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Abstract. We introduce a new test procedure of independence in the framework of para-

metric copulas with unknown marginals. The method is based essentially on the dual rep-

resentation of χ2-divergence on signed finite measures. The asymptotic properties of the

proposed estimate and the test statistic are studied under null and alternative hypothesis,

with simple and standard limit distributions both when the parameter is an interior point

or not.

1 Introduction and motivations

Parametric models for copulas have been intensively investigated during the last decades.

Copula have become popular in applied statistics, because of the fact that they constitute

a flexible and robust way to model dependence between the margins of random vectors. In

this framework, semiparametric inference methods, based on pseudo-likelihood, have been

applied to copulas by a number of authors (see, e.g., Shih and Louis (1995), Wang and Ding

(2000) Tsukahara (2005) and the references therein). Throughout the available literature,

investigations on the asymptotic properties of parametric estimators, as well as the relevant
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test statistics, have privileged the case where the parameter is an interior point of the ad-

missible domain. However, for most parametric copula models of interest, the boundaries of

the admissible parameter spaces include some important parameter values, typically among

which, that corresponding to the independence of margins. This paper concentrates on this

specific problem. We aim, namely, to investigate parametric inference procedures, in the

case where the parameter belongs to the boundary of the admissible domain. In particular,

the usual limit laws both for parametric copula estimators and test statistics become invalid

under these limiting cases, and, in particular, under marginal independence. Motivated

by this observation, we will introduce a new semiparametric inference procedure based on

χ2-divergence and duality techniques. We will show that the proposed estimators remain

asymptotically normal, even under the marginal independence assumption. This will allow

us to introduce test statistics of independence, whose study will be made, both under the

null and alternative hypotheses.

It is well known since the work of Sklar (1959) that the joint behavior of a bivariate vec-

tor (X1, X2) with d.f. F (x1, x2) := P (X1 ≤ x1, X2 ≤ x2), and continuous marginal d.f.’s

Fi(xi) := P (Xi ≤ xi), i = 1, 2, is characterized by the copula (or dependence function) C

associated with F (·, ·). The copula function is defined, for all (u1, u2) ∈ (0, 1)2, through the

identity

C(u1, u2) := P {F1(X1) ≤ u1, F2(X2) ≤ u2} .

Many useful multivariate models for dependence between X1 andX2 turn out to be generated

by parametric families of copulas of the form {Cθ; θ ∈ Θ}, typically indexed by a vector val-

ued parameter θ ∈ Θ ⊆ Rp (see, e.g., Kimeldorf and Sampson (1975a), Kimeldorf and Sampson

(1975b), and Joe (1993)). The nonparametric approach to copula estimation has been ini-

tiated by Deheuvels (1979b), who introduced and investigated the empirical copula process.

In addition, Deheuvels (1980, 1981) described the limiting behavior of this empirical process

(see, also Fermanian et al. (2004a) and the references therein). In this paper, we consider

semiparametric copula models with unknown general margins.
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In order to estimate the unknown true value of the parameter θ ∈ Θ, which we denote,

throughout the sequel, by θT ∈ Θ, some semiparametric estimation procedures, based on

the maximization, on the parameter space Θ, of properly chosen pseudo-likelihood criterion,

have been proposed by Oakes (1994), and studied by Genest et al. (1995), Shih and Louis

(1995) and Wang and Ding (2000), Tsukahara (2005) among others. In each of these papers,

some asymptotic normality properties are established for
√
n
(
θ̃− θT

)
, where θ̃ = θ̃n denotes

a properly chosen estimator of θT . This is achieved, provided that θT lies in the interior,

denoted by Θ̊, of the parameter space Θ ⊆ Rp. On the other hand, the case where θT ∈ ∂Θ :=

Θ − Θ̊ is a boundary value of Θ, has not been studied in a systematical way until present.

Moreover, it turns out that, for the above-mentioned estimators, the asymptotic normality

of
√
n
(
θ̃ − θT

)
, may fail to hold for θT ∈ ∂Θ; indeed, under some regularity conditions,

when θ is univariate, we can prove that the limit law is the distribution of Z1(Z≥0) where

Z is a centred normal variable, and that the limit law of the generalized pseudo-likelihood

ratio statistic is a mixture of χ2
1 law with one degree of freedom and Dirac measure at

zero; see Bouzebda and Keziou (2007). Furthermore, when the parameter is multivariate,

the derivation of the limit distributions under the null hypothesis of independence, becomes

much more complex; see Self and Liang (1987). Also, the limit distributions are not standard

which yields formidable numerical difficulties to calculate the critical value of the test. We

cite below some examples of parametric copulas, for which marginal independence is verified

for some specific values of the parameter θ, on the boundary ∂Θ of the admissible parameter

set Θ. We start with examples for which θ varies within subsets of R. Such is the case for

the Gumbel (1960) family of copulas, which is one of the most popular model used to model

bivariate extreme values. This family of copulas is defined, for 0 < u1, u2 < 1, by

Cθ(u1, u2) := exp
{
−
[
(− log u1)

θ + (− log u2)
θ
]1/θ
}
, for θ ∈ [1,∞). (1.1)

A useful family of copulas, due to Joe (1993), is given, for 0 < u1, u2 < 1, by

Cθ(u1, u2) := 1 −
[
(1 − u1)

θ + (1 − u2)
θ − (1 − u1)

θ(1 − u2)
θ
]1/θ

, for θ ∈ [1,∞). (1.2)
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The Galambos (1975) family of copulas is given, for 0 < u1, u2 < 1, by

Cθ(u1, u2) := u1u2 exp
{[

(− log u1)
−θ + (− log u2)

−θ
]−1/θ

}
, for θ ∈ [0,∞). (1.3)

The Hüsler and Reiss (1989) family of copulas is defined, for 0 < u1, u2 < 1, by

Cθ(u1, u2) := u
Φ(θ−1+ θ

2
log[(− log u2)/(− log u1)])

2 u
Φ(θ−1+ θ

2
log[(− log u1)/(− log u2)])

1 , (1.4)

for θ ∈ [0,∞), with Φ(·) denoting the standard normal N(0, 1) distribution function.

The Gumbel-Barnett copulas are given, for 0 < u1, u2 < 1, by

Cθ(u1, u2) := u1u2 exp {−(1 − θ)(log u1)(log u2)} , for θ ∈ [0, 1]. (1.5)

The Clayton copulas are such that, for 0 < u1, u2 < 1,

Cθ(u1, u2) =
(
u−θ

1 − u−θ
2 − 1

)−1/θ
, for θ ∈ [0,∞). (1.6)

Parametric families of copulas with parameter θ varying in Rp, for some p ≥ 2, include the

following classical examples. Below, we set θ =
(
θ1, θ2

)⊤ ∈ R2.

Cθ(u1, u2) :=
{

1 +
[
(u−θ1

1 − 1)θ2 + (u−θ1

2 − 1)θ2

]1/θ2

}−1/θ1

, θ ∈]0,∞[×[1,∞[; (1.7)

Cθ(u1, u2) := exp
{
−
[
θ2

−1 log
(

exp
(
−θ2(log u1)

θ1

)
(1.8)

+ exp
(
−θ2(log u2)

θ1

)
− 1
)]1/θ1

}
, θ ∈ [1,∞[×]0,∞[.

For other examples of the kind, we refer to Joe (1997).

For each of the above examples, the independence case CθT
(u1, u2) = u1u2 occurs at the

boundary of the parameter space Θ, i.e., when θT = 1 for the models (1.1), (1.2) and (1.5),

θT = 0 for the models (1.3), (1.4) and (1.6), θT = (0, 1) for the bivariate parameter model

(1.7), and θT = (1, 0) for the bivariate parameter model (1.8). In the sequel, we will denote

by θ0 the value of the parameter (when it exists), corresponding to the independence of the

margins, i.e., the value of the parameter for which we have

Cθ0
(u1, u2) := u1u2, for all (u1, u2) ∈ (0, 1)2.
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Hence, θ0 = 1 for the models (1.1), (1.2) and (1.5), θ0 = 0 for the models (1.3), (1.4) and

(1.6), θ0 = (0, 1) for the model (1.7), and θ0 = (1, 0) for the model (1.8).

In contrast with the preceding examples, where θ0 ∈ ∂Θ is a boundary value of Θ, the case

where θ0 is an interior point of Θ may, at times, occur, but is more seldom. An example

where θ0 ∈ Θ̊ is given by the Farlie-Gumbel-Morgenstern (FGM) copula, defined by

Cθ(u1, u2) := u1u2 + θu1u2(1 − u1)(1 − u2), θ ∈ Θ := [−1, 1], (1.9)

and for which θ0 = 0 ∈ Θ̊ =] − 1, 1[.

In the present article, we will treat, in turn, parametric estimation of θT , and tests of the

independence assumption θT = θ0. We consider both the case where θ0 ∈ Θ̊ is an interior

point of Θ, and the case where θ0 ∈ ∂Θ is a boundary value of Θ. To treat this case,

we propose a new inference procedure, based on an estimation of χ2-divergence by duality

technique. This method may be applied independently of the dimension of the parameter

space. Also the limit law of the estimate of the parameter is normal and the limiting

distribution of the proposed test statistic is χ2 under independence, either when θ0 is an

interior point, or when θ0 is a boundary point of Θ, independently of the dimension of the

parameter space. The idea is to include the parameter domain Θ into an enlarged space, say

Θe, in order to render θ0 an interior point of the new parameter space, Θe. The conclusion is

then obtained through an application of χ2-divergence and duality technique. Our methods

rely on the fact that, under appropriate assumptions, the definition of the density cθ(·, ·) :=

∂2

∂u1∂u2

Cθ(·, ·) of Cθ(·, ·), pertaining to the models we consider, may be extended beyond the

“standard” domain of variation Θ of θ. On the other hand, the definition of cθ(·, ·) which

corresponds to these extensions, is then, in general, not any more a density, and may, at

times, become negative. For example, such is the case for the parametric models (1.1), (1.2),

(1.3) and (1.4), for which cθ(·, ·) is meaningful for some θ 6∈ Θ, but then, becomes negative

over some non-negligible (with respect to Lebesgue’s measure) subsets of (0, 1)2. This implies

that the log-likelihood of the data is not properly defined on the whole space Θe. For this

reason, we will use the χ2-divergence between signed finite measures. We will discuss this
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problem in more details, below, in section 2.

The remainder of the present paper is organized as follows. In section 2, we present our semi-

parametric inference procedure, based upon an optimization of the χ2-divergence between

the model (Cθ, θ ∈ Θe) and the empirical copula associated to the data, and by using the

dual representation of χ2-divergence. We then derive the asymptotic limiting distribution of

the proposed estimator. It will become clear later on from our results, that the asymptotic

normality of the estimate holds, even under the independence assumption, when, either, θ0

is an interior, or a boundary point of Θ, independently of the dimension of the parameter

space. The proposed test statistic of independence is also studied, under the null hypothesis

H0 of independence, as well as under the alternative hypothesis. The limiting asymptotic

distribution of the test statistic under the alternative hypothesis is used to derive an approx-

imation to the power function. An application of the forthcoming results will allow us to

evaluate the sample size necessary to guarantee a pre-assigned power level, with respect to

a specified alternative. Finally, section 4 reports a short simulation results. The proofs of

these results will be postponed to the appendix.

2 A semi-parametric estimation procedure through χ2-

divergence

As mentioned earlier, the problem of estimating θ, when θ ∈ ∂Θ, has not been systematically

considered in the scientific literature; and the classical asymptotic normality property of the

estimators is no more satisfied. To overcome this difficulty, in what follows, we enlarge

the parameter space Θ into a wider space Θe ⊃ Θ. This is tailored to let θ0 become an

interior point of Θe. Naturally, we assume that the definition of the function cθ may be

extended to Θe. The difficulty associated with this construction is that, subject to a proper

definition, the densities cθ of Cθ with respect to the Lebesgue measure, may become negative

on some non negligible subsets of I := (0, 1)2 (in this case cθ becomes the density of a signed

measure, see remark 3.2). Note that just as Deheuvels empirical copula is not a copula, is
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not necessarily a copula density and fail to integrate to 1. When such is the case, a semi-

parametric estimation of θT via log-likelihood cannot be used. To overcome this difficulty, we

introduce a new inference procedure, based on χ2-divergence methods, and duality technique.

Recall that the χ2-divergence between a bounded signed measure Q, and a probability P on

D, when Q≪ P is absolutely continuous with respect to P , is defined by

χ2(Q,P ) :=

∫

D

ϕ

(
dQ

dP

)
dP, where ϕ : x ∈ R 7→ ϕ(x) :=

1

2
(x− 1)2 . (2.1)

In the sequel, we denote by χ2(θ0, θT ) the χ2-divergence between Cθ0
and CθT

. Applying the

dual representation of φ-divergence obtained by Broniatowski and Keziou (2006) Theorem

4.4, we readily obtain that χ2(θ0, θT ) can be rewritten into

χ2(θ0, θT ) := sup
f∈F

{∫

I

f dCθ0
−
∫

I

ϕ∗(f) dCθT

}
, (2.2)

where ϕ∗ is used to denote the convex conjugate of ϕ, namely, the function defined by

ϕ∗ : t ∈ R 7→ ϕ∗(t) := sup
x∈R {tx− ϕ(x)} =

t2

2
+ t,

and F is an arbitrary class of measurable functions, fulfilling the following condition

∀f ∈ F ;
∫
|f | dCθ0

is finite and ϕ′(dCθ0
/dCθT

) = ϕ′(1/cθT
) ∈ F . Furthermore, the sup in

(2.2) is unique and achieved at f = ϕ′(1/cθT
).

Define the new parameter space Θe of θ as follows. Set

Θe :=

{
θ ∈ Rd such that

∫
|ϕ′(1/cθ(u1, u2))| du1du2 <∞

}
. (2.3)

By choosing the class of functions F , via

F := {(u1, u2) ∈ I 7→ ϕ′(1/cθ(u1, u2)) − 1 ; θ ∈ Θe} ,

we infer from (2.2) the relation

χ2(θ0, θT ) := sup
θ∈Θe

{∫

I

(
1

cθ(u1, u2)
− 1

)
du1du2 −

∫

I

(
1

2

1

cθ(u1, u2)2
− 1

2

)
dCθT

(u1, u2)
}
.(2.4)
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It turns out that the supremum in (2.4) is reached iff θ = θT . Moreover, in general, θT

is an interior point of the new parameter space Θe, especially under the null hypothesis of

independence, namely, when θT = θ0. Set

m(θ, u1, u2) :=

∫

I

(
1

cθ(u1, u2)
− 1

)
du1du2 −

{
1

2

1

cθ(u1, u2)
2 − 1

2

}
. (2.5)

In what follows, we propose to estimate the χ2-divergence χ2(θ0, θT ) between Cθ0
and CθT

,

by

χ̂2(θ0, θT ) := sup
θ∈Θe

∫

I

m(θ, u1, u2) dCn(u1, u2), (2.6)

and to estimate the parameter θT by

θ̂n := arg sup
θ∈Θe

{∫

I

m(θ, u1, u2) dCn(u1, u2)

}
, (2.7)

where Cn is the modified empirical copula, defined by

Cn(u1, u2) :=
1

n

n∑

k=1

1{F1n(X1k)≤u1}1{F2n(X2k)≤u2}, (u1, u2) ∈ I, (2.8)

and Fjn(t) := 1
n

∑n
k=1 1]−∞,t](Xjk), j = 1, 2.

Remark 2.1 The set Θe defined above is generally with non empty interior Θ̊e. In partic-

ular, we may check that θ0 (the value corresponding to independence) belongs to Θ̊e, since

the integral in (2.3) is finite; it is equal to zero when θ = θ0, for any copula density cθ.

For example, in the case of FGM copulas (1.9), it is easy to show that Θe = R. However,

the explicit calculation of the integral in (2.3) may be complicated for some copulas, in such

cases we use the Monte Carlo method to compute this integral for all θ ∈ Θe.

Statistic of the form

Ψn :=

∫

I

ψ(u1, u2) dCn(u1, u2),

belong to the general class of multivariate rank statistics. Their asymptotic properties have

been investigated at length by a number of authors, among whom we may cite Ruymgaart et al.

(1972), Ruymgaart (1974) and Rüschendorf (1976). In particular, the previous authors have

provided regularity conditions, imposed on ψ(·, ·), which imply the asymptotic normality of
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Ψn. The corresponding arguments have been modified by Genest et al. (1995), Tsukahara

(2005) and Fermanian et al. (2004b), as to establish almost sure convergence of the estima-

tors they consider. In the same spirit, the limiting behavior, as n→ ∞, of our estimator and

test statistic Tn, will make an instrumental use of the general theory of multivariate rank

statistics. Using some similar arguments as in Qin and Lawless (1994), the existence and

consistency of our estimator and test statistic will be established through an application of

the law of the iterated logarithm for empirical copula processes, in combination with general

arguments from multivariate rank statistics theory. In the sequel, without loss of generality,

we will limit ourselves to the case where the parameter is univariate. The extensions of our

result in a multivariate framework may be achieved, at the price of additional technicalities,

and under similar assumptions. We will make use of the following definitions.

Definition 2.1 (i) Let Q be the set of continuous functions q on [0, 1] which are positive

on (0, 1), symmetric about 1/2, increasing on [0, 1/2] and satisfy
∫ 1

0
{q(t)}−2dt <∞.

(ii) A function r : (0, 1) → (0,∞) is called u-shaped if it is symmetric about 1/2 and

increasing on (0, 1/2].

(iii) For 0 < β < 1 and u-shaped function r, we define

rβ(t) :=





r(βt) if 0 < t ≤ 1/2;

r{1 − β(1 − t)} if 1/2 < t ≤ 1.

If for β > 0 in a neighborhood of 0, there exists a constant Mβ, such that rβ ≤ Mβr

on (0, 1), then r is called a reproducing u-shaped function. We denote by R the set of

reproducing u-shaped functions.

Typical examples of elements in Q and R are given by

q(t) = [t(1 − t)]ζ , 0 < ζ < 1/2, r(t) = ̺ [t(1 − t)]−ς , ς ≥ 0, ̺ ≥ 0.

We will describe the asymptotic properties of the proposed estimate θ̂n under the following

conditions.
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(C.1) There exist functions r1,k, r2,k ∈ R such that

∣∣∣
∂k

∂θk
m(θT , u1, u2)

∣∣∣ ≤ r1,k(u1)r2,k(u2), for k = 1, 2,

and ∣∣∣
∂3

∂θ3
m(θ, u1, u2)

∣∣∣ ≤ r1,3(u1)r2,3(u2) on a neighborhood N(θT ) of θT ,

where
∫

I
{r1,k(u1)r2,k(u2)}2 dCθT

(u1, u2) <∞ for k = 1, 2, 3;

(C.2) The function (u1, u2) ∈ I 7→ ∂
∂θ
m(θT , u1, u2) is of bounded variation on I;

(C.3) For each θ, the function ∂
∂θ
m(θ, u1, u2) : I → R is continuously differentiable, and

there exist functions ri ∈ R, r̃i ∈ R and qi ∈ Q for i = 1, 2, such that

∣∣∣
∂2

∂θ∂ui
m(θ, u1, u2)

∣∣∣ ≤ r̃i(ui)rj(uj), i, j = 1, 2 and i 6= j,

and ∫

I

{qi(ui)r̃i(ui)rj(uj)} dCθT
(u1, u2) <∞, i, j = 1, 2 and i 6= j.

Set

Ξ := −E
[

∂2

∂θ2m (θT , F1(X1k), F2(X2k))
]
, (2.9)

and

Σ2 := Var
[

∂
∂θ
m (θT , F1(X1), F2(X2)) +W1(θT , X1) +W2(θT , X2)

]
, (2.10)

where

Wi(θT , Xi) :=

∫

I

1{Fi(Xi)≤ui}
∂2

∂θ∂ui
m (θT , u1, u2) cθT

(u1, u2) du1du2, i = 1, 2.

We can see that Ξ and Wi(Xi) can be defined, respectively, by

Ξ = E
[

∂
∂θ
m2 (θT , F1(X1k), F2(X2k))

]

and, for i = 1, 2,

Wi(θT , Xi) = −
∫

I

1{Fi(Xi)≤ui}
∂
∂θ
m (θT , u1, u2)

∂
∂ui

m (θT , u1, u2) cθT
(u1, u2) du1du2.
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Theorem 2.1 Assume that the conditions (C.1-2-3) hold.

(a) Let B(θT , n
−1/3) :=

{
θ ∈ Θe, |θ − θT | ≤ n−1/3

}
. Then, as n→ ∞, with probability one,

the function θ 7→
∫
m (θ, u1, u2) dCn(u1, u2) reaches its maximum value at some point

θ̂n in the interior of the interval B(θT , n
−1/3). As a consequence, the estimate θ̂n of θ

is n1/3-consistent, and satisfies
∫

I

∂
∂θ
m
(
θ̂n, u1, u2

)
dCn(u1, u2) = 0.

(b) As n→ ∞,
√
n(θ̂n − θT )

d→ N(0,Σ2/Ξ2).

The proof of Theorem 2.1 is postponed to section 6.

3 A test based on “χ2-divergence”

One of the motivations of the present work is to build a statistical test of independence,

based on χ2-divergence. In the framework of the parametric copula model, the null hypoth-

esis, namely, the independence case Cθ(u1, u2) = u1u2 corresponds to the condition that

H0 : θT = θ0. We consider the alternative composite hypothesis H1 : θT 6= θ0. The

corresponding generalized pseudo-likelihood ratio statistic is then given by

Sn(θ0, θ̃) = 2 log
supθ∈Θ

∏n
k=1 cθ(F̂1n(X1k), F̂2n(X2k))∏n

k=1 cθ0
(F̂1n(X1k), F̂2n(X2k))

,

where, for j = 1, 2, F̂jn stands for n/(n+1) times the marginal empirical distribution function

of the j-th variable Xj. The rescaling by the factor n/(n+1), avoids difficulties arising from

potential unboundedness of log cθ(u1, u2), when either u1 or u2 tends to 1. Since, θ0 is a

boundary value of the parameter space Θ, we can see, that the convergence in distribution

of Sn to a χ2 random variable is not likely to hold. In order to bring a solution to this

problem, we introduce the statistic

Tn(θ0, θ̂n) := 2n sup
θ∈Θe

∫

I

m(θ, u1, u2) dCn(u1, u2). (3.1)
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Below, we will show that, under the null hypothesis H0, the just-given statistic Tn(θ0, θ̂n)

converges in distribution to a χ2 random variable. This property allows us to build a test

of H0 against H1, asymptotically of level α. The limit law of Tn(θ0, θ̂n) will also be given

under the alternative hypothesis H1. The following additional conditions will be needed for

the statement of our results.

(C.4) We have

lim
θ→θ0

∂

∂ui
m(θ, u1, u2) = 0,

and there exist M1 > 0 and δ1 > 0 such that, for all θ in some neighborhood of θ0, one

has, for i = 1, 2,
∣∣∣∣
∂

∂θ
m(θ, u1, u2)

∂

∂ui
m(θ, u1, u2)cθ(u1, u2)

∣∣∣∣ < M1r(ui)
−1.5+δ1r(u3−i)

0.5+δ1 ,

where r(u) := u(1 − u) for u ∈ (0, 1);

(C.5) There exist a neighborhood N(θT ) of θT , and functions ri ∈ R such that for all θ ∈
N(θT ), we have

∣∣∣
∂

∂θ
m(θ, u1, u2)

∣∣∣ ≤ r1(u1)r2(u2) with

∫

I

{r1(u1)r2(u2)}2 dCθT
(u1, u2) <∞;

(C.6) There exist functions ri, r̃i ∈ R, qi ∈ Q i = 1, 2 such that

∣∣∣m(θT , u1, u2)
∣∣∣ ≤ r1(u1)r2(u2),

∣∣∣
∂

∂ui
m(θ, u1, u2)

∣∣∣ ≤ r̃i(ui)rj(uj), i, j = 1, 2 and i 6= j,

with ∫

I

{r1(u1)r2(u2)}2 dCθT
(u1, u2) <∞,

and ∫

I

{qi(ui)r̃i(ui)rj(uj)} dCθT
(u1, u2) <∞, i, j = 1, 2 and i 6= j.

Theorem 3.1 Assume that conditions (C.1-2-3-4) hold. Then, under the null hypothesis

H0, the statistic Tn converges in distribution to a χ2
1 random variable (with 1 degree of

freedom).
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Theorem 3.2 Assume that conditions (C.1-2-3) and (C.5-6) hold. Then, under the alter-

native hypothesis H1, we have

√
n

(
Tn

2n
− χ2(θ0, θT )

)

converges to a centered normal random variable with variance

σ2
χ2 := Var [m (θT , F1(X1k), F2(X2k)) + Y1(θT , X1) + Y2(θT , X2)] , (3.2)

where

Yi(θT , Xi) :=

∫

I

1{Fi(Xi)≤ui}
∂

∂ui
m (θT , u1, u2) cθT

(u1, u2) du1du2.

The proof of Theorem 3.1 is postponed until section 6.

Remark 3.1 An application of Theorem 3.1, leads to reject the null hypothesis H0 : θT = θ0,

whenever the value of the statistic Tn exceeds q1−α, namely, the (1−α)-quantile of the law of

the random variable χ2
1. The test corresponding to this rejection rule is then, asymptotically

of level α, when n→ ∞. Accordingly, the critical region is given by

CR := {Tn > q1−α} . (3.3)

The fact that this test is consistent follows from Theorem 2.3. Further, this theorem can be

used to give an approximation to the power function θT 7→ β(θT ) := PθT
{CR} in a similar

way to Keziou and Leoni-Aubin (2005) and Keziou and Leoni-Aubin (2007). We so obtain

that

β(θT ) ≈ 1 − Φ

(√
n

σ2
χ2

(q1−α

2n
− χ2(θ0, θT ))

))
, (3.4)

where Φ denotes, as usual, the distribution function of N(0, 1) standard normal random

variable. A useful consequence of (3.4) is the possibility of computing an approximate value of

the sample size ensuring a specified power β(θT ), with respect to some pre-assigned alternative

θT 6= θ0. Let n0 be the positive root of the equation

β = 1 − Φ

(√
n

σ2
χ2

(q1−α

2n
− χ2(θ0, θT )

))
, (3.5)

13



which can be rewritten into

n0 =
(a+ b) −

√
a(a+ 2b)

2χ2(θ0, θT )
, (3.6)

where a := σ2
χ2 (Φ−1(1 − β))

2
and b := q1−αχ

2(θ0, θT ). The sought-after approximate value

of the sample size is then given

n∗ := ⌊n0⌋ + 1,

where ⌊u⌋ denote the integer part of u.

Remark 3.2 If the parameter θ does not belong to Θ, i.e., θ ∈ Θe − Θ, the densities cθ,

with respect to the Lebesgue measure, associated to Cθ, may become negative on some non

negligible subsets of I. So, in this case

Cθ(u1, u2) :=

∫

(0,u1)×(0,u2)

cθ(u1, u2) dλ(u1, u2); ∀u ∈ I, (3.7)

may be a signed measure (and not a copula) for some θ ∈ Θe −Θ. Hence, the formula (2.7)

may lead to a value of the estimator θ̂n belonging to Θe − Θ, and the corresponding Cθ̂n
is

not necessarily a copula. So, for point estimation, the pseudo-maximum likelihood estimator

(restricted to vary in the admissible domain) should be used instead of (2.7). The latter

estimator may not be meaningful, and is likely to have a larger mean square error. The main

advantage of our formula (2.6), where the supremum is taken on the extended space Θe,

instead of the admissible domain Θ, is that it permits easily to build a test of independence

even when the dimension of the parameter space Θ is larger than 1. We can show that the

proposed test statistic, based on the formula (2.6), has a χ2(p) limit law with p = dim(Θ)

degrees of freedom.

Remark 3.3 The asymptotic variances (2.10) and (3.2) may be consistently estimated re-

spectively by the sample variances of

∂
∂θ
m
(
θ̂n, F1n(X1,k), F2n(X2,k)

)
+W1(θ̂n, X1,k) +W2(θ̂n, X2,k), k = 1, . . . , n, (3.8)

(
θ̂n, F1n(X1,k), F2n(X2,k)

)
+ Y1(θ̂n, X1,k) + Y2(θ̂n, X2,k), k = 1, . . . , n, (3.9)

14



as was done in Genest et al. (1995). Similarly, the parameter Ξ in (2.9) may be consistently

estimated by the sample mean of

[
∂
∂θ
m
(
θ̂n, F1n(X1,k), F2n(X2,k)

)]2
, k = 1, . . . , n. (3.10)

4 Simulation results

In this section, we present some simulation results aiming to illustrate the theoretical results

of 3.1. These results relate to the accuracy of the approximations of the laws of the test

statistics Tn, by the limit law given in Theorem 3.1. As an example, we consider the Clayton

family of copulas

Cθ(u1, u2) :=
(
u−θ

1 − u−θ
2 − 1

)−1/θ
; for θ ∈ [0,∞). (4.1)

The case of the test statistic Tn based on the χ2-divergence. Under the null hypothesis of

independence of margins (here θT = θ0 := 0), Theorem 3.1 shows that the asymptotic law of

the proposed test statistic Tn is a χ2
1 law with one degree of freedom; see, e.g., Theorem 3.1.

We have illustrated this convergence by simulation: in Figure 1 and Figure 2 are plotted the

distribution function of the limit law χ2
1, and the distribution functions of the statistic Tn

obtained from 500 independent runs for sample sizes n = 25 and n = 100. We observe that

the approximation is also good even for moderate sample sizes (see Figure 1 and Figure 2).

The integral in the expression of m(θ, ·, ·) is calculated by the Monte Carlo method, and the

supremum in (3.1) is considered on the extended space Θe; the supremum in (3.1) has been

computed on a neighborhood of θ0 := 0 by the Newton-Raphson algorithm taking θ0 := 0

as an initial point.

5 Conclusion

We have presented a new approach based on χ2-divergence and duality technique in the

framework of parametric copulas. It seems that the procedure introduced here is particularly

well adapted to the boundary problem.
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Figure 1: Simulated distribution function of the statistic Tn and its limit law χ2
1. (Sample

size 25, 500 replications.)

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Copule de Clayton. n=100, rep=500.

f.r. de la stat du chi2SPM.
f.r. de la loi du chi2, 1.d.l.

Figure 2: Simulated distribution function of the statistic Tn and its limit law χ2
1. (Sample

size 100, 500 replications.)

6 Appendix

First we give a technical Lemma which we will use to prove our results.

Lemma 6.1 Let F have a continuous margins and let C have continuous partial derivatives.

Assume that  is a continuous function, with bounded variation on I. Then
∫

I

(u1, u2) d (Cn(u1, u2) − C(u1, u2)) = O
(
n−1/2(log log n)1/2

)
(a.s.). (6.1)
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Proof of Lemma 6.1. Recall that the modified empirical copula Cn, is slightly different

from the empirical copula Cn(u1, u2), introduced by Deheuvels (1979a), and defined byCn(u1, u2) = Fn

(
F−1

1n (u1), F
−1
2n (u2)

)
for (u1, u2) ∈ (0, 1)2, (6.2)

where F−1
1n (·) and F−1

2n (·) denote the empirical quantile functions, associated with F1n(x1) =

Fn(x1,∞) and F2n(x2) = Fn(∞, x2), respectively, and defined by

F−1
jn (t) := inf{x ∈ R | Fjn(x) ≥ t}, j = 1, 2. (6.3)

Here, Fn(·, ·) denotes the joint empirical distribution function, associated with the sample

{(X1k, X2k); k = 1, . . . , n}, defined by

Fn(x1, x2) =
1

n

n∑

k=1

1{X1k≤x1}1{X2k≤x2}, −∞ < x1, x2 <∞. (6.4)

We know that Cn and Cn coincide on the grid {(i/n, j/n) , 1 ≤ i ≤ j ≤ n} . The subtle

difference lies in the fact that Cn is left-continuous with right-hand limits, whereas Cn on

the other hand is right continuous with left-hand limits. The difference between Cn and Cn,

however, is small

sup
u∈I

|Cn(u) − Cn(u)| ≤ max
1≤i,j≤n

∣∣∣∣Cn

(
i

n
,
j

n

)
− Cn

(
i− 1

n
,
j − 1

n

)∣∣∣∣ ≤
2

n
. (6.5)

Using integration by parts, as in Fermanian et al. (2004a), we see that

√
n

∫

I

(u1, u2) d(Cn − C)(u1, u2) =

∫

I

√
n(Cn − C)(u1, u2) d(u1, u2)

−
∫

I

√
n(Cn − C)(u1, 1) d(u1, u2) −

∫

I

√
n(Cn − C)(1, u2) d(u1, u2)

−
∫

[0,1]

√
n(Cn(u1, 1) − u1) d(u1, 1) −

∫

[0,1]

√
n(Cn(1, u2) − u2) d(1, u2).

Hence,
∣∣∣∣
√
n

∫

I

(u1, u2) d(Cn − C)(u1, u2)

∣∣∣∣ ≤ 5
√
n sup

u∈I
|(Cn − C)(u)|

∫

I

d |(u)| .

From this and (6.5), applying Theorem 3.1 in Deheuvels (1979a), we obtain the following

result ∫

I

(u1, u2) d(Cn − C)(u1, u2) = O
(
n−1/2(log logn)1/2

)
(a.s.).
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Proof of Theorem 2.1. (a) Under the assumption (C.1), a straightforward calculus yields

∫

I

∂
∂θ
m(θT , u1, u2) dCθT

(u1, u2) = 0. (6.6)

Under the assumptions (C.1), and by applying Proposition 2.2 in Genest et al. (1995), we

can see that, as n→ ∞,

∫

I

∂
∂θ
m(θT , u1, u2) dCn(u1, u2) →

∫

I

∂
∂θ
m(θT , u1, u2) dCθT

(u1, u2) = 0, (6.7)

and

∫

I

∂2

∂θ2m(θT , u1, u2) dCn(u1, u2) →
∫

I

∂2

∂θ2m(θT , u1, u2) dCθT
(u1, u2) := −Ξ < 0, (6.8)

almost surely. Now, for any θ = θT + vn−1/3, with |v| ≤ 1, consider a Taylor expansion of
∫
m(θ, u1, u2) dCn(u1, u2) in θ in a neighborhood of θT , using (C.1) part 2, one finds

n

∫

I

m(θ, u1, u2) dCn(u1, u2) − n

∫

I

m(θT , u1, u2) dCn(u1, u2) (6.9)

= n2/3v

∫

I

∂
∂θ
m(θT , u1, u2) dCn(u1, u2) + n1/3 v

2

2

∫

I

∂2

∂θ2m(θT , u1, u2) dCn(u1, u2) +O(1) (a.s.),

uniformly in v with |v| ≤ 1. On the other hand, under condition (C.2), by Lemma 6.1, we

have ∫

I

∂
∂θ
m(θT , u1, u2)dCn(u1, u2) = O(n−1/2(log logn)1/2) (a.s.).

Therefore, using (6.8) and (6.9), we obtain for any θ = θT + vn−1/3 with |v| = 1,

n

∫

I

m(θ, u1, u2) dCn(u1, u2) − n

∫

I

m(θT , u1, u2) dCn(u1, u2)

= O(n1/6(log logn)1/2) − 2−1Ξn1/3 +O(1) (a.s.). (6.10)

Observe that the right-hand side vanishes when θ = θT , and that the left-hand side,

by (6.8), becomes negative for all n sufficiently large. Thus, by the continuity of θ 7→
∫
m(θ, u1, u2) dCn(u1, u2), it holds that as n→ ∞, with probability one,

θ 7→
∫
m(θ, u1, u2) dCn(u1, u2)
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reaches its maximum value at some point θ̂n in the interior of the interval B. Therefore, the

estimate θ̂n satisfies

∫

I

∂
∂θ
m(θ̂n, u1, u2) dCn(u1, u2) = 0 and | θ̂n − θT |= O(n−1/3). (6.11)

(b) Making use of the first part of Theorem 2.1, and once more, by a Taylor expansion of

∫

I

∂
∂θ
m(θ̂n, u1, u2) dCn(u1, u2),

with respect to θ̂n, in the neighborhood of θT , we obtain that

0 =

∫

I

∂
∂θ
m(θ̂n, u1, u2) dCn(u1, u2) =

∫

I

∂
∂θ
m(θT , u1, u2) dCn(u1, u2)

+ (θ̂n − θT )

∫

I

∂2

∂θ2m(θT , u1, u2) dCn(u1, u2) + o(n−1/2).

Hence,

√
n(θ̂n − θT ) =

(
−
∫

I

∂2

∂θ2m(θT , u1, u2) dCn(u1, u2)

)−1 √
nWn(θT ) + o(1), (6.12)

where

Wn(θT ) :=

∫

I

∂
∂θ
m(θT , u1, u2) dCn(u1, u2).

Applying Proposition 3 page 362 in Tsukahara (2005), under assumptions (C.1) part 1 and

(C.3), we have
√
nWn(θT )

d→ N
(
0,Σ2

)
. (6.13)

Finally, by combining (6.13) and (6.8) in connection with Slutsky’s Theorem, we conclude

that
√
n(θ̂n − θT ) → N(0,Σ2/Ξ2). (6.14)

This completes the proof. �

Proof of Theorem 3.1. Assume that θT = θ0. From (6.12), using (6.8) and (6.13), we

obtain
√
n
(
θ̂n − θT

)
= − 1

Σ

√
nWn(θT ) + oP (1). (6.15)
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Expanding in Taylor series Tn(θ0, θ̂n) in θ̂n around θT , we get

Tn(θ0, θ̂n) = 2nWn(θT )(θ̂n − θT ) − Σn(θ̂n − θT )2 + oP (1). (6.16)

Now, use (6.15) combined with (6.16) to obtain

Tn(θ0, θ̂n) =
1

Σ
nWn(θT )2 + oP (1). (6.17)

By (6.13), we have
√
nWn(θT ) → N

(
0,Σ2

)
(6.18)

in distribution. When θT = θ0, under Assumption (C.4), we can see that Σ2 in (6.18) is equal

to 1/Ξ; see Proposition 2.2 in Genest et al. (1995). Combining this with (6.17) to conclude

that

Tn
d→ χ2

1,

under the null hypothesis H0.

Proof of Theorem 3.2. Rewriting Tn

2n
as

Tn(θ0, θ̂n)

2n
= sup

θ∈Θe

∫

I

m(θ, u1, u2) dCn(u1, u2), (6.19)

and making use of a Taylor expansion of Tn(θ0,θ̂n)
2n

, with respect to θ̂n, in a neighborhood of

θT , under (C.5) to obtain

Tn(θ0, θ̂n)

2n
=

∫

I

m(θT , u1, u2) dCn(u1, u2) + oP (n−1/2).

Hence, one finds

√
n

(
Tn

2n
− χ2(θ0, θT )

)
=

√
n

(∫

I

m(θT , u1, u2) dCn −
∫

I

m(θT , u1, u2) dCθT

)

+oP (1).

Finally, under condition (C.6), application once more of Proposition 3 page 362 in Tsukahara

(2005), concludes the proof. �
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