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Sedat Tardu Æ Philippe Vezin

On the Taylor hypothesis in forced unsteady wall flows

Abstract Experiments on the modulation characteristics
of the wall shear stress s¢-longitudinal velocity u¢ and
u¢�u¢ space–time correlations are reported in a forced
turbulent channel flow in a wide range of imposed fre-
quencies. The resulting integral and Taylor scale prop-
erties are discussed in detail in the low buffer layer under
steady and unsteady flow conditions. It is shown that the
small-scale turbulence is sensitive to the imposed
unsteadiness since the amplitude and phase of the Taylor
length scale vary considerably in the imposed frequency
range investigated here. The Taylor hypothesis is
acceptably valid in steady and unsteady wall layers just
above the low buffer layer. Production and instanta-
neous pressure gradients are mostly responsible for the
deviation of the frozen turbulence-state in the viscous
and low buffer sublayers.

1 Introduction

Unsteady turbulent wall layers are non-canonical com-
plex flows. The complexity is due on one hand, to the
introduction of the additional parameters induced by the
unsteadiness such as the amplitude and frequency of the
imposed velocity oscillations. That renders the para-
metrical study difficult. On the other hand, unsteadiness
implies equivalently the forcing of the near wall turbu-
lence whose response cannot be easily determined be-
cause of its inherent non-linearity. This is the reason why
the modeling of the forced internal flows is still a chal-
lenge despite the considerable efforts made in the last
decade (Tardu and Da Costa 2004 and the references
within).

Internal turbulent flows subject to forced sinusoidal
velocity oscillations are encountered in several practical
applications such as in helicopter blade aerodynamics, in
turbomachinery, aeroacoustics, in internal combustion
engines, in animal propulsion and bio-fluid dynamics.
Intensive past research (Tu and Ramaprian 1983; Mao
and Hanratty 1986; Finnicum and Hanratty 1998;
Brereton et al. 1990; Tardu and Binder 1993; Tardu
et al. 1994) turned essentially on the parametrical studies
of the flow field. There are three main characteristics of
the forced wall flows on which consensus is well estab-
lished by now. First of all the time mean flow is unaf-
fected by the forcing even at high imposed amplitudes
and frequencies. There is a coexistence of a viscous
Stokes type oscillating longitudinal velocity field with a
time mean turbulent flow when the imposed period is
comparable with the median time-scale of the wall tur-
bulence. The turbulence in this regime cannot follow the
rapid temporal variation of the shear and becomes fro-
zen during the oscillation cycle. Only a few studies exist
in the literature on the response of the fine structure of
the turbulence in unsteady flows (Tardu and Binder
1997) and of the length scales concerning the spanwise
structure of the flow (Finnicum and Hanratty 1998;
Brereton and Hwang 1994; Tardu and Vezin 2004). An
interesting quantity is the Taylor scale, which is directly
related to the average dimensions of the eddies respon-
sible for dissipation. The reaction of this quantity to the
imposed unsteadiness would reflect therefore the reac-
tion of small-scale turbulence. One immediate question
arises: Is the Taylor hypothesis valid in unsteady wall
layers? The answer is not immediate since the reaction of
turbulence may have curious facets, especially, when the
imposed frequency is high.

Experimentalists to evaluate the longitudinal deriva-
tives of the fluctuating velocity field from temporal series
commonly use the Taylor hypothesis. Despite the fact
that it is widely used and the existence of large literature
on the subject, there is still no clear assessment where
exactly the frozen turbulence hypothesis can be used
without warning in the wall bounded shear flows. The
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earliest investigations of Lin (1953) and Sternberg (1967)
suggested that the large eddies induce large deviations
from the frozen state because of the distorting effect of the
mean shear on the turbulent vorticity field. This invali-
dates the Taylor hypothesis in a large part of the bound-
ary layer. Yet, both the large eddy and direct numerical
simulations based research (Piomelli et al. 1989; Kim and
Hussain 1992) indicated more recently that time and
streamwise derivatives are well correlated immediately
above the low buffer layer. The mechanisms that deviate
the convection velocity from the local velocity in the low
buffer and viscous sublayers are still unclear.

To our knowledge, there is no published data on the
longitudinal length scales and convection velocity mod-
ulation characteristics in forced turbulent internal flows.
That might be important in, for example, unsteady
aeroacoustic applications to determine the propagation
velocity of the source. Experiments on the modulation
characteristics of the wall shear stress s¢-longitudinal
velocity u¢ and u¢�u¢ space–time correlations are reported
here in a wide range of imposed frequencies. The
resulting integral and Taylor scales properties are dis-
cussed in detail in the low buffer layer under steady and
unsteady flow conditions. A discussion based on the di-
rect numerical simulation data in a low Reynolds number
canonical turbulent channel flow is conducted in some-
what a different way from the previous investigations to
determine the basic mechanisms that validate or invali-
date the Taylor hypothesis near the wall.

2 Experimental set up and data reduction

The experiments were conducted in the unsteady water
channel described in detail in Tardu et al. (1994). A
specific pulsating device generates the imposed sinusoi-
dal velocity oscillations. The mean, amplitude and fre-
quency of the velocity modulation at the centerline can
be varied independently. High imposed amplitudes and
frequencies can be applied this way.

The centerline velocity was held constant at
�Uc ¼ 17:5 cm=s: This corresponds to a friction velocity
of �us ¼ 0:85 cm=s and a Reynolds number based on the
half height h of the channel of Re ¼ �Uc h=m ¼ 8; 800
where m is the kinematic viscosity. The imposed ampli-
tude was 20% of the centerline velocity throughout the
whole study. The imposed frequency in wall units
fþ ¼ f ðm=�u2sÞ varied by a factor 24 from f+=2.2*10�4

to f+=60*10�4. Hereafter ( )+ designates variables
normalized by m and �us: In terms of the frequency
parameter lþs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ðp fþÞ
p

which is the viscous Stokes
length normalized by the inner length scale lm ¼ m=�us and
which was previously used by Tardu et al. (1994) the
imposed frequency range investigated in this study
covers l+s=38–8.

The streamwise space–time correlations of both the
fluctuating wall shear stress s¢ and longitudinal velocity
fluctuations u¢, together with u¢�u¢ correlations were
performed by means of a flush-mounted TSI-1268 W hot

film at the wall and two TSI 1276-10W hot films in the
flow. The probe displacements were done by use of
controlled traversing mechanisms. The sensitive parts of
the hot films are 8lm for the wall probe and 4lm for the hot
films. The latter were operated at constant temperature
with 5–8% overheat by AHARONI AN-1003 anemom-
eter units. These low overheats allowed the avoidance of
the thermal wake effects. The calibration of the hot films
has been done in situ as described by Tardu and Binder
(1993) and Tardu et al. (1994). Due to the long record
length, the calibration was checked for the temperature
drift and repeated before and after each measurement.

The analog to digital conversion was achieved with
an Analog-Device RTI-800 board (accuracy 11 bit+
sign; 8 channel) installed in a PC computer. The sam-
pling frequency was 1:5 �u2s=m

� �

: The signals were filtered
with accurate cut-off frequencies. The minimum record
length was Tr ¼ 10; 500 h= �Ucð Þ ¼ 218:103 m=�u2s

� �

for each
signal representing 50 min for each experiment. The
duration of the data here is about 15 times longer than in
steady flow since in unsteady flow convergence has to be
achieved in each bin used in the phase average.

The classical triple decomposition is used. A quantity
q is decomposed into a mean �q an oscillating ~q and
fluctuating q¢ component. The angle brackets designate
the phase average i.e. qh i ¼ �qþ ~q: The modulation
characteristics of qh i are described by the amplitude A~q

and phase /~q of the fundamental mode
~q ¼ A~q cos 2pft þ /~q

� �

: The relative amplitude
a~q ¼ A~q=�q is also introduced for convenience. To test for
the existence of subharmonics phase averaging over six
imposed periods have been performed and the ampli-
tudes of the harmonics have been analyzed through a
discrete Fourier analysis as part of the usual procedure.
The amplitudes of the first fifth harmonics are roughly
eight times smaller than the sixth one. The highest im-
posed frequency investigated here which is 100 times
smaller than the Kolmogoroff frequency, and roughly 20
times smaller than the Taylor frequency is not high en-
ough to generate (eventual) subharmonics.

The phase averaged s¢�u¢ and u¢�u¢ correlation
coefficients are defined as:

Rs0 u0 x
þ; yþ; tþð Þh i

¼ s0 xþ ¼ 0; zþ ¼ 0; tþð Þ u0 xþ; yþ; zþ ¼ 0; tþð Þh i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0s0h i u0u0h i
p

and

Ru0 u0 x
þ; yþ; tþð Þh i

¼ u0 xþ ¼ 0; yþ; zþ ¼ 0; tþð Þ u0 xþ; yþ; zþ ¼ 0; tþð Þh i
u0u0h i

where, x, y, z are respectively, the streamwise, wall nor-
mal and spanwise coordinates. They were measured for
eight imposed frequencies and 20 different x positions.
Both the long record length and high sampling frequency
resulted in huge amount of data of several GB. The
smallest streamwise offset in the Ru0u0h i measurements
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were 12 to avoid thermal wake effects. The main aim of
this study is to determine whether the Taylor hypothesis
is valid or not in the buffer layer and in the presence of
the oscillating shear, since the log-layer and the plug flow
zone do not present great interest for this aspect. The
oscillating shear layer thickness decreases as the fre-
quency increases in the unsteady wall layers (Tardu et al.
1994). And it is constrained into y+<16 at the highest
frequency investigated here. Thus the emphasis here is on
the measurements performed at y+=12. A limited
number of experiments have also been conducted at
y+=30 and y+=50. They are only briefly mentioned.

3 Results

3.1 Summary of flow characteristics

Past research has shown that there is a coexistence of a
purely viscous oscillating Stokes component with an
unaltered time mean base flow when the imposed fre-

quency is larger than f+=0.003 (see e.g., Tardu et al.
1994). Figure 1a shows the modulation characteristics of
the wall shear stress <s > in terms of the Stokes length
lþs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ðp fþÞ
p

: It is seen that when l+s<10, the am-
plitude and phase of <s > coincides well with
A~s Stokes ¼

ffiffiffi

2
p

q mðA~uc=lsÞ and /~s Stokes � /~uc ¼ 45: Thus,
under the present conditions with a~uc ¼ 0:20 at the
centerline, the shear in the viscous sublayer has modu-
lation amplitudes that vary between a~s ¼ 0:40 in the low
frequency, quasi-steady regime, to as large as a~s ¼ 0:60
at the highest imposed frequency investigated here.
These values show how the forcing of the wall turbu-
lence is important in this investigation.

Figure 1b shows the relative amplitude of the wall
shear stress intensity <s¢s¢> related to the relative
amplitude of the wall shear stress <s> versus the im-
posed frequency f+. The corresponding ratio au0 ~u0=a~u of
the longitudinal turbulent intensity modulation and that
of the local velocity <u> at y+=12 is also shown in
Fig. 1b. Note first that the measurements in the low
frequency regime agree well with the expected quasi-

Fig. 1 Flow characteristics.
Modulation amplitude and
phase of the wall shear stress
(a), modulation amplitude of
the turbulent wall shear stress
intensity and of the longitudinal
turbulent intensity (b) versus
the imposed frequency. The
imposed amplitude at the
centerline is 20% of the mean
velocity
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steady behaviors. In the low frequency range, one has
\s0s0 >qs=\s >2

qs ¼ 0:382 and a Taylor series analysis of
this relationship leads to as0s~0 qs ¼ 2 a~s qs ¼ 4 au~c reaching
values as high as 0.8 under the present experimental
conditions. The modulations of both <s¢s¢> and <u¢
u¢> decrease when the imposed frequency increases but
the decay in as0s~0=a~s is more pronounced and takes place
earlier. These results are in good agreement with previ-
ously published data. The weakening of the modulation
of the turbulence in this frequency regime may be ex-
plained by the fact that the near wall flow responds only
partly to the rapid temporal changes of the shear. Both
the experimental and modeling aspects concerning these
particular points are beyond the scope of this paper and
may be found in Tardu and Da Costa (2005).

3.2 Modulation characteristics of the streamwise
correlation coefficient

The time mean correlation coefficient �Rs0u0 at y+=12
between the fluctuating wall shear stress s¢ and

streamwise velocity fluctuations u¢ is plotted versus the
streamwise offset x+ in Fig. 2a for five imposed fre-
quencies investigated so far. The excellent collapse of
�Rs0u0 for different values of the frequency parameter
l+s and good correspondence with the steady flow
profile are reminiscent of the insensitivity of the time
mean correlation coefficient to the imposed unsteadi-
ness.

It is seen in Fig. 2a that the maximum of the time
mean correlation coefficient �Rs0u0 is located at x+�50.
This can be explained by the tilting of the hairpin-like
vortical structures as they develop in the inner (Head
and Bandyopadhyay 1981). The vertical growth of a
hairpin vortex is governed by its induced velocity and
shear effect, resulting in an angle of 45� when both ef-
fects balance each other in the log layer. Several angles
may be identified in a hairpin during its spatial growth.
The flow visualizations of Falco (1977) and the time–
space correlations performed by Brown and Thomas
(1977) and more recently by Wark and Nagib (1991)
suggest a structure angle of about 10� in the low-buffer
layer. The measurements presented in Fig. 2a give, in

Fig. 2 Time mean correlation
coefficient versus the streamwise
offset in wall units for several
imposed frequencies described
by the parameter
lþs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ðpfþÞ
p

: a Wall shear
stress-velocity fluctuations at
y+=12. b Streamwise velocity
correlations at y+=12
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return, an angle of a ¼ tan�1 yþ=xþð Þ � 11 when
x+=50 and y+=12. This value is in good agreement
with the previous results quoted.

Figure 2b shows the time mean of the phase averaged
fluctuating velocity correlation coefficient Ru0u0h i: The
1� �Ru0u0 profiles are presented versus x+ in logarithmic
scales. They compare in a satisfactory way with the re-
sults of McLean (1991) obtained at Reh=1,500 in a
steady turbulent boundary layer. The correlation coef-
ficient varies like 1� �Ru0u0 / x2=3 in the inertial subrange
wherein the one-dimensional power spectral density is
E kð Þ / k�5=3: The range of the streamwise offset for the
inertial behavior is narrow near the wall than in the log
layer, and the results of McLean suggest that
E kð Þ / k�5=3 for 70<x+<200 in the buffer layer. The
trend of the data in Fig. 1b confirms these arguments.
For small values of the offset x+ the mean correlation
coefficient should vary like 1� �Ru0u0 / x2; because of the
relationship �Ru0u0 ¼ 1� x2=�k 2

Tx

� �

near x �0, relating �Ru0u0

to the streamwise Taylor scale �kTx: This is also well
established for x+<30 in Fig. 2b. Note finally that both
�Rs0u0 and �Ru0u0 extend to values as large as x+=1,000.

Detailed analysis of the amplitude and phase of the
cyclic modulation of the correlation coefficients revealed
that the modulation characteristics of Rs0u0h i and Ru0u0h i
are qualitatively similar. Therefore, we will only discuss
the amplitude A~R u0u0 and phase /~Ru0u0 of the phase-
averaged correlation coefficient Ru0u0h i to be brief.

In Fig. 3a, the amplitude A~R u0u0 is scaled with A~R u0u0 qs
which is the amplitude that Ru0u0h i would have in the
quasi-steady low imposed frequency limit. Generally
speaking, the correlation coefficient �Ru0u0 in the canonical
steady turbulent wall layer depends upon the Reynolds
number, the wall normal and streamwise offsets i.e.,
�Ru0u0 ¼ F Re; yþ; xþð Þ: In the very low frequency range,
and in a similar manner, one has
Ru0u0 qs

� �

¼ F Reh i; yþh i; xþh ið Þ where F is the same
function as in steady flow. In this relationship,

Reh i ¼ h Uch i
m

; yþh i ¼ y
ush i
m

and xþh i ¼ x
ush i
m

:

If the imposed amplitude is small enough, a Taylor
expansion gives to the first order:

Fig. 3 Amplitude (a) and phase
(b) of the streamwise velocity
correlations at y+=12 versus
the imposed frequency at
different streamwise offsets
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A~R u0u0 qs �
@F

@xþ
xþ þ @F

@yþ
yþ þ @F

@Re
Re

� �

au~c:

According to McLean (1991, p. 38) the effect of the
Reynolds number on the inner scaled correlation coeffi-
cient is weak at x+<400 in the buffer layer. Close in-
spection of his data shows also that �Ru0u0 varies only
slightly with y+ close to thewall. Supposing therefore that
@F =@xþð Þ >> @F =@yþð Þ and @F @xþð Þ >> @F =@Reð Þ;
and using a polynomial approximation
�Ru0u0 �

Pn
i¼1 ai x

þi; one has A~Ru0u0 qs � au~c
Pn

i¼1 i ai x
þi:

This approximation (with n=5) was confronted to the
measurements taken at a particularly low imposed fre-
quency l+s=60. Good collapse between the computed
and measured profiles was found.

The A~R u0u0=A~R u0u0 qs profiles versus the imposed fre-
quency at different streamwise offsets are fairly well re-
grouped in Fig. 3a. They also compare qualitatively well
with the amplitude of the streamwise intensity
Au0 ~u0=Au0 ~u0 qs which is the asymptotic limit of
A~R u0u0=A~R u0u0 qs at x+=0. This shows that the unsteadi-
ness is uniformly felt along the elongated quasi-stream-
wise structures. The ratio A~R u0u0=A~R u0u0 qs increases first
from the quasi-steady limit and decreases subsequently
in the relaxation regime f+>0.002.

The phase shift of the correlation coefficient
D/~Ru0u0 ¼ /~R u0u0 � /~R u0u0 qs is shown in Fig. 3b. The time

lag D t þ
~R u0u0

¼ D/~R u0u0 l
þ 2
s =2

� �

is roughly constant and

close to 300 wall units in the low imposed frequency
range. For f+>0.001, however, the phase shift increases
with x+. Large time lags mean high inertia. Thus, large-
scale structures are associated with high relaxation
times, as expected.

3.3 Integral scale

The modulation characteristics of the streamwise inte-
gral scale Kxh i ¼

R1
0

Ru0u0h idx at y+=12 are recapitu-
lated in Fig. 4. The time mean integral scale is �K

þ
x ¼ 280

and it is unaffected by the imposed unsteadiness. This
has to be compared with the streamwise length of the
quasi-streamwise vortices in the buffer layer, that vary
between 100 and 400 in wall units. The spanwise integral
scale has also been measured under the same experi-
mental conditions (Tardu and Vezin 2004) leading to
�K
þ
z ¼ 24 (not reported here). The ratio �K

þ
x =

�K
þ
z � 12 is in

good agreement with McLean (1991) who has shown
that �Kþ

x =
�K
þ
z is approximately constant in the inner layer,

even though both scales depend on Re and y+.
Figure 4a shows the relative amplitude of Kxh i scaled

with au~c versus the imposed frequency. It turns out that
the streamwise integral scale modulation amplitude does
not depend upon f+ and that aK~x � 0:4 au~c with only a
slight decrease at the highest frequency. The integral
scale is modulated around its time mean value because it
is a function of both the Reynolds number and the

distance to the wall, in steady flow. Therefore, in the
quasi-steady regime

Kxh i
h

¼ F Reh i; yþh ið Þ; and a simple
analysis of the first order implies

AK~x

h
� @F

@Re
Reþ @F

@yþ
yþ

� �

au~c:

A close inspection of the McLean’s data shows that
at sufficiently large Re numbers �Kx=h / ln yþð Þ for
y+<150, and that �Kx increases by a factor 2 when y+

varies by a decade. Furthermore, the integral scale
decreases slowly with Re, by about 40% for
20.103<Re<40.103. Using these observations and
assuming that F is linear as a first approximation, result
in aK~x qs � 0:3 au~c and /K~x qs � / u~c � p: Both the
amplitude (Fig. 4a) and the phase (Fig. 4b) of the Kxh i
modulation agrees roughly with this estimation in the
quasi-steady low frequency regime. The streamwise
integral scale lags the imposed unsteadiness by
Dtþ

~Kx
¼ �300 until f+� 0.002, but the phase shift de-

creases rapidly to zero in the high frequency regime
(Fig. 4b). Once more, large time lags imply large inertia
as expected for the large-scale structures. But, large
Dtþ

~Kx
should be accompanied by steep decrease of the

modulation amplitudes in simple linear relaxation sys-
tems, which is not the case for the streamwise integral
scale, whose response to imposed unsteadiness is clearly
non-linear.

3.4 Taylor scale

The Taylor hypothesis in steady flow relates the tem-
poral to spatial derivatives according to
@=@ t ¼ �U i @=@ xið Þ where U i is the mean local velocity
in the i direction. In unsteady flows the equivalent
relationship is obtained by replacing the long time
average by the phase average such as
@=@ t ¼ �\Ui > @=@ xið Þ:

The temporal Taylor scale is defined by

k 2
T

� �

¼ u0u0h i
@u0=@tð Þ2

D E :

It is related to the longitudinal Taylor length scale
kTxh i by:

kTxh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u0u0h i
@u0
@x

� �2
D E

v

u

u

t ¼ Uconh i kTh i

where Uconh i is the phase average of the local convection
velocity. The characteristics of the modulation of the
Taylor scales are determined by making use of
the osculating parabolas corresponding either to the
phase averaged autocorrelations u0 tþ; Dxþ ¼ 0ð Þ u0h
tþ þ Dtþ; Dxþ ¼ 0ð Þi or to the space–time correlations
Ru0u0h i Dxþ ¼ 10ð Þ ¼ u0 tþ; xþð Þ u0 tþ; xþ þ Dxþð Þh i with
zero time delay at y+=12.
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The time mean Taylor length scale �kþ
Tx is shown in

Fig. 5 versus the imposed frequency. The ‘‘computed’’
values in this figure refer to �kþ

Tx ¼ �U þ
yþ¼12

�kþ
T i.e. they are

determined by measuring �kþ
T and by supposing that the

Taylor hypothesis is valid at the mean, with the con-
vection velocity equal to the local time mean velocity.
The measured values are those inferred from the
streamwise correlation measurements. It is seen in Fig. 5
that the Taylor hypothesis is roughly well established at
the mean in the range of imposed frequencies investi-
gated here. The measured time mean Taylor length scale
at y+=12 is �kþ

Tx ¼ 73 and agrees well with Sreenivasan
et al. (1983) and Direct Numerical Simulations of
Antonia et al. (1991) in steady flow and Tardu et al.
(1994) in unsteady flow. There is some scatter in Fig. 5
inherent to the experimental difficulties, yet the esti-
mated Taylor scale is about 15% smaller than the

measured one. The convection velocity is slightly larger
than the local one with �Uþ

con ¼ 10:3 to be compared with
�Uþ ¼ 9: This is in good agreement with Kim and
Hussain (1992). According to these authors, the con-
vection velocity is constant at y+<14 and �Uþ

con � �Uþ

immediately after.
The relative amplitude and phase of kTh i are com-

pared with the modulation characteristics of the wall
shear stress in Fig. 6. The data of Tardu et al. (1994) are
also shown in this figure for comparison. These authors
determined the temporal Taylor scale in a quite different
manner by computing directly @u0=@t through temporal
digital filtering. They have also compared their results
with the amplitude and phase of the Liepmann time-
scale modulation Ch i ¼ 1=ð2p N0h iÞ where N0h i is the
phase average of the zero-crossing frequency and have
shown that it corresponds reasonably well to kTh i: The

Fig. 4 Modulation
characteristics of the
longitudinal integral scale at
y+=12 versus the imposed
frequency. a Amplitude. b
Phase
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results reported here and obtained in a different manner
are in good agreement with their measurements. Three
interesting features of the Taylor scale’s behavior have
to be noted here. First, it may be shown by simple
arguments that in the quasi-steady limit a~kT qs � a~s and
/~kT qs � /~s � 180 because �kT scales with inner variables
in steady flow. This is well established in the low im-
posed frequency range in Fig. 6. The amplitude a~kT de-
creases sharply at f+=0.0025 due to the limited
response time of the near wall turbulence which cannot
follow the rapid modification of the imposed oscillating
pressure gradient. The subsequent constant ratios a~kT=a~s
indicate the beginning of a third imposed frequency re-
gime. Similar behaviors have been noted for the wall
shear stress intensity (Finnicum and Hanratty 1998;
Tardu and Binder 1993), but at higher imposed fre-
quencies.

The relative amplitude of the spatial Taylor scale
kTxh i is related to the relative amplitude of the friction
velocity a~us � 1=2 a~s in Fig. 7a. In the quasi-steady limit
a~kTx � 3=4 a~us as suggested by Tardu et al. (1994). This is

followed by an increase and a decrease towards higher
imposed frequencies showing that the imposed
unsteadiness penetrates further into the dissipation
mechanisms. The phase shift in the quasi-steady limit is
/~kTx � /~s � p: A time lag of about 200 wall units rep-
resents well the reaction of the Taylor length scale in the
whole-imposed frequency range (Fig. 7b).

Finally Fig. 8 compares the amplitude and phase of
the convection velocity Uconh i ¼ kTxh i= kTh i with the
modulation characteristics of the local velocity. The
ratio a ~Ucon=a ~U is about 0.9 and the phase shift
/ ~Ucon � / ~U is small but systematically positive. Thus,
the Taylor hypothesis in unsteady wall flows is cer-
tainly not exact in the low buffer layer, but still con-
stitutes an acceptable approximation. We obtained
closer correspondence between Uconh i and Uh i at
y+=40 and y+=130 (Fig.9). This is of course ex-
pected, since in steady flow the validity of the Taylor
hypothesis is well established in the log layer, and the
oscillating shear is confined in the buffer layer at high
frequencies investigated here.

Fig. 6 Relative amplitude of
the modulation of the Taylor
time scale at y+=12 compared
with the modulation of the
Liepmann scale and Tardu
et al. (1994, triangles)

Fig. 5 Time mean longitudinal
Taylor length scale versus the
imposed frequency at y+=12
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4 Discussion

The equations governing the time–space development of
fluctuating velocity components ui are easily obtained by
subtracting the time mean (or phase averaged) values
from the equation of motion
�Ui þ uið Uih i þ ui in unsteady flowÞ and reads for (Hinze
1975, p. 323):

@ u i

@ t
þ u k

@ Ui

@ xk
þ �Uk

@ u i

@ xk
þ @

@xk
uiuk � uiukð Þ

¼ � @p

@ x 1

þ @ 2 ui

@ x l @ xl

in wall units in steady flow. The relationship in unsteady
flow is easily obtained through a similar procedure. It
has the same form of the preceding equation providing
that the time mean values are replaced by the phase
averaged ones, i.e.:

@ u i

@ t
þ uk

@ Uih i
@ xk

þ Ukh i @ u i

@ xk
þ @

@xk
uiuk � uiukh ið Þ

¼ � @p

@ x 1

þ @ 2 ui

@ x l @ xl

For timemeanunidirectional flow in the i=1direction,
the Taylor hypothesis implies that the following terms
occurring in the instantaneous ui transport equation:

� @ui
@xj

uj �
@U1

@xj
uj � uj

@ui
@xj

� 1

q

@p

@xi
þ @2 ui

@xj@xj

are negligible. The Einstein summation convention ap-
plies in the last relationship and p remains for the fluc-
tuating pressure. The capital letters stay for mean or
phase averaged velocities. Mixed notations are used
hereafter i.e. xi and ui correspond to the streamwise, wall
normal and spanwise directions x, y, z and to u¢, v¢ w¢ for
respectively i=1, 2 and 3. All quantities are scaled with

Fig. 7 Modulation
characteristics (amplitude a and
phase b) of the streamwise
Taylor length scale at y+=12
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inner variables and the symbol + is omitted for the sake
of simplicity.

The streamwise fluctuating velocity equation is
rewritten as:

@ u1
@ t

¼ �U
@ u1
@ x 1

� u2
@ U

@ x 2

� @p

@ x 1

þ @ u1u2
@x2

þ �u1
@u1
@x1

��u2
@u1
@x2

��u3
@u1
@x3

� 	

þ @ 2 u1

@ x i @ x i

to be consistent with the shear stress transport mecha-
nism philosophy. The grouped terms at the right repre-
sent, respectively, the advection A 11, production P 11,
the pressure / 11, the non-linearity N 11, the turbulent
diffusion T t11 and finally the viscous diffusion D 11.
Note that the terminology used here is in concordance
with the classical definitions. The production term in the
@u1u1=@t transport equation for example is �2A11u1 ¼
�2u1u2 @U=@x2

� �

and results from multiplying the pre-
vious equation by u1 and averaging.

It is difficult to find an easy way to check the validity
of the Taylor hypothesis even if we can have access to
the ensemble of these terms. The long time average of
both left and right hand sides of the last equation are

zero but not their absolute values. The comparison of
the absolute values of the transport terms is quite con-
venient to check the Taylor hypothesis. We computed
each term Q of the u¢ transport equation through Direct
Numerical Simulation code of Orlandi (2001) in a fully
developed turbulent channel flow with Re s=180 using
256·128·128 grid points. We determined subsequently
the mean absolute values of
P 11j j; P 11 þ / 11j j; P 11 þ / 11 þ A 11j j etc. by progres-
sively adding one different term at each step and com-
paring them with @u1

@t











: The mean of absolute value of a
random quantity is related to its rms value, as for
example for a normal variable q¢ for which
q0j j ¼

ffiffiffiffiffiffiffiffi

2=p
p

ffiffiffiffiffiffiffiffi

q0q0
p

: The subsequent addition of different
terms into | | allows also taking account of their joint
probability densities. The results are shown in Fig. 10.
The following comments can be made in the light of the
distributions reported in Fig. 10:

– The effects of the non-linearity and of the turbulent
diffusion are negligible compared with the production,
pressure and advection terms in the whole layer.

– The contribution of the viscous diffusion is significant
only at y+ £ 10. The ratio of the viscous terms to the

Fig. 8 Amplitude (a) and phase
(b) of the convection velocity
modulations versus the imposed
frequency at y+=12
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inertial ones is of the order of 1
RekTx

¼ m
ffiffiffiffiffiffi

u0u0
p k�1

Tx which

becomes important in the viscous sublayer.

– The production and pressure gradient term

P 11 þ / 11j j is dominant in the viscous sublayer but the

ratio
P 11þ/ 11j j






@u1
@t







decreases rapidly in the high buffer and log

layers. It is about 1/3 at y+=10, and 1/8 at y+=30.

– The advection A11 rapidly dominates the phenomena
at y+>10. Yet, the hypothesis of frozen turbulence is

strictly valid only above the buffer layer y+>30. It is
false in the viscous sublayer and is only a crude
approximation at 10<y+<30. Neglecting P 11 þ / 11j j
at y+=15 would underestimate the spatial Taylor
scale by about 25% which is in rough agreement with
the data of Fig. 5. This also explains the discrepancies
between the modulation characteristics of the con-
vection and local velocities in the low buffer layer in
unsteady flows. The expression of the modulation
characteristics through the relative amplitudes such as
a ~Ucon ¼ A ~Ucon=U con compensates the errors made in

Fig. 9 Comparison of the
convection and local velocity
modulation characteristics in
the inner layer. a Amplitude, b
phase

Fig. 10 Contribution of the
transport terms to the mean
absolute time-derivative of
fluctuating streamwise velocity.
See the text for details
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A ~Ucon and U con in such a way that a ~Ucon � a ~U at
y+=12 (Fig. 8a).

We could not experimentally investigate the wall
normal and spanwise Taylor scales in this study. We
have however conducted through DNS in steady flow a
similar analysis for v¢ and w¢ that curiously leads to the
same results. We show in Fig. 11 the transport equation
results for the wall normal velocity fluctuations as an
example. The transport terms are respectively

A22 ¼ � �U @u2
@x1

; P22 ¼ 0; N22 ¼ @ u2u2
@x2

; /22 ¼ � @p
@x2

; Tt22 ¼
� u1

@u2
@x1

þ u2
@u2
@x2

þ u3
@u2
@x3

� �

and D22=¶
2 u2/¶xi ¶xi. It is

interesting to note that the production term P22=0 in
this case, but the pressure fluctuations /22 ¼ � @p

@x2
still

dominates the dynamics in the low buffer layer. At
y+>30 the major contribution to @v0

@t











 is from the
advection term.

The validity of the Taylor hypothesis above the vis-
cous layer is due to either smaller rms of the quantities
entering in the instantaneous transport equations com-
pared with the advection term, and/or to a specific phase
relationships between them. To illustrate the latter let us
rewrite the ‘‘instantaneous’’ equations in the form
@ui=@tð Þ � Ai ¼ bi where Ai is the advection (Taylor)
term and b i are n terms completing the transport
equation. Suppose further for simplicity that b i are
identically distributed normal variables with standard
deviations r i=r and correlation coefficient rij, although
this hypothesis is certainly false in the inner layer. Under
these circumstances it can be rigorously shown that:

@ui
@t

� Ai

























¼
ffiffiffi

2

p

r

r nþ
X

n

i¼1

X

n

j¼1

rij

( )

This relation shows clearly that @ui=@tð Þ � Ai may
be increasingly small either when the standard varia-
tion is small, and/or with a specific organization of the
correlation coefficients in such a way that
nþPn

i¼1

Pn
j¼1 rij � 0: Piomelli et al. (1989) have

investigated both the rms and correlation coefficients
between ¶ui/¶t and Ai . The rms values are almost
identical and the correlation coefficient is larger than
0.9 above the buffer layer according to these authors.
Our results are similar. The difference in the

representation here is that we investigate the expected
values of the absolute quantities and take into account
implicitly the cross correlation between the fluctuating
quantities.

Contrarily to the large eddies, small scale structures
enhance the Taylor hypothesis. This has been noticed
before (Sternberg 1967), and we will follow here a dif-
ferent reasoning to attempt to strengthen this argument.
The Biot-Savart relationship gives for the fluctuating
velocity field in vectorial form as an integral in a
volume V:

~u ~x; tð Þ ¼ � 1

4p

Z

V

~x� ~x0
� �

^ ~x ~x0; t
� �

~x� ~x0


















3
dV 0

in terms of the fluctuating vorticity field ~x ~x0; t
� �

and
where || || stands for the vectorial norm. The image
vorticity field is omitted in this relationship for the sake
of simplicity, and that does not affect the discussion
conducted here. The vorticity transport equation is given
by:

D~x

Dt
¼ ~x � ~r~u þ mr2~u

in an incompressible flow, with respectively the pro-
duction and viscous terms at the right. The vorticity field
is convected by the local velocity if ui ui\\ �U2 and if the
vorticity generation and diffusion can both be neglected.
The first condition implies y+‡15. The vorticity gener-
ation takes place over comparatively short times com-
pared with the lifetime of the structures. The viscous
effects can be neglected if the local Re k T is sufficiently
large. The Taylor hypothesis applies for the vorticity
field under these circumstances leading to @~x=@x ¼
�ð1= �UÞ @~x=@tð Þ: Defining a local convection velocity
�Ucon yð Þ for the streamwise fluctuating velocity compo-
nent

@u0

@x
¼ � 1

�Ucon yð Þ
@u0

@t
;

substituting into the Biot-Savart equation and simpli-
fying gives:

Fig. 11 Contribution of the
transport terms to the mean
absolute time-derivative of
fluctuating wall normal
velocity. Same legend as in
Fig. 10. See the text for details
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1
�Ucon

¼

R

V

1

U
Gx ~x; ~x0; t

� �

dV 0

R

V

Gx ~x; ~x0; t
� �

dV 0

where Gx is the streamwise component of the vector
field:

~G ¼
~x� ~x0
� �

^ @ ~x ~x0;tð Þ
@t

~x� ~x0


















3
:

This equation shows that the hypothesis of frozen
vorticity does not imply directly frozen turbulence. In
the limit of infinitely well-localized vorticity of the type
Gx ~x; ~x0; t

� �

¼ d ~x� ~x0
� �

H ~x; ~x0; t
� �

where d is the Dirac
function one has �Ucon ¼ �U : In other words, small-scale
localized vortical structures near a point P strengthen
the Taylor hypothesis, while the large scale eddies
deviate the turbulence structure from a frozen state. This
is schematically shown in Fig. 12. Near the wall the
dominant structures are quasi-streamwise vortices of
typical scales s+�20. The localized vorticity condition
can, thus not be fulfilled at y+ £ 10. Above the buffer
layer the contribution to the convection velocity of the
large scales becomes progressively negligible in an
increasingly locally isotropic environment. The oscillat-
ing shear in unsteady wall flows does presumably not
significantly modify this process.

5 Conclusion

Longitudinal spatial and temporal s¢�u¢ and u¢�u¢
velocity correlations are investigated in a forced turbu-
lent channel flow within a large range of imposed fre-
quency in the low buffer layer. Related length scales are
studied with the emphasis put on the Taylor scale. The
correlation coefficient is strongly modulated. The re-

sponse of the longitudinal integral scale to the imposed
unsteadiness is astonishingly non-linear for unexplained
reasons. Its amplitude is roughly constant in the whole
range of f+, but this is accompanied by important time
lags which is in contradiction with the linear system
responses.

The Taylor hypothesis of frozen turbulence is
checked immediately above the buffer layer. It is shown
that it constitutes an acceptable approximation in the
presence of the oscillating shear with a good corre-
spondence of the relative amplitudes of the convection
and local velocities but small phase shifts. The mean
convection velocity at y+=12 is 15% larger than the
local one. The small-scale turbulence is sensitive to the
imposed unsteadiness since the amplitude and phase of
the Taylor length scale vary considerably in the imposed
frequency range investigated here.

To strengthen and clarify the experimental data,
DNS results in a steady turbulent channel is analyzed in
a way different from the previous investigations, to
determine why and how the Taylor hypothesis holds
remarkably valid above the low-buffer layer. The terms
in the instantaneous transport equations are individually
determined and their contribution to the time deriva-
tives of the fluctuating velocity components are com-
puted through their consecutive absolute values. It is
shown that the advection rapidly dominates the phe-
nomena at y+>10. The deviation from the Taylor
hypothesis in the low buffer and viscous sublayers is
essentially due to the production and pressure gradient
terms. The experimental and numerical results presented
here have been obtained at relatively low Reynolds
numbers, and further studies are necessary to elucidate
the effect of Re on the Taylor hypothesis in steady and
forced wall flows.

References

Antonia RA, Kim J, Browne LWB (1991) Some characteristics of
small-scale turbulence in a turbulent duct flow. J Fluid Mech
233:369

Brereton G-J, Hwang J-L (1994) The spacing of streaks in unsteady
turbulent wall-bounded flow. Phys Fluids 6(7):2446

Brereton G-J, Reynolds W-C, Jarayaman R (1990) Response of a
turbulent boundary layer to sinusoidal free-stream unsteadi-
ness. J Fluid Mech 221:131

Brown GL, Thomas ASW (1977) Large structures in a turbulent
boundary layer. Phys Fluids 20(10):S243

Falco RE (1977) Coherent motions in the outer region of turbulent
boundary layers. Phys Fluids 20(10):S124

Finnicum D-S, Hanratty T-J (1998) Effect of imposed sinusoidal
oscillations on turbulent flow in a pipe. PhysicoChem Hydro-
dyn 10:585

Head MR, Bandyopadhyay PR (1981) New aspects of turbulent
boundary layer structure. J Fluid Mech 107:297

Kim J, Hussain F (1992) Propagation velocity and space-time
correlation of perturbations in turbulent channel flow. NASA
Report N�:TM 103932

Lin CC (1953) On Taylor’s hypothesis and the acceleration terms in
the Navier-Stokes equation. Q Appl Math 10:295

Mao Z-X, Hanratty T-J (1986) Studies of wall shear stress in a
turbulent pulsating pipe flow. J Fluid Mech 177:454

Fig. 12 Schematic view showing the effect of the large-scale and
localized small-scale vortical structures on the convection velocity
at a point P in the far buffer and log-layers (left) and near the wall
in the viscous and low-buffer sublayers (right)

13



McLean I-R (1991) The near wall eddy structure in an equilibrium
turbulent boundary layer. Ph.D. Thesis, University of Southern
California, USA

Orlandi P (2001) Fluid flow phenomena. Kluwer, Dordrecht
Piomelli U, Balint J-L, Wallace J-M (1989) On the validity of

Taylor’s hypothesis for wall-bounded flows. Phys Fluids
A1(3):609

Sreenivasan KR, Prabhu A, Narasimha N (1983) Zero crossings in
turbulent signals. J Fluid Mech 137:251

Sternberg J (1967) On the interpretation of space-time correlation
measurements in shear flow. Phys Fluids 10(9):146–152

Tardu S, Binder G (1993) Response of turbulence to imposed
oscillations of high frequencies. Phys Fluids A 5(8):2028

Tardu S, Binder G (1997) Reaction of bursting to a homogeneous
oscillating pressure gradient. Eur J Mech B 16:89

Tardu S, Da Costa P (2005) Experiments and modeling of an un-
steady turbulent channel flow. AIAA J 43(1):140

TarduS,VezinP (2004)Response of the streaks, the active andpassive
eddies in an unsteady channel flow. Int J Heat Fluid Flow 25:915

Tardu S, Binder G, Blackwelder R-F (1994) Turbulent channel
flow with large amplitude velocity oscillations. J Fluid Mech
267:109

Tu S-W, Ramaprian B-R (1983) Fully developed periodic turbulent
pipe flow. J Fluid Mech 137:31

Wark CE, Nagib HM (1991) Experimental investigation of coherent
structure in turbulent boundary layer. J Fluid Mech 230:183

14


	Sec1
	Sec2
	Sec3
	Sec4
	Fig1
	Sec5
	Fig2
	Fig3
	Sec6
	Sec7
	Fig4
	Fig6
	Fig5
	Sec8
	Fig7
	Fig8
	Fig9
	Fig10
	Fig11
	Sec9
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	Fig12
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22



