 0 (13)

for all (t, x, u) ∈ CT and

H(x) − ϕ(T, x) ≥ 0 ∀x ∈ CF . (14)

7



Suppose the OCP has a solution and consider an optimal control law ū(t) which generates
an optimal trajectory x̄(t). Therefore, the optimal value function is

ϕ̄(t, x̄(t)) =

∫ T

0

h(t, x̄(t), ū(t))dt + H(x̄(T )).

Since a solution ϕ(t, x) ∈ R[t, x] of the optimization problem (12) is differentiable, the
fundamental theorem of calculus yields

ϕ(t, x̄(t)) = ϕ(T, x̄(T )) −

∫ T

t

ϕ(x̄(θ), θ)

∂θ
+

∇xϕ(x̄(θ), θ)f(θ, x̄(θ), ū(θ))dθ.

Combining with the two preceding equations yields

ϕ̄(t, x̄(t))−ϕ(t, x̄(t))=[H(x̄(T ))−ϕ(T, x̄(T ))]+

[
∫ T

t
∂ϕ(x̄(θ),θ)

∂θ
+∇xϕ(x̄(θ), θ)f(θ, x̄(θ), ū(θ))+h(θ, x̄(θ), ū(θ))dθ].

(15)

From (13) and (14), both terms in square braces in the right handside of (15) are non-
negative. Therefore:

• ϕ̄(0, x(0)) − ϕ(0, x(0)) ≥ 0 and so, as in the moment formulation, one obtains a
lower bound on the optimal value function. Therefore, the SOS formulation can be
interpreted as the search of a smooth subsolution of the Hamilton-Jacobi-Bellman
optimality condition

min
u∈U(t,x)

[

∂ϕ(x, t)

∂t
+ ∇xϕ(x, t) + h(t, x, u)

]

= 0

(U(t, x) being the set of admissible input at x(t) = x).

• if ϕ̄(0, x(0))−ϕ(0, x(0)) is small, both terms in the right handside of (15) are small.
This implies that the integrand of the second term is small all along the trajectory.

Remark 3 So far we have discussed only OCPs for which the value of T is fixed. The
moment approach also applies for problems with free terminal time and when the dynamics
does not depend on t. By Bellman’s principle of optimality, the optimal value function
does not depend on t and so, in this case, the test functions are of the form xβ and the
occupation measure µT is on R

n × R
m (instead of R × R

n × R
m).

We next illustrate the effectiveness of the approach on a simple numerical example which
also motivates the developments of the next section.

Example 1 Consider the double integrator
[

ẋ1(t)
ẋ2(t)

]

=

[

0 1
0 0

] [

x1(t)
x2(t)

]

+

[

0
1

]

u(t)

8



with constraints x2(t) ≥ −1 and −1 ≤ u(t) ≤ 1, ∀t. Driving in minimum time T (x) any
initial condition x(0) = x to the origin is an interesting test problem because an analytic
solution is available [5]. Indeed, with x2 ≥ −1,

T (x) =















x2
2/2 + x1 + x2 + 1 if x1 ≥ 1 − x2

2/2

2
√

x2
2/2 + x1 + x2 if x1 ≤ 1 − x2

2/2 and
x1 ≥ −x2

2/2 sign(x2)

2
√

x2
2/2 − x1 − x2 if x1 < −x2

2/2 sign(x2).

Consider the initial condition x = (−0.5,−0.8) for which T (x) = 2.6111. To apply the
moment approach, set h(x(t), u(t)) = 1 and H(x(T )) = 0. Solving the moment problem
for different values of the degree r yields the values

degree 6 10 14 18
cost 1.3882 2.1533 2.5335 2.6061

In figure 1 the function T (x) and ϕ(x) obtained by solving the dual problem for r = 18
are represented with solid and dashed lines, respectively. Notice that ϕ(x) approximates

−1 −0.5 0 0.5 1
−1

0

1

2

3

4

x
1

co
st

Figure 1: T (x) (solid line) and ϕ(x) (dashed line) from example 1. The graph is obtained
for x2 = −0.8 and r = 18.

very well the value of T (x) at x = (−0.5,−0.8) but it gives a loose lower bound on the
other points. As expected, it also gives a very good lower bound on T (x(t)) at every point
x(t) of an optimal trajectory from x(0) = x.
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In the next section, the moment approach to optimal control is extended to obtain good
approximations of the value function on a larger set which will be used later to obtain a
good control law from the knowledge of an optimal solution ϕ of (12).

5 Approximation of the value function on a set

Consider the dual problem (12). From the cost ϕ(0, x(0)) to be maximized, the optimal
value function ϕ(t, x) is guaranteed to be a good approximation of T (x) only at all points
(t, x(t)) of an optimal trajectory from x(0) = x. Ideally, for control synthesis purposes,
we would like to enlarge the set where ϕ is a good approximation to a region that contains
an optimal trajectory (t, x(t)) from x(0) = x. To do this, the key observation is that the
trajectory moment constraint (6) is valid for any initial occupation measure µI and not
only for µI := δx.

Indeed, let µI be a probability measure for which we know how to calculate its moment
vector . The following equality holds

(AIw̄r)
′cϕ =

∫

ϕ(0, x)dµI .

For instance, if µI is a uniform probability measure on S

∫

ϕ(0, x)dµI =

∫

S

ϕ(0, x)dx.

In this case, the solution ϕ(t, x) of the optimization problem minimizes the L1 norm
∫

S
|ϕ̄(0, x) − ϕ(0, x)|dx where ϕ̄(t, x) is the optimal value function for the problem. This

can be easily verified by using the fact that
∫

S
|ϕ̄(0, x) − ϕ(0, x)|dx =

∫

S
ϕ̄(0, x)dx −

∫

S
ϕ(0, x)dx.

Example 2 Consider Example 1. Figure 2 displays T (x) (solid line) and ϕ(x) when S
is the line segment [(−1,−0.8) − (−0.5,−0.8)] (dotted line) and when S is the segment
[(−1,−0.8), (1,−0.8)] (dashed line).

From figure 2 one can make the following observations:

• There is a trade-off between the accuracy of the approximation of the value function
and the size of the set considered for the approximation;

• As the approximating function ϕ is a polynomial, it is difficult to obtain a good
approximation of the optimal value function T (x) at a point x where it is not
differentiable.

10
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Figure 2: Example 2: T (x) (solid line), ϕ(x) with S being the line segment [(−1,−0.8)−
(−0.5,−0.8)] (dotted line) and the line segment [(−1,−0.8) − (1,−0.8)] (dashed line).
The graph is obtained for x2 = −0.8 and r = 18.

While the first fact is quite normal, the second deserves more attention. The quality
of the approximation and the improvement when increasing the degree of the test func-
tions r depends on the specific optimal control considered: if the value function to be
approximated is smooth the moment approach performs better.

6 Control synthesis

As already observed, when an optimal solution of the SOS problem is close to the optimum
value, the (non-negative) integrand on the right hand side of equation (15) takes small
values along an optimal trajectory (0 when the HJB condition is satisfied). Therefore,
given an optimal solution ϕ of the SOS relaxation (12), a natural control law candidate
u(x(t)) is a global minimizer of

min
u∈U(t,x)

[

∂ϕ(x, t)

∂t
+∇xϕ(x, t)f(t, x, u)+h(t, x, u)

]

. (16)

Suppose gTj
does not depend on t (i.e. gTj

(x, u)) and define a box Sx around x and
contained in the set {x : ∃u : gTj

(x, u) ≤ 0, ∀j}. The control algorithm we propose is
the following:

11



1. Set x̄ = x(t).

2. Calculate the moments corresponding to a uniform probability measure on
Sx̄.

3. Solve the moment relaxation to the OCP.

4. Apply the control obtained by minimizing (16) until x(t) /∈ Sx̄.

5. Go to step 1.

First we show how the control strategy can be applied to the double integrator with state
and input constraints.

Example 3 The set U(x) of feasible controls is the interval [−1, 1] when x2 > −1 and
[0, 1] when x2 = −1. Indeed, when the trajectory constraint is active (gT (x) = x2 +1 = 0),
an admissible trajectory must be such that ġT (x) ≥ 0 and therefore u ≥ 0. As f is affine
in u and the cost does not depend on u, the control is easily obtained by checking the sign

of ∇xϕ(x)
[

0 1
]T

.

Figure 3 displays the trajectory obtained from the initial condition x(0) = (1, 1) with the
choice Sx̄ = {x : |x − x̄| ≤ 0.05, x2 ≥ −1}. The simulation stopped after 700 iterations
with a time of 3.5 seconds to reach a circle of radius 0.01; this is exactly the minimum
time required to reach the origin when calculated using T (·).

In some cases, like in the next example, the approximate value function can be computed
once and for all at time t = 0. It can also be proved that the resulting control law is
indeed stabilizing.

Example 4 Consider the nonlinear system
[

ẋ1(t)
ẋ2(t)

]

=

[

x2(t) − x1(t)
3 + x1(t)

2

u(t)

]

(17)

already considered in [7]. The objective of the optimal control problem with free terminal
time consists of driving to the origin the initial states from the set (x1, x2) ∈ S = [−1, 1]×

[−1, 1] by minimizing the cost functional
∫ T

0
h(x(t), u(t))dt with

h(x(t), u(t)) = x1(t)
2 + x2(t)

2 +
u(t)2

100
. (18)

From Remark 3, the approximated value function ϕ (computed with µI a known initial
probability distribution on S) does not depend on t. As f is affine in u and h is quadratic
in u, the control law u(x) can be obtained by the first order optimality conditions:

u(x) := −
1

2
∇xϕ(x)

[

0 1
]T

.

12



0 0.5 1 1.5
−1

−0.5

0

0.5

1

x
1

x 2

Figure 3: Example 3. Trajectory of the controlled system.

As this OCP has no analytic solution, we evaluate the control performance by simulating
the closed-loop system considering several initial conditions and then evaluating

gap =
2(UB − LB)

UB + LB
(19)

where LB is the lower bound on the cost given by the moment relaxation and UB is
the upper bound given integrating the cost during the simulations. The initial conditions
considered are on the boundary of S and are represented in Figure 4. For such values of
x(0) the trajectories converge to the origin considering test functions of degree r ≥ 6. In
the next table, the maximal value of the gap for the initial conditions considered is reported
for different values of r.

degree 6 8 10 12
gap 0.2275 0.0629 0.0577 0.0567

Observe that for r = 8 the performance of the control is rather satisfactory. Although
the gap is decreasing as expected (if optimality could be reached the gap would be 0), the
variation is really small. This is probably due to the fact that the current SDP solvers
have some difficulties handling even medium size problems. Figure 4 shows the trajectories
obtained for r = 10.

Using the moment approach we can also show that the proposed control drives the state
to the origin for every initial condition in S. Indeed, we consider the controlled system

13
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Figure 4: Example 4. Trajectories obtained for r = 10.

and the following problem: maximize
∫ T

0
x1(t)

2 +x2(t)
2dt under the constraint CI = S (all

the occupation measures and T are undetermined). By solving this problem for r ≥ 4,
we found an upper bound on the cost. Since by linearization we can verify the origin is a
local attractor, this upper bound implies that every trajectory starting from S reaches the
origin.

7 Conclusions

This paper is a follow-up to [4, 5] where a sequence of lower bounds were derived for the
optimal value of a polynomial optimal control problem (OCP), following an occupation
measure approach. In the current paper, we propose some techniques to constructively
derive a control law from the solution of the convex linear matrix inequality (LMI) relax-
ations of the OCP. So our contribution can be seen as an extension to synthesis of the
performance analysis results of [4, 5].

Generally speaking, we believe that the moment formulation of OCP is an appealing alter-
native to indirect methods based on Lyapunov or Hamilton-Jacobi-Bellman techniques.
The moment formulation deals directly with systems trajectories. The resulting primal
LMI moment problem admit a dual LMI sum-of-squares (SOS) formulation which is, how-
ever, instrumental to the explicit computation of a control law. In this context, the nice
interplay between functional analysis (measure theory) and algebraic geometry (repre-
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sentation of polynomial positive on semialgebraic) may provide constructive answers to
potentially difficult control synthesis problems.

Current limitations of the approach are as follows.

First, as we are seeking a polynomial value function (a smooth subsolution of the Hamilton-
Jacobi-Bellman equation) that approximates the (possibly non-smooth) optimal value
function ϕ̄(t, x), it may happen that precision deterioriates at points where ϕ̄(t, x) is non-
smooth. Partitioning of the state-space, and/or iterative computation of the polynomial
value function in a neighborhood moving along optimal trajectories (like in example 3)
could help address this issue, at the price of an increased computational burden.

Second, we are relying on the performance of current available general-purpose SDP
solvers. Semidefinite programming is a relatively young research field, and the degree of
maturity of SDP solvers is far from that of, say, linear or convex quadratic programming
solvers. More specifically, as far as we know, there is currently no numerically stable SDP
solver, and no tractable estimate of the conditioning of an LMI problem. For example,
it is expected that the choice of a basis to represent polynomials and moments has a
significant impact on the problem conditioning, and hence on the numerical behavior of
the solvers.

Third, the number of variables and constraints in the LMI problems grows quickly as a
function of the number of state and input variables and the degree of the polynomial ap-
proximation of the value function. Current general-purpose SDP solvers can deal with a
few thousands variables and constraints, well below the dimensions of moment LMI prob-
lems corresponding to OCPs with, say, 6 states and 2 inputs. For these reasons, dedicated
primal-dual interior-point methods tailored to the specific quasi-Hankel or quasi-Toeplitz
structure of moment LMI problems would be welcome.

Finally, we are currently working on a user-friendly OCP module for GloptiPoly 3 [1],
that helps formulating explicitly an OCP as a generalized problem of moments. The user
only provides the polynomial data of the OCP, and the module automatically generates
an approximate optimal control law. Once it is ready and fully documented, the software
will be freely available for download from the GloptiPoly 3 webpage

www.laas.fr/∼henrion/software/gloptipoly3
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