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1 Introduction and main results
• The origin of this note is the following identity:

(1) E

[∣∣∣∣ exp

(
Bt −

t

2

)
− 1

∣∣∣∣] = 2P (4B2
1 ≤ t)

where (Bt, t ≥ 0) is a one dimensional Brownian motion with B0 = 0.
The analysis developed in this paper began with an investigation of the im-
pact of stochastic volatility on the price of contracts that pay the average
daily absolute price difference. We thank Michael Qian for bringing this
question to our attention. In the Black-Scholes context on making an anal-
ogy between volatility and time we are soon led to considering the integral
of the left hand side of equation (1) with respect to a measure on time and
with the help of equation (1) it is much simpler to work with the right hand
side of this equation.

Throughout this paper, we shall discuss various approaches to, and exten-
sions of, this formula; the eager reader may already have a look at Example
1, in Section 5.
• Since E

[
exp

(
Bt − t

2

)
− 1
]

= 0, the identity (1), is equivalent to:

(2) E

[(
exp

(
Bt −

t

2

)
− 1

)±]
= P (4B2

1 ≤ t)

Now, anyone who has dealt, for one reason or another, with Black-Scholes
formula, will start using it to check that the LHS of (2) is indeed equal to its
RHS. This involves, essentially, one integration by parts.
• However, the point of the present note is to exhibit a general extension of
the identity (2), which necessitates no explicit knowledge of distributions.
Here is this general result

Theorem 1. For any ≥ 0 continuous local martingale (Mt, t ≥ 0), which
converges to 0 as t →∞, there is the identity: for any b ≥ 0,

(3) E[Ft (b−Mt)
+] = b E

[
Ft 1

(g
(b)
∞ ≤t)

]
,

where Ft is any set in Ft, and g
(b)
∞ = sup{s : Ms = b}. (We make the

convention that sup(∅) = 0.)

• Here are some comments about Theorem 1:
obviously, (3) extends (2) in several respects:
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a)
(
exp

(
Bt − t

2

)
, t ≥ 0

)
is replaced by a general ≥ 0 continuous local

martingale (Mt, t ≥ 0), which converges to 0, as t →∞ (we write L(+)
0

for this set of local martingales);

b) there is the presence of the test function Ft, for every t ≥ 0; in fact,
even more generally, (3) holds with t replaced by T , any (Ft) stopping
time, and Ft replaced by FT 1(T<∞), where FT is any set in FT .

c) the level 1 in (2) is now replaced by the more general level b.

• The remainder of the note is organized as follows:

• in Section 2, we prove Theorem 1;

• in Section 3, we derive from (3) a general formula for the law of g
(b)
∞ ;

• in Section 4, we discuss the representation of P (g
(b)
∞ > t|Ft), which

follows from Theorem 1 as a ratio:
(

Nt

St
, t ≥ 0

)
, for another element

(Nt) of L(+)
0 , and St = sups≤t Ns;

• in Section 5, we discuss several examples;

• in Section 6, we develop a similar discussion as in Theorem 1, but this
time with E[Ft(Mt − b)+]; a little more care is needed;

• Section 7 concludes, with the raising of a general question of represen-
tation of certain submartingales.

2 Proof of Theorem 1
Clearly, formula (3) is equivalent to:

(4) P (g(b)
∞ ≤ t|Ft) =

(
1− Mt

b

)+

and this formula follows from the fact that:

(g(b)
∞ < t) =

(
sup
u≥t

Mu < b

)
Formula (4) is an application to the local martingale (Mt+u, u ≥ 0), which
also belongs to L(+)

0 , of "Doob’s maximal identity":
if (µt, t ≥ 0) belongs to L(+)

0 , then: supt≥0 µt
(law)
= µ0

U
, where U is uniform on

[0, 1], and independent from µ0.
This identity has been discussed "at large" in, e.g., [5] and [7].
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3 The law of g
(b)
∞

Clearly, Theorem 1 shows some connection between the law of Mt, say for
fixed time t, and that of g

(b)
∞ . This is made precise in the following Theorem

2, for which we need some further hypothesis about (Mt, t ≥ 0). We now
assume:

(i) for every t>0, the law of the r.v. Mt admits a density (mt(x), x≥0),
and: (t, x) → mt(x) may be chosen continuous on (0,∞)2;

(ii) d<M>t = σ2
t dt, and there exists a jointly continuous function:

(t, x) → E[σ2
t |Mt = x] on (0,∞)2 .

Then, the following holds:

Theorem 2. The law of g
(b)
∞ is given by:

(5) P (g(b)
∞ ∈ dt) =

(
1− a

b

)+

ε0(dt) +
1(t>0)

2b
E[σ2

t |Mt = b]mt(b)dt

where a = M0.

Remarks.
1) Assume a = 1. Then, as already mentioned in Section 2, the law of
(supt≥0 Mt) is that of 1

U
, that is: it is "universal" for all elements M ∈ L(+)

0 ,
with M0 = 1. This is easily explained by Dubins-Schwarz representation:
Mt = β<M>t , with (βu, u ≤ T0(β)) a BM starting from 1, and considered up
to T0(β) ≡<M>∞.
More generally, the law of (Lb

∞(M), b ≥ 0) is also "universal", since:

Lb
∞(M) = Lb

T0(β)(β) , (b ≥ 0)

On the other hand, as shown by formula (3), the law of g
(b)
∞ (M) depends on

the law of M ∈ L(+)
0 (while, for the same reason as before, that of <M>

g
(b)
∞ (M)

is universal...).
2) Formula (5) extends, in the framework of L(+)

0 a similar result for the laws
of last passage times for a transient diffusion as obtained in Pitman-Yor [8].
3) Assume a = b = 1, for simplicity. We may be interested to obtain a quite
general distribution on R+ for the law of g

(1)
∞ .

Recall our original example:

E

[(
1− exp

(
Bt −

t

2

))+
]

= P (4B2
1 ≤ t)
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Thus, in order to obtain on the RHS the cumulative function F (t) instead
of P (4B2

1 ≤ t), it suffices to look for an increasing function (h(t), t ≥ 0) such
that:
(6)

F (t)(≡ P (X ≤ t)) = P (4B2
1 ≤ h(t)) ≡ P

(
|B1| ≤

√
h(t)

4

)
≡ N

(√
h(t)

4

)

where N (x) =

√
2

π

∫ x

0

dy e−
y2

2 .

Now, if F is continuous and strictly increasing, there is only one such function
h, and:

h(X)
(law)
= 4B2

1

or, equivalently:
X

(law)
= h−1(4B2

1)

In the general case, we may take, from (6):√
h(t)

4
= N−1(F (t))

In our martingale framework, we consider:

Eh(t) ≡ exp

(
Bh(t) −

h(t)

2

)
in the filtration (Fh(t), t ≥ 0).
To summarize: For every continuous r.v. X ≥ 0, i.e: FX(t) is continuous,
there exists a filtered probability space and a continuous martingale (Mt) in
L(+)

0 such that:
E[Ft(1−Mt)

+] = P (Ft 1g≤t)

with g
(law)
= X.

Proof of Theorem 2.
i) We first use Tanaka’s formula to obtain

E[(b−Mt)
+] = (b− a)+ +

1

2
E[Lb

t ]

where (Lb
t , t ≥ 0) denotes the local time at level b for (Mt, t ≥ 0).

Thus, from formula (3), there is the relationship:

(7) P (g(b)
∞ ∈ dt) =

(
1− a

b

)+

ε0(dt) +
1(t>0)

2b
dt(E[Lb

t ])
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and formula (5) is now equivalent to the following expression for dt(E[Lb
t ]):

(8) dt(E[Lb
t ]) = dt(E[σ2

t |Mt = b])mt(b) (t > 0)

ii) We now prove (8):
The density of occupation formula for the local martingale (Mt) writes:
for every f : R+ → R+, Borel,∫ t

0

dsσ2
s f(Ms) =

∫ ∞

0

db f(b)Lb
t

Thus, taking expectations on both sides, we obtain:

E

[∫ t

0

dsσ2
s f(Ms)

]
=

∫ ∞

0

db f(b)E[Lb
t ]

The LHS equals: ∫ t

0

ds E[E(σ2
s |Ms)f(Ms)]

=

∫ ∞

0

db f(b)

∫ t

0

ds ms(b) E[σ2
s |Ms = b]

and formula (8) now follows easily.

�

4 Representations of Azéma supermartingales
A third point consists in making a connection between Theorem 1 and the
representation of a large class of Azéma supermartingales

(P (L > t|Ft), t ≥ 0)

associated to the end L of a previsible set Γ, ie: L = sup{t : (t, ω) ∈ Γ},
as discussed in Nikeghbali-Yor ([7],Theorem 4.1): the set up in that paper
is that L is the end of a previsible set (on a given filtered probability space)
such that:

(CA)

{
a) all (Ft) martingales are continuous;
b) for any stopping time T, P (L = T ) = 0 .

(C stands for continuous, and A for avoiding (stopping times)). Under (CA),
there exists a positive continuous local martingale (Nt, t ≥ 0) such that:

(9) P (L > t|Ft) =
Nt

St

,
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where St = sups≤t Ns , t ≥ 0. Let us now make the connection with Theorem
1; for simplicity, let us take a = b = 1. Clearly, as we already noted, the
identity (3) is equivalent to:

P (g(1)
∞ ≤ t|Ft) = (1−Mt)

+

or to:

(10) P (g(1)
∞ > t|Ft) = Mt ∧ 1

We shall now show that (Mt ∧ 1) may be written in the form
(

Nt

St
, t ≥ 0

)
.

Theorem 3. There is the representation:

(11) (Mt ∧ 1) =
Nt

St

in a unique manner, where (Nt) belongs to L(+)
0 , and St = sups≤t Ns are

given by: 
Nt = (Mt ∧ 1) exp

(
1
2
L

(1)
t

)
(12a)

St ≡ sup
s≤t

Ns = exp

(
1

2
L

(1)
t

)
(12b) ,

(12)

and (L
(1)
t , t ≥ 0) is the local time at 1 for (Mt, t ≥ 0).

Proof of Theorem 3.
a) From Tanaka’s formula, we have (we still assume that M0 = 1):

(13) (Mt ∧ 1) = 1 +

∫ t

0

1Ms<1dMs −
1

2
L

(1)
t

b) On the other hand, Itô’s formula yields:

Nt

St

= 1 +

∫ t

0

dNs

Ss

−
∫ t

0

NsdSs

S2
s

= 1 +

∫ t

0

dNs

Ss

−
∫ t

0

dSs

Ss

= 1 +

∫ t

0

dNs

Ss

− log(St)(14)

Thus, comparing (13) and (14), in order that the identity (11) holds, we need
both equalities:

(15)
∫ t

0

dNs

Ss

=

∫ t

0

1Ms<1dMs

7



(16) log(St) =
1

2
L

(1)
t

This necessitates that (Nt) is given by (12a).
Conversely, as we start from formula (12a), we find out that:

i) (Nt, t ≥ 0), thus defined, is a local martingale,

ii) it converges to 0, as t →∞, since L
(1)
∞ < ∞, thus:

Nt ≤
(

exp

(
1

2
L(1)
∞

))
Mt

iii) St is given by exp
(

1
2
L

(1)
t

)
�

Remarks.
1) We note that formula (11) expresses precisely the multiplicative decom-
position of the supermartingale (Mt∧1) as the product of a local martingale,
and a decreasing process (1/St, t ≥ 0).
2) Note that every Azéma supermartingale, under the condition (CA) may
be expressed in the form (9):

(
Nt

St
, t ≥ 0

)
. On the other hand, it is not true

that every Azéma supermartingale may be expressed as (Mt ∧ 1); these rep-
resentations are more particular:
indeed, from formulae (15) and (16) we deduce that:

(17) d<N>s = exp(L(1)
s )1(Ms<1)(d<M>s)

Now, in a Brownian setting (to simplify), we have: d<N > s = n2
sds and

d<M>s = m2
sds, for two (Fs) previsible processes (m2

s) and (n2
s). Now, (17)

implies: n2
s = exp(L

(1)
s )1(Ms<1) m2

s, ds dP a.s.
Consequently, n2

s = 0 ds dP a.s. on {(s, ω) : Ms > 1}. However, this cannot
be satisfied if we start from N such that n2

s > 0, for all s > 0; note that the
random set {s : Ms > 1} is not empty; if it were, then the local time at 1 of
M would be 0, and M would be identically equal to 1.

5 Some examples

In this Section, we propose a number of local martingales in L(+)
0 , for which

we show how to compute the law of g
(b)
∞ , either from direct arguments, or

8



with the help of Theorem 2.

Example 1: Mt = exp
(
Bt − t

2

)
where (Bt, t ≥ 0) is a one dimensional

Brownian motion starting from 0.
Note that:

g(1)
∞ = sup

{
t : Bt −

t

2
= 0

}
;

Therefore, by time inversion:

1

g
(1)
∞

(law)
= inf

{
u : Bu =

1

2

}
(law)
=

1

4B2
1

,(18)

hence formula (2) is now explained simply.
Note that the same time inversion argument yields the following general
result:

1

g
(b)
∞

(law)
= inf

{
t : Bt − t(log b) =

1

2

}
(law)
=

1

(log b)2
inf

{
u : Bu − u =

(log b)

2

}
Example 2: Mt = Bt∧T0 where (Bt, t ≥ 0) is a one-dimensional Brownian
motion starting from 1.
Then, for b < 1, we can find simply the law of

g(b)
∞ = sup {t < T0 : Bt = b}

By time reversal, (BT0−u, u ≤ T0) is a BES(3) process (Ru) starting from 0,
considered up to its last passage time at 1. Thus, we have:

T0 − g(b)
∞ = inf {u : Ru = b} ,

therefore:
e−λ =

λb

sinh(λb)
E

[
exp

(
−λ2

2
g(b)
∞

)]
,

ie:

E

[
exp

(
−λ2

2
g(b)
∞

)]
=

e−λ(1−b) − e−λ(1+b)

(2λb)

=
1

2b

∫ 1+b

1−b

dx exp(−λx) ,

9



from which we deduce: g
(b)
∞

(law)
= TUb

, where Ta = inf{t : B
(0)
t = a}, and Ub is

independent from B(0), and uniformly distributed on [1− b, 1 + b].
Thus:

(19) g(b)
∞

(law)
=

U2
b

B2
1

Example 3: Mt = 1
Rt

where (Rt, t ≥ 0) denotes a BES(3) process starting
from 1 (to simplify!).
Note that (Mt, t ≥ 0) is a strict local martingale, but the previous discussion
applies nonetheless.
Then, for b < 1, we have:

g(b)
∞ (M) = sup

{
t :

1

Rt

= b

}
= sup

{
t : Rt =

1

b

}
Let us now consider the time reversal result between BM issued from a > 0,
up to its first hitting time of 0, and BES(3), up to its last passage time at a

a

0

a′

Ga′
a (B•∧T0) = Ga

a′(R) T0

•

R

Bt∧T0

We now apply this result with:

a′ = 1 ; a =
1

b
> 1 .

Let us describe precisely the law of Ga
a′(R).

We have :

exp(−λa) =

(
λa′

sh(λa′)

)
E

[
exp

(
−λ2

2
Ga

a′(R)

)]
10



Hence:

E

[
exp

(
−λ2

2
Ga

a′(R)

)]
=

sh(λa′)

λa′
exp(−λa)

=
1

2(λa′)
(eλa′ − e−λa′)e−λa

=
1

(2λa′)
{e−λ(a−a′) − e−λ(a+a′)}

=
1

(2a′)

∫ a+a′

(a−a′)

dx e−λx

Hence:

Ga
a′(R)

(law)
= T(U[a−a′,a+a′])

(law)
=

(
U2

[a−a′,a+a′]

B2
1

)
(20)

where U[α,β] denotes a uniform variable on [α, β] independent of B1.

We note that for the 3 previous examples, we did not use Theorem 2, as
we were able to obtain directly the distribution of g

(b)
∞ . For the next exam-

ples, we make use of Theorem 2.

Example 4: Mt = cosh(Bt) exp
(
− t

2

)
where (Bt, t ≥ 0) is a one-dimensional

Brownian motion starting from 0.
From Itô’s formula, we obtain:

σt = sinh(Bt)e
− t

2

Hence σ2
t = M2

t − e−t; therefore, formula (7) yields:

P (g(b)
∞ ∈ dt) =

(
1− 1

b

)+

ε0(dt) +
1(t>0)

2b
(b2 − e−t)mt(b)dt

(we note that mt(b) = 0, for b2 − e−t ≤ 0).
We leave the (easy) computation of mt(b) to the reader.

Example 5: Mt = 1√
1−t

exp
(
− B2

t

2(1−t)

)
, t < 1. This martingale is the

Radon-Nikodym density on Ft = σ{Bs, s ≤ t}, t < 1, between the laws of
the standard Brownian bridge and Brownian motion on the time interval

11



[0, 1], tends to 0 as t → 1−.
Likewise, we obtain from Itô’s formula:

σ2
t =

B2
t

(1− t)2
M2

t ≡ h(t,Mt)

for a certain function h. Again, we leave the details to the reader.

We note that Examples 4 and 5 exhibit martingales (Mt) which are in-
homogeneous Markov processes. The interested reader may like to consult a
list of results at the end of [3], where a number of Azéma supermartingales
P (L > t|Ft), t ≥ 0 are computed, in a Markovian framework.

6 From puts to calls: a little more care is needed
In pricing financial options, the left-hand side of (3) arises very naturally in
terms of put options, e.g. when considering

(21) E[(b−Mt)
+]

On the other hand, the price of a call option is:

(22) E[(Mt − b)+]

A most common argument to "reduce" (22) to (21) is to involve "call-put
parity" and/or "change of numéraire". Mathematically, this means that we
consider the new probability Q defined via:

(23) Q|Ft = Mt•P|Ft

and the martingale
(

1
Mt

, t ≥ 0
)

under Q, since:

Ep[(Mt − b)+] = EQ

[(
1− b

Mt

)+
]

= b EQ

[(
1

b
− 1

Mt

)+
]

(24)

However, two difficulties arise in order to perform these operations rigorously:

i) in order that Q, as "defined" via (23), be a probability, we need that
(Mt, t ≥ 0) is a true martingale under P , ie: it satisfies in particular
EP (Mt) ≡ 1;

12



ii) some care is needed also concerning (24); in particular Mt could take
the value 0 on some Ft-set of positive P -probability.

To summarize, (23) and (24) are correct if (Mt, t ≥ 0) is a strictly posi-
tive true martingale under P .
Formally, this may be stated as:

Proposition 4. If (Mt) is a strictly positive true continuous martingale un-
der P , define PM via: PM

|Ft
= Mt•P|Ft.

Denote: g
(1)
∞ = sup{t ≥ 0 : Mt = 1}. Then

i) EP [Ft(Mt − 1)+] = EM
[
Ft 1

(g
(1)
∞ ≤t)

]
, for every Ft ∈ Ft

ii) EP (Ft|Mt − 1|) = EP

(
Ft 1

(g
(1)
∞ ≤t)

)
+ EM

(
Ft 1

(g
(1)
∞ ≤t)

)
iii) g(1)

∞ has the same distribution under P and under PM

Proof of Proposition 4.
i) We write:

EP [Ft(Mt − 1)+] = EM

[
Ft

(
1− 1

Mt

)+
]

= EM
[
Ft 1

(g
(1)
∞ ≤t)

]
from Theorem 1, since

(
1

Mt
, t ≥ 0

)
is, under PM , a martingale which con-

verges to 0 as t →∞.
ii)

EP (Ft|Mt − 1|) = EP (Ft(Mt − 1)+) + EP (Ft(1−Mt)
+)

and we apply both the previous result and Theorem 1.
iii) Taking Ft = 1 in i), we obtain:

PM(g(1)
∞ ≤ t) = EP ((Mt − 1)+) = EP (Mt − 1) + EP ((Mt − 1)−)

= EP ((1−Mt)
+)

= EP (g(1)
∞ ≤ t) (from Theorem 1)

�

Remark 5. We note that Proposition 4 extends in the case when (Mt) is
a true continuous martingale, taking values in R+, but it may vanish, ie:
P (T0 < ∞) > 0.
Indeed, under PM , T0 = ∞ a.s., and the previous arguments are still valid.
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In order to obtain some analogue of Theorem 1 for

E[Ft(Mt − b)+]

in the general case when (Mt) is a local martingale belonging to L(+)
0 , we

shall proceed directly.
Before discussing in a general framework, we write some version of the iden-
tity (3) for Mt = 1

Rt
, t ≥ 0, where R is a BES(3), starting from 1.

We denote by Wa and P
(3)
a (a > 0) the respective laws of Brownian mo-

tion and BES(3) starting at a > 0, on this canonical space C(R+, R), with
Xt(ω) = ω(t), and Ft = σ{Xs, s ≤ t}; then, there is the well-known Doob
h-transform relationship:

(25) P
(3)
a|Ft

=
Xt∧T0

a
•Wa|Ft

Proposition 6. There is the identity

(26) E
(3)
1

[
Ft

(
1

Xt

− 1

)+
]

= W1

(
Ft 1(γ≤t≤T0)

)
for every Ft in Ft, and γ = sup{t < T0 : Xt = 1}.

Proof of Proposition 6.
Thanks to (25), the LHS of (26) equals:

W1

(
Ft(1−Xt∧T0)

+1(t≤T0)

)
which is equal to the RHS of (26) thanks to formula (3), applied with F ′

t =
Ft 1(t≤T0).

�
Remarks.
a) It is worth noting that, as a consequence of (26) there is the identity

E
(3)
1

[(
1

Xt

− 1

)+
]

= W1(γ ≤ t ≤ T0)

which shows clearly that the RHS is not an increasing function of t; in fact,
we can compute explicitly this RHS, which equals:

r(t) ≡ W1(T0 ≥ t)−W1(γ ≥ t)
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Recall that, under W1: T0
(law)
= 1

B2
1
, and γ

(law)
=

U[0,2]

B2
1

thus:

r(t) = P

(
|B1| ≤

1√
t

)
− P

(
|B1| ≤

√
U[0,2]√

t

)

=

√
2

π

∫ 1√
t

0

dx e−
x2

2 −
√

2

π

∫ ∞

0

dx e−
x2

2

(
1− tx2

2

)+

=

√
2

π

∫ 1√
t

0

dx e−
x2

2

(
tx2

2

)
−
√

2

π

∫ √ 2
t

1√
t

dx e−
x2

2

(
1− tx2

2

)
b) There is an extension of formula (26) for pairs of Bessel processes with
respective dimensions δ ∈ (0, 2), and 4− δ; formula (25) generalizes as:

P
(4−δ)
1

[
Ft

(
1

X2−δ
t

− 1

)+
]

= P
(δ)
1 (Ft 1(γ ≤ t ≤ T0))

for every Ft in Ft, and γ = sup{t < T0 : Xt = 1}.
Proposition 6 leads us easily to a general statement, whose proof simply
mimicks that of Proposition 6, hence it is left to the reader.

Proposition 7. Let Q|Ft = Mt•P|Ft,
with M0 = 1, and T0 = inf{t : Mt = 0} < ∞ P a.s.

Then, M ′
t =

1(t<T0)

Mt

is well defined and strictly positive under Q; M ′
t ∈ L

(+)
0 ;

finally:

(27) EQ[Ft(M
′
t − 1)+] = EP [Ft 1(γ≤t<T0)]

where: γ = sup{t < T0 : Mt = 1}.

Remarks.
1) Note that, as for Proposition 6, the RHS of (27), for Ft ≡ 1, is no longer
an increasing function of t.
2) The result (27) should be compared with the general expression given
in Madan-Yor [4], Proposition 2, p. 160, for EQ[(M ′

t − K)+]. However, we
postpone a detailed discussion to another publication.

7 Conclusion
• In this Note, we have seen two instances of the following equality:

(28) EP [Ft Xt] = Q(Ft 1g≤t)
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where on the LHS, Xt ≥ 0, and Ft is any set in Ft, and on the LHS, Q is a
≥ 0 finite measure, and g a positive random time.
These two instances are:
i) in Theorem 1, Xt = (b−Mt)

+,

Q = bP , g = g(b)
∞

ii) in Proposition 4, Xt = (Mt − 1)+ , Q = PM , and also: X ′
t = |Mt − 1|,

and Q′ = P + PM .
• We are interested in discussing / establishing a general family of identities
such as (28), even in cases where Q is only σ-finite.
First, note that, if (28) holds, then (Xt) is a (P, (Ft)) submartingale, since,
from (28), we get, for Fs ∈ Fs, and s ≤ t:

(29) EP (Fs(Xt −Xs)) = Q(Fs 1(s<g≤t)) ≥ 0

Thus, this raises the following question:
for which positive submartingales (Xt) can we exhibit a pair (Q, g) such that
(28) is satisfied?
We do not know the answer to this question in all generality , but we mention
two other instances for which (28) is satisfied:
iii) (see [6]) In this CRAS Note, and in related papers, one associates to the
standard Wiener measure W on canonical space C(R+, R) a σ-finite measure
W such that:

(30) W (Ft|Xt|) = W(Ft 1(g≤t))

for every Ft in Ft, and g = sup{s : Xs = 0}
iv) (see [1] and [2]) These papers deal with a continuous uniformly integrable
martingale Mt, with, say, M0 = 0, on a general filtered probability space. The
following identity is shown:

(31) EP (Ft|Mt|) = EP (Ft|M∞|1(g≤t)) ,

where g = sup{s : Ms = 0}; replacing M by (M −a), and integrating over a,
(31) is exploited in [1]to present, e.g., the increasing process <M>of M as
a "dual predictable projection". Thus, (31) is another instance of (28), with
Q = |M∞|•P ; clearly, (31) is equivalent to:

(32) EP (|M∞|1(g≤t)|Ft) = |Mt|

Thus, we find - and this may seem a little paradoxical - that in our present
framework which involves martingales in L(+)

0 , formulae such as (28) are "the
simplest possible" in that Q may be taken to be a multiple of P .
We hope, in a further publication, to obtain a unified framework under which
formula (28) holds for a large class of positive submartingales.
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Added in Proof (February 2008):
a) A more Mathematical Finance oriented paper has now been written by
the authors.
D. Madan, B. Roynette and M. Yor: Option prices as probabilities. To ap-
pear in Finance Research Letters (2008).
b) More detailed Notes from the Course of the third author given at the
Bachelier Séminaire at IHP (February 8-15-22) are now gathered in the doc-
ument: "From Black-Scholes and Dupire formulae to last passage times of
local martingales", written by A. Bentata and M. Yor.
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