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Response of the streaks, the active and passive eddies

in an unsteady channel flow

F. Sedat Tardu *, Philippe Vezin

Laboratoire des Ecoulements G�eophysiques et Industriels, B.P. 53 X, Grenoble C�edex 38041, France 

Spanwise space–time correlations of the wall shear stress and the longitudinal velocity fluctuations in the low buffer layer of an

unsteady channel flow are reported. The imposed amplitude is 20% of the centerline velocity and the imposed frequency covers a

large range going from the quasi-steady limit to the bursting frequency of the corresponding steady flow. The unsteady spanwise

correlation coefficient is investigated both through its own modulation characteristics (amplitude and phase shifts) and those of the

resulting streak spacing. A good correspondence is found between the modulation of the streak spacing and that of the ejection

period. The data is further analyzed by temporal filtering of the wall shear stress and streamwise velocity fluctuations. It is shown

that the large outer-layer structures play a ‘‘passive’’ role in the unsteady response of the near wall turbulence. The inner wall eddies,

in return, are amply responsible for the unsteady reaction of both the turbulent wall shear stress and the streamwise velocity

intensities in the buffer layer.

1. Introduction

Turbulent shear flows with periodically forced free-

stream velocity have been intensively investigated during

the last two decades. The pipe flow experiments of Tu

and Ramaprian (1983) and of the Illinois team (Mao

and Hanratty, 1986; Finnicum and Hanratty, 1988), the

unsteady boundary layer investigation of Brereton et al.

(1990) and the channel flow experiments conducted by

the Grenoble group (Tardu and Binder, 1993; Tardu

et al., 1994) could be representative of yet an incomplete

list of recent research on this topic. The practical

importance of forced unsteady turbulent layers only

partly explains the increasing interest in this subject. The

fundamental aspects are more attractive. The forcing

provides an effective way of determining the ‘‘frequency

response’’ of the near wall turbulence. The oscillating

shear acts on the near wall flow viewed as a system. The

sensing of the state (outputs) through the modulation

characteristics of the flow quantities, determines its

transfer function.

The temporal nonequilibrium sometimes dictates an

unexpected response of the near wall turbulence. First of

all, the imposed frequency range demarcating the quasi-

steady regime differs from one quantity to another.

There is a large consensus on the existence of a relaxa-

tion regime, which is subsequently set-up. Roughly

speaking, when the imposed unsteadiness is rapid, the

modulation of the turbulent quantities weakens and

large time lags with respect to the centerline velocity

appear. In the models which are more or less inspired

from the rapid distortion theory, these behaviors may be

qualitatively predicted by taking into account an effec-

tive strain (Mankbadi and Liu, 1992; Tardu and Da

Costa, 2001), an effective pressure gradient (Mao and

Hanratty, 1986) or an effective oscillating shear (Tardu

and Binder, 1997), through a first order response rela-

tionships with constant time scales. These models fail in

a third regime characterized by imposed frequencies

significantly larger than the bursting frequency and

wherein the modulation of turbulent quantities increases

(Finnicum and Hanratty, 1988; Feng et al., 1993).
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Most of the past research on the response of the near

wall turbulence has been devoted to the modulation

characteristics of the Reynolds shear stresses and to the

wall shear stress intensity. Only limited attention has been

paid for the length scales. The time–space transverse

correlations of the fluctuating wall shear stress reported

by Finnicum and Hanratty (1988) are the only available

probe data to our knowledge. These authors have

determined the cyclic variations of the spanwise charac-

teristic scale of wall turbulence, i.e., the streak spacing hki
in a wide range of imposed frequency. They have shown

that there is a close similarity between the modulation

characteristics of hki and those of the turbulent wall shear

stress intensity. The flow visualization investigation of

Brereton and Hwang (1994) is somewhat contradictory

and does not agree with the probe data quoted before, in

particular in the relaxation regime. More systematic

studies are undoubtedly needed to clarify the reaction of

the spanwise structure of the flow to imposed unsteadi-

ness. This issue is important in the understanding of the

regeneration of the coherent structures, since their genesis

is strongly connected with the streaky organization of the

near wall flow (Jim�en�ez, 1994).

The work presented here is part of a project dealing

with longitudinal, normal and transverse length scales in

an unsteady turbulent channel flow. The space–time

spanwise correlations between the wall shear stress and

longitudinal velocity fluctuations in the buffer layer are

investigated here. The longitudinal length scales to-

gether with the validity of the Taylor hypothesis in these

nonequilibrium flows will be published elsewhere.

The major contributions of this paper are threefold.

First the difficult problem concerning the spectral

characterization of the unsteady near wall turbulence is

addressed in Section 3. In stationary turbulence, the

autocorrelation function of fluctuating quantities de-

pends only on the time delay. The power spectrum is

one-dimensional and easily computed by standard

techniques. The unsteady wall flows are nonstationary

by definition. Both the autocorrelation function and the

power spectrum are two-dimensional and the latter is

the double Fourier transform of the first. The spectral

characterization of unsteady turbulence requires a rep-

resentation in the entire frequency plane bounded by the

Kolmogoroff frequency fK � fK . This is not only difficult

from a technical point of view, but the interpretation of

the results obtained is also much less clear than for the

stationary turbulence. The periodically forced turbulent

flows have, fortunately, specific properties that simplify

considerably the problem. That will be discussed in

some detail in this paper.

The active eddies in canonical turbulent wall flows

contribute directly to the turbulence production, while

the passive outer layer structures contribute only to the

kinetic energy. They respectively correspond to the

quasi-streamwise coherent structures in the buffer layer,

and the outer structures extending to the far logarithmic

layer. The characteristics of these structures may be

experimentally studied through temporally filtered

velocity signals (Naguib and Wark, 1992). Both active

and passive eddies have well defined time scales in sta-

tionary wall turbulence. Both of them originate from the

wall, but their strain rate histories are different. The

inactive eddies are large-scale motions mainly associated

with pressure fluctuations and they consequently scale

with integral variables. The active structures are

governed by local equilibrium, thus, they are universal,

self-similar and they scale with the local shear stress.

Whether these characteristics are still valid or not in

nonstationary turbulence are unclear. The response of

active and passive motions to imposed shear oscillations

together with their repercussions on the correlated

structure of the buffer layer constitute the second major

contribution of this investigation. It is for instance asked

whether the modulation characteristics, i.e., the ampli-

tude and phase of active and inactive eddies scale

respectively with the inner and outer scales. The mod-

ulation of the inner scale is directly related to that of the

wall shear stress, while the outer scale is connected to the

modulation of the centerline velocity. Both are consid-

erably different when the imposed frequency is high

enough. The response of outer and inner eddies is, in a

first stage, determined through their contribution to the

turbulent wall shear stress intensity and longitudinal

shear stress. We subsequently investigate the impact of

these structures to the spanwise organization of wall

turbulence and show that their reactions to imposed

shear oscillations are significantly different.

One of the kinetic consequences of Reynolds shear

stress producing quasi-streamwise vortices in the buffer

layer is the formation of the zones of low and high speed

streaks that are quasi-periodical in the spanwise direc-

tion. The distance between these zones, in other words,

the streak spacing, provides a well-defined spanwise scale

of the canonical wall turbulence which is about 100 in

wall units. The turbulence activity near the wall and the

streak spacing are interconnected. For instance, there is a

large consensus in the drag reduction research commu-

nity that large bursting activity result in small streak

spacing and vice versa. We will show here that this con-

nection still holds in nonstationary turbulence, though

with some subtle modifications. The discussion in Section

4 deals with the plausible reasons of this coincidence and

is conducted in the light of recent research in the area.

2. Definitions, experimental set-up and data reduction

2.1. Flow facility and hot-film measurements

The experiments were performed in the unsteady

water channel described in detail in Tardu et al. (1994).
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The sinusoidal velocity oscillations are generated by

means of a specific pulsating device that allows the

independent control of the mean centerline velocity, the

amplitude and frequency of the imposed unsteadiness.

The centerline velocity is U c ¼ 17:5 cm/s corresponding

to a Reynolds number based on the half height of the

channel of Reh ¼ U ch
m

¼ 8800. The imposed amplitude is

20% of the centerline velocity throughout the whole

study. The imposed frequency in wall units fþ ¼ f m
ffiffiffi
u

p 2
s

varied by a factor 24 from fþ ¼ 2:2� 10�4 to

fþ ¼ 60� 10�4. Hereafter þ designates variables nor-

malized by the cinematic viscosity m and shear velocity

�us.

The spanwise time–space correlations between the

wall shear stress and the velocity at yþ ¼ 10 were per-

formed by means of a flush-mounted TSI-1268 W hot

film at the wall and a rake of four TSI F1276-10W hot

films separated by D
þ ¼ 60–80. Spanwise and vertical

probe displacements were made using a controlled tra-

versing mechanism. The sensitive parts of the hot films

are 81m for the wall probe and 41m for the hot films at

yþ ¼ 10. The hot films were operated at constant tem-

perature with 5–8% overheat by AHARONI AN-1003

anemometer units. The calibration of the hot films was

done in situ as described by Tardu et al. (1994) in which

the frequency response of hot film gauges and other

experimental details are also discussed. Some related

details are given in Appendix A.

The analog to digital conversion was achieved with

an Analog-Device RTI-800 board (accuracy 11 bit+

sign; 8 channel) installed in a PC computer. The sam-

pling frequency was 1.5�u2s=m. The signals were filtered

with accurate cut-off frequencies. The minimum record

length was Tr ¼ 9200h=U c ¼ 191000m
ffiffiffi
u

p 2
s for each sig-

nal which means about 45 min for each experiment. This

give a total number of 286 000 data points per probe

which is large compared to 32 000 points in Finnicum

and Hanratty’s experiments (1988) although the total

duration of their data is comparable.

The classical triple decomposition is used. A quantity

q is decomposed into a mean �q an oscillating ~q and

fluctuating q0 components. The angle brackets designate

the phase averages i.e. hqi ¼ �qþ ~q. The modulation

characteristics of hqi are described by the amplitude ½q

and phase fqg of the fundamental mode, i.e.

~q ¼ ½q
 cosð2pft þ fqgÞ. The relative amplitude is

q̂ ¼ ½q
=�q is also introduced for convenience.

3. Results

3.1. Modulation characteristics of the shear

One of the interesting features of the unsteady flows is

the coexistence of a purely viscous oscillating Stokes

component with an unaltered time mean base flow when

the imposed frequency is larger than fþ ¼ 0:003. This
observation led some research groups to use the Stokes

length in wall units lþs ¼
ffiffiffiffiffiffi
l

pfþ

q
as the frequency

parameter (Ronneberger and Ahrens, 1977; Tardu et al.,

1994). Fig. 1 illustrates this peculiarity through the

amplitude and phase shift of the wall shear stress hsi. It
is seen that when lþs < 10, ½s
 � ½s
Stokes ¼

ffiffiffi
2

p
l½uc
=ls

and fsg � fucg � 45�. Consequently, the relative

amplitude and phase shifts of the shear are fairly well

described in this frequency regime by

oû

oy
� ŝe�yþ=lþs ¼ ŝe�yþ

ffiffiffiffiffi
pfþ

p

ou

oy

� �
� fucg � p

4
� yþ

lþs
ðin radiansÞ

The oscillating shear is therefore mainly confined in

yþ < 2lþs . In the quasi-steady limit, in return,

hsiqs / hUci2 which gives ŝqs � 2ûc and fsqsg � fucg for

small amplitudes, where ‘‘qs’’ refers to the quasi-steady

regime hereafter.

3.2. Modulation of the turbulent wall shear stress intensity

and the turbulent intensity at yþ ¼ 10

Fig. 2a shows the relative amplitude of the wall shear

stress intensity hs0s0i related to the relative amplitude of

the wall shear stress hsi versus the imposed frequency

fþ. The corresponding ratio du0u0=û of the hu0u0i modu-

lation and that of the local velocity hui at yþ ¼ 10 is also

shown in Fig. 2a. Note first that the measurements in the

low frequency regime agree well with the expected quasi-

steady behaviors. In the low frequency range, one has
hs0s0iqs
hsi2qs

¼ 0:382 and a Taylor series analysis of this rela-

tionship leads tods0s0qs � 2ŝqs. This is well born out with

the measurements at fþ ¼ 0:0002 shown in Fig. 2a.

Similar arguments apply to hu0u0i in the low imposed

frequency regime (Tardu et al., 1994).

The modulations of both hs0s0i and hu0u0i decrease

when the imposed frequency increases but the decay
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Fig. 1. Amplitude and phase shift of the wall shear stress.
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ds0s0=ŝ in is more pronounced and takes place earlier.

These results are in good agreement with previously

published data. The weakening of the modulation of the

turbulence in this frequency regime, may be explained

by the fact that the near wall flow responds only partly

to the rapid temporal changes of the shear o~u
oy
. Suppose

that the wall sees an effective shear
o~uþ

eff

oyþ which may be

modeled through a first order time-response equation

hþ o

otþ
o~ueff
oyþ

h i
þ o~uþ

eff

oyþ ¼ o~uþ

oyþ where hþ stands for the relaxa-

tion time in wall units. This introduces a damping ratio
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð2pfþhþÞ2
p and a phase shift––arctgð2pfþhþÞ between

the modulation of the real and the effective shears. This

crude model results in sharp decreases of the amplitudes,

and constant time lags Dtþs0s0 ¼ fs0s0g � fsg=2pfþ � �hþ

in the quasi-steady regime, and Dtþs0s0 � � 1
4fþ when the

imposed frequency is sufficiently high. The resulting

profiles shown by the dotted lines in Fig. 2a and b have

been obtained through best curve fitting to give

hþ ¼ 140 at the wall. It is seen that this first order model

estimates reasonably well the amplitude and the time lag

of hs0s0i. The modulation characteristics of hu0u0i at

yþ ¼ 10 interpolated from an unsteady closure based on

the rapid-distortion theory (RDT) are also shown in

Fig. 2. This model uses the ratio of the turbulent shear

stress to the turbulent kinetic energy to be a function of

effective strain and of the distortion story of the turbu-

lent field (Maxey, 1982). The details are beyond the

scope of this paper and may be found in Mankbadi and

Liu (1992) and Tardu and Da Costa (2001). It is seen

that the RDT predicts reasonably well the behavior of

hu0u0i, except a slight underestimation of Dtþu0u0 ¼ fu0u0g�
fug=2pfþ in the low frequency regime.

3.3. Unsteady spanwise correlation coefficient between the

wall shear stress and the streamwise velocity

The response of the near wall structures in the

spanwise direction is investigated by performing the

phase locked ensemble averages of the correlations in

time and space:

hRi ¼ hs0ðxþ ¼ 0; zþ ¼ 0; tÞu0ðxþ ¼ 0; yþ ¼ 10; zþ; t þ Dtiffiffiffiffiffiffiffiffiffiffiffi
hs0s0i

p ffiffiffiffiffiffiffiffiffiffiffi
hu0u0i

p

between the fluctuating wall shear stress s0ðtÞ and the

streamwise velocity u0ðtÞ at yþ ¼ 10. The time mean

correlation coefficient hRi, the amplitude ½R
 and the

phase hRi of the fundamental Fourier mode are subse-

quently determined as alluded earlier. The time delay is

Dt ¼ 0 through the whole study.

The profiles of the unsteady time-mean spanwise

correlation coefficient hRi are shown in Fig. 3. They are

compared with the R distribution measured in situ in

steady flow. The collapse of the profiles for different

imposed frequencies indicates that hRi is unaffected at

the mean by the imposed unsteadiness. The results of

Naguib and Wark (1992, NW hereafter) obtained in a

standard boundary layer at Reh ¼ 1579 are also shown

in Fig. 3 for comparison. There is a nice concordance

between the data of these authors and the results dis-

cussed here, despite the differences in Reh.

The modulation characteristics of the correlation

coefficient at several spanwise offsets are summarized in

Fig. 4 versus the imposed frequency. Both the amplitude

and phase of hRi are related to their quasi-steady values.

This representation takes into account the large varia-

tions of ½R
 and fRg via zþ to a certain degree, and the

data is fairly well regrouped especially for the phase

shifts (Fig. 4b). The quasi-steady amplitude ½Rqs
 and
phase fRqsg are independently determined by careful
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Fig. 2. Modulation of the turbulent intensity at yþ ¼ 10 and of the wall
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first order model and RDT from Brereton and Mankbadi (1993): (a)

ratio of relative amplitudes; (b) time lags.
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measurements at fþ ! 10. These details are of minor

importance and they may be found in Vezin et al. (1994).

The scaled amplitude ½R
=½Rqs
 decreases in the fre-

quency range fþ < 0:0022, as a result of the finite re-

sponse time of the near wall structures. This decay

persists in the entire range zþ < 50, where the time mean

correlation coefficient is positive and relatively large.

There is a change in the reaction of the correlated buffer

layer structures at larger forcing frequencies. The

amplitude ½R
 increases with fþ > 0:0022, resulting in

large cyclic variations of the intrinsic properties of the

near wall turbulence in the high frequency regime.

The time lag of the correlation coefficient defined as

DtþR ¼ hRi�hRqsi
2pfþ is shown in Fig. 4b. It is seen that

DtþR � �100 in the low frequency range, decreases by a

factor 3 at fþ ¼ 0:0022 and reaches a plateau region at

larger fþ. This behavior is consistent with the recovery

of the correlation coefficient response and cannot be

predicted by a first order relaxation model. It is note-

worthy that these structural modifications occur when

fþ is larger than the critical frequency fþ
cr ¼ 0:0022, and

thus, when the oscillating shear is mainly confined in the

low buffer layer. The repercussion of the inner active

and the outer passive eddies on these peculiar aspects of

the near wall response is addressed in the next section.

3.4. Investigation of the spanwise correlation coefficient

by temporal filtering

3.4.1. Spectral characterization of unsteady flows with

imposed time periodicity

The statistical quantities related to turbulence in un-

steady forced flows are time periodical. Such processes

are called cyclostationary in wide sense with period T , in

information theory (CSP(T) hereafter). The CSP(T) are

encountered not only in unsteady turbulent channel

flows, but also in turbulent boundary layers subjected to

localized unsteady blowing/suction to control the drag,

or the forced synthetic jets used in bluff bodies separa-

tion control, pulsating jets, etc. The time periodical

random processes are studied in details in information

theory since three decades (see Gardner and Franks,

1975, for an excellent review). Our community is not

entirely aware of these investigations. The aim of this

session is to give a concise resume on the cyclostationary

processes based essentially on Hurd (1989), see also

Tardu, 2003). We also connect the CSP(T) characteris-

tics to the classical phase averaging process.

3.4.1.1. Definitions. Let xðtÞ be a continuous second-or-

der random function and let the correlation function:

Rxðt1; t2Þ ¼ E½xðt1Þx�ðt2Þ
 ð1Þ
with E denoting the statistical expectation operator and

the superscript � standing for complex conjugation. One

has

Rxðt1; t2Þ ¼
Z 1

�1

Z 1

�1
exp½2pjðt1f1 � t2f2Þ
rY ðdf1; df2Þ

ð2Þ
where rY ðdf1; df2Þ represents the part of the frequency

domain f1 � f2 wherein the energy is concentrated (see,

Hurd, 1989 p. 57 for a rigorous definition). The sto-

chastic process xðtÞ is wide sense cyclostationary of

periodicity T (or periodically correlated) when

Rxðt1; t2Þ ¼ E½xðt1Þx�ðt2Þ
 ¼ Rxðt1 þ mT ; t2 þ nT Þ ð3Þ
where m and n are any integer and E stands for expected

value. Periodically correlated processes include wide

sense stationary processes, for which Rxðt1; t2Þ ¼
Rxðt2 � t1Þ for every t1; t2.

3.4.1.2. Characterization of cyclostationary processes.

The cyclostationarity expressed through (3) implies

Rxðt1; t2Þ ¼
1

2N þ 1

Xk¼N

k¼�N

Rxðt1 þ kT ; t2 þ kT Þ ð4Þ

Considering a harmonizable process xðtÞ, the relation-

ship (2) combined with (4) leads to

Rxðt1; t2Þ ¼
1

2N þ 1

Xk¼N

k¼�N

Z 1

�1

Z 1

�1
exp½2pjðt1 þ kT Þf1

� 2pjðt2 þ kT Þf2
rY ðdf1; df2Þ
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and after some algebra to

Rxðt1; t2Þ ¼
Z 1

�1

Z 1

�1
exp½2pjðt1f1 � t2f2Þ


� DN ðf1; f2ÞrY ðdf1; df2Þ ð5Þ
where, DN equals to

DN ðf1; f2Þ ¼
1

2N þ 1

Xk¼N

k¼�N

exp½2pjkT ðf1 � f2Þ


¼ 1

2N þ 1
1

(
þ 2

Xk¼N

k¼1

cos½2pkT ðf1 � f2Þ

)

ð6Þ
Eqs. (1) and (5) are identical. Thus, DN has to be equal

to one. According to (6), this is possible if and only if

f2 ¼ f1 �
j

T
ð7Þ

j standing for any integer. Thus, the support of a peri-

odically correlated process of period T , is contained in a

set of equally spaced lines parallel to the main diagonal.

This is schematically shown in the frequency plane

f1 � f2 in Fig. 5. The lines f2 ¼ f1 � j

T
are randomly

distributed, the distribution depending on the unsteady

process itself.

The support of the time mean correlation is the diagonal

f2 ¼ f1. To show this, first write (1) as

Rxðt1; t1 þ tÞ ¼
Z 1

�1

Z 1

�1
exp½2pj½t1ðf1 � f2Þ � tf2



� rY ðdf1; df2Þ ð8Þ
where t ¼ t2 � t1. The time mean Rx is by definition

Rxðt1; tÞ ¼ lim
C!1

1

2C

Z t1þC

t1�C

Rxðt1; t1 þ tÞdt1

¼ lim
C!1

1

2C

Z 1

�1

Z 1

�1
expð�2pjtf2ÞrY ðdf1; df2Þ

�
Z t1þC

t1�C

exp½2pjt1ðf1 � f2Þ
dt1

Computing the last integral leads to

Rxðt1; tÞ ¼ lim
C!1

Z 1

�1

Z 1

�1
exp½2pj½t1ðf1 � f2Þ � tf2



� sin½2pðf1 � f2ÞC

2pðf1 � f2ÞC

rY ðdf1; df2Þ

The limit of the integral in the right hand side is zero

every where except on the diagonal f1 ¼ f2. That results

in

Rxðt1; tÞ ¼
Z Z

f1¼f2

expð�2pjtf2ÞrY ðdf1; df2Þ ¼ RxðtÞ

ð9Þ
and the time mean is stationary of course, since Rx de-

pends only on the delay t ¼ t2 � t1. The support of the

modulation eRx is the ensemble of the lines f2 ¼ f1 � j

T
,

with j 6¼ 0, the diagonal being excluded. The following

remarks are important for the characterization and

interpretation of unsteady turbulent wall flows:

1. Fig. 5 shows that the frequency domain of a low pass

filter of cut off frequency smaller than half of the im-

posed frequency DfLP6
1
2T

intersects only the diago-

nal f1 ¼ f2. Thus the output of such a filter will be

strictly stationary. Similarly, a CSP(T) when passed

f1= f2

f PB

f LP

x(t)

1

T

1

T

2

T

2
T

3

T
f1

f2

Low pass filter

∆ f LP = 
1

2T

Passband filter

∆f PB=
1

T

Time mean correlation

R x (t
1
,t)= Rx (t)

Filter

Disjoint {

{

Fig. 5. Support of a cyclostationary process in the frequency plane.
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through a band pass filter with band pass DfBP6
1
T
is

also stationarized and its statistics have strictly zero

modulation. In this study, we proceeded by temporal

filtering to investigate the response of large and small-

scale structures, as it will be discussed in the follow-

ing. Specific care has to be taken in choosing the

characteristics of the temporal filters for unsteady

forced periodical turbulent flows. If, for example, a

low pass filter with cut off frequency smaller than 1
2T

is chosen for the fluctuating longitudinal velocity u0

the modulation of the output intensity is ineluctably
gu00u00 ¼ 0, not because the outer scales are frozen

and cannot follow the imposed unsteadiness, but sim-

ply because the process is cyclostationary.

2. The output of a disjoint filter is not null when the

input is a CSP(T) contrarily to a stationary process.

Disjoint filtering consists of passing the signal

through two filters whose bandwidths do not inter-

sect. Such an operation is shown schematically in

Fig. 5. The signal is first low pass filtered and passes

consequently through a band pass filter defined on

the interval c 1
T
; 1
2T
b. The frequency domain covered

by this operation contains the segments of the lines

f2 ¼ f1 þ 1
T
and f2 ¼ f1 þ 2

T
that are part of the of

the frequency support. Thus, the time means statistics

of the output are strictly zero, but not their modula-

tion. Such interactions between disjoint scales have to

be taken into account in unsteady forced flows.

3.4.2. Choice of invariant time filters

The band-pass filtered wall shear stress and stream-

wise velocity fluctuations were further analyzed. The

choice of the filters resulted from a compromise between

three factors. First, the filters have to recover the un-

steady support as discussed in the previous session. The

imposed frequency is varied in a large range in this

investigation, but the bandwidths are kept constant to

insure consistency from one case to another. The third

factor is the connection between this study and pub-

lished data for confrontation purposes. There is, indeed,

at least one set of data in steady, canonical near wall

turbulence (NW) and that will allow us to compare the

time mean statistics. Thus, three digital, zero phase-

shift, 128 points FIR (finite impulse response) filters

have been designed. They are designated as filter 0 (low-

pass, cut-off frequency Dfþ
0 ¼ 0–0.0045), filter 1(band-

pass Dfþ
1 ¼ 0:0055–0.022) and filter 2 (band-pass

Dfþ
2 ¼ 0:0316–0.0482).The filtered instantaneous flow

quantities are denoted by q0iðtÞ, where i ¼ 0–2 stands for

the output of the filters 0–2.

All of the three filters recover the unsteady support in

the imposed frequency range investigated here. Filters 1

and 2 are exactly the same as in NW. The cut-off fre-

quency of the low pass filter used by NW is 0.0025. It

has to be increased to 0.0045 to recover the unsteady

support at the two highest imposed frequencies. This

modification did not appreciably affect the modulation

characteristics of the low pass filtered signals, in the low

and medium imposed frequency ranges.

3.4.3. Interaction powers

The interaction powers related to the disjoint parts of

the spectral domain are not necessarily zero, contrarily

to the stationary processes, which admit spectral

decomposition. We discussed this point previously in

Section 3.4.1. For example, hu00u01i may be strongly

modulated, though u00u
0
1 ¼ 0 at the mean. It is not ex-

cluded that the phase averaged interaction power hu00u01i
reaches cyclic values larger than hu00u00i or hu01u01i. If that
happens, the analysis cannot be limited only to the

behavior of the pass-band powers hu0iu0ii. It should in-

clude the response of the interaction powers too. The

largest value of hu00u01i during the oscillation cycle is

I0;1 � ½u00u01
. It is compared with the band pass power

I0;0 � u00u
0
0 þ ½u00u00
 in Fig. 6, rather than I1;1 which is two

times larger. The distributions
I0;2
I2;2

and
I1;2
I2;2

determined in

the same way are also summarized in Fig. 6 versus the

imposed frequency. It is seen that the modulation of the

interaction powers between structures of large-scale

differences, such as hu00u02i is negligible. However, the

interactions between ‘‘adjacent’’ structures as hu00u01i and
hu01u02i become somewhat significant once fþ > 0:004.
Their contributions do not exceed 20%, so that the pass-

band powers are still predominant. Yet, a net trend of

increase is noticeable, and it is plausible that the inter-

action powers dominate the dynamics at further higher

imposed frequencies.

3.4.4. Modulation characteristics of the filtered fluctuat-

ing wall shear stress and fluctuating streamwise velocity

The contributions in unsteady flow of the filters 1, 2

and 3 to the turbulence intensity at yþ ¼ 10 are

respectively 0.27, 0.45 and 0.1 with a total of 85%. Note

that the contribution of the outer structures is half that

of the near wall eddies. These values are in good

agreement with Naguib and Wark (1992). Similar results
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Fig. 6. Maximum of the phase averages of the interaction powers.
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have been obtained for the fluctuating wall shear stress,

with only some subtle differences.

The relative amplitudes of the band pass filtered sig-

nals are summarized in Fig. 7. The frequency depen-

dence of gu0iu0i and gs0is0i are compared with that of the

unfiltered signals. It is seen that, the cyclic contributions

of the inner and outer structures feature on the whole

the same qualitative and quantitative behaviors. They

decrease from the quasi-steady limit with more or less

the same frequency sensitivity in the relaxation regime.

Some subtle differences in the reaction of the inner ed-

dies are however perceptible at fþ > 0:004. Note that

s02s
0
2 exhibits a net tendency to increase with fþ (Fig.

7b). Apart from these exceptions, and referring to the

global trend of the relative amplitudes, one would con-

clude that the near wall turbulence responds almost

uniformly in the part of the spectrum scanned by the

three filters. Any conclusion of this kind would be

somewhat premature, without analyzing the phase shifts

and the related time lags.

As a matter of fact, the time lags Dtþi;u0u0 and Dtþi;s0s0
shown in Fig. 8 give evidence of important differences in

the reaction of inner and outer eddies. First thing to

note from this figure is the constancy of the time lags at

imposed frequencies smaller than roughly fþ
cr . Note that

this critical value is nearly the cut-off frequency of filter

0. When fþ > fþ
cr , however, the time lags of the inner

structures decrease uniformly and reach a plateau region

further on. In return, Dtþ0;u0u0 and Dtþ0;s0s0 corresponding to

the outer passive structures are insensitive to the imposed

unsteadiness and remain remarkably close to Dtþ0;u0u0 �
�75 and Dtþ0;s0s0 � �120.

It was shown in Section 3.2 that a first order relaxa-

tion model reflects reasonably well the modulation

characteristics of the near wall turbulence. Such a model

is undoubtedly not adequate with regard to the struc-

tures of specific time scales. The reader will agree that

the constancy of the time lags Dtþ1 , Dtþ2 at large fre-

quencies fþ > 0:0035, and that of Dtþ0 in the entire re-

gime are incompatible with a first order linear minimum

phase model. Nothing would imply, indeed, that the

structures 0, 1 or 2 are governed by linear transfer

functions. The inactive motions of large scale, do not

contribute to the Reynolds shear stress and do not di-

rectly produce or dissipate any significant amount of

energy. They may however act indirectly by creating

local regions of intense shear in the wall region and

triggering local instabilities, contributing therefore, to

the generation of energetic eddies. According to Brad-

shaw (1967), the passive structures are merely governed

by pressure–strain correlations and turbulent diffusion,

i.e. one has
gou0

0
u0
0

ot
� � o

oy

g
u0

2

0 v
0
0 þ 2

q

g
p00

ou0
0

ox
. The turbulent

diffusion term at the right hand of this equation is

nonlinear and it is neglected in the rapid distortion

theory. The use of models inferred from RDT may
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therefore be questioned at least for the outer structures.

The structures 1, on the other hand, contribute mostly

to the Re shear stress as clearly shown by NW. All of the

terms involving
ohu0

1
u0
1
i

ot
have to be retained and the cor-

responding production term may directly be replaced by

�2hu0v0i ohui
oy

for a first approximation. Note, finally that

the modulation characteristics of the structures 1 and 2

are basically identical. This is expected, since both

structures are active, and they should scale with the

modulation of the local shear stress and the distance to

the wall.

Beykirch et al. (1996) investigated the frequency re-

sponse of the near wall turbulence subject to imposed

shear oscillations through the Wigner–Ville spectrum.

The latter introduces the concept of ‘‘instantaneous

frequency’’ g (Flandrin, 1998), and reads for

Wxðt; gÞ ¼
Z þ1

�1
Ux g

�
� f

2
; gþ f

2

�
expð�j2pftÞdf

where Uxðf1; f2Þ is the spectra of the nonstationary signal
xðtÞ. The use of Wigner–Ville spectrum in unsteady wall

turbulence is not common. We derive in Appendix B the

Wigner–Ville spectrum of a cyclostationary process and

show that Wxðt; gÞ is the sum:

Wxðt; gÞ ¼
X

i2Z
Wxiðt; gÞ

of the discrete components Wxiðt; gÞ ¼ Ux g� i
2T
; gþ i

2T

� �

exp �j2p it
T

� �
. For a given frequency g, the Wigner–Ville

spectrum covers only partly the spectral domain delim-

ited by a band pass filter. Fig. 18 shows this domain for

an octave pass-band filter ½f ; 2f 
 when g ¼ 3
2
f . We

investigate here the phase average of the filtered signal,

which, in terms of Wigner–Ville spectrum equals:

hxxi ¼
Z g¼2f

g¼f

Wxðt; gÞdg

The last relationship highlights the difference between

these results and the Beykirch et al.’s (1996) investiga-

tion. These authors noticed that both the real and

imaginary parts of Wxðt; gÞ vanish in the high-imposed

frequency regime for octave band pass filtered signals

with gþ � 0:03. We observe a decrease of amplitudes

under similar conditions, but not entirely frozen turbu-

lence response. It is, of course, not impossible that

Wxðt; gÞ vanishes, at a given ‘‘instantaneous’’ frequency,

but not its integral. This may be the case for instance,

when the unsteadiness does not penetrate into the high

frequency range of the spectrum. Such processes are

called weakly cyclostationary in information theory.

The bold lines in Fig. 18 show the spectral support of

such a signal. It is seen that hxxi is modulated in the

band covered by the filter, but that the modulation
eWxðt; gÞ is zero at g ¼ 3

2
f .

3.4.5. Modulation characteristics of the spanwise corre-

lation coefficient inferred from temporal filtering

The profiles of the time-mean correlation coefficients

inferred from temporal filtering are shown in Fig. 9a and

b which recapitulate respectively the distributions of R0

and R2. The ‘‘negative dip’’ in R, appears clearly in Fig.

9b. It is related to the signature of the low-speed streaks

and may be identified as the half streak spacing �kþ=2.
One may, therefore conclude from Fig. 9b that �kþ � 80–

100 as in steady flow. Recall that such a negative local

minimum is hardly distinguishable in the profiles of the

conventional correlation coefficient R (Fig. 3). It is also

totally absent in the R0 distributions (Fig. 9a). This

confirms the analysis of NW, who argued that the outer

structures contaminate R by tangling the footprints of

the low speed streaks.

The amplitude of the correlation coefficient hR0i is

shown in Fig. 10. It is compared with its corresponding

‘‘quasi-steady’’ distribution. Notwithstanding the

experimental uncertainties, the salient feature of the

profiles ½R0
 is their remarkable insensitivity to the im-

posed frequency. Therefore, the outer layer structures

keep up the same correlated reaction to the forcing in

the high as well the low imposed frequency ranges. The

insensitivity of hR0i may be better appreciated when ½R0

is compared with ½R1
 or ½R2
. Fig. 11 shows for instance
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Fig. 9. Time mean spanwise correlation inferred from: (a) filter 0 and

(b) filter 2. For legend see Fig. 3.
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that ½R2
 decreases by a factor 2–3 at the intermediate

imposed frequency fþ ¼ 0:0012, in a way similar to the

amplitude of the correlation coefficient of the unfiltered

signals (Fig. 4b). This decay is followed by a subsequent

increase in the high frequency regime showing that the

inner structures are responsible for the true unsteady

effects.

It would be more instructive at this step to consider

the integral quantity defined by bEi ¼
R zþ
0
½Ri
dzþ=R zþ

0
Ri dz

þ. One may show that bEi represent the relative

amplitudes of the integral scales to the first order (Vezin

et al., 1994). Fig. 12 compares the distributions of
bEi=bEiqs with the modulation of the hRi integral scale. It
is seen that the response of the near wall eddies illus-

trated by bE1 and bE2 depends strongly on the imposed

frequency. The reaction of the outer passive structures

depicted through bE0 remains remarkably uniform.

3.5. Modulation of streak spacing

The modulation characteristics of the streak spacing

are determined by computing the relative amplitude and

the phase of the zero crossing of the correlation coeffi-

cient. This is the procedure reported by Finnicum and

Hanratty (1988) wherein the reasons of using such a

scheme are discussed in detail.

The relative amplitude of the streak spacing scaled

with the centerline amplitude k̂=ûc is shown in Fig. 13a.

The data is compared with the results inferred from the

spanwise s0–s0 correlations reported by Finnicum and

Hanratty (1988, FH hereafter). Consider first the quasi-

steady reaction of hki. It is well established by now

that the streak spacing scales with inner variables in

steady flow (Smith and Metzler, 1983). One has there-

fore
hkiqshusiqs

m
� kþ, which leads to k̂qs � ûc and fkqsg�

fucg � 180�. This is well established at fþ < 0:0005
both for the measurements presented in this study and

for those of FH (Fig. 13).
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Fig. 10. The amplitude of the modulation of the correlation coefficient

corresponding to the outer-layer structures. For legend see Fig. 3.
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The streak spacing modulation relaxes first and k̂

decreases from the quasi-steady limit with a minimum

near the critical frequency fþ
cr . This is followed by an

increase in the cyclic variations of hki in the high im-

posed frequency regime. The weakening of the streak

spacing modulation at fþ < fþ
cr is in good agreement

with FH. However, the subsequent increase of k̂ when

fþ > fþ
cr does not agree. For all that, the two sets of

data collapse quite satisfactorily as far as the phase

shifts are concerned (Fig. 13b).

The longitudinal velocity fluctuations are instanta-

neously related to s0 through u0þ ¼ s0þyþ only in the low

viscous sublayer for yþ6 2 according to Popovich and

Hummel (1967). Thus the disagreement between the

present investigation related to the wall–buffer layer

interactions and that of FH is, indeed, not surprising.

To check this argument, we performed some correlation

measurements hs0u0ðyþ ¼ 3:4Þi, and deduced hki. We

could not go further closer to the wall, because of the

well-known blocking effect. The triangles in Fig. 13

show that there is now a better agreement with FH. The

effect of nonhomogeneity on the results raises the

question of both the correct definition and determina-

tion of hki that physically represents the streak spacing

modulation. This question is deferred to Section 4.1.

The amplitude and phase of the streak spacing ob-

tained through flow visualizations by Brereton and

Hwang (1994) are in profound disagreement with our

measurements and those of FH. The ratio k̂=ûc in their

experiments varies between 1.2 and 1.8 at fþ < 0:0064,
and it is entirely out of range of the data presented here.

More striking are the unexpected values of the phase

shifts they report. In their investigation, fkg � fucg de-

creases from 20� in the low frequency regime (instead of

180� that the quasi-steadiness would require) to )10 at

fþ ¼ 0:0064. The shear-distortion length parameter

they consequently introduced to scale the streak spacing,

seems to infringe the quasi-steady rules. The very short

record length Tþ
r ¼ 6500 in their experiments (which is

40 times smaller than ours) may be one of the causes of

these controversies.

3.6. Streak spacing and bursting

The spanwise characteristic length in steady flow is

related to the quiescent time period Te during which the

flow in the inner layer is relatively well ordered (Walker,

1990). Te may be interpreted as the interval of time

separating the energetic intermittent events, i.e. the

ejections and sweeps. Consider the instantaneous

behavior of the spanwise velocity w0 at distances away

from the wall where the viscous effects are negligible.

The transient terms governing w0 and related to the

eddies that regenerate significant amount of Re shear

stress, must be of the same order of the convective

terms, i.e. ow0

ot
� w0 ow0

oz
according to Lyons et al., 1988.

This results in
husieff
hTei � husi2eff

hki , since the typical velocities

near the wall scale with an effective shear velocity husieff
at a given time in the oscillation cycle. The phase aver-

aged streak spacing, in return, scales with the effective

inner variables by definition, and husieff ¼
hki
m
¼ �kþ.

Combining leads to hTei � hki2
m�kþ

. This estimation shows

that the relative amplitudes of the streak spacing and the

ejection period should be linked through 1
2
bTe � k̂ and

that, one should have equality in the phases fkg and

fTeg.
The Grenoble group investigated the reaction of the

bursting mechanism in unsteady flows through well

adapted one point detection schemes applied to u0ðtÞ at
yþ ¼ 12 (Tardu and Binder, 1997). The relative ampli-

tude of the ejection period inferred from their study is

shown in Fig. 13a. The ratio
bTe

2ûc
is compared with

�k
ûc
in

order to test the validity of the estimation given above.

It is clearly seen that the two profiles collapse in an

excellent manner in the whole imposed frequency range

investigated here and that 1
2
bTe � k̂. However, the phase

shift shown fkg � fTêg in Fig. 14 is clearly not zero and

decreases linearly with imposed frequency. The resulting

time lag Dtþk ¼ fkg�fTeg
2pfþ is nearly constant with

Dtþk � �40. We give a tentative explanation of this time

lag in Appendix B. Consequently, the estimation given

before has to be rather replaced by hTeðtÞi � hkðt�DtkÞi2
m�kþ

.

This result is quite attractive and indicates that the

bursting and the spanwise streaky structure are linked

by strong cause-to-effect relationships that the imposed

nonequilibrium may hardly break down.

4. Discussion

4.1. Physical meaning of the wall shear stress-streamwise

velocity correlations

Although the wall shear stress–streamwise velocity

correlations have been used in steady flow to depict the
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Fig. 14. Phase shift between the streak spacing and the ejection period.
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near wall structure in a number of studies (Kreplin and

Eckelmann, 1979; NW), no clear explanation has been

given so far on the physical meaning of this quantity. An

attempt is made here to give a more insight view of the

results discussed in this paper and to explain the differ-

ences observed in hki obtained here and the streak

spacing inferred from the wall shear stress correlations

of FH.

Wall shear stress–velocity correlations in forced un-

steady flows will be derived here through a procedure

similar to Hinze (1975, p. 328). The fluctuating wall

shear stress is related to the fluctuating streamwise

vorticity at the wall by the simple relationship s0ðtÞ ¼
�l½x0

zðtÞ
y¼0. We will therefore consider the phase-

averaged correlation hðx0
zÞAðu0ÞBi, instead of hðs0ÞAðu0ÞBi

(Fig. 15). The fluctuating spanwise vorticity at A diffuses

according to

oðx0
zÞA

ot
¼ m

o
2

oxkoxk
ðx0zÞA

Therefore

oðs0ÞA
ot

¼ m
o
2

oxkoxk
ðs0ÞA ð10Þ

The streamwise velocity u0ðtÞ at B is governed by

ou0

ot

� �

B

þ huiB
ou0

ox

� �

B

¼ �ðv0ÞB
ohui
oy

� �

B

þ o

oxk
ðhu0u0ki

�
� u0u0kÞ

�

B

� 1

q

op0

ox

� �

B

þ m
o
2u0

oxkoxk

� �

B

ð11Þ
Mixed notations are used in (10) and (11) in order to

alleviate Eqs. (Fig. 15). Because of the non-homogeneity

of the turbulence in the wall normal direction y ¼ x2
and the imposed unsteadiness, any correlation hQi ¼
hðq0ðt1ÞAÞðq0ðt2ÞBÞi is a function of

hQi ¼ hQi f1; f2; f3; ðyÞAB;
t1 þ t2

2
; t2

h
� t1

i
;

where fk ¼ ðxkÞB � ðxkÞA and ðyÞAB ¼ 1
2
½ðyÞA þ ðyÞB
.

Using these new variables, multiplying (10) by ðu0ÞB, (11)
by ðs0ÞA, adding these equations and finally phase

averaging lead to

o

ot
hQ3;1i þ huiB

o

of1
hQ3;1i ¼ � ohui

oy

� �

B

hQ3;2i �
o

ofk
hS3;1ki

� 1

2

o

oy

� �

AB

hS3;12i �
1

q

o

of1
hK3;pi

þ 2m
o2

ofkofk
hQ3;1i

þ 1

2
m

o2

oyoy

� �

AB

hQ3;1i ð12Þ

with the wall shear stress–velocity correlations:

hQ3;1i ¼ hðs0ÞAðu0ÞBi, hQ3;2i ¼ hðs0ÞAðv0ÞBi; the wall shear

stress–pressure correlation: hK3;pi ¼ hðs0ÞAðp0ÞBi, and the

triple correlations: hS3;1ki ¼ hðs0ÞAðu0ÞBðu0ÞBðu0kÞBi. The

dynamic equation of eQ3;1 is obtained by taking the time-

mean of the last equation, using the fact that Q3;1 is

unaffected by the imposed unsteadiness and by sub-

tracting the latter from (A.2.3). By the invariance under

reflection, the second term at the left-hand side of (12)

vanishes at f1 ¼ 0. The result is

o

ot
eQ3;1 ¼ � o�u

oy

 !

B

eQ3;2 �
o~u

oy

 !

B

Q3;2 �
o

ofk
eS3;1k

� 1

2

o

oy

� �

AB

eS3;12 �
1

q

o

of1
eK3;p

þ 2m
o
2

ofkofk
eQ3;1 þ

1

2
m

o
2

oyoy

� �

AB

eQ3;1 ð13Þ

The derivatives with respect to fi have to be computed at

f1 ¼ 0, f2 ¼ y, f3 ¼ z. The point B is at y and AB is at

y=2 (Fig. 15). In a similar manner, the modulation of the

s0–s0 correlations hX3;3i ¼ hðs0ÞAðs0ÞCi between A and C

is simply

o

ot
eX3;3 ¼ 2m

o
2

ofkofk
eX3;3 þ

1

2
m

o
2

oyoy

� �

AC

eX3;3 ð14Þ

The organized part of the wall shear stress–velocity

correlations expressed in (13) can also be written in the

form:

o

ot
gs0Au0B ¼ � o�u

oy

 !

B

gs0Av0B � o~u

oy

 !

B

s0Av
0
B

� 1

q
s0A

fop0
ox

 !

B

þ eT þ eV ð15Þ

where eT and eV are respectively the triple nonlinear

correlations, and the viscous terms. The first two

quantities at the right hand side of (15) may be identified

as production eP . These terms play an important role in

the dynamics of the s0–u0 correlations. First of all, the

A

B

Wall

AB

z (x3)  

y (x2)

x (x1)

u' (u' )    

v' (u' )  

w' (u' )  
3

ζ
1 = 0, ζ

2 = y, ζ
3 = z

ζ
1 = 0, ζ

2 = y/2, ζ
3 = z

C

1

2

Fig. 15. Sketch of the configuration used to derive the wall shear

stress–velocity correlations.
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wall normal fluctuating velocity v0 is directly related to

the streamwise vorticity v0 � � 1
2
y2 oxx

oz
by near the wall

and in the vicinity of the elongated streamwise struc-

tures (Jim�enez and Moin, 1991). Therefore

ð16Þ

Clearly, s0–u0 is enhanced by spanwise variations of the

quasi-streamwise structures, and this is nothing but the

streak spacing. Secondly, yþB ¼ 10 where the correlations

are performed here, coincide with the bottom of the xx

layers near the wall (Jim�en�ez, 1994). Consequently, the

effect of the wall normal velocity they regenerate in the

buffer layer is far being negligible.

The informations contained in the s0–u0 correlations
performed in the buffer layer and connected to hki dis-
appear progressively in the wall adjacent zone. Since

gs0Av0B � y2B and eT � y2B, the limiting form of the wall

shear stress–velocity correlations as yB!0 is o

ot
gs0Au0B ¼

þeV . Differentiating the last equation with

respect to y at B, noting that in the wall adjacent layer

op0=oy � 0 because v0 � 0 and finally that lðo=oyÞBu0 �
�s0C as yB ! 0 (Fig. 15) one has o

ot
gs0As0C ¼ eV 0 where eV 0 is

the corresponding viscous term. This equation is iden-

tical to that governing the spanwise correlations of the

wall shear stress (Eq. 14). The s0–u0 correlations are

similar to the s0–s0 correlations only very near the wall,

where the production and pressure–vorticity interac-

tions are both negligible. For these reasons alone, the

streak spacing modulation detected directly at the wall,

and through the structural correlations in the buffer

layer are not necessarily identical. These arguments

suggest that, the streak spacing modulation is well

captured with the wall shear stress–velocity correlations

in the low buffer layer.

4.2. Conceptual model

We introduced in Tardu and Binder (1997), a tenta-

tive conceptual model to explain the modulation char-

acteristics of the ejection frequency. Arguments based

on rapid distortion theory, the internal shear layers in-

duced by convecting structures, and the vorticity gen-

eration mechanism suggested that the effective shear

governing the near wall eddies is haeff i=TID where the

effective strain is governed by

ohaeffi
ot

¼ ohui
oy

� haeffi
TID

ð17Þ

because the turbulence has only limited time to maintain

an equilibrium structure. The streak spacing modulation

is given by

haeffi
TID

hki2 ¼ o�u

oy
�k2 ð18Þ

which leads to a correct form in the quasi-steady regime.

The integral distortion time TID takes into account the

history of distortion over the lifetime of the eddies, rather

than the local effective distortion used in unsteady clo-

sures (Mankbadi and Liu, 1992; Tardu and Da Costa,

2001). An eddy originating from the wall sees different

kinds and rates of strain and it is its history that matters

for the development of near wall structures, including the

streaks. The effective duration of the straining is limited

by the average lifetime of the structure, which is nothing

but the ejection period Tþ
e . Consider first the high fre-

quency regime wherein the oscillating shear is confined

into yþ6 lþs . The eddy interacts with the unsteady shear

during a ‘‘residence time’’ Tr in the Stokes layer, grows

up, achieves its typical final form at a distance dþ ¼ 20

over the wall (Jim�en�ez, 1994) and disintegrates at

tþ ¼ Tþ
e . Assuming that the growth rate is uniform, it is

conjectured that Tþ
r � lþs

dþ T
þ
e which is also approximately

equal to the time period during which the eddy has been

directly distorted by the oscillating shear, i.e. Tþ
ID ¼ Tþ

r .

This is valid when the residence time of the eddy is small

compared with its lifetime Tþ
r < Tþ

e , or equivalently

when lþs < dþ. When, in return, lþs > dþ the eddy is

continuously distorted by the oscillating shear during its

entire lifetime and consequently Tþ
ID ¼ Tþ

e . Combining

these arguments with (17) and (18), one has for small

imposed amplitudes:

lþs P 20; 2
k̂

ŝ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð2pf þTþ
e Þ

2
q ;

fkg � fsg ¼ p� arctgð2pf þTþ
e Þ with Tþ

e ¼ 100

lþs < 20; 2
k̂

ŝ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
ffiffiffiffiffiffi
pfþ

p
dþ Tþ

e

� �2
s ;

fkg � fsg ¼ p� arctg
2
ffiffiffiffiffiffiffiffiffi
pf þp

dþ Tþ
e

� �

ð19Þ

The time mean ejection period in (19) is typically

Tþ
e ¼ 100 in the low buffer layer (Tardu, 2002). It is seen

in Fig. 16 that there is a reasonable agreement of the

model with the experiments, especially for the ampli-

tudes. The phase shifts however agree only qualitatively.

These arguments are presumably valid, if the identi-

fication procedure is capable of detecting the entire

regeneration process of Re-shear stress producing eddies

in the buffer layer. The detection in the low viscous

sublayer or directly at the wall is disconnected with the

rich information contained in the buffer layer as dis-

cussed in the previous session. There is, in this case, a

direct effect of the oscillating shear and of the smaller

structures that develop in the viscous sublayer as

13



schematically shown in Fig. 17. The structures that

regenerate the streaks are always in the oscillating shear

zone and those that quit this zone have only negligible

influence because of finite response time in the high

imposed frequency regime. The modulation character-

istics of the streak spacing, should, under these cir-

cumstances, be rather governed by the local lifetime of

the structures, i.e. the local ejection period which is

Tþ
e � 200 in the low viscous sublayer (Tardu, 2002).

Thus, considering that the detection point is always in

the oscillating shear region one should have

2
k̂

ŝ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð2pf þTþ
e Þ

2
q ;

fkg � fsg ¼ p� arctgð2pf þTþ
e Þ with Tþ

e ¼ 200 ð20Þ
We confront in Fig. 16 the experiments to (20) that

shows a satisfactory agreement, considering the crude-

ness of the model.

5. Conclusion

The results reported in this study are reminiscent of

the important role played by the inner structures in

the unsteady response of the near wall turbulence. The

spanwise correlation coefficient corresponding to the

outer structures, responds uniformly to the imposed

unsteadiness, without any manifestation of relaxation.

At the same time, the contribution of the outer eddies to

hu0u0i and hs0s0i lags the centerline velocity with a con-

stant response-time, while the frequency–response

characteristics of the inner structures are altered at high

fþ. The changes in the time lags of the modulation of

the fluctuating quantities in the high imposed frequency

range occur when the imposed period is of the same

order of the time scales of the inner structures. This

happens roughly, when the oscillating shear becomes

confined into the low buffer layer. These results may

have important consequences in the modeling of the

near wall unsteady flows, and suggest the insertion of

constant and frequency dependent response times for

the outer and the inner structures respectively.

It is found that the relative amplitudes of the ejection

period and of the streak spacing have the same qualita-

tive and quantitative distributions versus the imposed

frequency when they are properly scaled. The modula-

tion of the streak spacing lags hTei by about 40 wall units.
There is a reasonable agreement between the experiments

and a conceptual model that takes into account the time

history of distortion over the lifetime of the structures.

When confirmed by further studies, these results which

are relatively new in the topic of unsteady flows, would

indicate a close link between the streaky spanwise

structure and the energetic active wall events. The direct

and the large eddy simulations would largely contribute

to a better understanding of these complex flows, in

particular through the analysis of the vorticity dynamics.
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Appendix A. Response of the wall-hot film gages

The wall shear stress measurements are delicate under

certain circumstances and the frequency response of the

wall hot-film gages may be poor because of the effect of

the conduction into the substrate. This effect is negligible

in the present working conditions (glass–substrate/

water–fluid combination). The attenuation of the fre-
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quency response is less than 4% as given by the com-

putations of the full heat transfer problem carried out by

Tardu et al. (1991).

The quality of the wall shear stress measurements was

checked by comparing the statistics of the fluctuating

wall shear stress s0ðtÞ in steady canonical channel flow

with existing data. The results obtained at Reh ¼ 8800

are summarized in Table 1. It is seen that
ffiffiffiffiffiffiffi
s0s0

p
is 0.38

times the wall shear stress �s in agreement with 0.36

found from the direct numerical simulation data of Kim

et al. (1987). The high order statistics, i.e. the skewness

Ss0 ¼ s03

s02
3=2 and the flatness Fs0 ¼ s04

s02
2 of s0ðtÞ were also

measured. It was found that, in steady flow, Ss0 ¼ 1:15
and Fs0 ¼ 4:20. These values agree also well with Kim et

al. (1987). The time mean statistics in unsteady flow are

shown in the last column of Table 1. No trend was

observed as the frequency varied, thus confirming the

insensitivity of the mean flow to imposed unsteadiness.

The frequency response of the HWG was further

checked by comparing the modulation characteristics of

hs0s0i with those of the fluctuating longitudinal velocity

hu0u0i measured at yþ ¼ 2:5, by LDA (Tardu et al.,

1994). Good correspondence is found between

ffiffiffiffiffiffiffiffi
hs0s0i

p
hsi

and

ffiffiffiffiffiffiffiffi
hu0u0i

p
hui , and the resulting amplitudes and phases

differed by less than 5%. These ratios are only asymp-

totically equal as yþ ! 0, but it was not possible to

make accurate measurements with LDA nearer than

yþ ¼ 2:5 to the wall.

Appendix B. Wigner–Ville spectrum and cyclostationary

processes

We used well-established characteristics of cylosta-

tionary processes (CP) in this paper to determine the

response of outer and inner eddies. The use of Wigner–

Ville spectrum is of course allowed, since it gives infor-

mation in time–frequency domain, yet the Wigner–Ville

spectrum has to be connected with the properties of CP.

The Wigner–Ville spectrum is defined as

Wxðt; gÞ ¼
Z þ1

�1
Ux g

�
� f

2
; gþ f

2

�
e�j2pft df ðA:2:1Þ

The support of Ux is

f1 ¼ f2 �
i

T
; i 2 Z

because x is cyclostationary. Therefore

Wxðt; gÞ ¼
Z þ1

�1
Ux g

�
� f

2
; gþ f

2

�
e�j2pftd f

�
� i

T

�
df

ðA:2:2Þ
where d is the Dirac function. It is seen that the Wiener–

Ville spectrum can be expressed in discrete form in such

cases with the ith component being

Wxiðt; mÞ ¼ Ux m

�
� i

2T
; mþ i

2T

�
e�j2pitT ðA:2:3Þ

The component i ¼ 0, for instance is the stationary part

of the process, i.e.

Wx0ðt; mÞ ¼ Uxðm; mÞ
The Wiener–Ville spectrum of a CP process is conse-

quently given by

Wxðt; mÞ ¼
X

i2Z
Ux m

�
� i

2T
; mþ i

2T

�
e�j2pit

T ðA:2:4Þ

Fig. 18 shows the domain recovered by the Wigner–Ville

spectrum for an octave pass-band filter ½f ; 2f 
 when

g ¼ 3
2
f . The integration domain of Eq. (A.2.1) is limited

to the line f2 ¼ 2g� f1 ¼ 3f � f1. It is seen that only a

limited countable number of points contribute to

Wxðt; gÞ. The output of the pass band filter as used here is

related to Wxðt; gÞ through the integral:

hxxi ¼
Z g¼2f

g¼f

Wxðt; gÞdg

Table 1

Time mean statistics of the turbulent fluctuations of the wall shear

stress in steady and unsteady flow: comparison with existing data

Steady flow,

this study

Steady flow,

Kim et al.

(1987)

Unsteady flow,

this study

ffiffiffiffiffi
s0s0
�s

q
0.38 0.36 0.36–0.41

Ss0 ¼ s03

s023=2
1.15 1.00 0.95–1.25

Fs0 ¼ s0

s022
4.20 4.00 3.80–4.20

1

T

f
1

f
2

f

f

1

T
2 f

2 f

f2 = 3 f − f1

⊗

⊗

⊗

⊗

⊗

η= 3 f

2

⊗
Contribution

to Wx (t,η )

Fig. 18. Spectral domain recovered for the Wigner–Ville spectrum

Wxðt; gÞ in a octave pass band filter centred at g ¼ 3
2
f for a cyclosta-

tionary process xðtÞ. The spectral support shown by the bold lines can

be distributed in such a way that the modulation eWxðt; gÞ is zero, but
not hxxi in the band covered by the filter its integral.
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Appendix C. Plausible cause-to-effect relationships be-

tween the ejection frequency and the streak spacing

We will anticipate a plausible explanation of the time

lag Dtþk discussed in Section 3.6, by adapting the sim-

plified cycle for the near wall events proposed by

Jim�en�ez (1994) and shown schematically in Fig. 19.

(i) The model starts with a perturbation that produces

a streamwise dependence in the low speed streaks with

an initial spacing hkðt0Þi at the time t0 in the oscillation

cycle. The streaks are modeled as co-flowing jets and the

streamwise scale of the perturbation is selected as a

multiple of their width. That results in a vertical slab of

normal vorticity with a thickness proportional to hkðt0Þi
and which is tilted by the phase averaged effective shear.

At a later stage the tilting becomes stretching, resulting

in a layer of streamwise vorticity. The long time limit of

this process is a Burger’s vortex sheet that is axially

strained and diffuses. The short time limit is the advec-

tion by the mean shear. Both trends coincide in a set-up

time related to the initial streak spacing by

Dt�s �
1

2
hk�ðt0Þi2=3 ðA:3:1Þ

This relationship is the ‘‘unsteady version’’ of Dtþs �
1
2
�kþ2=3 given by Jim�enez in steady flow (1994, p. 947). The

asterisk stands for scaling with m and husieff . The

unsteadiness is formally taken into account by substi-

tuting the time mean values by the scaled phase averaged

ones. The set-up time is roughly Dtþs � 9 for the most

probable streak spacing �kþ � 80. Prior to its set-up, the

layer of streamwise vorticity rolls up into a quasi-

streamwise vortex (QSV) in approximately half an eddy

turnover time (Orlandi and Jim�enez, 1991). The typical

value of Dtr in wall units is Dtþr ¼ ð2prþÞ2
2Cþ � 10 where

rþ0 � 10 and Cþ � 200 are respectively the radius and

circulation of the QSV’s in the near wall region. The time

interval separating the perturbed initial streak and the

newly generated QSV is therefore DtþF ¼ Dtþs þ Dtþr � 19

and this initial stage is quite rapid.

(ii) The circulation of the new quasi-streamwise

vortex comes from the ‘‘one contained in the initial

z

x

y

x

Perturbation

QSV

Ejection period:

Vertical slab of wall normal 
vorticity tilted by the shear

After a lapse of

time ∆t
F

<ReΓ(t0+∆tF ) >∝ < λ
*
(t0) >

<Te  (t0+∆tF )> ∝* <a  (t0+∆tF)>2*

<ReΓ(t0+∆tF)> 

Initial low and high speed

streaks with <λ
*
 (t0)> 

<a  (t0+∆tF )>*

After ∆tD
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<λ
*
 (t0 +∆tD) > ∝ <a* (t0+∆tF) >

λ
*
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∆tF ∆tD
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= =
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λ

Fig. 19. Chain of events in the genesis of near wall structures according to Jim�en�ez (1994).
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perturbation which is proportional to the width of the

(initial) streak’’. The associated Reynolds number of the

QSV is consequently related to the ‘‘past history ’’ by1

hReC � ðt0 þ DtFÞi ¼ hCi=2pm / hk�ðt0Þi ðA:3:2Þ

Jim�en�ezp. 947 (1994) argues further that, the distance of

the new QSV to the wall determines the width of its own

streak, i.e.:

hk�ðt0 þ DtDÞi / ha�ðt0 þ DtFÞi ðA:3:3Þ

where DtD stands for the transient development time of

the new streaky structure. According to Walker (1990),

DtD scales with the streak spacing and the average

magnitude wþ
c � 2 of the characteristic spanwise velocity

during the quiescent period. A rough estimate of the

development time is therefore DtþD � �kþ

wþ
c
� 40.

(iii) The eruptive response of the near wall layer

under the influence of the QSV, i.e. the occurrence of the

ejections, depends upon its distance to the wall aþ and

its intensity ReC. The time scale of the eruptive response

in steady flow is

T
þ
e / �aþ2

ReC
ðA:3:4Þ

according to Smith et al. (1991). In other words, the

stronger the structures, or the closer they are to the wall,

the smaller is the inter-arrival time between ejections.

Note that, the estimations �aþ / �kþ and ReC / �kþ given

in steady flow by Jim�enez and combined with (4) leads

to T
þ
e /¼ 80 which is in agreement with the experiments

(Tiedermann, 1988). Accordingly, the ejection period at

t0 þ DtF in our case is

hT �
e ðt0 þ DtFÞi /

ha�ðt0 þ DtFÞi2
hReCðt0 þ DtFÞi

/ hk�ðt0 þ DtDÞi2
hk�ðt0Þi

ðA:3:5Þ

obtained by combining (A.3.2) and (A.3.3) and using the

unsteady version of (A.3.4). A Taylor series to the first

order leads to

hT �
e ðt0 þ DtFÞi / hk�ðt0Þi 1

�
þ 2

ohk�i
ot

DtD

hk�ðt0Þi

�

� hk�ðt0 þ 2DtDÞ ðA:3:6Þ

or equivalently

hT �
e ðtÞi / hðt � Dt�k Þi ðA:3:7Þ

where Dt�k � �½2DtD � DtF
. Eq. (A.3.7) is reminiscent of

a time shift between the ejection period and the streak

spacing. By making use of the estimations given before,

one obtains a time lag Dtþk � �½2DtþD � DtþF 
 � �61 in

wall units. Considering the crudeness of the model, this

is in fair agreement with Dtþk � �40 observed in Fig. 14.

It must be emphasized that this result is the consequence

of a well-ordered cycle of events, and therefore not

coincidental.
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