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Abstract

The effect of the electric double layer (EDL) on the
bypass transition mechanism in the linear evolution stage
is explored through direct numerical simulations. An initial 
perturbation velocity field consisting of a pair of
counterrotating vortices is introduced in Poiseuille and
EDL flows and the time-space evolution of the perturbed
field is analysed for short times at half the critical 
Reynolds numbers (3000 for Poiseuille and 300 for EDL).
The wall normal and spanwise perturbation velocities
development are both quantitatively and qualitatively
similar in macro and micro flows. The streamwise velocity,
which is initially zero and set up by the generation of the 
wall normal vorticity is twice larger under the EDL effect.
Both flows develop inclined strong streamwise shear
layers. Overall is the close similarity of the disturbance
evolution showing that the three dimensional linear
mechanism in EDL flow lead to the structures that are at
least as strong as in Poiseuille flow.

1. Introduction and background

We have recently shown that the electric double 
layer destabilizes considerably the linear instability of the
micro-channel flows (Tardu, 2004 a and b). It is recalled
that the velocity profile under the electrokinetic EDL effect
can be put in non-dimensional form as:
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where the scaling velocity is the centreline velocity of the

Poiseuille component, i.e. 
a 2 dp dx

2
 and the scaling

length is the half channel height a . There are several 

parameters in this equation, for instance G
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0

,

with  standing for the ionic number concentration,n 0 z
for the valence of positive or negative ions, e  for the

electron charge 0 the electric conductivity of the fluid,
and for its dynamic viscosity. One of the most important
quantities involving in (1) is the non-dimensional Debye-
Hückle parameter
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with  and 0  being respectively the dielectric constant 
of the medium and the permittivity of vacuum, k  the
Boltzmann constant and T  the absolute temperature. The
characteristic EDL thickness is 1

b

k . The non-dimensional

Zeta potential reads for
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The important difference between the EDL and
macro-Poiseuille flow profiles is the presence of an

inflexional point at y
1

arcsin h
2

r 2 sinh  in the

EDL profile where r  is the ratio of the EDL and Poiseuille
flows centreline velocities. This makes the flow inviscidly
unstable, according to the Fjortoft’s criteria. The neutral 
curves deduced from the hydrodynamic stability analysis
are summarized in Fig.1. It is clearly seen that the critical 
Reynolds number decreases by a factor nearly equal to 2 
under the EDL effect at 41 : the critical wave and
Reynolds numbers of the microflow are respectively

c 1.10  and Re c 3190 , to be compared with 

c 1.02  and Re c 5772  of the conventional Poiseuille 
flow. This effect can be more appreciated if it is recalled 
that, at 41 , the friction factor increases by only some
10%. It is clear that one of the most significant effects of 
EDL is the decrease of the critical Reynolds number, rather
than the increase in friction coefficient or the apparent 
viscosity.
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To each couple ,G
2

 corresponds a different set of

the critical wave and Reynolds numbers c , Rec . It is

difficult to illustrate the interdependency of Rec  via G
2

,

since c  changes continuously as G
2
 varies. We fixed

the wave number at its macro-scale flow critical value 
c 1.02  to give a general tendency and extract clear

information.

There is a range of G
2

 in which the critical Reynolds
number decreases sharply before reaching a plateau region
wherein Re c  is close to the critical number deduced from
the neutral curves. This range varies with  and it is about

two decades large. The lower and upper limits of the G
2

range increase with . It is clear both from Fig. 2 that

Re c  is more sensitive to G
2

 when the Debye-Hückel
parameter is small enough, say for 40 . The first and 
main condition to expect significant EDL effects on 
hydrodynamic linear stability is to deal with liquids of low
ionic concentration. The second condition requires large

enough G
2

value. This is fulfilled by low conductivity,
which is generally associated with wall/liquids interactions

that lead to high Zeta potential . The second condition is 
less critical than the first. To show this, consider a median
value of 20 .

The non linear saturation of the primary stability and 
formation of a secondary flow, together with the secondary
instability processes have to be analyzed in EDL flow
similarly to the Poiseuille macro-flow. Some arguments on
the reinforcing effect of the EDL on the subcritical nature
of the macro Poiseuille flow may however already be
given. The square of the amplitude of a finite disturbance
is given by:

d A1
2

d t
2 ci A1

2 k1 k2 k3 A1
4 (3)

according to Stuart (1960). The flow reaches a 
subcritical equilibrium state when k . The 
coefficient k represents the distortion of the mean motion:
it is related to the eigenfunctions of the linear stability
problem, and it is negative. The coefficient k  is linked to
the generation of the harmonic of the fundamental and is
also likely negative. The wall normal distortion of the
fundamental (k ) must “ be positive and outweigh the
combined negative effect of k  and k to reach a 

subcritical state”. Now, k is proportional to Re . It 
has therefore a significantly smaller negative contribution
to under the EDL effect. Furthermore, part of 
the terms involving in the coefficient k is inversely
proportional to Re and the EDL presumably reinforces 
the positive character of k  in the subcritical state.
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The EDL effect on the nonlinear stability mechanism is
analyzed through the spatio-temporal development of a 
localized disturbance in a channel flow by Direct
Numerical Simulations in this investigation. A
perturbation related to a pair of counter rotating vortices is
followed in time and space with and without EDL. The
main aim is to investigate the effect of the double
electrostatic layer on the linear, nonlinear and breakdown 
stages in the by-pass transition process. 

There are at least two fundamental reasons to investigate
the by-pass transition in micro-channel flows. This
transition scenario is related to the disturbance growth on
time scales significantly shorter than typical Tollmien-
Schilichting (TS) waves that “by-passes” the spatial and
temporal development of the two-dimensional disturbances
and their inherent secondary instabilities. The set-up of 
three-dimensionality leads to the achievement of finite
amplitudes and of the non-linear effects. They can mainly
be generated by local surface irregularities such as the
roughness. The latter, is of course not a micro-effect,
because it affects the characteristics in macro and micro
flows exactly in the same manner at similar scaled 
roughness dimensions. Yet, it is more difficult to control
the roughness geometry and dimensions in microchannels.
Note that the roughness does not affect the stability 
characteristics of a developed internal flow, in the TS
waves sense, except in the entrance region. Thus, the by-
pass transition process is a presumably more common
phenomena in micro-flows. The second reason to
investigate the development of the 3D localized
disturbances has to the associated with the rapid 
disturbance algebraic growth. The two-dimensional waves 
are always the least stable modes according to the Squire’s
theorem. However, the damping of oblique waves may be 
smaller at subcritical Reynolds numbers as already shown 
and mentioned in several investigations (see Henningson et
al., 1993 for example). The present study deals with the
detailed analysis of the time-space development of a 
localized disturbance in wall bounded flows with
inflexional (EDL) mean velocity profiles compared to the
non-inflexional (Poiseuille) ones.  Because of the large
computational efforts needed, only small amplitude
disturbances in their early stage of development could be 
analyzed in this paper. More results including medium and 
large amplitude disturbances leading to the formation of 
turbulent spots shall be presented in the Symposium.

2. Direct Numerical Simulations (DNS)

The Orlandi’s (2001) DNS code has been used and
modified for the present purpose. The fractional step is 
used with the non-linear terms explicitly treated by a 
Runge-Kutta scheme. The viscous terms are discretized in
time with the Crank-Nicholson scheme. A nonuniform grid
in the wall normal direction is applied through a stretched
coordinate transformation. The set of equations is
integrated by a fractional step method through which
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imposed streamwise and spanwise periodicity permit the
use of Fourier series. The computations are performed on a
IBM pSeries 630 (Power 4, 1.45 GHz) workstation and at
IDRIS (Computational Center of the CNRS-French
National Research Center). The dimensions of the
computational domain are 2  in the wall normal direction,a
16 a  in the streamwise , and 8x a  in the spanwise z

directions. The quantities are scaled by the half channel
height and the centerline velocity of the related Poiseuille

flow (
a 2 dp dx

2
). Thus, the time scale for instance is

2

a dp dx
. The number of modes is 256 128 128  in

the  and x, y z directions. The resolution for the Poiseuille
flow is better than Henningson et al. (1993) for the small
perturbation amplitude case.

3. Localized initial disturbance

The initial structure is two pairs of counter-rotating
vortices exactly as in Henningson et al. (1993). The form
is:

f y x
lx

z exp x
lx

2
z

lz

2

    (4) 

and the velocity components of the perturbed field are:

u , v , w y sin , z , y cos                 (5) 

in respectively the streamwise, wall normal and
spanwise directions. The lengths l  and l stand for the 
streamwise and spanwise lengths of the disturbance
( l ) and 

x z

x lz 2  is its amplitude. The angle  of the
disturbance can be used as a parameter governing the
distribution of the initial energy in different regions of
wavenumber space. One took: 

f (y) 1 y
p

1 y
q

(6) 

with p q 2 , as in Henningson et al. (1993). The
perturbations (5) are superimposed to the mean velocity
profile as initial conditions, and the flow field is followed
in time and space. The angle of the perturbation is 0
here. Thus the initial streamwise velocity perturbation
component is null.

The instantaneous 3D non-dimensional Navier Stokes
equation under the EDL external force:

ui

t

ui u j

x j

p

xi

1
Re

2 ui

xj
2

r 2

Re

sinh y

sinh
   (7) 

is adequately resolved in time and space with the
previously indicated initial conditions. The last forcing 
term is of course absent in the macro-scale Poiseuille

simulations. The streaming current is the weighted integral
of the charge density by the cross-sectional velocity field:

IS u x, y, z, t x, y, z, t dS S u

where < > stands for the cross-section average and S  is the
cross-sectional area of the channel. The streaming current 
equals to the conduction current in the steady-state
configuration. Denoting the mean and the fluctuating
quantities respectively by q  and q , one has 
IS S u S u S u S u  with
u u y  and (y)  for a 2D channel flow. The first

term is the steady state value and results in the electric 
force given as the last term in the equation (7). The second

term is negligible when
u u

u
1 , which is the case in

the stability analysis conducted here. The set-up of the 
charge density fluctuations  depends on whether the
Boltzmann distribution is valid or not. The left hand side of 
the Nernst-Planck equation governing the ionic
concentration n  can be put in the form:i
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where  is the electric potential, and  is the Péclet 
number with:

Pe

Pex u u
a

Di
, Pey v

a

Di
, Pez w

a

Di

Di  standing for the diffusion coefficient of the type-i ion.

The largest unsteady term is clearly Pey
ni

y
 which is still

negligible because of the small amplitude v  fluctuations.
The time dependent terms of the convective-diffusion
Nernst-Planck equation are therefore small in the present
investigation, and the electric force is adequately modeled
in the Eq. 7, providing that the velocity profile u u y  is

not appreciably affected by the secondary instability.

4. Results

There are several factors that make the computations
substantially heavy and time consuming. First of all, the
EDL layer has to contain at least 10 points or so. This is
hard to achieve even in the stretched coordinate system
when the Debye-Hückle parameter is large. The
computational domain has to be increased to obtain a self-
similar form of the spot and the number of modes has also
to be large enough. That is particularly important when the
amplitude of the initial perturbation is large, which is, on
the other hand necessary to describe the non-linear stages
of the transition process. All the computations are 
performed in double precision that is time consuming at
least in the data processing stage. For these reasons, we are 
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able to present only partial results here corresponding to
the early linear stages of the development of a small
amplitude localized disturbance corresponding to

0.0001  and a maximum initial normal velocity
amplitude of 4. . A flow with a relatively severe EDL
effect is chosen for the purpose and for the same reasons.
We took

10 6

10 ,  and G 764 0.89  that would
typically correspond to a flow in a microchannel of 25 m

height, of an infinitely diluted KCl aqueous solution
(n ) subjected to a Zeta potential of 22 
mV. The Debye length is 1.25 

0 3.764 1019 m 3

m , and the bulk

conductivity is . The critical Reynolds 
number in this case is 635 compared with 5772 of the
macro flow. Thus, since the aim is to analyze the 
subcritical nature of the by-pass mechanism, we took

0 8 10 9 S / m

Re 3000 in the Poiseuille flow and Re 300  in the
EDL flow, i.e. ten times smaller than in the macro-flow.
   Fig. 2 shows the spatial evolution of v  component of the
perturbation velocity at  and t  in Poiseuille
and EDL flows. Please be aware that the maximum and 
minimum of the velocity fields and the contour spacing are 
not identical in the figures. We tried to choose these
parameters to have a reasonable “topological similarity”
between micro and macro flows, and they differ because of
the differences in the base flows and the Reynolds 
numbers. The reader may first compare the results 
corresponding to the Poiseuille flow with those of
Henningson et al. (1993, their Fig. 2, p. 181) to notice the
excellent correspondence, despite the differences used in
the numerical parameters and procedures. We see the
characteristics of the dispersion of a wave packet with
streamwise elongation and spanwise inclination of the
velocity contours. Globally the time and space evolution of 
the wall normal and spanwise perturbation velocities are 
both qualitatively and quantitatively similar in the macro
and micro-flows (remember that the EDL Reynolds
number is ten times smaller). However, the spanwise
gradient of v is significantly more important in EDL than
the Poiseuille flow pointing at a relative enhancement of
the streamwise vorticity (not shown here). 

y 0.56 10

'

One of the basic feature of the linear transient (or 
algebraic) growth mechanism is the set-up of a streamwise
velocity field while, it is initially zero (since 0 ). The 
algebraic growth is related to the generation of the wall

normal vorticity y

w

x

u

z
by the tilting of the

mean spanwise vorticity through the
u

y

v

z
 source term.

A second plausible explanation can be based on arguments
similar to the evolution of the transport equations in
turbulent shear flows. The temporal and spatial evolution
of some local average u v  is produced by

v v
u

y
, that, in return generates u u  through

the 2 u v
u

y
 term. The u algebraic growth is an 

order of magnitude larger than v  and w  in both flows.
One of the aims of this investigation is to explore the

control possibilities of micro-scale flows through the EDL
effects. It is asked whether the transition can be controlled
by transient application of an external electric force. A
numerical experiment has been conducted to have 
preliminary insight into these aspects. The external force is 
applied at t=0 and shut down immediately after, i.e. the

force term in the equation (4) was
r 2

Re

sinh y

sinh
t ,

(t ) standing for the Dirac function. The experiments have 
shown the profound transient effect of the EDL field. The
flow feature at short times is quite similar to the flow under 
the continuous EDL forcing with the apparition of an
inclined streamwise shear layer at t , as in the macro-
flow (Fig.3). This is a common characteristic of the three-
dimensional linear mechanism (Breuer and Haritonidis,
1990; Henningson et al., 1993). The shear layer is also
present in the transient EDL flow at t , with lesser 
steepness (not shown here). 

20

10

In a general manner, the Fourier components that have a 
potential of exponential growth such as associated with
inflectional instabilities will unlikely experience large
transient growth except when the initial condition has a 
sufficient projection on the two-dimensional wave space. 
We, therefore tried an axisymmetric disturbance with zero 
normal vorticity:

u , v , w
x

r2 y ,
1

r r ,
z

r2 y

2
f y r2 exp

r

l

2 (8) 

with r2 x 2 z2 , l 10 , 0.4 and f (y)  same as in (6)
with p 2, q 5 . This disturbance is qualitatively close to
the flow induced by an axisymmetric jet at the lower wall
of the channel. The perturbation took rapidly the form of a 
small turbulent spot with the clear apparition of  the small
scales as it is seen in Fig. 4.

5. Conclusion

The electric double layer severely destabilizes in the 
linear sense the macro Poiseuille flow providing that the
liquid contains a small number of ions and that the fluid-
surface interaction leads to large enough Zeta potential. 
The Tollmien-Schilichting waves have their own secondary 
instabilities and the non-linear saturation characteristics. 
The by-pass transition mechanism is different, in the sense
that the disturbance growth on time scales significantly
shorter than the TS waves. The local disturbances may be 
of different forms and caused by several factors such as
surface roughness. 
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The time-space development of such a disturbance set-up 
by two counterrotating vortices has been analyzed here, in
an EDL flow with a non-dimensional Debye-Hückel
parameter equal to ten. The results are systematically
compared with the macro-scale Poiseuille flow. Only the
perturbation with small amplitude could be reported here. 
The results show that the perturbation velocity components
behave in a quite similar manner in EDL and Poiseuille
flows, when the scaling is based on the centerline velocity
and the channel half-width. The basic feature of the three-
dimensional linear stability scenario is the generation (or
reinforcement) of wall normal vorticity created by the
tilting of the mean spanwise vorticity. This mechanism
leads to the set-up of zones of large streamwise velocity
variations and the formation of internal streamwise shear 
layers. The latter are accentuated by EDL, at least in the 
early stages of transient growth. 
The problem contains a large number of parameters and 

the computations are time consuming. Yet, our main aim is
to study the medium and large amplitude perturbations
leading to turbulent spots. The main question, for instance,
is the determination of subcritical transitional Reynolds
numbers related to localized disturbances. These points are 
currently being investigated and more results shall be
presented at the symposium.

The experimental verification of both the linear and
nonlinear stability mechanism under the EDL effect is 
difficult as we largely discussed before (Tardu, 2004 a and 
b). The EDL effect has a sense when the liquid contains a 
small amount of ions and the Zeta potential is large
enough. For instance, the theoretical value of the Debye
length in the pure water is about one micron, but it is
difficult to eliminate all the impurities especially in the
double layer. Other liquid/surface configurations would 
certainly be more convenient for experimental purposes. 
One could for instance use some hydrocarbures combined
with additives in metallic channels. Such liquids have been
largely investigated in the literature for a while for the
electrisation problems. The Debye length in a cyclohexane
(C6 H12 ) flow containing the tri isoamylammonium picrate
is for example as large as 40 m (Andriamitanjo, p. 51) 
and the Zeta potential is 45 mV . The transition-
stability experiments can be conducted in minichannels of 
height larger than 800 m  with such liquids, and large
Reynolds number can be reached without any specific 
difficulties.
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Figure 1 Neutral curves of the EDL flow compared with the Poiseuille flow. a) The open circles correspond 
to Poiseuille flow with . Bold circles correspond to 41 ,G 12720  and 2.1254  ( reference case). 
The rest of the results are obtained by changing the microchannel height and keeping constant the rest of 
the parameters. The triangle is obtained for 164  b) Neutral curves for =8, 16 and 41 compared with the 
macroscale flow.

Poiseuille EDL

Figure 2 The wall normal perturbation velocity contours for  Poiseuille ( 3000Re ) and EDL flows ( Re 300 ) at 

and . The maximum and minimum velocities in Poiseuille flow are , and in EDL flow 

.
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Poiseuille EDL 

Figure 3 The streamwise perturbation velocity contours for Poiseuille ( 3000Re ) and EDL flows ( Re 300 ) at 
in the t 20 yx plane at , when the electrical force field is turned off at t0z 0 (see the text).  The maximum 

and minimum velocities in Poiseuille flow are 10 10 5 , and in EDL flow 6 10 5 .
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Figure 4 The wall normal perturbation velocity contours the EDL flows ( Re 300 ) at t in the 15 x zplane
at  with an axisymmetric disturbance. Note the apparition of small scales in the turbulent spot.y 0.8
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