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The electric double layer effect on the microchannel

flow stability and heat transfer

Sedat Tardu∗

LEGI, B.P. 53 X, 38041 Grenoble C´edex, France 

The effect of the electric double layer (EDL) on the linear stability of Poiseuille planar channel 
flow is reported. It is shown that the EDL destabilises the linear modes, and that the critical Reynolds 
number decreases significantly when the thickness of the double layer becomes comparable with 
the height of the channel. First results coming from direct numerical simulations on the non-linear 
effects show also that the by-pass transition is much more rapid in the presence of EDL. There is 
an acceptable qualitative correspondence between the estimated transitional Reynolds numbers and 
some experiments, showing that early transition is plausible in microchannels under some conditions. 
Several questions remain however unanswered such as the surface conduction effect on EDL.

Keywords: Stability; Microchannels; Interfacial effects; Electric double layer

1. Introduction

The characteristics of gas flows in microchannels can adequately be modelled by slip

velocity and temperature jump related to first or second order models as a function of

the Knudsen number, at least in the rarefied regime. Such molecular effects are difficult

to model in micro-liquid flows. Yet, estimations obtained from some molecular models

indicate that the discontinuous boundary conditions could only hold for microchannels of

hydraulic diameters smaller than a few microns [4, 23]. The interfacial effects (wall/liquid)
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are presumably mostly responsible for the deviations observed from the classical macro-

theory, in larger microchannels. One of the micro-effects that may play an important role

is the electric double layer (EDL) at the solid/liquid interface. The electrostatic charges

present on the solid surface attract the counterions to establish an electrical field. In the

compact layer next to the wall the ions are immobile. In the diffuse EDL layer however, the

ions are less affected by the electrical field and can move. Under the effect of an imposed

pressure gradient, the accumulation of the mobile ions downstream sets up an electrical

field that induces a streamwise external force. In macroscale flows, these effects are

negligible, as well as the thickness of the EDL is very small compared to the height of the

channel. In micro-flows, in return, the EDL play a rather significant role. Well-controlled

recent experiments have clearly confirmed that it can explain the behaviour of the Poiseuille

number in the laminar regime, providing that the liquid contains a very small amount of

ions [20]. Kulinsky et al. [11] reported an increase of 70% of the friction factor under the

EDL effect in planar channels of 4 µm heights with distilled water. Large thickness of the

diffuse EDL layer of about 1 µm or more have been reported in these experiments.

There is a curious phenomena encountered in some experiments showing that there is

an early transition in microchannel flows. Wang and Peng [27] noticed that the transition

occurred at Re < 150 in microchannels 0.2–0.8 mm wide and 0.7 mm deep, which is

significantly smaller than 400 corresponding to macroscale flows. (The Reynolds number

through this paper is based on the centreline velocity and half height of the channel. Thus

400 corresponds to a Reynolds number based on hydraulic diameter and cross section

average velocity of 2000) A transitional number of about 250 has also been reported in

the experiments conducted in 1 mm wide trapezoidal microchannels with channel depths

ranging between 79 and 325 µm [7, 18, 19]. The microtubes experiments of [15] indicate

that there is an early transition from laminar to turbulent flows for Re > 56–170. These

effects may be attributed to the roughness that may both influence the transition in the entry

region, or directly affect the flow behaviour through an implied roughness-viscosity [28].

Yet, direct interfacial effects may also play a role in presumed early transition.

The stability mechanism in planar channel flows is mainly non-linear and the secondary

instabilities cause the flow to bifurcate before the critical Reynolds number of linear modes.

That depends on the behaviour of the time space development of the perturbations near

the critical Re and wave numbers. The main aim of this study is to investigate directly

the EDL effect on the linear stability of planar channel flow, and estimate indirectly the

resulting transitional Reynolds numbers. It is asked whether electrokinetic effects on liquid

flows may cause the early transition or not and whether the linear stability EDL flow

characteristics may explain the small transitional Reynolds numbers reported so far in some

experiments.

2. Physical aspects of electric double layers

Most solid surfaces have an electric surface potential when brought within an

electrolyte. The most common mechanism for the charging of surface layers in

microfluidics is the deprotonation of surface groups on surfaces such as silica, glass, acrylic

and polyester [9, 22]. The electrostatic charges present on the solid surface attract the
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Fig. 1. EDL effect.

counterions to establish an electrical field (Fig. 1). In the compact layer next to the wall

and less than 1 nm thick the ions are immobile. In the diffuse EDL layer however, the

ions are less affected by the electrical field and can move. The counterion concentration

near the wall is larger than in the bulk of the fluid. That results in a net charge density

in a unit volume resulting from the concentration difference between cations and anions,

according to the Boltzmann equation. The electrostatic potential at any point near the

surface, provided that it is small compared to the energy of ions, may be obtained by

a linear approximation of the Poisson–Boltzmann equation. Its value at the wall can be

related to the Zeta potential between the compact layer and diffuse layer, when the EDLs

near the opposite walls do not overlap. The Zeta potential is a property of the solid–liquid

pair and can be determined experimentally. The imposed pressure gradient accumulates

the mobile ions downstream and sets up an electrical field whose potential is called the

streaming or electrokinetic potential. The streaming potential and the net charge density

induces a streamwise external force. In the steady state, the streaming current due to the

transport of charges is in equilibrium with the conduction current in the opposite direction.

That allows the determination of the streaming potential and of the velocity profiles under

the EDL effect. In macroscale flows, these effects are negligible, as well as the thickness

of the EDL is very small compared to the height of the channel.

3. Equations governing 2D channel flow under the EDL effect

We suppose constant properties (viscosity and permittivity). The effects of finite ion size

and gradients of the dielectric strength and of the viscosity are neglected. These hypotheses

are not contradictory with the fact that we mainly deal with very dilute solutions for which
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the equilibrium Boltzmann distribution is applicable. Thus, the number of ion distribution

in a symmetric plane channel flow is given by

n± = n0 exp

(

∓
zeψ

kBT

)

(1)

where n0 is the bulk ionic concentration, ψ is the electrical potential, z is the valence of

positive or negative ions, e is the electron charge, kB is the Boltzmann constant and T is

the absolute temperature. The resulting net charge density in a unit volume of fluid is

ρ = (n+ − n−)ze = −2n0 sinh

(

zeψ

kBT

)

. (2)

The Poisson equation relating the electrical potential and the net charge density per unit

volume reads as:

∇2ψ = −
ρ

ε0ε
(3)

with ε and ε0 standing respectively for the dielectric constant of the medium and the per-

mittivity of vacuum. Eq. (3) combined with (2) may be written in non-dimensional form as

∇2ψ = −κ2ρ(y) = κ2 sinh(ψ). (4)

The scaling reference potential and charge density are respectively ES = kBT/ze and

ρS = n0ze. Eq. (4) makes the non-dimensional Debye parameter κ = ka appear with:

k = (2n0z2e2/εε0kBT )1/2 (5)

standing for the Debye–Huckel parameter whose inverse is the EDL thickness, and a is the

channel half height.

Eq. (4) may be linearized when the electrical potential is small compared with the

thermal energy of ions, i.e. when |zeψ| ≪ |kBT |, or ψ ≪ 1 to give:

∇2ψ = κ2ψ (6)

which holds remarkably well for ψ < 4. This value is equivalent to a Zeta potential of

roughly 100 mV which is within the typical range in microfluidics applications [22], even

though values as large as ζ = 245 mV are reported in the literature [20]. For a two-

dimensional channel, Eq. (6) reduces to:

d2ψ

dy2
= κ2ψ (7)

with y = Y/a, the non-dimensional wall normal distance. The charge density is then

simply ρ(y) = −ψ = −(1/κ2)/(d2ψ/dy2). The boundary conditions for Eq. (7) are:

• At the wall ψ = ψ0. The electrical potential at the wall can be approximated by the

Zeta potential ψ0 = ζ , when the electrical charge of the surface is small. The general

solution of the resulting EDL-velocity profile is not affected by this approximation.

However, it is generally difficult to measure ψ0. It is much easier to determine

experimentally the Zeta potential at the boundary between the compact layer and

diffuse layer, by determining the streaming potential and the pressure drop [13].
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• At the centreline, ψ = 0, a condition which is valid typically for κ ≥ 2,

providing that the EDL diffuse layers developing on both sides of the channel do not

overlap.

The solution of (7) can easily be obtained and is given by:

ψ =
ζ

sinh(κ)
| sinh(κy)|. (8)

The charge density ρ(y) and the streaming electrical field strength caused by the ions

mobilized under the imposed pressure gradient acts as an external force in the streamwise

momentum equation of a fully developed 2D channel flow:

0 = µ
d2U

dY 2
−

dP

dX
+ Exρ(Y ). (9)

The electrical field strength is related to the streaming potential by Ex = Es/ l, where l is

the length of the channel. The non-dimensional form of (9) is:

0 =
d2u

dY 2
+ 2 −

2Γ Es

κ2

d2ψ

dy2
(10)

where Γ = ζn0zea2/ lµUs and the scaling velocity is the centreline velocity of the

Poiseuille component, i.e. Us = −(a2dp/dx)/2µ. Integrating (10) with appropriate

boundary conditions gives the velocity profile:

u = 1 − y2 − 4
Γ Esζ

κ2

{

1 −

∣

∣

∣

∣

sinh κy

sinh κ

∣

∣

∣

∣

}

. (11)

The last equation is the non-dimensional form of the velocity profile already obtained

by [14]. The streaming current due to the flux of the net density charge is given by the

following cross integral by definition:

Is =

∫∫

Uρ(Y )dY dZ . (12)

The streaming current produces the conduction current in the reverse direction:

Ic = Exλ0S =
Es

l
λ0S (13)

where λ0 = λb + λs/a is the total electrical conductivity of the fluid, with λb standing

for the bulk electrical conductivity which is proportional to the ionic concentration and

λs is the surface conductance due to the charged solid–liquid interface [3]. In the steady

state there is no net current Is + Ic = 0. This allows the closure of the equations and the

determination of the streaming potential. The final version of the non-dimensional velocity

profile is:

u = 1 − y2 − 4
I1 − I2

κ2 sinh κ

ζ
2
G

+ 4
(

I3 − I4
sinh κ

)

{

1 −

∣

∣

∣

∣

sinh κy

sinh κ

∣

∣

∣

∣

}

. (14)
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The parameter G is given by G = (n0zea)2/(λ0µ). The quantities I in (1) are:1

I1 = I3 =
cosh κ

κ

I2 =

(

1

κ
+

2

κ3

)

cosh κ −
2

κ2
sinh κ −

2

κ3

I4 =
sinh κ cosh κ

2κ
−

1

2
.

(15)

It is seen that the velocity profile can be decomposed into a macro-Poiseuille component

plus an EDL effect component. A closer inspection of (14) allows expressing the latter in

another close form as:

uEDL = −4
I1 − I2

λ0µ sinh κ

ζ
2 + 4

(

I3 − I4
sinh κ

)

{

1 −

∣

∣

∣

∣

sinh κy

sinh κ

∣

∣

∣

∣

}

. (16)

The parameter λ0µ is the non-dimensional electrical conductivity times the dynamic

viscosity of the fluid. It can be seen that the scaling parameter for λ0µ is the square of

the scaling charge density times the scaling length, i.e. (ρS/k)2 leading to:

λ0µ =
λ0µ

(n0εε0kBT/2)
. (17)

By neglecting the surface conductance effect, the streaming potential can be written as [12]:

Es

�P
=

εε0ζ

µλb

J1

1 +
J2(κεε0ζ )2

sinh2(κ)a2µλ0

(18)

with �P = −(d p/dx)l, l being the length of the channel and J1 = (κ2/2 sinh(κ))

(I1 − I2), J2 = I3 sinh(κ) − I4. The first group of terms in (18) is the classical

Helmholtz–Smoluchowski equation, and the second is the correction coefficient coming

from the EDL and surface conductance effects.

There are three parameters governing the EDL effect, namely

uEDL = uEDL(κ, ζ , λ0µ).

Gradients of the dielectric strength, viscosity and conductivity should be incorporated

in more realistic models. Yet, these effects are presumably negligible in significantly dilute

solutions and pure organic liquids.

The main EDL effects may be summarized as follows:

• An increase of the friction constant and apparent viscosity.

• A decrease of the Nusselt number.

These effects are persistent yet not significantly important at least for large values of κ . The

apparent viscosity increases for example by a factor of nearly 3 at κ = 2, but the EDL effect

1 There is a small printing error in [14, p. 3082].
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on the wall shear stress disappears quickly when κ ≥ 10 even at somewhat unacceptably

large Gζ
2

values [14]. The Nusselt number decreases by nearly 40% at κ = 5, and less

than 5% at κ = 50 as it will be discussed in the next section [23].

4. Physical parameters and discussion

The electrokinetic effects are significant for respectively small and large values of

the parameters κ and Gζ
2
. The first numerical investigations related to the EDL in

microchannel flows used severe parameters to probe on the importance of the EDL effects.

Thus Mala et al. [14] took an infinitely diluted aqueous ideal 1:1 KCl solution in a 25 µm

height, 1 cm long channel with a pressure difference of 4 ATM, n0 = 6.022 × 1020 m−3.

To illustrate their theoretical work, they further assumed that the surface conductance

is negligible with λ0 ≈ λb = 1.2639 × 10−7 S m−1, and that the Zeta potential is

50 mV. More severe cases have been analysed in the literature: Yang et al. [29] give

numerical results using the non-linear Poisson–Boltzman equation for a (hypothetical) 1:1

KCl ideal electrolyte with n0 = 6.022 × 1018 m−3, λ0 = 1.2639 × 10−9 S m−1 in a

100 µm hydraulic diameter 2D channel subject to a 200 mV Zeta potential, giving raise to

Gζ
2

= 158×103, and κ = 16! The careful reader could notice that such low conductivities

and high-pressure differences �P would lead to unrealistically large streaming potentials

according to Eq. (8). In reality the surface conductance term λs/a is much larger than λb

in microchannels. Thus the real streaming potential is several orders of magnitude smaller

and leads consequently to a weaker EDL effect.

Other liquid/surface configurations would certainly be more convenient for

experimental purposes. Note that the aim here is to reach significant electro-viscous

effects, contrarily to electro-osmotic flows. Thus, dielectric liquids with low conductivity

would be convenient. One could for instance use some hydrocarbons combined with

additives. Such liquids have been largely investigated in the literature for a while for the

electrification problems. The Debye length in a cyclohexane (C6H12) flow containing the

tri isoamylammonium picrate is for example as large as 40 µm [1, p. 51] and the Zeta

potential is ζ = 45 mV.

We consider a cyclohexane flow containing 2-ethylhexyl sulfosuccinate sodium. This

additive may vary the conductivity of the base fluid from roughly 10−11 to 10−8 S m−1.

The relative dielectric constant of the medium is ε = 2 and µ = 10−3 kg m/s. The

Debye length is 1/k = 12 µm at λb = 3 × 10−11. A minichannel of 1 mm height would be

sufficient to achieve κ = 41. The pressure difference necessary to reach a Reynolds number

of 103 in a 1 mm height and 1 cm long minichannel is �P = 160 Pa. The Zeta potential

is about ζ = 100 mV for which the linear approximation of the Boltzmann equation still

gives satisfactory results according to Yang et al. [30].

Unfortunately we are not aware of the experimental values of the surface conductance

corresponding to this case. We know however that as the ionic concentration decreases the

surface conductance decreases too, unlike the Zeta potential. Ren et al. [20, 21] reported

that λs = 10−7 S for deionized water with λb = 10−4 S m−1 for a 40 µm height channel.

The surface conductance increases to λs = 7 × 10−7 S with λb = 15 × 10−4 S m−1

corresponding to an 10−4 M KCl solution. The channel height affects also λs that increases
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roughly linearly with a. By extrapolating the same qualitative behaviour to our case, one

finds λs ≈ 4 × 10−13 S for the cyclohexane solution and λs/a ≈ 8 × 10−10 S m−1. The

resulting non-dimensional parameters G and ζ are respectively G = 3000 and ζ = 4. This

case will be labelled A hereafter.

It has to be emphasised here that the role played by the surface conductance in

the electro-viscous flows is not clearly established yet and inconsistencies persist in

some recent studies. There are for example some contradictions in the well-controlled

experiments conducted by Ren et al. [20] as discussed in detail by these authors. As

we have already mentioned the surface conductance term λs/a becomes predominant in

microchannels and may reach large values. However, Ren et al. [20] have noticed that the

model prediction (Eq. (7)) agrees well with the experiments when the surface conductance

is not considered and suggested revisiting in the future the way λs is introduced in the

electrokinetic flow model. But, if λs is not considered in their experiments, the streaming

potential they should measure should increase by a factor of 50 and be about 15 V at

Re ≈ 50 in a 40.5 µm channel. The streaming potential corresponding to the case A

investigated here is also large Es ≈ 100 V but at a larger Re ≈ 1000. Considering the

crudeness of the approximation made to establish the case A, we will also discuss the cases

B and C with respectively G = 300 (Es ≈ 10 V) and G = 30 (Es ≈ 1 V), corresponding

to conductances that are ten and one hundred times larger. An intermediate reference case

D with G = 600 will be discussed in the session related to the by-pass transition. In all the

cases, ζ = 4 and κ = 41 in the generic 2a = 1 mm channel, the fluid is the same and the

κ variations are only due to the modifications of the channel width. The most physically

reasonable cases are, in order, C and B, but we keep also the cases A and D to probe to

strong EDL effects.

5. EDL effect on heat transfer

It is possible to obtain exact analytical solutions concerning the effect of EDL on the

Nusselt number subject to constant heat flux. It is supposed that the flow is hydraulically

and thermally developed, the Péclet number Pe = RePr is large and the ratio of the Eckert

to the Reynolds numbers Ec/Re is small so that the axial conduction and the dissipation

are negligible. It is well known that in such case the Nusselt number is given by:

Nu =

{

∫ 1

0

u

uV

[

∫ 1

η

∫ η′

0

u

uV

dη′′ dη′

]

dη

}−1

. (19)

The Nusselt number in (19) is based on the half channel height and the bulk temperature.

The cross sectional average bulk velocity is denoted by uV :

uV =
4

3
− 8

I1 − I2

λ0µ sinh κ

ζ
2 + 4

(

I3 − I4
sinh κ

)

{

1 −
cosh κ − 1

κ sinh κ

}

. (20)

Eqs. (14) and (19) can be combined to obtain the Nusselt number variation versus the

parameters involved in the problem. The computation is not difficult but it is long and

tedious. The result will be given here in the form:
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Fig. 2. The velocity distribution of the EDL flow component in the half channel cross section for the reference

case A (see the text).

Nu−1 = S1 + S2 + S3 (21)

where one has respectively:

S1 = (α − β)

{

4α

15
+ β

[

−
1

3
−

1

κ sinh κ
+

1

κ2
−

cosh κ − 1

κ3 sinh κ

]}

S2 = α

{(

1

63
−

1

15

)

α + β

[

1

15
+

1

12κ sinh κ
−

1

3κ2

+
1

κ5 sinh κ
[(2 + κ2) cosh κ − 2κ sinh κ − 2]

]}

S3 =
β

sinh κ

{

sinh κ

κ3

[

7

6
α −

(

1 +
1

sinh κ

)

β

]

+ cosh κ

[

1

12
−

1

6κ
−

1

12κ2
−

2 + β

κ3
−

1

16κ4

]

+ α

[

−
5

12κ
+

1

κ3
+

1

6κ4

]

+ β

[

1

2κ
+

1

2κ2 sinh κ
−

2

κ3

]}

.

In these expressions the parameters α and β are respectively:

α =
1

uV

β =
4

uV

I1 − I2

κ2 sinh κ

ζ
2
G

+ 4
(

I3 − I4
sinh κ

) .

These relationships are complicated. It is however possible to give simpler forms for

large values of the Debye lengths, say typically κ ≥ 10. The EDL component is then

constant over a large part of the channel section and may be considered as a plug flow.

Fig. 2 shows the uEDL distribution for the case A. It is seen that uEDL is constant over 90%

of the cross section. Neglecting the contribution of the variations in uEDL and assuming
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Fig. 3. Ratio of the Nusselt number in a channel flow with constant heat flux with and without EDL effect for the

reference flow A (see the text).

that it is equal to its core value everywhere one obtains:

Nu =
ha

k
=

∂

∂(y/a)p

Tw − T

Tw − TV

=
(1 + 3r/2)2

17
35

+ 6
5
r + 3r2

4

where a is the half height of the channel, Tw and TV are respectively the wall and bulk

temperatures. This relationship is a good approximation, which is valid typically for

κ ≥ 10. The reader is referred to [23] for further details. The coefficient r in (3) is the

ratio of the EDL to the Poiseuille velocity components at the centreline that reads as:

r =
UEDL(y = 0)

UP (y = 0)
∼= −

8Gξ
2

κ(κ3 + 2Gξ
2
)

and r ≤ 0. Fig. 3 shows the variations of the Nusselt number versus the non-dimensional

Debye parameter. The results in Fig. 3 are obtained by changing the height of the channel

keeping constant the rest of the parameters for the generic flow A. The deceleration effect

of EDL results in a decrease of the Nusselt number. The decrease in Nu is only a few

percent for κ ≥ 40 but may reach 35% at κ = 10.

6. Inflexional inviscid instability

The EDL effect is undoubtedly significant for small values of κ for the liquids

containing a very small number of for example impurities. In such situations the thickness

of the diffuse layer may reach several micrometres. Fig. 2 indicates the close similarity

between the EDL and Poiseuille profiles with a decrease of the centreline velocity typical

to the EDL flows. The increase of the friction constant is only 16% in this reference

situation. The important difference however is the presence of an inflexional point at

y ≈ (1/κ)arcsinh{−(2/rκ2) sinh(κ)} in the EDL profile where r is the ratio of the EDL

and Poiseuille flow centreline velocities. This makes the flow inviscidly unstable, according
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to the Fjortoft’s criteria. The inviscid instability does not imply instability directly in wall

flows and an Orr–Sommerfeld analysis is necessary.

7. Linear stability analysis

The linear hydrodynamic stability under the EDL effect is studied through classical

methods. The Orr–Sommerfeld equation is solved by a Galerkin-like procedure [26]. The

normal mode solutions of the disturbance equation are:

(u, v, p) = R(û, v̂, p̂) exp(iαx) (22)

R is the real part, α is the dimensionless wave number of the disturbance and x is the

streamwise coordinate. Introducing the stream function:

ψ(x, y, t) = φ(y, t) exp(iαx) (23)

the Orr–Sommerfeld equation takes the form:

∂

∂ t
Lφ =

1

Re
L2φ − iα

(

uLφ −
d2u

dy2
φ

)

(24)

with the boundary conditions φ = ∂φ/∂y = 0 at y = ±1. The operator L is L ≡

∂2/∂y2 − α2. The stream function is expanded in a Chebyshev polynomial series:

φ(y, t) =

N
∑

n=1

an(t)T2n−2(y) (22)

where Tm(y) = cos(m cos−1 y) denotes the Chebyshev polynomials of the first kind. We

took N = 256 through this study. Eq. (23) takes the form:

Q
da

dt
= (P − iαJ) · a (23)

and the matrices are determined by making use of the τ -method described by [16]. The last

equation can be written as:

db

dt
= D · b (24)

by introducing B the matrix that diagonalizes Q−1
· (P−iαJ), b = B−1

·a and the diagonal

matrix D = λiδi j = B−1
· Q−1

· (P− iαJ) · B. The eigenvalues are denoted by λi and the

flow is unstable when R(λi ) > 0. The disturbances with symmetric streamfunctions are

considered only. The method gave very close results to Grosch and Salwen [6] who used

different sets of expansion functions.

The macroscale Poiseuille flow is metastable; i.e. the corresponding stability is

subcritical. Non-linear analysis shows that the instability may occur with finite amplitude

when all infinitesimal disturbances are stable [2, 10]. There is a significantly lower critical

value of the Reynolds number ReG compared to Rec, above which the flow is unstable

and below which there is no bifurcation. The exact theoretical determination of ReG is
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Fig. 4. The critical Reynolds number versus the non-dimensional Debye length under the EDL effect. The

reference physical flow parameters for the cases A, B, C and D are given in the text.

still a matter of research. Experiments show that ReG/Rec ≈ 1000/5772 ≈ 1/6. The

transitional Reynolds number depends on the shape and shape factors of the channels.

The Poiseuille flow is monotonically stable only for Re < 100 to be compared with

5772. The transitional Reynolds number Ret of channel flows is about 400 according

to experiments (2000 based on the hydraulic diameter and channel averaged velocity).

Thus, the ratio Ret/Rec < 1/15 in macroscale Poiseuille flows. There are some reasons

to believe that this ratio is much smaller under the EDL effect [24]. An estimation of

the transitional Reynolds number distribution is shown in Fig. 4 by taking the same ratio

Ret/Rec as in Poiseuille flow for the cases A, B and C defined before.

It is clearly seen that the transitional Reynolds number decreases by a factor nearly

equal to 2 under the effect of EDL for the case A already at κ = 41. The critical wave and

Reynolds numbers of the microflow A are respectively αc = 1.10 and Rec = 3190 to be

compared with αc = 1.02 and Rec = 5772 of the conventional Poiseuille flow (ζ = 0 or

κ → ∞). Due to its inviscid inflexional instability (unstable for Re → ∞ for a given α),

the band of unstable wave numbers of the EDL micro-flow is significantly larger compared

with the macro-flow. The effect disappears quickly when the height of the channel is

increased by a factor of 4. This goes in the same line as previous experimental results

showing the lack of micro-effects for the microchannels of height larger than typically

400 µm. For smaller values of κ , in return, the effect of the interfacial effects caused

by EDL on the transition may be much more severe. For instance, the critical Reynolds

number decreases up to Rec = 1042 at κ = 20 and to Rec = 496 at κ = 10 for the

case A.

Decreasing the parameter Gζ
2

by a factor of 10, increases the critical Reynolds number

by approximately 3. Thus, the destabilizing effect of the EDL is much more sensitive to κ

compared to Gζ
2
. Even at G = 30 (Case C) the critical (transitional) Reynolds number

is twice smaller at κ = 8 than the Rec of the macro-flow. A more complete parametrical

study of the EDL effect on the microchannel flow linear stability can be found in [25].

There are only few investigations in the literature on the EDL effect, reaching these

Reynolds numbers with relatively small κ . It is however interesting to note that one point
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related to the data reported by Weilin et al. [28] coincides perfectly with the predicted Ret

(profiles at Dh/2 = 71 µm in their Figure 8) and suggests a transitional number of 200.

That is however certainly a coincidence, because the Gζ
2

parameter in their investigation

is relatively smaller, unless the non-linear EDL stability mechanism is significantly strong.

8. Preliminary investigation of the by-pass transition under the EDL effect

There are at least two fundamental reasons to investigate the by-pass transition in micro-

channel flows. This transition scenario is related to the disturbance growth on time scales

significantly shorter than typical Tollmien–Schilichting (TS) waves that “by-passes” the

spatial and temporal development of the two-dimensional disturbances and their inherent

secondary instabilities. The set-up of three-dimensionality leads to the achievement of

finite amplitudes and of the non-linear effects. They can mainly be generated by local

surface irregularities such as the roughness or the nanobubbles. The latter is, of course not

a micro-effect, because it affects the characteristics in macro- and micro-flows exactly in

the same manner at similar scaled roughness dimensions. Yet, it is more difficult to control

the roughness geometry and dimensions in microchannels. Note that the roughness does

not affect the stability characteristics of a developed internal flow, in the TS waves sense,

except in the entrance region. Thus, the by-pass transition process is a presumably more

common phenomena in micro-flows. The second reason to investigate the development of

the 3D localized disturbances has to do with the associated rapid disturbance algebraic

growth. The two-dimensional waves are always the least stable modes according to the

Squire’s theorem. However, the damping of oblique waves may be smaller at subcritical

Reynolds numbers as already shown and mentioned in several investigations (see [8] for

example).

The EDL effect on the non-linear stability mechanism is analysed through the spatio-

temporal development of a localized disturbance by direct numerical simulations in this

investigation. A perturbation related to a pair of counter rotating vortices is followed in

time and space with and without EDL. The main aim is to investigate the effect of the

double electrostatic layer on the linear, non-linear and breakdown stages in the by-pass

transition process. Only some preliminary results are discussed here and more details will

be published elsewhere.

The instantaneous 3D non-dimensional Navier Stokes equation under the EDL external

force:

∂ui

∂ t
+

∂ui u j

∂x j

= −
∂p

∂xi

+
1

Re

∂2ui

∂x2
j

−
rκ2

Re

|sinh κy|

sinh κ
(25)

is adequately resolved in time and space. The number of modes is 256 × 128 × 128 in the

x, y and z directions. The resolution for the Poiseuille flow is better than [8] for the small

perturbation amplitude case. The initial structure is two pairs of counter-rotating vortices

exactly as in [8]. The form is:

ψ = ε f (y)

(

x ′

lx

)

z′ exp

[

−

(

x ′

lx

)2

−

(

z′

lz

)2
]

(26)
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and the velocity components of the perturbed field are:

(u′, v′, w′) = (−ψy sin ϑ,ψz′ ,−ψy cos ϑ) (27)

in respectively the streamwise, wall normal and spanwise directions. The lengths lx and

lz stand for the streamwise and spanwise lengths of the disturbance (lx = lz = 2) and

ε is its amplitude. The angle ϑ of the disturbance can be used as a parameter governing

the distribution of the initial energy in different regions of wave number space. We took

f (y) = (1 + y)p(1 − y)q with p = q = 2, as in [8]. The perturbations are superimposed

to the mean velocity profile as initial conditions, and the flow field is followed in time and

space.

We will present preliminary results with the small (linear) and large (non-linear)

perturbation cases corresponding respectively to ε = 0.0001 and ε = 0.1 in the initial

development stage. A flow (case D) with a relatively severe EDL effect is chosen for

the purpose and for the same reasons. We took κ = 10, Gζ
2

= 600. There are 30

computational modes in the EDL layer in this case. The critical Reynolds number in

the EDL flow is 635. Since the aim is to analyse the subcritical nature of the by-pass

mechanism, we took Re = 3000 in the Poiseuille flow and Re = 300 in the EDL flow,

i.e. ten times smaller than in the macro-flow.

Fig. 5 shows the spatial evolution of the v′ component of the perturbation velocities

(ϑ = 0) at y = −0.56 and t = 10 in Poiseuille and EDL flows in the small perturbation

case. We see the characteristics of the dispersion of a wave packet with streamwise

elongation and spanwise inclination of the velocity contours. Globally the time and space

evolution of the wall normal and spanwise perturbation velocities are both qualitatively and

quantitatively similar in the Poiseuille and EDL flows (remember that the EDL Reynolds

number is ten times smaller). However, the spanwise gradient of v′ is significantly more

important in EDL than the Poiseuille flow pointing at a relative enhancement of the

streamwise vorticity (not shown here). In the non-linear stage the perturbation flow field

rapidly develops into a streaky structure under the EDL effect (Fig. 6). These preliminary

results show the capacity of the inflexional profile to maintain the non-linear mechanisms

even at significantly low Reynolds numbers. Similar behaviour has been found for the C

case at the same Re/Rec.

9. Conclusion

To conclude, the EDL destabilizes the linear modes of the Poiseuille channel flow and

early transition in microchannels is plausible. The most significant effect of EDL is the

decrease of the critical Reynolds number, rather than the increase in friction coefficient or

the apparent viscosity. For κ = 40, the friction factor increases by some 7%, but the critical

Reynolds number DECREASES by 100%.

This effect can be experimentally checked, provided that the liquid contains a very

small amount of ions and the channel height is sufficiently small. In practice that would

require the use of organic liquids. There is no effect on stability for liquids with high ionic

concentration. The non-linear stability analysis of the EDL flow is necessary, although

physical considerations and preliminary results presented here on the by-pass transition
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Fig. 5. The wall normal perturbation velocity contours for (a) Poiseuille (Re = 3000) and (b) EDL flows

(Re = 300) at t = 10 and y = −0.56 in the small amplitude perturbation case. The maximum and minimum

non-dimensional velocities in Poiseuille flow are ±5 × 10−6, and in EDL flow ±4 × 10−6. ϑ = 0.

mechanism indicate a much more rapid transition compared to macro-flows. Controlled

experiments in a way similar to those reported by [20, 21] have to be conducted, by

keeping the same channel with the same roughness distribution, and changing the ionic

concentration of the liquid, or of the additives in organic liquids. The fact that the channel

cross section shapes, in particular the corners have an important contribution to the EDL

field has also to be considered.

There are several open questions concerning the effect of the early transition on the

heat and momentum transfer mechanisms [5, 17]. Early transition under the EDL effect is

plausible, but the fact that the transitional Reynolds numbers are significantly small raises

several points. First of all, the existence of a constant stress universal logarithmic region in

near wall flows requires the existence of an inertial sublayer and the Reynolds number to

be large. The absence of the logarithmic region, on the other hand, implies the absence of

inertial subrange of energy spectra and consequently the equilibrium between production

and dissipation. Thus, the well-known velocity defect law and the core region structure

are presumably quite different from macro-scale turbulent channel flow. Neither any
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Fig. 6. The wall normal (a) and spanwise (b) perturbation velocity contours for the EDL flow (Re = 300) at

t = 15 and y = −0.56 in the large amplitude perturbation case. The maximum and minimum non-dimensional

velocities are ±7 × 10−3 in (a) and ±2 × 10−2 in (b). ϑ = π/4.

well-known logarithmic friction law, nor the analogies such as Prandtl–Taylor’s can be

used in this case. These observations open interesting perspectives in near wall turbulence

research.
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