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The k–ω model is combined with the rapid distortion scheme to develop effective unsteady closures in nonequi-

librium wall flows subject to oscillating shear. The phase-averaged eddy viscosity is related to the modulation of

the effective strain parameter whose distribution is obtained from the steady turbulent channel flow data. New

experimental data on the wall and Reynolds shear stresses are reported. The model predicts the time-mean and

phase-averaged flow quantities in a satisfactory way when the imposed frequency is smaller than the median fre-

quency of the near-wall turbulence in the relaxation regime. It is particularly successful at the wall and in the low

buffer layer.

I. Introduction

T HE aim of this study is to develop effective unsteady closures
for the wall flows subject to imposed unsteadiness. Such flows

are in temporal nonequilibrium. They occur in practice on helicopter
blades, in turbomachinery, in internal combustion systems, etc. The
forcing can simply be achieved by a time-varying flow rate or pres-
sure gradient. Considerable experimental efforts have been made in
the past to explore the different physical aspects of unsteady tur-
bulent flows. Several groups involved in this subject, and Tu and
Ramaprian,1 Mao and Hanratty,2 Brereton et al.,3 and Tardu et al.4

are only a few of them.
The problem we are interested in is schematically shown in Fig. 1.

A fully developed turbulent channel flow is forced by imposed ve-
locity oscillations at the centerline. The velocity oscillations induce
oscillating shear near the wall. The flow is in time equilibrium during
the oscillation period when the imposed frequency is low enough.
This is called the quasi-steady regime in this paper. Any closure
scheme that is successful in steady turbulent internal flows would
predict well the flow behavior in this regime. The oscillating vor-
ticity diffuses to a distance �y ≈

√
(νT ) from the wall during the

oscillation period T with ν standing for the viscosity. Viscous dif-
fusion alone governs the removal of unsteady vorticity from the
wall, when �y is mainly constrained within the low buffer layer of
thickness 12(ν/ūτ ), where ūτ is the shear velocity. That gives the
condition

√
T + =

√
[T/(ν/ū2

τ )] < 12 in wall units. Thus, the turbu-
lence does not participate in the diffusion when �y+ ≈

√
T + < 12

because at distances from the wall where turbulent diffusion be-
comes important there is no vorticity left to diffuse. Slightly mod-
ifying the length scale by introducing the thickness of the viscous
Stokes layer ls =

√
(νT /π) results in l+

s = ls/(ν/ūτ ) < 7. That is,
the condition for the shear wave generated at the wall to reach the
asymptotic outer values before the turbulence can play an appre-
ciable role in the momentum transfer. Experiments show that the
long time-averaged mean flow is not affected by the imposed un-
steadiness, even when the imposed amplitude and frequency are so
large that reverse flow appears near the wall. This is because the

streaming terms, such as the mean of oscillating shear stress ũ′v′

occurring in the time-mean equations are negligible. Thus, if the
imposed frequency is high enough one has the coexistence of an un-
altered time mean and a viscous oscillating Stokes-type flow. The
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frequency delimitating this regime is close to the median frequency
of the near-wall turbulence. Consequently, the modulation of the
turbulent quantities weakens, and large time lags with respect to the
centerline velocity appear because of the finite turbulence response
time. This is called the relaxation regime here.

Although this physical process is rather easy to understand, the
modeling of unsteady wall flows is not obvious. Most of the re-
searchers have directly applied the phase-averaged version of exist-
ing closures, by taking more or less into account the real nonequi-
librium character of the problem. We can quote Fan et al.5 and
Chernobrovkin and Lakshminarayana,6 who applied the k–ε

scheme; Ekaterinaris et al.,7 who used three different versions of
the k–ω method combined with the baseline and shear-stress trans-
port models; and Srinivasan et al.,8 who chose algebraic models and
renormalization group analysis. The majority of the models found in
the literature use quasi-steady assumptions. An instantaneous equi-
librium is supposed between, for example, the phase average of the
eddy viscosity and 〈k〉2/〈ε〉 or 〈k〉/〈ω〉, despite the fact that large
phase shifts can appear between these quantities, in particular in the
high imposed frequency regime. Truly unsteady effects have been
tentatively taken into account in Mankbadi and Liu9 and to some
extend in Mao and Hanratty2 and in Greenblatt.10

The first aim of this investigation is to provide further experi-
mental data in turbulent channel flows subject to imposed velocity
oscillations. Measurements on the wall and Reynolds shear stresses
are conducted in a wide range of imposed frequency. They are dis-
cussed and compared with existing data. The second aim is to de-
velop an unsteady one-point closure based on the classical k–ω

scheme11 combined with a rapid distortion theory approach. This
approach originally given by Townsend12 and analyzed and devel-
oped by Maxey13 has been efficiently applied to unsteady wall flows
by Mankbadi and Liu9 (MK hereafter) through simplified closure
assumptions and gave good qualitative (although not quantitative)
agreement compared with experimental data. The target here is to
go a step further and see if with a strategically similar though techni-
cally different methodology we can also obtain satisfactory quanti-
tative agreement. Emphasis is put on the wall shear-stress turbulent
intensity and Reynolds shear-stress modulation characteristics that
are quite sensitive to the modeling procedure.

II. Experimental Setup and Data Reduction

The experiments were performed in a fully developed turbulent
water channel (100 mm wide and 2600 mm long, the aspect ra-
tio is 10/1). The time mean centerline velocity was Uc = 17.5 cm/s
corresponding to the Reynolds number 8.5 × 103 based on the half-
channel height. A specifically designed pulsating device produces
the oscillations in the flow rate. The mean flow, the period, and the
amplitude of the imposed velocity oscillations can be independently
changed. The reader is referred to Tardu et al.4 for further details
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Fig. 1 Schematic picture of the problem.

concerning the flow conditions and related discussions. Simulta-
neous measurements of the instantaneous streamwise u(t) and wall
normal v(t) velocities were performed by means of a TSI 2148-10w
x-hot-film probe of seven wall units in the wall normal direction.
The probe was calibrated vs velocity and angle. The look-up table
technique14 allowed the determination of u(t) and v(t). A DISA 55
R11 single hot film with a sensing length �z = 9(ν/ūτ ) was used
for both comparison and streamwise velocity measurements near
and in the viscous sublayer. The wall shear-stress measurements are
performed by means of a flush-mounted TSI-1268 W hot film at the
wall of 8(ν/ūτ ) spanwise extend. The vertical probe displacements
were made using a controlled traversing mechanism. The hot films
were operated in the constant temperature mode with 5 to 8% over-
heat by AHARONI AN-1003 anemometer units. The calibrations
were performed done in situ as described by Tardu et al.,4 wherein
the frequency response of hot-film gauges and other experimental
details are discussed in detail. The shear-stress measurements re-
ported here are new, and they compare reasonably well with our
previous investigations.15

Data acquisition was performed on a PC computer with a 16-bit
accuracy. The sampling frequency was fS = 3uτ (2/ν). The signal
was low-pass filtered by a Krohn Hite filter at fS/2. The total du-
ration of each record was Tr = 105(h/Uc), where h stands for the
half-height of the channel. This was long enough to ensure conver-
gence of phase-averaged statistics up to fourth-order moments.

The classical triple decomposition is used. A quantity q is decom-
posed into a mean q̄ an oscillating q̃ and fluctuating q ′ components.
The angle brackets designate the phase averages, that is, 〈q〉 = q̄ + q̃ .
The modulation characteristics of 〈q〉 are described by the amplitude
Aq̃ and phase �q̃ of the fundamental mode. The relative amplitude
aq̃ = (Aq̃/q̄) is also introduced for convenience.

III. Rapid Distortion Model Strategy

A review on rapid-distortion theory (RDT) can be found in Hunt
and Carruthers.16 We will only describe here shortly some aspects
of the RDT with a specific emphasis on its applications on shear
flows.

The main hypothesis made in RDT is that the nonlinearity and
moreover the viscosity can be neglected over timescales that are
short relative to the decay timescales of the large-scale eddies. Con-
sequently the fluctuating shear stresses are negligible compared to
the distortion caused by the shear. The distortion time Td has to be
short compared to the characteristic timescale TL = L/(u′

i u
′
i )

1/2 of
the large eddies of scale L to avoid their transformation and the
energy transfer to the small scales. Thus, if Td ≪ L/(u′

i u
′
i )

1/2 large-
scale structures have not enough time to go through the cascade
transfer and generate nonlinearity by the vortex stretching, tilting, or
rotation mechanisms. If in addition Td is small compared to the vis-
cous timescale Tν = L2/ν, the viscosity can also be neglected during
the distortion process. With these assumptions in mind, one can eas-
ily show that the fluctuating field of an homogeneous turbulent shear
flow subject to a time-dependent velocity u(t, y) = [β(t)y, 0, 0] is
governed by

∂u′
j

∂t
+ βy

∂u′
j

∂x1

+ u′
2βδ j,1 = −

1

ρ

∂p′

∂x j

where u′
j and p′ are, respectively, the velocity and pressure fluctua-

tions and δi, j is the Kronecker delta function. The last equation can
be solved in Fourier space with appropriate initial conditions that
depend essentially on the initial anisotropy.12

The rapid distortion theory is suitable for flows in time–space
nonequilibrium. It deals with the history of the turbulence struc-
ture rather than the local dependence. Maxey13 considers the core
axisymmetric structure of an internal turbulent flow with an initial
isotropy parameter s and which is subjected to a time-dependent
shear of the form u = [β(t)y, 0, 0]. He subsequently computes the
velocity moments as a function of the distortion strain parameter

α(t) =
∫ t

0

β(t ′) dt ′

using the classical assumptions of RDT, namely, neglecting the
nonlinear terms and moreover the viscosity. For large Td the dis-
tortion is essentially a slow phenomena, and the strain parameter
takes the form α = Td(∂u/∂y), while for short times one has clearly
∂α/∂t = ∂u/∂y. Maxey13 proposes to couple these equations into
a first-order model ∂α/∂t = −α/Td + ∂u/∂y that correctly predicts
the short (t ≪ Td) and long (t ≫ Td) time behaviors. He observes fur-
thermore that “the developed turbulent structure in channel or pipe
flows is similar to that of a truncated rapid distortion stopped when
α has settled to a local equilibrium effective value.” The matching
of the distributions of the structural parameters such as −u′v′/k̄, or
u′u′/k̄ computed as a function of α(t) with the turbulent internal
flow data, allows the determination of an effective strain parame-
ter αeff(y) and a local distortion timescale Td(y) = αeff(y)/(∂ ū/∂y).
The latter reveals the existence of a relaxation timescale of large ed-
dies that enters into first-order models in unsteady forced turbulent
flows. This will be detailed in the next section. Note that the valid-
ity of the method lies on the similarity of the structural parameters
with a truncated rapid distortion model in internal shear flows. This
is just an observation, and there is no a priori justification of this
procedure for more general types of distortions.

Figure 2 shows the distribution of −u′v′/k̄ = F(αeff) for two val-
ues of the initial isotropy parameter s = 2u′u′/(v′v′ + w′w′) defined
as the ratio of the moments at the centerline. This distribution, com-
bined with the profiles −u′v′ and k̄ obtained through standard steady
k–ω closure, gives αeff(y) and Td(y). The standard k–ω scheme
results in s = 1.2, a value that differs only slightly from 1.1 of
Laufer’s17 experimental data. The variation of s from 1.2 to 1.5
did not change appreciably the modulation characteristics. We did
not investigate the effect of larger, unrealistic isotropy parameters.
The near-wall distribution of the effective strain parameter has not
been clearly addressed in past studies: αeff(y) is determined from
the bench experimental data from the centerline to the low log layer
and extrapolated to the wall. The structural parameters −u′v′/k̄ or
u′u′/k̄ vary rapidly in the buffer and viscous sublayers, and the

Fig. 2 Ratio of the shear stress to the kinetic energy vs the effective

strain parameter according to Maxey13: ——, initial isotropy parameter

s = 1.2 and ❡, s = 1.5.
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Fig. 3 Distribution of the ratio of the shear stress to the kinetic energy

vs the wall-normal distance obtained by the steady k–ω model: ——,

k–ω without low Reynolds effects and ××, obtained through k–ω with

the Ret correction.

Fig. 4 Time-mean effective strain parameter vs the distance to the wall

in wall units: ++, steady flow; �, imposed frequency in wall units f + =

0.005; relative amplitude at the centerline auc̃ = 0.20; and⋄, f + = 0.0003,

auc̃ = 0.20.

extrapolation is arbitrary. More importantly the truncated rapid dis-
tortion concept does not take into account the viscous effects. Thus,
a consistent distribution of the effective distortion parameter has to
be based on models that exclude near-wall viscous damping. This
is achieved here by computing αeff(y) from the −u′v′/k̄ profile ob-
tained by k–ω without low-Reynolds-number effects (Fig. 3). The
modeling of viscous damping is performed separately through the
turbulent Reynolds-number correction (see the next section). Fig-
ure 4 shows the resulting distribution of the effective strain parameter
under steady and some unsteady flow conditions. It is seen that in
the later case the long time-average ᾱeff distribution coincides with
that of the stationary flow, indicating that the time-mean quantities
are unaffected by the imposed unsteadiness. That will be later dis-
cussed in further detail. The effective strain parameter is zero at
the centerline and nearly constant in 10 ≤ y+ ≤ 200. At y+ ≤ 10,
−u′v′/k̄ decreases rapidly to zero, and αeff(y) should increase to-
wards unrealistically large values, according to the right part of
the curve given in Fig. 3. However, the concept of the RDT as to
obtain an asymptotic structure for the turbulence in a mean shear
suggests a finite distortion timescale and a finite distortion strain
close to the wall. Several αeff(y) distributions in the low buffer and
viscous layers have been tried.18 Best agreement with the experi-
ments has been obtained by assuming a finite effective distortion
parameter of 4.5 at y+ ≤ 7 resulting in a relaxation time T +

d = 4.5 in
the viscous sublayer. The resulting distortion timescale distribution
is not significantly different from that used by MK (Fig. 5). This is
noteworthy because the methodology in the present study is differ-
ent. MK use the experimental profiles of the structural parameter
−u′v′/u′u′, whereas the output of the standard k–ω scheme and
−u′v′/k̄ distribution are used here.

Fig. 5 Distortion timescale vs the wall-normal distance: ——, distribu-

tion used in this study and ++, correspond to the profile used in Mankbadi

and Liu.9

IV. New Closure

The direct application of the k–ω closure to the unsteady turbulent
channel flow is

∂〈ω〉
∂t

= −〈γ 〉
〈ω〉
〈k〉

〈u′v′〉
∂〈u〉
∂y

− β〈ω〉2 +
∂

∂y

[
(ν + σ 〈νt 〉)

∂〈ω〉
∂y

]

(1)

∂〈k〉
∂t

= − 〈u′v′〉
∂〈u〉
∂y

− 〈β ′〉〈ω〉〈k〉 +
∂

∂y

[
(ν + σ 〈νt 〉)

∂〈k〉
∂y

]

(2)

where −〈u′v′〉 is the phase average of the Reynolds shear stress;
〈γ 〉, σ , β, and 〈β ′〉 are numerical constants depending upon the
turbulent Reynolds number 〈Ret 〉 = 〈k〉/〈ω〉; 〈〉 denotes the phase
average; and ν is the cinematic viscosity. The rest of the symbols are
usual, with y standing for the wall normal distance, u the streamwise
velocity, k the kinetic energy, νt the eddy viscosity, and t the time.
According to Wilcox,11 the coefficients in Eqs. (1) and (2) are related
to the turbulent Reynolds number by

〈γ 〉 =
5

9

1/10 + 〈Ret 〉/Rω

1 + 〈Ret 〉/Rω

(〈χ〉)−1 (3a)

〈β ′〉 =
9

100

5/18 + (〈Ret 〉/Rβ)4

1 + (〈Ret 〉/Rβ)4
(3b)

with

〈χ〉 =
1/40 + 〈Ret 〉/Rk

1 + 〈Ret 〉/Rk

(3c)

The ensemble of the numerical constants appearing in Eqs. (1–3)
is as follows: σ = 0.5, β = 3/40, Rω = 2.7, Rβ = 8, and Rk = 6
(Ref. 11). The adjustment of these coefficients is based on the mod-
eling of the transition in a turbulent boundary layer. The effect of
〈Ret 〉 is mainly confined in the buffer and low log layer.

Equations (1) and (2) are combined with the Boussinesq relation-
ship:

−〈u′v′〉 = 〈νt 〉
∂〈u〉
∂y

(4a)

and the entire closure is achieved by relating the eddy viscosity to
〈k〉 and 〈ω〉 by

〈νt 〉 = 〈χ〉
〈k〉
〈ω〉

(4b)

Clearly, this approach is quasi-steady, and therefore its validity is
restricted to low-frequency imposed oscillations. Equations (1) and
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(2) are “exact,” but Eq. (4) supposes time equilibrium. The rapid
distortion model is therefore introduced in a way similar but not
identical to MK. To this end, the effective strain parameter 〈αeff〉
governed by

∂〈αeff〉
∂t

= −
〈αeff〉
Td(y)

+
∂〈u〉
∂y

+
∂

∂y

[
D(y)

∂〈αeff〉
∂y

]
(5)

is used, according to Maxey13 and where Td stands for the distortion
timescale. Note that the diffusion of the effective strain is also taken
into account through the last term as suggested by Townsend.12 The
diffusion coefficient 〈D(y)〉 is taken equal to the eddy viscosity
〈νt (y)〉 according to the Townsend’s proposition. Subsequently, the
cyclic modulations of the Reynolds shear stress and of the eddy
diffusivity are computed according to

−〈u′v′〉
〈k〉

= F(〈αeff〉) (6a)

〈νt 〉 = 〈χ〉F(〈αeff〉)
〈k〉

∂〈u〉/∂y
(6b)

where the function F(〈αeff〉) together with the distortion timescale
Td(y) are obtained by the bench data of the steady turbulent channel
as we discussed in the preceding section.

Central finite difference schemes of order two are used for spatial
terms. A hybrid scheme is used for time discretization. It is implicit
for the diffusion terms and is explicit and implicit for the nonlinear
terms when they are respectively positive and negative. This scheme
is unconditionally stable according to Wilcox.11 Two-hundred-fifty
modes are used in the wall-normal direction in a nonuniform grid
and the closest computational point to the wall is at 0.1 wall unit. The
mesh number was varied between 100 and 500 without significant
modifications in the results. The time step varied between 0.5 to 0.7
wall units. The terms in α of the effective strain parameter equation
are discretized by a Crank–Nicholson scheme, whereas for the shear
term of this equation we used an Adams–Bashforth discretization.
We tried a sixth-order Adams–Bashforth scheme for α discretiza-
tion but obtained sensibly the same results with a Crank–Nicholson
scheme that consequently was adopted.

In a previous work, MK uses a simplified version of the turbulent
kinetic energy transport equation through

∂ k̃

∂t
= −u′ṽ′ ∂ ū

∂y
− u′v′ ∂ ũ

∂y
+ ν

∂2k̃

∂y2
− ε̃

where ε̃ is the modulation of the viscous dissipation rate. Clearly
the pressure-velocity strain and the triple correlations are neglected
arguing that the nonlinear effects are negligible near the wall. Fur-
thermore, the mean quantities such as ū, − u′v′, etc., are supposed
to not be affected by the imposed unsteadiness, and the standard
distributions are used as input in the closure scheme. The most re-
strictive hypothesis they use concerns the dissipation. They first sup-
pose local time equilibrium and more restrictively quasi-steadiness
between the dissipation and the production. Then, they hypothesize
the same eddy viscosity for the mean and modulated stresses leading
finally to

ε̃ = −2u′ṽ′ ∂ ū

∂y

The closure is achieved by linearization of the equations coupled
with the simplified form of Eqs. (5) and (6). This approach deals
with essentially small perturbations, and the authors argue that a lin-
ear description suffices in this case. Yet, it is well established that the
modulation characteristics properly scaled with the imposed ampli-
tude do not depend on the latter and that the local time equilibrium
is more than questionable in the high-frequency regime.

As already pointed out, this unsteady closure scheme is similar
to that of MK. There are, however, important differences:

1) There is no hypothesis of any kind on the effect of the imposed
unsteadiness on the time mean flow characteristics here, while MK
suppose that the time mean flow is unaffected.

2) MK use a linear version of the rapid distortion equation (5),
while the relationships (1), (2), and (6) are exact and can be used
for large imposed amplitudes here.

3) MK suppose that there is time equilibrium between the turbu-
lence energy and dissipation near the wall, while any hypothesis of
this kind is made here.

4) Finally we also introduce the gradient-type diffusion term in
the effective strain equation (2) and take into account the transport
of 〈αeff〉 by small-scale turbulence.

We numerically have shown that the k–ω equations (1) and (2)
are compatible with the rapid distortion equations (5) and (6) in
unsteady turbulent channel flow and unsteady boundary layers with
or without adverse pressure gradients as well.18

V. Results and Discussion

One of the aims of the present study is to compare experimental
and modeled wall shear-stress intensity modulation characteristics
〈τ ′τ ′〉. The wall shear-stress intensity is always under the direct
effect of the oscillating shear whatever is the imposed frequency.
Thus, the responses of the amplitude and phase of 〈τ ′τ ′〉 are cru-
cial in unsteady wall flows. The direct determination of the wall
shear-stress intensity is impossible with k–ω/RD method. Yet, one
can obtain a good estimation by analyzing the asymptotic behav-
ior of 〈k〉/〈u〉2 close to the wall. The streamwise, wall-normal, and
spanwise velocity components behave, respectively, as

u′ ∼ y +O(y2), v′ ∼ y2 +O(y3), w′ ∼ y +O(y2)

and consequently 〈k〉 = 1

2
{〈u′u′〉 + 〈w′w′〉}+O(y4) as y → 0. Fur-

thermore, next to the wall,

〈u′u′〉 ≈ 〈ω′
z0ω

′
z0〉y2, 〈w′w′〉 ≈ 〈ω′

x0ω
′
x0〉y2

where ω′
z0 and ω′

x0 are, respectively, the fluctuating spanwise and
streamwise vorticity components at the wall. Thus,

〈k〉 =
〈u′u′〉

2

(
1 +

〈ω′
x0ω

′
x0〉

〈ω′
z0ω

′
z0〉

)
+O(y4)

=
〈u′u′〉

2

[
1 +

ω′
x0ω

′
x0

ω′
z0ω

′
z0

(
1 + �ω′x0

1 + �ω′z0

)]
+O(y4)

where �̃ stands for relative modulation and reads for

�q̃ = q̃q/qq

In the quasi-steady limit characterized by significantly slow modu-
lations, one has exactly

〈k〉qs =
〈u′u′〉

2

(
1 +

ω′
x0ω

′
x0

ω′
z0ω

′
z0

)

In the medium and high imposed frequency range, and the limit of
small imposed amplitudes,

〈k〉 ≈
〈u′u′〉

2

{
1 +

ω′
x0ω

′
x0

ω′
z0ω

′
z0

[1 + �̃ω′x0 − �̃ω′z0]

}
+O(y4)

The stress ratios such as −〈u′v′〉/〈u′u′〉 or 〈v′v′〉/〈u′u′〉 are only
slightly modulated in near-wall unsteady flows.19 Although mea-
surements of 〈w′w′〉/〈u′u′〉 are nowhere reported in the literature,
it is likely that this specific structural parameter is also slightly
modulated implying that �̃ω′x0 ≈ �̃ω′z0. Because 〈u′u′〉/〈u〉2 tends
asymptotically to 〈τ ′τ ′〉/〈τ 〉2 as y → 0, one has

〈τ ′τ ′〉
〈τ 〉2

≈
2

1 + ω′
x0ω

′
x0

/
ω′

z0ω
′
z0

〈k〉
〈u〉2

Because the time-mean flow is unaffected by imposed unsteadi-
ness as revealed by the ensemble of experimental studies and
ω′

x0ω
′
x0/ω

′
z0ω

′
z0 = 0.25 according to Kim et al.,20 one has

〈τ ′τ ′〉/〈τ 〉2 ≈ 1.6〈k〉/〈u〉2
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The modulation characteristics of the wall shear stress are estimated
from this last relationship and compared with the experiments.

There is no effect of the imposed unsteadiness on the time-mean
flow characteristics, even when the imposed amplitude at the center-
line is as large as 30% and the imposed frequency is near the bursting
frequency of the base flow. This is in perfect agreement with the ex-
periments. Figure 6 shows the time-mean profiles of the streamwise
velocity, kinetic energy, shear stress, and dissipation in wall units
obtained through k–ω and k–ω/RD for two frequency parameters
l+
s = 8 and 33. It is seen that both schemes result in unaffected time-

mean properties and that the profiles at the small-imposed amplitude
auc̃ = 0.1 collapse well with those obtained at auc̃ = 0.3.

The k–ω scheme alone also predicts the modulation characteris-
tics of the streamwise velocity 〈u〉 and the wall shear stress 〈τ 〉 well.
Figure 7a shows the ratio of the wall shear-stress modulation am-
plitude Aτ̃ to the amplitude Aτ̃ Stokes =

√
2µ(Auc̃)/ls that a purely

viscous Stokes flow would have. The results inferring from the
modeling are compared both with the measurements and with MK.
The imposed amplitude is aũc = 0.20 hereafter. It is seen that there
is good agreement between the measurements and the predictions
and that the MK model fails in the low-frequency (quasi-steady)
regime. The numerical results inferred from the k–ω/RD model are
below one for l+

s ≤ 15, exactly as in the experiments. The phase
shift �τ̃ − �ũc predicted by both k–ω and k–ω/RD reaches a value
of 45 deg in the high-imposed frequency regime (Fig. 7b). There is
clearly a coexistence of an unaffected time-mean flow with a purely
oscillating viscous flow when the frequency is large enough. The
amplitude and phase shift distributions of the measured and com-
puted streamwise velocity oscillations 〈u〉 are also in close agree-
ment (not shown here). The k–ω scheme alone predicts Aũ and �ũ

well and gives results quite close to the k–ω/RD closure with only
some subtle differences.18

The response of turbulence is particularly difficult to model in
unsteady wall flows. The k–ω scheme alone fails considerably in
predicting the amplitude and phase of fluctuating flow quantities.
Figure 8a shows the ratio of the relative amplitude of the turbu-
lent wall shear-stress intensity 〈τ ′τ ′〉 to the relative amplitude in the
quasi-steady regime. The rapid decrease of the turbulence intensity
modulation with the imposed frequency from the quasi-steady limit
is clearly seen in this figure. This is because of the finite response
time of the near-wall turbulence that cannot follow the imposed
unsteadiness when the imposed timescale is smaller than its relax-
ation time. The decrease in a

τ ′̃τ ′ is accompanied with the apparition
of large phase shifts �

τ ′̃τ ′ − �Ũc
, as shown in Fig. 8b. There is a

good agreement between k–ω/RD and the experiments, although
the predictions are slightly larger at the highest imposed frequency
investigated here. The agreement is also acceptable for the phase
shifts. The time lag between 〈τ ′τ ′〉 and the centerline velocity oscil-
lation is about 90 wall units. Such detailed comparisons are rather
rare in the literature. Figure 8 shows that the relaxation is seri-
ously underestimated by the k–ω model, which is not discussed
here.

The high-frequency imposed oscillations are particularly inter-
esting regarding the rapid distortion theory. Figure 9 shows the
relative amplitude of the Reynolds shear-stress modulation at the
imposed frequency f + = 0.005 where the modulations of the turbu-
lent quantities decrease drastically, caused, once more, by the finite
response time of the near-wall turbulence. This fact can clearly be
understood by the direct comparisons of Fig. 9 with Fig. 10, which
shows results in the quasi-steady regime. (Please be aware that the
scales in the abscissas of these figures are different.) At y+ = 20
for example, the shear stress is nearly eight times less modulated
at f + = 0.005 than in the quasi-steady regime. The decrease of the
−〈u′v′〉 modulation is accompanied by large phase shifts, and the
time lag �t+ = (�−u′ ṽ′ − �−uc̃)l

+2
s /2 decreases in the inner layer.

Tardu et al. (Ref. 4, p. 134) related this decrease to the diffusion
of the modulation of fluctuating quantities away from the wall with
a diffusivity equal to the diffusivity of time-mean turbulent kinetic
energy. The k–ω/RD model agrees quantitatively well with the ex-
perimental data, not only for the amplitudes, but also for the phase
shifts (Fig. 11).

Fig. 6 Time-mean flow quantities. Mean velocity, kinetic energy,

shear-stress and dissipation profiles: k–ω, auc̃ = 0.3; . . . , l+s = 33; ——,

l+s = 8 k–ω/RD, auc̃ = 0.3; ⋄, l+s = 33; �, l+s = 8, k–ω/RD, auc̃ = 0.1; and ++,

l+s = 8.

The agreement is almost perfect for a large range of imposed
frequencies in the whole layer. We show in Fig. 12 the modulation
characteristics of the Reynolds shear stress at y+ = 15 and at roughly
the beginning of the log layer y+ = 40 to illustrate the success of
the closure. The amplitude [Eq. (12a)] and phase shifts [Eq. (12b)]
of, respectively, the Reynolds shear stress, the kinetic energy, the
dissipation, and production are compared with the measurements
when they are available. We only could measure 〈u′u′〉 and 〈v′v′〉.
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a) b)

Fig. 7 Wall shear-stress modulation vs the Stokes length parameter: a) amplitude (in wall units) and b) phase (frequency). The imposed amplitude

is 30% of the centerline velocity: ××, k–ω/RD; �, k–ω; ❡, and ⋄, Mankbadi and Liu.9

a) b)

Fig. 8 Modulation characteristics of the wall shear-stress turbulent intensity: ⋄, k–ω/RD; �, k–ω; and �[] , measurements with dispersion symbols.

a) Relative amplitude divided by the relative amplitude in the quasi-steady regime. It can easily be shown that a
τ ′ τ̃ ′qs

≈ 4auc̃ in the small imposed
amplitude approximation. b) Phase shift with respect to the centerline velocity oscillations.

Fig. 9 Amplitude of the shear stress at l+s = 8: ❡, measurements and ××,

predicted values.

Fig. 10 Amplitude of the Reynolds shear stress vs the wall-normal

distance in the low imposed frequency: •, k–ω/RD at l+s = 56; ❡, l+s = 44;

and ++, l+s = 30.
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Fig. 11 Time lag of the shear-stress modulation in the inner layer at

l+s = 8. The symbols are identical to those in Fig. 9.

a) b)

Fig. 12 Modulation characteristics of turbulent flow quantities vs the imposed frequency: ❡, measurements and ⋄, k–ω/RD. Amplitudes: a and b)

at, respectively, y+ = 15 and y+ = 40; c and d) at, respectively, y+ = 15 and y+ = 40.

The computed kinetic energy modulation 〈k〉 is thus compared with
its major contribution 1

2
〈u′u′〉. The success of k–ω/RD model in the

whole layer is surprisingly satisfactory.
Some remarks are necessary on the effect of the rapid distortion

over the k–ω model alone with and without wall correction. We con-
ducted several numerical experiments, by separately considering the
simple quasi-steady k–ω models with and without 〈Ret 〉 correction.
The following points have been noticed:

1) The quasi-steady closure compares well with the full model
and the measurements in the log layer at y+ ≥ 50 and in the whole
relaxation regime f + ≤ 0.005.

2) In return, the rapid distortion plays an essential role in the
low buffer and viscous sublayers, wherein the low Reynolds effects
〈Ret 〉 are also primordial. The k–ω closure alone overestimates the
amplitude of the shear stress up to 60% in these zones and in the
high-frequency regime.

3) The effect of the diffusion term in the transport equation of the
effective strain parameter 〈αeff〉 is negligible.

To illustrate these observations, we show in Fig. 13 the distribu-
tion of the relative amplitude of the shear stress and kinetic energy
modulations at l+

s = 8 obtained by the standard k–ω and k–ω/RD.
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c) d)

Fig. 12 Modulation characteristics of turbulent flow quantities vs the imposed frequency: ❡, measurements and ⋄, k–ω/RD. Amplitudes: a and b)

at, respectively, y+ = 15 and y+ = 40; c and d) at, respectively, y+ = 15 and y+ = 40 (continued).

a) b)

Fig. 13 Distribution of the relative amplitudes of the a) shear stress and b) kinetic energy obtained by ——, k–ω and · · ·, k–ω/RD at l+s = 8. The

imposed amplitude is auc̃ = 0.20.
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The modulation of the shear is constrained into the low buffer layer
y+ < 2l+

s = 16 in this case, and the rest of the layer is in the plug
flow regime. It is clearly seen in Fig. 13 that k–ω alone significantly
overestimates the turbulent characteristic modulations in the oscil-
lating shear zone because of its incapacity to correctly model the
relaxation mechanism. In the plug flow layer (y+ ≫ 16), however,
the closures give comparable results.

VI. Conclusions

The one-point k–ω closure is combined with the rapid distortion
theory to predict the modulation characteristics of fluctuating flow
quantities in an unsteady channel flow subject to imposed velocity
oscillations. The structural parameter −〈u′v′〉/〈k〉 is related to the
effective strain parameter and injected into the classical k–ω rela-
tionships. The effective strain parameter modulation is the solution
of a first-order linear differential equation containing the shear. The
truncated rapid distortion concept does not take into account the
near-wall viscous effects. To be consistent, the distortion timescale
is determined by the results obtained through steady k–ω without
low-Reynolds-number corrections. A finite effective strain param-
eter is attributed to the viscous sublayer. The classical interrelation
between the eddy viscosity and 〈k〉 and 〈ω〉 supposes time equilib-
rium and gives satisfactory results only in the low imposed frequency
regime and/or in the logarithmic layer. This model fails in the zones
wherein the shear modulations are significantly important, espe-
cially in the buffer and viscous sublayers. The k–ω/RD, in return,
agrees quantitatively well with the experiments in the whole layer
and the imposed frequency range. It is particularly efficient at the
wall in predicting the amplitude and phase of the wall shear-stress
turbulence intensity for f + ≤ 0.005.

There are few experimental data set for f + ≥ 0.005 that indicate
a fully different reaction of the near-wall turbulence. The experi-
mental data show that fluctuating shear stresses become modulated
again, contrarily to the relaxation regime.15 There is no known model
that gives satisfactory predictions, even qualitative at f + ≥ 0.005.
We could obtain fairly good agreement between the predictions and
the measurements by both forcing and phase shifting the turbu-
lent Reynolds-number modulation. Although this procedure can be
somewhat considered artificial, it has the merit to point at the pri-
mordial role played by the wall in the regeneration of the turbulence
activity modulation. These results will be published elsewhere. It
is finally asked here whether the future development of the model
should not contain a supplementary term in the transport equation
of the effective strain:

∂〈αeff〉
∂t

= −
〈αeff〉
Td(y)

+
∂〈u〉
∂y

+
∂

∂y

[
D(y)

∂〈αeff〉
∂y

]
+

∂

∂y
[〈V αeff〉] (7)

where both a gradient-type diffusion and convection by large-scale
〈V 〉 motions are included. The modeling of the latter could, even-
tually, give better insight into the mechanism at very high imposed
frequencies.
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