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ANALYSIS OF THE ELECTRIC DOUBLE LAYER EFFECT
ON MICROCHANNEL FLOW STABILITY

Sedat Tardu
Laboratoire des Ecoulements: Géophysiques et Industriels, Grenoble Cedex,
LEGI BP 53 X France
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INTRODUCTION

The “macro effects” should not be confused with real “micro effects” when explain-
ing the deviations from the classical Navier–Stokes approach observed in microchannel
flows. The roughness, for instance, is not a micro effect, since on the same scale it
produces similar behavior in macro flows. Microscale effects can be neglected in con-
ventional situations, but become increasingly important as the characteristic length of the
flow decreases. Molecular, interfacial, and surface effects enter into this category.

Contrary to gas flows, the molecular effects in micro liquid flows are difficult to
model. The slip length and the temperature jump can be related to the Knudsen number
through the momentum and temperature accommodation coefficients and first- or second-
order models in the rarefied regime of gas flows. Discontinuous boundary conditions
in liquid flows and significant molecular effects hold only in extremely small devices
having extremely high speeds [1]. Tardu [2] used the universal relation of slip length as a
function of the shear rate given by Thompson and Troian [3] to estimate the critical width
of microchannels to have slip liquid flows. He concluded that the hydraulic diameters of
such devices have to be smaller than 0.52 μm. Even then, the slip velocity is only 0.04%
of the centerline velocity at the transitional Reynolds number.
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NOMENCLATURE

a channel half height
c complex wave speed of the

disturbance
− dP

dX
imposed streamwise pressure
gradient

e electron charge,
1.6021 × 10−19 C

Ex electrical field strength
Es streaming potential
EDL electric double layer

G = (n0zea)2

λ0μ
parameter appearing in the
EDL velocity component

Ic conduction current
Is streaming current
kb Boltzmann constant,

1.3805 × 10−23 J/(mol K)
k = (2n0z2e2/εε0kbT )1/2 inverse EDL thickness
l length of the channel
L Orr–Sommerfield operator
n0 bulk ionic concentration
p pressure disturbance
R ratio of the EDL to the

Poiseuille velocity components
at the centerline of the channel

Re Reynolds number based on the
centerline velocity and half
channel height

Rec critical Reynolds number
Ret transitional Reynolds number
T absolute temperature

U , u dimensional and nondimensional
streamwise velocity component

uEDL nondimensional velocity induced
by EDL

v wall-normal velocity disturbance
X, x dimensional and nondimensional

streamwise coordinate
Y , y dimensional and nondimensional wall

normal coordinate
z valence of positive or negative ions

Greek symbols
α wave number
αc critical wave number
ε dielectric constant of the medium
ε0 permittivity of vacuum,

8.854 × 10−12 CV−1 m−1

ζ , ζ dimensional and nondimensional zeta
potential

κ = ka Debye parameter
λ0 electrical conductivity of the fluid
λi eigenvalues
μ dynamic viscosity of the fluid
ρ charge density
ψ electrostatic potential at any point in

the electric double layer
	 stream function of the wave-like

disturbance used in the stability
analysis

The interfacial effects are presumably most responsible for the deviations observed
from the classical macro theory. One of the micro effects that may play an important role
is the electric double layer (EDL). Most solid surfaces have an electric surface potential.
The most common mechanism for the charging of surface layers in microfluidics is the
depronotonation of surface groups including silica, glass, acrylic, and polyester [4]. The
electrostatic charges present on the solid surface attract the counterions to establish an
electrical field. The ions are immobile in the compact layer next to the wall and less
than 1 nm thick. They can, however, be transported by an imposed flow field in the
diffuse EDL layer. Consequently, the counterion concentration near the wall is larger
than in the bulk of the fluid. The imposed pressure gradient accumulates the mobile ions
downstream and sets up an electrical field whose potential is defined as the streaming
or electrokinetic potential. The streaming potential and the net charge density induces
a streamwise external force. In the steady state, the streaming current is in equilibrium
with the conduction current in the opposite direction. This allows the determination of the
streaming potential and the velocity profiles under the EDL effect. In macroscale flows,
these effects are negligible because the thickness of the EDL is minor compared to the
height of the channel. However, in micro flows the EDL plays a rather significant role.
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Well-controlled recent experiments have clearly confirmed that the EDL can explain the
behavior of the Poiseuille number in laminar regime, providing that the liquid contains a
very small amount of ions. Kulinsky et al. [5], for example, reported an increase of 70%
of the friction factor under the EDL effect in planar channels of 4 μm heights.

Early transition to turbulence in microchannel flows has been reported by several
investigations in the past. Wang and Peng [6] indicated that the transition occurred at Re <

300 in microchannels 0.2–0.8 mm wide and 0.7 mm deep, which is significantly smaller
than 750 corresponding to macroscale flows. (The Reynolds number throughout this
article is based on the centerline velocity and half height of the channel.) A transitional
number of about 500 has also been reported in the experiments conducted in 1-mm-wide
trapezoidal microchannels with channel depths ranging between 79 and 325 μm [7–9].
The micro tube experiments of Mala and Li [10] indicate that there is an early transition
from laminar to turbulent flows for Re > 112–338. Pointing at a plausible EDL effect,
they have clearly stated that “There is an early transition from laminar to turbulent flow,
and the range of Ret values varies somewhat, depending on the diameter and the material
of the wall.” These effects may also be attributed to the roughness that may both influence
the transition in the entry region, or directly affect the flow behavior through an implied
roughness viscosity [11]. It may, however, also be presumed that direct interfacial effects
play some role in early transition.

The main goal of this study is to directly investigate the EDL effect on the linear
stability of planar channel flow and estimate indirectly the resulting transitional Reynolds
numbers. It is asked here whether electrokinetic effects on liquid flows may cause the
early transition or not and whether the linear stability EDL flow characteristics may
explain the small transitional Reynolds numbers reported in some recent microchannel
experiments.

EQUATIONS GOVERNING 2-D CHANNEL FLOW UNDER THE EDL EFFECT

The ion distribution in a symmetric plane channel flow is given by the equilibrium
Boltzmann equation:

n± = n0 exp

(
±zeψ

kbT

)
(1)

where n0 is the bulk ionic concentration, ψ is the electrical potential, z is the valence of
positive or negative ions, e is the electron charge, kb is the Boltzmann constant, and T

is the absolute temperature. The effects of finite ion size, the gradients of the dielectric
strength and viscosity are neglected and the fluid properties (viscosity and permittivity)
are constant.

The net charge density in a unit volume of fluid is:

ρ = (n+ − n−)ze = −2n0 sinh

(
zeψ

kbT

)
(2)

The Poisson equation relating the electrical potential and the net charge density per unit
volume reads as

∇2ψ = − ρ

ε0ε
(3)
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with ε and ε0 standing, respectively, for the dielectric constant of the medium and the
permittivity of vacuum. Equation (3) combined with Eq. (2) may be written in nondi-
mensional form as

∇2ψ = −κ2ρ(y) = κ2 sinh(ψ) (4)

The scaling reference potential and charge density are, respectively, ES = kbT
ze

and
ρS = n0ze. Equation (4) makes the nondimensional Debye parameter κ = ka appear
with:

k = (2n0z
2e2/εε0kbT )1/2 (5)

whose inverse is the EDL thickness, and a is the channel half height.
Equation (4) may be linearized when the electrical potential is small compared

with the thermal energy of ions, i.e., when |zeψ | � |kbT |, or ψ � 1 to give:

∇2ψ = κ2ψ (6)

Equation (6) holds remarkably well for ψ < 2. One has:

d2ψ

dy2
= κ2ψ (7)

for a two-dimensional channel, where y = Y/a stands for the nondimensional wall
normal distance.

The resulting charge density is ρ(y) = −ψ = − 1
κ2

d2ψ

dy2 . The boundary conditions
for Eq. (7) are:

• At the wall ψ = ψ0. The electrical potential at the wall can be approximated by
the zeta potential ψ0 = ζ . The general solution of the resulting EDL-velocity
profile is not affected by this approximation. However, it is generally difficult
to measure ψ0. It is easy to determine experimentally the zeta potential at the
boundary between the compact and diffuse layers by determining the streaming
potential and the pressure drop [12].

• At the centerline ψ = 0, providing that the EDL diffuse layers developing on
both sides of the channel do not overlap. The solution of Eq. (7) is:

ψ = ζ

sinh(κ)
| sinh(κy)| (8)

The charge density ρ(y) and the streaming electrical field strength caused by the ions
mobilized under the imposed pressure gradient acts as an external force in the streamwise
momentum equation of a fully developed 2-D channel flow:

0 = μ
d2U

dY 2
− dP

dX
+ Exρ(Y ) (9)
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The electrical field strength is related to the streaming potential by Ex = Es

l
, where l is

the length of the channel. The nondimensional form of Eq. (9) is:

0 = d2u

dY 2
+ 2 − 2
Es

κ2

d2ψ

dy2
(10)

where 
 = ζn0zea
2

lμUs
and the scaling velocity is the centerline velocity of the Poiseuille

component, i.e., Us = − a2dp/dx
2μ

. Integrating Eq. (10) with the appropriate boundary
conditions gives the velocity profile:

u = 1 − y2 − 4

Esζ

κ2

{
1 −

∣∣∣∣ sinh κy

sinh κ

∣∣∣∣
}

(11)

The last equation is the nondimensional form of the velocity profile already obtained
by Mala et al. [13]. The streaming current due to the flux of the net density charge is
given by the following cross integral by definition:

Is =
∫∫

Uρ(Y )dYdZ (12)

The streaming current produces the conduction current in the reverse direction:

Ic = Exλ0S = Es

l
λ0S (13)

where λ0 is the electrical conductivity of the fluid, which is proportional to the ionic
concentration. In the steady state there is no net current Is + Ic = 0. This allows the
closure of the equations and the determination of the streaming potential. The final version
of the nondimensional velocity profile is:

u = 1 − y2 − 4
I1 − I2

κ2 sinh κ

ζ
2
G

+ 4

(
I3 − I4

sinh κ

) {1 −
∣∣∣∣ sinh κy

sinh κ

∣∣∣∣
}

(14)

The parameter G is given by G = (n0zea)2

λ0μ
. The quantities I in Eq. (1) are:

I1 = I3 = cosh κ − 1

κ

I2 =
(

1

κ
+ 2

κ3

)
cosh κ − 2

κ2
sinh κ − 2

κ3

I4 = sinh κ cosh κ

2κ
− 1

2

(15)1

1There is a small printing error in Mala et al. [13], p. 3082
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It is seen that the velocity profile can be decomposed into a macro Poiseuille com-
ponent plus an EDL effect component. A closer inspection of Eq. (14) allows expressing
the latter in another closed form as:

uEDL = −4
I1 − I2

λ0μ sinh κ

ζ
2

+ 4

(
I3 − I4

sinh κ

) {1 −
∣∣∣∣ sinh κy

sinh κ

∣∣∣∣
}

(16)

The parameter λ0μ is the nondimensional electrical conductivity times the dynamic vis-
cosity of the fluid. It can be seen that the scaling parameter for λ0μ is the square of the
scaling charge density times the scaling length, i.e., (ρS/k)2 leading to:

λ0μ = λ0μ

(n0εε0kbT /2)
(17)

There are three parameters governing the EDL effect, namely

uEDL = uEDL(κ, ζ , λ0μ) (18)

Due to the grouping of the parameters this relation is equivalent to:

uEDL = uEDL(κ, Gζ
2
) ≡ uEDL

(
κ,

λ0μ

ζ
2

)
(19)

as clearly suggested by Eqs. (14) and (16).
Gradients of the dielectric strength, viscosity, and conductivity should be incorpo-

rated in more realistic models. Yet these effects are presumably negligible in significantly
dilute solutions, such as ultra-deionized, ultra-filtered water and pure organic liquids.

The main EDL effects may be summarized as follows:

• An increase of the friction constant and apparent viscosity.
• A decrease of the Nusselt number.

These effects are persistent, yet not significantly important, at least for large values of κ .
The apparent viscosity increases, for example, by a factor of nearly 3 at κ = 2, but the
EDL effect on the wall shear stress disappears quickly when κ ≥ 10 [13]. The Nusselt
number decreases by nearly 40% at κ = 5, and less than 5% at κ = 50 [2].

INFLEXIONAL INVISCID INSTABILITY

One important aspect of the EDL velocity profile is the existence of an inflexional,
or, in other words, maximum vorticity point. One has indeed:

∂2u

∂y2
= −2 + 4

κ2(I1 − I2)

sinh κ

[
λ0μ sinh κ

ζ
2

+ 4

(
I3 − I4

sinh κ

)] sinh κy (20)
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which can also be written as:

u′′ = ∂2u

∂y2
= −2 − Rκ2

sinh κ
sinh κy (21)

where R ≤ 0 is the ratio of the EDL to the Poiseuille velocity components at the
centerline of the channel, i.e., R = uEDL

uPois
at y = 0. The maximum vorticity takes place at

the inflexion point:

yI + ± 1

κ
arc sinh

(−2 sinh κ

Rκ2

)
≈ ±

⌊
1 + 1

κ
ln

(
− 2

Rκ2

)⌋
(22)

The right-hand side of the last relationship is a good approximation to yI for κ ≥ 10.
Clearly, the EDL flow is inviscidly unstable. The inviscid instability is of Fjortoft type
because after the inflexion point near the wall, u′′ > 0 and the velocity is smaller than
the velocity at the inflexion point uI , resulting in u′′(u − uI ) < 0 in this zone.

The present investigation is a parametrical one based on nondimensional quantities.
Yet we will introduce a numerical case to fix the ideas. Thus, we choose a “reference
EDL flow” with κ = 41, G = 12,720, and ζ = 2.1254. This case corresponds to the
flow of an infinitely diluted KCl aqueous solution (n0 = 3.764 × 1019 m−3) through a
microchannel of height 100 μm subject to a zeta potential of 50 mV. The Debye length
is 1.2 μm, and the bulk conductivity is λ0 = 8 × 10−9 S/m. The parameters G and ζ

and are identical to those of Mala et al. [10] wherein detailed electro-viscous effects
can be found. More severe cases, leading to large EDL effects have been treated in the
literature [14].

Figure 1 shows the distribution of the ratio of the EDL to Poiseuille velocity
components at the centerline, together with the location of the inflexion point, versus κ .
It appears that R increases when κ decreases, showing that the decelerating EDL effect
becomes important with either a small separation distance between the plates or a large

Figure 1. Distribution of R, the ratio of the EDL to Poiseuille velocity components (open circles and ordinate
at left) and of yI , the inflexion point position (bold circles and ordinate at right) vs. the nondimensional Debye–
Hückel parameter κ . The zeta potential is ζ = 2.1254. The parameters κ and G change as the half width a of
the channel is varied (see the text). One has G = 12,720 at κ = 41 (reference case).
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EDL thickness. At the same time the inflexion point moves away from the wall toward
a region wherein viscous effects are less significant. Thus, it may be expected that the
microflow becomes increasingly susceptible to inviscid instability with decreasing κ .
These arguments are logical, but a definite picture of the EDL linear stability mechanism
can only be given by a detailed Orr–Sommerfeld analysis.

STABILITY ANALYSIS

The linear hydrodynamic stability under the EDL effect is studied through classical
methods. The Orr–Sommerfeld equation is solved by a Galerkin-like procedure [15]. The
normal mode solutions of the disturbance equation are:

(u, v, p) = R(v̂, v̂, p̂) exp(iαx) (23)

where R is the real part, α is the dimensionless wave number of the disturbance, and x

is the streamwise coordinate. Introducing the stream function:

	(x, y, t) = φ(y, t) exp(iαx) (24)

the Orr–Sommerfeld equation takes the form:

∂

∂t
Lφ = 1

Re
L2φ − iα

(
uLφ − d2u

dy2
φ

)
(25)

with the boundary conditions φ = ∂φ
∂y

= 0 at y = ±1. The operator L is L ≡ ∂2

∂y2 − α2.
The stream function is expanded in a Chebyshev polynomial series:

φ(y, t) =
N∑

n=1

an(t)T2n−2(y) (26)

where Tm(y) = cos(m cos−1 y) denotes the Chebyshev polynomials of the first kind. We
took N = 256 through this study. Equation (21) takes the form:

Q
da
dt

= (P − iαJ) · a (27)

and the matrices are determined by using the τ -method described by Orszag [16]. The
last equation can be written as:

db
dt

= D · b (28)

by introducing B the matrix that diagonalizes Q−1 · (P − iαJ), b = B−1 · a, and the
diagonal matrix D = λiδij = B−1 · Q−1 · (P − iαJ) · B. The eigenvalues are denoted by
λi and the flow is unstable when. The disturbances with symmetric streamfunctions are
considered only. The method had similar results when compared to Grosch and Salwen
[17], who used different sets of expansion functions.
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RESULTS

Effect of the Debye–Hückel Parameter

The EDL flow depends on the groups of the parameters κ and Gζ
2

(Eq. (19)).
When the effect of the nondimensional Debye–Hückel length is first analyzed, the pa-

rameter Gζ
2

is kept constant for a given κ . The sensitivity of the hydrodynamic stability
characteristics to the zeta potential and the parameter G will be analyzed in the next sec-

tion. Recall that Gζ
2 = 57,460 and κ = 41 in the reference case introduced previously.

For subsequent computations, the zeta potential, the ionic concentration, and the physical
characteristics of the fluid (the permittivity, conductivity and viscosity) are kept constant
and the half channel height a is varied alone. Therefore, κ and G decrease proportionally

with a and a2, respectively. Thus, Gζ
2

is 8740 and 2185 at, for example, κ = 16 and
κ = 8, respectively.

The neutral curves deduced from the hydrodynamic stability analysis are summa-
rized in Figure 2. The friction factor increases by only 10% at κ = 41, but the critical
Reynolds number decreases by a factor nearly equal to 2: the critical wave and Reynolds
numbers of the micro flow are, respectively, αc = 1.10 and Rec = 3190, to be compared
with αc = 1.02 and Rec = 5772 of the conventional Poiseuille flow. The destabiliza-
tion under EDL disappears quickly as κ increases. Thus, at κ = 164 (a minichannel of
400 μm height) the critical Reynolds number is Rec = 5730 (triangle in Fig. 2), which
only slightly differs from Rec = 5772. The micro EDL effects for the micro/minichannels
of height larger than typically 100 μm are not significant. Note, however, that, in a purely

Figure 2. Neutral curves of the EDL flow compared with the Poiseuille flow. The open circles correspond to
Poiseuille flow with κ = ∞ and/or ζ = 0. The results of Grosh and Salwen [17] are shown by small bold
squares. Bold circles correspond to κ = 41, G = 12,720, and ζ = 2.1254. The rest of the results are obtained
by changing the microchannel height and keeping constant the rest of the parameters. The triangle is obtained
for κ = 164 and G = 203,520. The neutral curves for κ = 8, G = 484 (bold squares), κ = 16, G = 1937
(open squares), and κ = 41, G = 12,720 (bold circles) are compared with the macroscale flow (open circles).
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Figure 3. Distribution of the critical wave (open symbols, ordinate at left) and Reynolds numbers (closed
symbols, ordinate at right) deduced from Figure 2 vs. κ .

mathematical sense, the macro Poiseuille flow is reached only when κ → ∞ and/or the
zeta potential is ζ → 0.

There is a considerable destabilization of the flow at smaller Debye–Hückel param-
eters such as κ = 16, and κ = 8. In order to fix the ideas, these cases would correspond
to channels of heights 40 μm and 20 μm, respectively, subject to the reference ionic
concentration, zeta potential viscosity, and conductivity. The critical Reynolds number
decreases to Rec = 817.5 for κ = 16. The decrease is more than a decade at κ = 8 with
Rec as small as Rec = 328.75. The critical wave number increases at the same time and
reaches αc = 1.7 at κ = 8.

The distribution of Rec and αc as a function of κ is shown in Figure 3. The critical
Reynolds number changes linearly versus log(κ) in a large range of the Debye–Hückel
parameter before reaching a plateau region near κ = 4 (Rec = 279, αc = 1.9). The
critical wave number, on the other hand, increases linearly with log(κ) when κ < 41.
The analysis is deliberately stopped at κ = 4, since there may be some adverse effects
due to the overlap of the EDL diffuse layers developing on both sides of the channel for
κ < 4.

There are two main features of the neutral curves shown in Figure 2. First, the
band of unstable wave numbers of the EDL micro flow is significantly larger compared
with the Poiseuille macro flow due to the inviscid inflexional instability (unstable for
Re → ∞ for a given α). The smaller the parameter κ , the broader the neutral curve is.
Second, the upper branch of the neutral curves diverges slowly as the Reynolds number
increases, while the lower branch of the micro and macro flows have similar behaviors.
This can be seen with a careful look at Figure 2 for κ = 16 and κ = 8. The increase of
the critical wave number corresponding to the upper branch of the neutral curves is seen
more clearly in Figure 4. The neutral curve in the macro Poiseuille flow is closed for
large Reynolds numbers, whereby the upper branch joins the lower one when Re is large
enough. This is simply because the Poiseuille flow is inviscidly stable. Under the presence
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Figure 4. Increase of the wave number along the upper branch of the neutral curves for three different values
of κ deduced from Figure 2.

of the EDL, the upper and lower branches diverge so that the neutral curves are open.
This means that the inviscid instability overcomes the shear layer instability at Re → ∞
as expected. When κ is low, the inflexion point leaves the viscosity-dominated near wall
region, so that the inviscid instability mechanism can become more operative. The so-
called divergence is slow. The wave number begins to increase at Re = 200 × 103 for
κ = 41, and earlier when the EDL layer is thicker, i.e., at approximately Re = 10 × 103

for κ = 16, and κ = 8.

Spectrum of Eigenvalues

Figure 5 shows the spectrum of eigenvalues as a function of Re for a single fixed
wave number α = 1 and κ = 16.4. Only the first three eigenvalues corresponding to
the complex wave speed c = −λ/iα are shown for the sake of clarity. The modes are
ordered in such a way that ascending values correspond to descending values of Im{c}.
Remember that the flow is stable (unstable) for R{λ} < 0 (> 0), or equivalently when
Im{c} < 0 (> 0). The Re was varied from 300 to 20 × 103. The curves corresponding
to Poiseuille and EDL flows are denoted respectively by P − i and E − i, where i is the
mode number.

Figure 5b shows that only the first mode has a different Im{c} under the EDL effect.
The imaginary parts of higher modes collapse entirely with those of the macroscale flow.
Note that the imaginary part of the first mode in micro flow denoted by Im{cE−1} is larger
than that of the macroscale Poiseuille flow Im{cP−1}, showing the strong destabilizing
effect of the EDL.

The EDL modes are slower than the Poiseuille ones, in the sense that R{cE−i} is
smaller than R{cP−i} for all modes (Fig. 5a). At moderate Reynolds number, they may
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Figure 5. Real (a) and imaginary parts (b) of the first three eigenvalues vs. Re, α = 1, and κ = 16. The
eigenvalue i in EDL and Poiseuille flow is denoted by E − i and P − i, respectively.

be classified as slow modes since the real part of the complex wave speed is smaller than
the average velocity of the channel, i.e., R{cE−i} < 2

3 for roughly Re < 5 × 103. Modes
2 and 3 of macroscale flow are clearly fast modes, since their phase speed is close to the
centerline velocity.

The eigenvalue spectrum is further analyzed for a more destabilizing case at κ = 8.
Figure 6 shows the resulting distribution of the complex wave speed real and imaginary
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Figure 6. Real (a) and imaginary parts (b) of the first three eigenvalues vs. Re, α = 1, and κ = 8. The
eigenvalue i in EDL and Poiseuille flow is denoted by E − i and P − i, respectively.
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parts. It is seen in Figure 6a that all EDL modes are now slow modes in the range of
Reynolds numbers investigated here. The differences between R{cE−i} and R{cP−i} are
larger compared to the case κ = 16. The parameter κ does not appreciably affect the
imaginary part of the spectrum as can be seen in Figure 6b, except a slight increase with
decreasing κ in the first mode.

Stability Sensitivity to the Zeta Potential and the Parameter G

We have previously shown that the EDL velocity component depends on the group

of parameter Gζ
2

for a given Debye–Hückel parameter κ (Eq. (14)). The parameter G

can be expressed as a function of the nondimensional conductivity and viscosity product

G = κ2

λ0μ
, showing that G varies like the inverse of λ0μ = λ0μ

(n0εε0kbT /2)
for fixed κ . Thus,

G increases with decreasing conductivity and/or viscosity.

To each couple (κ, Gζ
2
) corresponds a different set of the critical wave and

Reynolds numbers (αc, Rec). It is difficult to illustrate the interdependency of Rec via

Gζ
2
, since αc changes continuously as Gζ

2
varies. Therefore, we fixed the wave number

at its macroscale flow critical value αc = 1.02 to give a general tendency and extract
clear information.

Figure 7 shows the distribution of Rec versus Gζ
2

for four different values of
κ . Consider first the results corresponding to the smallest value κ = 8. The effect of
the inviscid instability is so important in this case that the critical Reynolds number
changes rapidly even for insignificantly small values of the zeta potential. For instance,

Rec varies by 25% with Rec = 4300, already at Gζ
2 = 10. That would correspond to

a zeta potential of only 0.66 mV for the reference case. Increasing the zeta potential

by 10 from this value decreases Rec by nearly 3. There is a range of Gζ
2

in which
the critical Reynolds number decreases sharply before reaching a plateau region wherein
Rec is close to the critical number deduced from the neutral curves. This range varies

Figure 7. Distribution of the critical Reynolds number vs. Gζ
2

for α = 1.02.
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Table 1. Sensitivity of the critical

Reynolds number to Gζ
2

variations

Range of Gζ
2

within
Rec decreases sharply

κ Lower value–upper value

41 103–105

20 102–104

16.4 102–104

8.2 10–103

Table 2. Experimental conditions related to the results presented in Figure 8

Authors Configuration Hydraulic radius (μm)

Mala and Li [10] Microtubes 102.5–25
Qu et al. [11] Trapezoidal silicon microchannels 71–23.5
Gao et al. [27] 2-D microchannels 100–53

with κ (Table 1) and it is approximately two decades large. The lower and upper limits

of the Gζ
2

range increase with κ . It is clear from both Figure 7 and Table 1 that Rec

is more sensitive to Gζ
2

when the Debye–Hückel parameter is small enough, i.e., for
κ ≤ 40. The first and main condition to expect significant EDL effects on hydrodynamic
linear stability is to deal with liquids of low ionic concentration. The second condition

requires large enough Gζ
2

value. This is fulfilled by low conductivity, which is generally
associated with wall/liquids interactions that lead to high zeta potential ζ . The second
condition is less critical than the first. To show this, consider a median value of κ = 20.
Figure 7 shows that Rec decreases by a factor of 6 at Gζ

2 = 103, corresponding, for
example, to G = 250 and ζ = 2; that is, a liquid that is 50 times more conductive than
the reference case.

DISCUSSION AND CONCLUSION

The electro-viscous effects modify considerably the linear stability characteristics
of microchannel flows. Two main conditions are required for a significant alteration of
the critical Reynolds number:

1. The nondimensional Debye–Hückel parameter should be smaller than κ ≤ 40.
There is no effect on stability for liquids with high ionic concentration and/or
minichannels.

2. Large enough zeta potential and liquids with low conductivity/viscosity leading

typically to Gζ
2 ≥ 5000 for 1

k
≈ 1 μm are necessary. This condition is less

critical. With a Debye length 1
k

= 2 μm, which is just two times larger than
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the reference case, the critical Reynolds number decreases by nearly 80% in a

32 μm width channel at Gζ
2

as small as Gζ
2 = 100. The key question: Can

this effect be experimentally verified and validate early transition reported in
some recent investigations?

To give preliminary answers to these questions and discuss related phenomena, we
first have to note that the hydrodynamic linear stability and transition mechanisms are
different in plane Poiseuille flows. What we are interested in from an applications point
of view is indeed the transitional Reynolds number Ret related but not strictly equal
to Rec.

According to Orszag and Patera [18], the instability process of wall bounded
macroscale shear flows involves three steps:

1. Primary (linear) instability of the basic shear flow
2. Nonlinear saturation of the primary instability and formation of a secondary

flow
3. Secondary instability, which is the linear stability of the secondary flow

The first step gives Rec = 5772 for macroscale plane Poiseuille flows, but transi-
tional Reynolds numbers as low as Ret = 400 have been reported in experiments. This
is because the second step results in a Landau-type mechanism leading to subcritical
instability or the metastability. The instability occurs with finite amplitude when all in-
finitesimal disturbances are stable at a significantly lower critical value compared to Rec

[19]. The quasi-steady nonlinear analysis conducted by Orszag and Patera [18] suggests
a critical Reynolds number for the secondary instability of R ∼= 400. Three-dimensional
disturbances decay for R < 1000; however, 1000 cannot be taken as a precise number
because the three-dimensional instability requires that a threshold two-dimensional am-
plitude be achieved, which depends on the perturbation level. The experiments indicate
that the ratio of the transitional Reynolds number to the critical Reynolds number of the
primary instability is approximately r = Ret

Rec
≈ 750

5772 ≈ 1
8 [20] but this is not an exact

universal value either.
Some arguments suggest that the EDL can reinforce the subcritical nature of macro

Poiseuille flow through the nonlinear saturation of the primary instability (step 2). Stuart
[21] has shown that there are two main mechanisms generating the subcritical equilib-
rium state. The first mechanism prevents the subcritical instability through the distortion
of the mean motion. This effect is proportional to Recα

2
c , which is significantly small

in EDL flow. The second mechanism reinforces the metastability by the wall normal
distortion of the fundamental and it is inversely proportional to Rec. EDL directly en-
hances the subcritical state through the second mechanism and indirectly by retarding
the first mechanism. One of the simple explanations of the secondary instability (step 3)
is the creation of local inflexional streamwise profiles with strong shear susceptible to
inviscid instability. The basic flow in EDL is already inflexional. Interactions of the first
and second steps may lead to significantly smaller transitional Reynolds numbers in the
presence of EDL. The reasonable conclusion of these arguments is that the EDL flow is
subcritical and that presumably r = Ret

Rec
≤ 1

8 .
It is somewhat difficult to reach high Reynolds numbers in microchannels because

high pressure can cause channels to break. We show in Figure 8 the estimated transi-
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Figure 8. Estimated values of the transitional numbers under the EDL effect compared with some experi-
ments and the range of Reynolds numbers that can be reached in experiments in microchannels. Experimental
configurations are resumed in Table 2.

tional Reynolds as a function of κ , together with some microchannel and microtube data
reported in the literature. Recall that Hagen–Poiseuille flow is linearly stable, and some
aspects of the transition in pipe flows can be explained only by secondary instabilities.
We supposed that r = Ret

Rec
= 1

8 as in macroscale flow. We need a Debye length to

express data in terms of Re − κ distribution. We took 1
k

= 1 μm to be consistent. The
open circles in Figure 8 correspond to the reference case. A second case, shown by bold
circles, is also introduced. It consists of a liquid that is 11.5 times less conductive than

the reference case leading to Gζ
2 = 5000 at κ = 41. It is clearly seen in Figure 8 that

the experimental Reynolds numbers are larger than Ret , concluding that experimental
verification of the present study is plausible.

Early transition in microchannel flows has been reported in several experimental
studies as we already indicated in the introduction. There are two data points related to
transition in Figure 8. The first is from Mala and Li [10], who indicated Ret ≈ 300
in microtubes with hydraulic diameters Dh = 130 μm. The second is from trapezoidal
silicon microchannel experiments of Qu et al. [11, Fig. 8b, p. 362] and is shown by a
bold square in Figure 8. The results obtained by these authors at Dh = 142 μm suggest
a transitional number of 400. There is a satisfactory agreement between the estimated
transitional numbers and the experiments in Figure 8, but that may be coincidental.
Controlled experiments in a way similar to those reported by Ren et al. [22] have to
be conducted. That may be achieved, for instance, by keeping the same channel with
the same roughness distribution and by changing the ionic concentration of the liquid.
Somewhat unfortunately, the maximum Debye length in Ren et al.’s [22] experiments is
four times smaller than the reference case taken here. Ren et al. [23] and Sze et al. [24]
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have measured the zeta potential (ζ = 245 mV), Debye length ( 1
k

= 0.305 μm), and
the bulk conductivity (λ0 = 1.053 × 10−4 S/m) in microchannels of height varying from
14.1 μm to 40.5 μm. Note that the conductivity is 1.3×103 times larger than the reference
case. The present estimation is only qualitatively valid in this case because the zeta
potential is too high for the Poisson equation linearization. Furthermore, the important
contribution of the corners to the EDL field [25, 26] and to the local flow instability
has to be considered to model Ren et al.’s [22] experiments. With these restrictions in

mind, one has κ = 23.6 and Gζ
2 = 500 for the 14.1 μm height channel reported by

these authors. Up to 20% higher flow resistance is found and the transitional Reynolds
number decreases by some 63%, with Ret ≈ 270 in this particular situation. There is
a significant effect on the transition, but the resulting Ret is presumably too high to be
experimentally reached in such a small device. In Wang and Peng [6] the value of κ is
presumably larger than 120 and the low transitional Reynolds numbers of approximately
300 they report cannot be explained by the EDL effect. Strong effect of roughness in the
inlet region is suspected in these experiments.

Early transition in microchannels can have interesting applications for enhancement
of mixing together with heat and mass transfer processes. A simple estimation shows
that the ratio of the Nusselt numbers in EDL and macroscale flow is roughly inversely
proportional to the ratio of the transitional Reynolds numbers. A decrease of Ret by a
factor f therefore implies an enhancement of the heat transfer by the same f in some
giving working conditions.

Fully developed turbulent EDL microchannel flow reveals several questions. A
transitional Reynolds number of Ret = 817.5 (κ = 16, G = 1937) would result in
a half height channel in wall units (i.e., scaled by the shear velocity and viscosity) of
a+ ≈ 30. Recalling that the logarithmic equilibrium layer begins at 30 wall units in
macroscale conventional turbulent channel flows, the structure of “micro turbulence” in
such situations is open to question. Our team tries to clarify these points by using direct
numerical simulations.
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