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TOPOLOGICAL SENSITIVITY ANALYSIS FOR ELLIPTIC

PROBLEMS ON GRAPHS

G. LEUGERING AND J. SOKOLOWSKI

Abstract. We consider elliptic problems on graphs under given loads
and bilateral contact conditions. We ask the question which graph is best
suited to sustain the loads and the constraints. More precisely, given a
cost function we may look at a multiple node of the graph with edge
degree N and ask as to whether that node should be resolved into a
number of nodes of edge degree 3, in order to decrease the cost. Thus,
we are looking into the sensitivity of a graph carrying an elliptic problem
with respect to changing the topology of the graph by releasing nodes
with high edge degree. In other words, we are looking into the topological
gradient of an elliptic problem on a graph.

The paper is dedicated to Jean-Paul Zolésio on his 60th bithday

1. Introduction

For a considerable number of important problems the notion of topological
derivatives has been introduced, and examples for such gradients have been
reported in the literature. The list of problems considered comprises elliptic
problems in 2 and 3 dimensions with and without obstacles, the equations of
elasticity and the Helmholtz equation. See Sokolowski [14], Amstutz [2], Al-
laire et.al. [1], Masmoudi et. al. [11], Novotny et.al.[12] and others together
with the references therein. Topological derivatives are important in deal-
ing with topology and shape optimization. The reason for this fact is that
homeomorphic variations of the domains will not allow for topology changes.
Thus if one considers a shape optimization problem and starts with a sim-
ply connected set, say, then all admissible variations will produce simply
connected sets. If, therefore, an optimal shape would necessitate digging a
hole into the domain, then it would not be possible to do this with the kind
of domain variations mentioned. Topological gradients are obviously a key
ingredient in topology optimization, the boundary between these disciplines
becoming increasingly floating.
However, the topological gradient is more a qualitative tool than a quanti-
tative one: it helps to indicate where a hole has to be located. The actual
optimization of the domain is then subject to shape-sensitivities.
Topology optimization for graph-like problems has been considered in the
engineering literature for a long time. See Rozvany et.al.[13] as an example.
Truss optimization has also been the focus of many mathematical papers. In
truss topology optimization one typically considers a sizing problem where
the thickness of an individual bar may be set to zero. In an early paper [8]
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where, after a proper sizing optimization is performed on a truss, the posi-
tions of the nodes are subject to changes, the Kocvara and Zowe considered
a non-smooth two-level problem. However, to best knowledge of the authors
such truss problems do not describe flexible systems as they use rod-models
instead of flexible beam models, nor do they consider 1-d elasticity mod-
els other than their finite element approximations. The method used there
typically comes down to selecting rod elements out of a complete graph in
order to decrease a given cost (the typical choice being the compliance). We
instead aim at graph structures which are locally described by partial differ-
ential equations along the edges of the underlying graph. In this paper we
confine ourselves with second order equations which are representative of 1-
d elasticity. Timoshenko-beam and Euler-Bernoulli beams will be discussed
in a forthcoming publication.
Similar to [8], de Wolf [5] considered a flow network with simplified flow
conditions and investigated topological sensitivities of the minimal resis-
tance network. Again, the problem was treated as a bilevel non-smooth
optimization problem. Finally, in a recent paper [6] Durand considered opti-
mal branching in biological networks and reestablished a Murray-type law. A
general theory of abstract ’irrigational networks’ has been recently provided
by Brenot, Casselles and Morel [3].
Networks carrying dynamics appear in many applications, such as neuronal
dynamics, waste-water management, blood flow, micro-flows, gas- and traffic
networks and many more. In all these applications the optimization of the
topology of the graph is crucial. Thus it appears reasonable to approach this
kind of problem with a topological gradient calculus.
To the best knowledge of the authors, topological gradients for partial dif-
ferential equations on graphs have not been considered within the literature.
The first author has been working on partial differential equations on net-
worked domains during the last 10 years. See the monographs by Lagnese,
Leugering and Schmidt [9] and Lagnese and Leugering [10] for further refer-
ence on the modeling of such problems. For the sake of self-consistency we
introduce the models below.
The paper is organized as follows. In the second section we provide prelim-
inaries on elliptic problems on graphs. The third section is devoted to the
Steklov-Poincaré operator on the graph. In the fourth section we develop the
asymptotic expansions for the problems on graphs with a hole. The last sec-
tion will be devoted to asymptotic expansions of the energy and a tracking
functional.

2. Preliminaries

We consider a simple planar graph (V,E) = G in R2, with vertices V =
{vJ |J ∈ J } and edges E = {ei|i ∈ I}. Let m = |J |, n = ‖I‖ be the numbers
of vertices and edges, respectively. In general the edge-set may be a collection
of smooth curves in R2, parametrized by their arc lengths. The restriction
to planar graphs and straight edges is for the sake of simplicity only. The
more general case, which is of course also interesting in the combination of
shape and topology optimization, can also be handled. We associate to the
edge ei its unit vector ei. e⊥i denotes the orthogonal unit vector. Given a
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Figure 1. Representation of planar displacement

node vJ we define

IJ := {i ∈ I|ei is incident at vJ}
the incidence set, and dJ = |IJ | the edge degree of vJ . The set of nodes
splits into simple nodes JS and multiple nodes JM according to dJ = 1 and
dJ > 1, respectively. On G we consider a function

(2.1) r : G→ Rnp := Πpi

i∈IR, pi ≥ 1∀i.
The numbers pi represent the degrees of freedom of the physical model used
to describe the behavior of the edge with number i. For instance, p = 1 is
representative of a heat problem, whereas p = 2, 3 is used in an elasticity
context on graphs in 2 or 3 dimensions. The p′is may change in the network
in principle. However, in this paper we insist on pi = p = 2,∀i. See Lagnese,
Leugering and Schmidt[9] and Lagnese and Leugering [10] for details on the
modeling.
Once the function r is understood as being representative of, say, a defor-
mation of the graph, we may localize it to the edges

(2.2) ri := r|ei
: [αi, βi] → Rp, i ∈ I,

where ei is parametrized by x ∈ [αi, βi] =: Ii,0 ≤ αi < βi, ℓi := βi − αi. See
Figure 1
We introduce the incidence relation

diJ :=

{

1 if ei ends at vJ

−1 if ei starts at vJ

Accordingly, we define

xiJ :=

{

0 if diJ = −1

ℓi if diJ = 1

We will use the notation ri(vJ) instead of ri(xiJ). In order to represent the
material considered on the graph, we introduce stiffness matrices

(2.3) Ki := hi[(1 − 1

si
)I +

1

si
eie

T
i ]
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Figure 2. A general graph

Obviously, the longitudinal stiffness is given by hi, whereas the transverse
stiffness is given by hi(1− 1

si
). This can be related to 1-d analoga of the Lamé

parameters. We introduce Dirichlet and Neumann simple nodes as follows.
As the displacements and, consequently, the forces are vectorial quantities,
we may consider nodes, where the longitudinal (or tangential) displacement
or forces are kept zero, while the transverse displacements of forces are not
constrained, and the other way round. We thus define

J t
D := {J ∈ JS|ri(vJ) · ei = 0}

J n
D := {J ∈ JS|ri(vJ ) · e⊥i = 0}

J t
N := {J ∈ JS|diJKir

′
i(vJ ) · ei = 0}

J n
N := {J ∈ JS |diJKir

′
i(vJ) · e⊥i = 0}

Notice that these sets are not necessarily disjoint. Obviously, the set of
completely clamped vertices can be expressed as

(2.4) J 0
D := J t

D ∩ J n
D

Similarly, a vertex with completely homogenous Neumann conditions is ex-
press as J n

N ∩ J t
N . At tangential Dirchlet nodes in J t

D we may, however,
consider normal Neumann-conditions as in J n

N and so on. In particular, in
this paper we will consider bilateral contact conditions for the displacements
at simple Dirichlet nodes. For the sake of simplicity we concentrate on such
obstacles with respect to the transverse displacement only.

(2.5) J̃ c
D := {J ∈ JS|ri(vJ ) · e⊥i ∈ [ai, bi]},

where ai ≤ bi for all i ∈ ID, D ∈ J c
D.

We may then consider bilaterally constrained vertices where the the tan-
gential force is zero, i.e. J c

D ∩ J t
N or those where with zero longitudinal

displacement, i.e. J c
D ∩ J t

D. The most general treatment would obscure the
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presentation, and we thus restrict ourselves to the latter case. Thus, we al-
ways assume that a simple vertex under bilateral constraints admits only
zero tangential forces. We may therefore define

(2.6) J c
D :=

{

J ∈ JS|ri(vJ) · e⊥i ∈ [ai, bi], diJKir
′
i(vJ ) · ei = 0,

}

In this paper we do not consider constraints around multiple joints or bilat-
eral constraints along an edge. Again, the more general situation can easily
be handled with the analysis presented here. The basic assumption at a mul-
tiple node is that the deformation r is continuous across the joint. In truss
design this is not the case, and consequently pin-joints are considered, how-
ever on a discrete level. One may consider pin-joints for networks of beams
also on the continuous level, as in Lagnese, Leugering and Schmidt[9] and
[10]. In this paper we restrict ourselves to ’rigid’ joints in the sense that
the angles between edges in their reference configuration remain fixed. The
continuity is expressed simply as

ri(vJ) = rj(vJ ), i, j ∈ IJ , J ∈ JM

We consider the energy of the system

(2.7) E0 :=
1

2

∑

i∈I

ℓi
∫

0

Kir
′
i · r′i + ciri · ridx

where the primes denote the derivative with respect to the running variable
xi, ci represents an additional spring stiffness term or an elastic support.
In order to analyze the problem, we need to introduce a proper energy space

V := {r : G→ Rnp|ri ∈ H1(Ii)(2.8)

ri(vD) = 0, i ∈ ID, D ∈ J 0
D(2.9)

ri(vJ) = rj(vJ ), ∀i, j ∈ IJ , J ∈ JM}(2.10)

V is clearly a Hilbert space in

(2.11) H := L2(0, ℓi)
np

We introduce the bilinear form on V × V

(2.12) a(r, φ) :=
∑

i∈I

ℓi
∫

0

[Kir
′
i · φ′i + ciri · φi]dx.

Let now distributed and boundary forces, fi, gJ be given along the edge ei
and at the node vJ , respectively, which define a continuous linear functional
in V

(2.13) L(φ) :=
∑

i∈If

ℓi
∫

0

fi · φidx+
∑

J∈J
g
N

gJ · φîJ(vJ),

where î indicates that the simple nodes have just one incident edge, and
where fi ∈ H1(0, ℓi)

∗. We now consider minimizing the energy over the set
of constrained displacements. To this end we introduce the convex and closed
(and hence weakly closed) set

(2.14) K := V ∩ {(ri)ni=1|ri(vD) · e⊥i ∈ [ai, bi], i ∈ ID, D ∈ J c
D}
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The minimization problem now can be stated as follows

(2.15) min
r∈K

1

2
a(r, r) − L(r)

That this convex optimization problem admits a unique solution is then
proved by standard arguments. The classical first order necessary optimality
conditions then read as follows.
(2.16)

n
∑

i=1

ℓi
∫

0

[Kir
′
i · (r̂′i − r′i) + ciri · (r̂i − ri)]dx−

n
∑

i=1

∫ ℓi

0
fi · (r̂i − ridx ≥ 0, ∀r̂ ∈ K

In order to explore this variational inequality, we introduce active and inac-
tive sets with respect to the bilateral obstacles.

(2.17)

Au := {i|i ∈ ID, D ∈ J c
D, ri(vD) · e⊥i = bi}

Aℓ := {i|i ∈ ID, D ∈ J c
D, ri(vD) · e⊥i = ai}

A0 := {i|i ∈ ID, D ∈ J c
D, ai < ri(vD) · e⊥i < ai}

In order to define proper variations in (2.16), we introduce the Hilbert space

(2.18) V0 = {φ ∈ V|φi(vD) · e⊥i = 0, i ∈ ID, D ∈ J c
D}

Obviously, if r ∈ K then r̂ = r + φ ∈ K, ∀φ ∈ V0. Taking these variations
we obtain from (2.16) the following variational equation

(2.19)
n
∑

i=1

ℓi
∫

0

[Kir
′
i · φ′i + ciri · φi − fi · φi]dx = 0, ∀φ ∈ V0

This variational problem, in turn, can be further analyzed by integration by
parts (if additional H2-regularity holds) in order to obtain

(2.20)

∑

J∈J c
D

dîJ [Kir
′
i(vJ) · ei][φi(vJ) · ei]

+
∑

J∈JN

dîJKir
′
i(vJ)φî(vJ) −

∑

J∈JN

gJ · φî(vJ )

+
∑

J∈JM

∑

i∈IJ

diJKir
′
i(vJ) · φi(vJ )

+
n
∑

i=1

ℓi
∫

0

{−Kir
′′
i + ciri − fi} · φidx = 0, ∀φ ∈ V0

Now (2.20) clearly implies the strong statements:

(2.21)

−Kir
′′
i + ciri = fi in (0, ℓi)

∑

J∈JM

∑

i∈IJ

diJKir
′
i(vJ) = 0, J ∈ JM

diNKir
′
i(vN ) = gN , i ∈ IN , N ∈ JN

Kir
′
i(vD) · ei = 0, i ∈ ID, D ∈ J c

D
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We now concentrate on the active and inactive sets. We may take variations
in (2.16) as follows:

(2.22)

r̂i = ri + ψi, ψ ∈ V, ψi(vD) = 0, i ∈ ID, D ∈ J c
D

i ∈ Au : ψi(vD) · e⊥i ≤ 0
i ∈ Al : ψi(vD) · e⊥i ≥ 0
i ∈ Ao : ψi(vD) · e⊥i = ±ε, ε small

Obviously, taking variations in the inactive case, we obtain Kir
′
i(vD) ·e⊥i = 0

which together with (2.21)4 gives

(2.23) Kir
′
i(vD) = 0 i ∈ Ao

In the active cases we get

(2.24) diDKir
′
i(vD) · e⊥i [ψi(vD) · e⊥i ] ≥ 0, i ∈ Au ∪ Al

and hence

(2.25)
diDKir

′
i(vD) · e⊥i ≤ 0, i ∈ Au

diDKir
′
i(vD) · e⊥i ≥ 0, i ∈ Al

Putting all together ((2.21),(2.25), (2.23) and the conditions involved in V)
we obtain the strong formulaiton of (2.16)

(2.26)































































































−Kir
′′
i + ciri = fi, ∀i ∈ I

ri(vD) = 0, i ∈ ID, D ∈ JD

diDKir
′
i(vN ) · ei = 0, i ∈ ID, D ∈ J c

D

diNKir
′
i(vN ) = gJ , i ∈ IN , N ∈ JN

ri(vJ) = rj(vJ), ∀i, j ∈ IJ , J ∈ JM
∑

i∈IJ

diJKir
′
i(vJ ) = 0, J ∈ JM

ai ≤ ri(vD) · e⊥i ≤ bi, i ∈ ID, D ∈ J c
D

Kir
′
i(vD) · e⊥i = 0 i ∈ Ao

diDKir
′
i(vD) · e⊥i ≤ 0, i ∈ Au

diDKir
′
i(vD) · e⊥i ≥ 0, i ∈ Al

where fi = 0, i ∈ I \ If , gN = 0, J ∈ JN \ J g
N . Notice that (2.26) line 6 is

an example of the classical Kirchhoff condition known from electrostatics.
See Lagnese, Leugering and Schmidt [9],[10] for the case without obstacles.

3. Steklov-Poincaré operators on graphs

In order to proceed with the introduction of a topological gradient, we con-
sider a multiple node v0

J , J ∈ JM . Let the edge degree d0
J be greater or equal

to three, thus we do not consider a serial junction. Ultimately we would like
to cut out a star-subgraph

(3.27) SJ0

:= {ei|i ∈ IJ0} ⊂ E, (SJ0

, vJ0) = GJ0 ⊂ G

and connect the adjacent nodes. This we consider as digging a hole into the
given graph.
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Figure 3. Graph with star-like subgraph to be cut out

We would like to use Steklov-Poincaré operators in order to decompose the
entire graph into a subgraph and the remaining network (the exterior). In or-
der to do this we pick Dirichlet-values at the simple vertices of the subgraph
obtained by the ’cuts’ and evaluate the corresponding Neumann-data there.
This constitutes the Steklov-Poincaré operator. The decomposition method
applies to any subgraph. Thus the ’effect’ of the subgraph can be represented
in the context of the overall problem by the way of the Steklov-Poincaré op-
erator corresponding to the subgraph. In order to be able to handle holes
with varying sizes, we consider decomposing the graph into an exterior part
and a subgraph containing the node vJ0 to be cut out. That node is con-
sidered together with its adjacent edges, however with edge-lengths ρi. The
latter star-graph, in turn, is then cut out of the subgraph. Therefore, we
obtain the analogue of a ring-like subgraph which constitutes the Steklov-
Poincaré subgraph. See Figure 3 for a typical general situation and Figure 4
for the exemplary local handling of subgraph removal.
In order to simplify the notation, and in fact without loss of generality,
we may consider the subgraph (from which the hole is then subsequently
removed) as a star with edge degree dJ(vJ0) = q.
We are led to study the following subproblem

(3.28)































−Kir
′′
i + ciri = fi, i ∈ IJ0

ri(vJ0,i) = ui, i ∈ IJ0

ri(vJ0) = rj(vJ0), ∀i, j ∈ IJ0

∑

i∈IJ

diJKir
′
i(vJ0) = 0,

where vJ0

i
= vJ0,i are the nodes adjacent to vJ . See Figure 4

We assume for simplicity that vJ0 is an interior node with edge degree q
such that its adjacent nodes are not simple. Problem (3.28) admits a unique
solution ri,0, i = 1, . . . q. We consider the Dirichlet-Neumann-map or the
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Figure 4. A star-like subgraph

Steklov-Poincaré-map

(3.29)

{

SJ0 : Rqp → Rqp

Si
J0 := diJKir

′
i,0(vJ0 , i), i ∈ IJ0

In order to simplify notation we may assume that the nodes vJ0,i, which are
the nodes incident at vJ0, have edge degree ≥ 3 in G, such that after cutting
the corresponding edges out of G they are still multiple, but now in G\GJ0 .
The relevance of the Steklov-Poincaré map in this context becomes apparent
when we consider the overall problem. Indeed, we solve the problem (3.28)
generate the Neumann data (3.29) and integrate those into the system with
the hole as follows
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(3.30)



































































































































−Kir
′′
i + ciri = fi, ∀i ∈ I

ri(vD) = 0, i ∈ ID, D ∈ JD

diDKir
′
i(vN ) · ei = 0, i ∈ ID, D ∈ J c

D

diJKir
′
i(vN ) = gJ , i ∈ IN , N ∈ JN

ri(vJ) = rj(vJ), ∀i, j ∈ IJ , J ∈ JM \ J 0
S

∑

i∈IJ

diJKir
′
i(vJ ) = 0, J ∈ JM \ J 0

S

rk(vJ) = rℓ(vJ) = ri(vJ0,i) ∀k, ℓ ∈ IJ0

S
, i ∈ IJ0

∑

j∈I
J0

i

dj,J0

i
Kjr

′
j(vJ0,i) + Si

J0(ri(vJ0,i)) = 0, i ∈ IJ0

ai ≤ ri(vD) · e⊥i ≤ bi, i ∈ ID, D ∈ J c
D

Kir
′
i(vD) · e⊥i = 0 i ∈ Ao

diDKir
′
i(vD) · e⊥i ≤ 0, i ∈ Au

diDKir
′
i(vD) · e⊥i ≥ 0, i ∈ Al

,

where Si
J0(rĵ(vJ0,i))i is the Steklov-Poincaré-map applied to the nodal data

at vJ0,i. The problem (3.30) is equivalent to the original problem (2.26).
Obviously, there is nothing special about cutting out a star-subgraph. One
may as well cut out any subgraph, solve the corresponding Steklov-Poincaré
problem, and read it into the graph problem with the ’hole’. The procedure
itself is also completely natural in most of the known domain decomposition
techniques. See Lagnese and Leugering [10] for domain decomposition tech-
niques in the context of optimal control problems on networked domains.

4. Stars with a hole

We consider a star-graph GJ0 with q edges and center at the node vJ0. As has
been seen in the previous section, we may consider this problem completely
independent of the original graph. In particular, we may without loss of
generality, assume that the edges ei stretch from the center to the simple
boundary nodes, which we will label from 1 to q. By this assumption we
consider the multiple node at the center as being reached at x = 0 for all
outgoing edges. Thus, the data ui are picked up at the ends x = ℓi.

(4.31)



































−Kir
′′
i + ciri = fi, i ∈ I

ri(ℓi) = ui, i = 1, . . . , q

ri(0) = rj(0), ∀i, j = 1, . . . , q
q
∑

i=1

Kir
′
i(0) = 0.

We are going to cut out the center and connect the corresponding cut-nodes
via a circuit as seen in the Figure 5. In general we have numbers ρi ∈
[0, ℓi), i = 1, . . . , q which are taken to be the lengths of the edges that are
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Figure 5. Cutting a hole into star-like subgraph

cut out. Thus the remaining edges have lengths ℓi − ρi. At x = ρi we create
a new multiple node vi. We connect these nodes by edges eq+i, i = 1, . . . , q
with lengths σi(ρi). After that, these nodes receive a new edge degree. In
this paper we assume that all these nodes have the same edge degree di = 3.
More complicated cutting procedures can be introduced, but obscure the
ideas of this first paper on topological derivatives of graph problems.
The problem we have to solve is the following

(4.32)














































−Kir
′′
i + ciri = fi, i ∈ I

ri(ℓi) = ui, ı = 1, . . . , q

ri(ρi) = rq+i(0) = rq+1−i(σ
i(ρi)), ∀i = 2, . . . , q

r1(ρ1) = rq+1(0) = r2q(σ
2q(ρ2q)),

−Kir
′
i(ρi) −Kq+ir

′
q+i(0) +Kq+i−1r

′
q+i−1(σ

q+i−1(ρq+i−1)) = 0, i = 2, . . . , q

−K1r
′
1(ρ1) −Kq+1r

′
q+1(0) +K2qr

′
2q(σ

2q(ρ2q)) = 0.

We proceed to derive the solutions to (4.31) and(4.32), respectively. To this
end we look at

−Kir
′′
i + ciri = fi ⇔ r′′i = ciK

−1
i ri −K−1

i fi

and define Ai := ciK
−1
i , Fi := −ciAifi. The general solution of the homo-

geneous equation (fi = 0) is given by

(4.33) rH
i (x) = sinh(A

1

2

i x)ai + cosh(A
1

2

i x)bi

The inhomogeneous equation is then solved by variation of constants as
follows

(4.34) rI
i (x) = A

− 1

2

i

x
∫

0

sinh(A
1

2

i (x− s)Fi(s)ds.
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We will treat the case fi = 0 only. The general case is then a matter of
additional but straightforward calculus.

Lemma 4.1. The solution r to problem (4.31) with fi = 0, i = 1, . . . , q is
given by

(4.35) ri(x) = sinh((A
1

2

i )(x))ai + cosh(A
1

2

i (x))b

with the coefficient-vectors ai, b given by

ai = sinh(A
1

2

i ℓi)
−1(ui − cosh(A

1

2

i ℓi)

·(
q
∑

i=1

ciA
− 1

2

i cothA
1

2

i ℓi)
−1

q
∑

i=1

ciA
− 1

2

i sinh(A
1

2

i ℓi)
−1ui(4.36)

(4.37) b = (

q
∑

i=1

ciA
− 1

2

i coth(A
1

2

i ℓi))
−1

q
∑

i=1

ciA
− 1

2

i sinh(A
1

2

i ℓi)
−1ui

The Stekov-Poincaré map is given by

(4.38) Si
J0(u) = A

1

2

i (cosh(A
1

2

i ℓi)ai + sinh(A
1

2

i ℓi)b)

with ai, b according to (4.36),(4.37).

The situation appears to be much more simple in case all material parame-
ters and geometrical data are equal.

(4.39) ci = 1, Ki = Id = A
1

2 , ℓi = ℓ, fi = 0, i = 1, . . . q

Example 4.1. Let assumption (4.39) hold true. Then the solution r to
(4.31) is given by

ri(x) =
1

sinh(ℓ)
sinh(x)(ui −

1

q

q
∑

j=1

uj)(4.40)

+
1

cosh(ℓ)
cosh(x)

1

q

q
∑

i=1

ui

The Steklov-Poincaré map is given by

(4.41) Si(u)J0 = coth(ℓ)(ui −
1

q

q
∑

j=1

uj) + tanh(ℓ)
1

q

q
∑

j=1

uj

We proceed to problem (4.32). Again, we will treat the general case first
and will then restrict to assumption (4.39) in order to better reveal the
underlying structure.
We introduce the ansatz for the solution as follows

(4.42) rρ
i (x) := sinh(A

1

2

i x)a
ρ
i + cosh(A

1

2

i x)b
ρ
i

From the Dirichlet conditions in (4.32)2 we infer

(4.43) rρ
i (ℓi) = sinh(A

1

2

i (ℓi))a
ρ
i + cosh(A

1

2

i (ℓi))b
ρ
i = ui, i = 1, . . . , q.
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From the continuity requirement in (4.32)3,4 we obtain

rρ
i (ρi) = sinh(A

1

2

i ρi)a
ρ
i + cosh(A

1

2

i ρi)b
ρ
i = rρ

q+i(0) = bρq+i(4.44)

= rρ
q+i−1(σ

q+i−1(ρq+i−1)), i = 2, . . . q

rρ
1(ρ1) = sinh(A

1

2

1 ρ1)a
ρ
1 + cosh(A

1

2

1 ρ1)b
ρ
1(4.45)

= rρ
q+1(0) = bρq+1 = rρ

2q(σ
2q(ρ2q))

The Kirchhoff conditions in (4.32) result in

−ciA
− 1

2

i [cosh(A
1

2

i ρi)a
ρ
i + sinh(A

1

2

i ρi)b
ρ
i ] − cq+iA

− 1

2

q+ia
ρ
q+i(4.46)

+cq+i−1A
− 1

2

q+i−1[cosh(A
1

2

q+i−1(σ
q+i−1(ρq+i−1)))a

ρ
q+i−1

+ sinh(A
1

2

q+i−1(σ
q+i−1(ρq+i−1)))b

ρ
q+i−1] = 0, i = 2, . . . , q

−c1A
− 1

2

1 [cosh(A
1

2

1 ρ1)a
ρ
1 + sinh(A

1

2

1 ρ1)b
ρ
1] − cq+1A

− 1

2

q+1a
ρ
q+1(4.47)

+c2qA
− 1

2

2q [cosh(A
1

2

2q(σ
2q(ρ2q)))a

ρ
2q

+ sinh(A
1

2

2q(σ
2q(ρ2q)))b

ρ
2q ] = 0,

This set of equations ( (4.43)-(4.47))constitutes 4q conditions on the 4q
unknowns aρ

i , b
ρ
i , i = 1, . . . , 2q. The problem is as to whether there is an

asymptotic expansion of rρ
i in terms of ρ for small ρ := (ρi)i=1,...,q. This

problem is a singular perturbation problem. Notice that the graph with
ρ = 0 is the original star-graph with q edges, while for every ρ > 0 (i.e.
ρi > 0), the graph has 2q edges and contains exactly one circuit. We may of
course also formally start with a star-graph consisting of 2q edges with serial
joints at xi = 0, xq+i = ρi, i = 1, . . . , q so that the edges ei, i = 1, . . . , q
have length ℓi − ρi to begin with, while the other edges eq+i, i = 1, . . . , q
stretch from the center (at xq+i = 0) to the serial nodes at xq+i = ρi. But
still, the perturbation is then singular with respect to the subgraphs spanned
by the edges eq+i, i = 1 . . . q.
Our analysis depends on the expansion of the set of equations (4.43) to
(4.47) up to second order terms. The asymptotic analysis is based on the
expansions of sinh(x), cosh(x) on the matrix level. By spectral decomposition
we have

sinh(A
1

2

i (x))ξ =

p
∑

j=1

sinh(λ
1

2

ijx)(ξ, φij)φij

accordingly for cosh(A
1

2

i (x)). We use the asymptotic expansions

(4.48)

{

sinh(A
1

2

i (σi(ρi)))ξ = σi(ρi)A
1

2

i ξ +O(ρ2
i )

cosh(A
1

2

i (σi(ρi)))ξ = ξ +O(ρ2
i )

By (4.43) we have

(4.49) aρ
i = (sin(A

1

2

i (ℓi))
−1(ui − cosh(A

1

2

i (ℓi))b
ρ
i ), i = 1, . . . , q
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We expand (4.44) and(4.45)

A
1

2

i ρia
ρ
i + bρi = bρq+i(4.50)

= σq+i−1(ρq+i−1)A
1

2

q+i−1a
ρ
q+i−1 + bρq+i−1 +O(ρ2), i = 2, . . . q

(4.51) A
1

2

1 ρ1a
ρ
1 + bρ1 = bρq+1 = σ2q(ρ2q)A

1

2

2qa
ρ
2q + bρ2q +O(ρ2)

We now proceed to the Kirchhoff conditions at the multiple nodes (4.46),(4.47)

(4.52)

−ciA
− 1

2

i [aρ
i + ρiA

1

2

i b
ρ
i ] − cq+iA

− 1

2

q+ia
ρ
q+i

+cq+i−1A
− 1

2

q+i−1[a
ρ
q+i−1 + σq+i−1(ρq+i−1)A

1

2

q+i−1b
ρ
q+i−1]

= 0 +O(ρ2), i = 2, . . . , q

and

(4.53)
−c1A

− 1

2

1 [aρ
1 + ρ1A

1

2

1 b
ρ
1] − cq+1A

− 1

2

q+1a
ρ
q+1

+c2qA
− 1

2

2q [aρ
2q + σ2q(ρ2q)A

1

2

2 b
ρ
2q] = 0 +O(ρ2)

We reformulate the system (4.50),(4.51),(4.52),(4.53) as follows

(4.54)
[

A
1

2

i−1ρi−1 − tanh(A
1

2

i−1ℓi−1)

]

aρ
i−1 −

[

A
1

2

i ρi − tanh(A
1

2

i ℓi)

]

aρ
i

+σq+i−1(ρq+i−1)A
1

2

q+i−1a
ρ
q+i−1

= cosh(A
1

2

i ℓi)
−1ui − cosh(A

1

2

i−1ℓi−1)
−1ui−1, i = 2, . . . , q

−
[

A
1

2

1 ρ1 − tanh(A
1

2

1 ℓ1)

]

aρ
1 +

[

A
1

2

q ρq − tanh(A
1

2

q ℓq)

]

aρ
q

+σ2q(ρ2q)A
1

2

2qa
ρ
2q = cosh(A

1

2

1 ℓ1)
−1u1 − cosh(A

1

2

q ℓq)
−1uq +O(ρ2)

(4.55)

−
[

ciA
− 1

2

i + (σq+i−1(ρq+i−1)cq+i−1 − ρici) tanh(A
1

2

i ℓi)

]

aρ
i

−cq+iA
− 1

2

q+ia
ρ
q+i + cq+i−1A

− 1

2

q+i−1a
ρ
q+i−1

= −
(

σq+i−1(ρq+i−1)cq+i−1 − ρici
)

cosh(A
1

2

i ℓi)
−1ui, i = 2, . . . q

−
[

c1A
− 1

2

1 + (σ2q(ρ2q)c2q − ρ1c1)

]

tanh(A
1

2

1 ℓ1)a
ρ
1

−cq+1A
− 1

2

q+1a
ρ
q+1 + c2qA

− 1

2

2q a
ρ
2q

= −
(

σ2q(ρ2q)c2q − ρ1c1
)

cosh(A
1

2

1 ℓ1)
−1u1 +O(ρ2)

Now, (4.54)-(4.55) constitute a system of 2q linear asymptotic equations to
order 2 in the 2q variables aρ

i , i = 1, . . . , 2q.

Theorem 4.1. The system of equations (4.52) to (4.55) admits a unique
solution aρ

i , i = 1, . . . 2q. Moreover, we have the asymptotic expansion

(4.56) aρ
i = ai +O(ρ), i = 1, . . . , q,

where ai is given by (4.36) There exists a function si(·) such that

(4.57) rρ
i (x) = ri(x) +O(ρ)si(x), i = 1, . . . , q,
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where ri is the solution of the star-graph problem (4.31) ρ = 0.

Proof. Using equations (4.50) and (4.51), taking appropriate differences, we

realize that bi = b̂+O(ρ). This information is inserted into equations (4.52)
and (4.53). If we write all quantities involving aρ

i with indices i = 1 . . . q on
the left and the other terms on the right side, we obtain after summing up,
using a ’telescope-sum’, only O(ρ)-terms on the right hand side, i.e. we have

(4.58)

q
∑

i=1

ciA
− 1

2

i aρ
i = O(ρ)

Then we use the expression (4.49) for aρ
i in (4.58) to obtain

q
∑

i=1

ciA
− 1

2

i sinh(A
1

2

i ℓi)
−1ui =

(

q
∑

i=1

ciA
− 1

2

i coth(A
1

2

i ℓi)
−1

)

b̂

From this and (4.37) we see that up to terms of order O(ρ), b̂ = b. Then aρ
i ,

up to the order O(ρ), are given by ai in (4.36). �

4.1. Homogeneous networks. In this subsection we consider the network
under the assumption (4.39), i.e. all material and geometrical quantities
are the same, and a symmetric hole. Under this assumption the system of
equations (4.54) to (4.55) reduces to

(4.59)

aρ
i−1 − aρ

i − σρ coth(ℓ)aρ
q+i−1 = −1+ρ coth(ℓ)

sinh(ℓ) (ui − ui−1) +O(ρ2),

−aρ
1 + aρ

q − σρ coth(ℓ)a2q = −1+ρ coth(ℓ)
sinh(ℓ) (u1 − uq) +O(ρ2),

−(1 + (σ − 1)ρ tanh(ℓ))aρ
i − aρ

q+i + aρ
q+i−1 = 1−σ

cosh(ℓ)ui +O(ρ2)

−(1 + (σ − 1)ρ tanh(ℓ))aρ
1 − aρ

q+1 + aρ
2q = 1−σ

cosh(ℓ)u1 +O(ρ2),

where the first and the third equations hold for i = 2, . . . , q, respectively.
This system has a very particular sparse structure which reflects the ad-
jacency structure of the graph. To obtain the direct explicit solution is,
nevertheless, a matter of substantial calculations. Instead we look at an
example.

Example 4.2. In this example we reduce the graph to a tripod. See figure
5. Here we can solve (4.59) analytically an obtain

(4.60)

aρ
i = 1

sinh(ℓ)(ui − 1
3

3
∑

j=1
uj)

+ρ 1
cosh(ℓ)

{

(1 − 1
3σ) coth(ℓ)2(ui − 1

3

3
∑

j=1
uj)

+ (σ − 1)1
3

3
∑

j=1
uj

}

+O(ρ2),
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(4.61)

bρi = 1
cosh(ℓ)

1
3

3
∑

j=1
uj

−ρ sinh(ℓ)
cosh(ℓ)2

{

(

(1 − 1
3σ) coth(ℓ)2

)

(ui − 1
3

3
∑

j=1
uj)

+ (σ − 1)1
3

3
∑

i=1
ui

}

+O(ρ2),

where i = 1, 2, 3.
We also display the coefficients aρ

q+i, i = 1, 2, 3 in order to reveal the behav-
ior of the edges introduced by cutting the hole.

aρ
4 =

1

3 sinh(ℓ)
(u2 − u1)(4.62)

+
ρ

3 sinh(ℓ)

(

(1 − σ

3
) coth(ℓ))(u2 − u1)

)

+O(ρ2)

aρ
5 =

1

3 sinh(ℓ)
(u3 − u2)(4.63)

+
ρ

3 sinh(ℓ)

(

(1 − σ

3
) coth(ℓ))(u3 − u2)

)

+O(ρ2)

aρ
6 =

1

3 sinh(ℓ)
(u1 − u3)(4.64)

+
ρ

3 sinh(ℓ)

(

(1 − σ

3
) coth(ℓ)(u1 − u3)

)

+O(ρ2)

The remaining bq+i, 1 = 1, 2, 3 are of course given by bi, i = 1, 2, 3 according
to (4.50),(4.51). This completely determines the solution rρ

i (x), i = 1, . . . , 6.
We list the first three members for easier reference:

(4.65)

rρ
i (x) = 1

sinh(ℓ)

(

ui − 1
3

3
∑

j=1
uj

)

sinh(x) + 1
cosh(ℓ)

1
3

3
∑

j=1
uj cosh(x)

+ρ

{

1
cosh(ℓ)

[

(1 − 1
3σ) coth(ℓ)2(ui − 1

3

3
∑

j=1
uj)

+ (σ − 1)1
3

3
∑

j=1
uj

]

sinh(x)

− sinh(ℓ)
cosh(ℓ)2

[

(1 − 1
3σ) coth(ℓ)2(ui − 1

3

3
∑

j=1
uj)

+(σ − 1)1
3

3
∑

j=1
uj

]

cosh(x)

}

+O(ρ2), i = 1, 2, 3

The Steklov- Poincaré-map is then obtained using

(4.66)

(r′i)
ρ(ℓ) = coth(ℓ)(ui − 1

3

3
∑

j=1
uj) + tanh(ℓ)1

3

3
∑

j=1
uj

+ρ

{

(1 − tanh2(ℓ))[(1 − 1
3σ) coth2(ℓ)(ui − 1

3

3
∑

j=1
uj))

+ (σ − 1)1
3

3
∑

j=1
uj ]

}

, i = 1, . . . q.
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It is apparent that (4.65),(4.66) provide the second order asymptotic expan-
sion we were looking for. We consider the following experiment: we apply
longitudinal forces ui = uei with the same magnitude at the simple nodes of
the network. The (outer) edges ei, 1 = 1, 2, 3 or, respectively the edges of
the original star, are given by

e1 = (0, 1), e2 = (−
√

3

2
,−1

2
), e3 = (

√
3

2
,−1

2
)

which together with the orthogonal complements

e⊥1 = (−1, 0), e⊥2 = (
1

2
,−

√
3

2
), e⊥3 = (

1

2
,

√
3

2
)

form the local coordinate systems of the edges. Obviously
3
∑

i=1
ei = 0. Thus

the solution to the unperturbed problem is given by

(4.67) ri(x) =
1

sinh(ℓ)
u sinh(x)ei

This is in agreement with the fact that that particular reference configuration
is completely symmetric. Now, the solution rρ

i to the perturbed system and
(r′i)

ρ(ℓ) are then given by

rρ
i (x) =

1

sinh(ℓ)
sinh(x)uei

+ρ(1 − σ

3
)

1

sinh(ℓ)
(coth(ℓ) sinh(x) − cosh(x)) uei +O(ρ2)(4.68)

(ri)
′ρ(ℓ) = coth(ℓ)uei + ρ(coth(ℓ)2 − 1)(1 − σ

3
)uei +O(ρ2)

The energy of the unperturbed system is given by

(4.69) E0 =
1

2

3
∑

i=1

ℓ
∫

0

r′i · r′i + ri · ridx =
3

2
coth(ℓ)u2

The energy of the perturbed system is given by

Eρ =
1

2

3
∑

i=1

ℓ−ρ
∫

0

[r′i · r′i + ri · ri]dx+
1

2

6
∑

i=4

σρ
∫

0

[r′i · r′i + ri · ri]dx(4.70)

= 〈Sρu, u〉 = 〈S0u, u〉 + ρ
1

2
(1 − σ

3
)
{

((coth(ℓ))2 − 1)
}

u2(4.71)

From these experiments we may draw the conclusion, that nodes of edge
degree 3 under symmetric load, where the configuration is at 120◦ between
the edges (this amounts to σ =

√
3) are not going to be replaced by hole,

which would, in turn result in 3 new multiple nodes of edge degree 3. This
seems to support the optimality of such graphs being observed by Buttazzo
[4].

Remark:

(1) Very similar formulae are obtained in the scalar case (ri(x) ∈ R,
no planar representation!), relevant for instance in problems of heat
transfer or electrical currents in networks.



18 G. LEUGERING AND J. SOKOLOWSKI

1
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11
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Figure 6. Graph with ’critical’ edge degree 6

(2) If the loads are not symmetric, and/or if the geometry of the ’hole’ is
not uniform, the energy may in fact drop. A more detailed analysis
is subject of forthcoming paper. Suffice it to say here, that nodes with
higher edge degree, according to our analysis, are ’more likely’ to be
released by a hole, as even in the symmetric case the number σ(ρ)
which measures the new edge-lengths will be less than 1.

This is true e.g. for a node with edge degree 6 and beyond. Thus,
the total length of the new edges is smaller than the total length of
the removed edges. This, in turn, is intuitive with respect to the fact
that in the higher-dimensional problem (in 2- or 3-d, no graphs),
digging a hole reduces the amount of mass.

Example 4.3. Here we consider the homogeneous situation for a star with
edge degree 6 at the multiple node. In this case σ = 1 for the symmetric
situation. See Figure 6
We calculate

aρ
1 =

1

sinh(ℓ)
(u1 −

1

6

6
∑

j=1

uj)(4.72)

+ρ
cosh(ℓ)

cosh2(ℓ) − 1
{(−u5 − u3 − 4u2 − 4u6 + 10u1)

−7(u1 −
1

6

6
∑

j=1

uj)







Notice that the edges 2 and 6 are the ’neighboring’ edges of edge 1 in the
original star-graph. The other coefficients aρ

i , 1 = 2, . . . , 6 are then obvious.
For the sake of brevity, we only display e.g. aρ

12:
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aρ
12 =

1

12 sinh(ℓ)
[5(u1 − u6) + 3(u2 − u5) + (u3 − u4)]

−ρ cosh(ℓ)

144(cosh2(ℓ) − 1)
[25(u1 − u6) − 9(u2 − u5) − 7(u3 − u4)]

+O(ρ2)(4.73)

Again, observe that edge 12, in terms of the edges of the original graph, has
direct neighbors 1 and 6, the next level is 2 and 5 and finally we have 3
and 4. One realizes a consequent scaling. Also note that aρ

i = 0 if ui are all
equal. This shows that the coefficients bρi in that case are independent of ρ
and thus the energy will not change for this limiting case.

5. The topological derivative

We are now in the position to define the topological derivative of an elliptic
problem on a graph.
Let G be a graph, and let vJ ∈ JM be a multiple node with edge degree dJ .
Let Gρ be the graph obtained from G by replacing vJ with a cycle of length
dJ
∑

i=1
ciρ with vertices v1

J , . . . v
dJ

J of edge degree 3 each, such that the distance

from vJ to vi
J is equal to ρ. Thus, the number nρ of edges of Gρ is n + dJ .

Let J : G→ R be a functional on the edges of G

(5.74) J(r, r′, G) :=

n
∑

i=1

ℓi
∫

0

F (x, ri, r
′
i)

and let

(5.75) J(rρ, (rρ)′, Gρ) :=

n+dJ
∑

i=1

ℓ
ρ
i
∫

0

F (x, rρ
i , (r

ρ
i )′)

be its extension to Gρ. Assume we have an asymptotic expansion as follows

(5.76) J(rρ, (rρ)′, Gρ) = J(r, r′, G) + ρT (vJ ) +O(ρ2)

then we define the topological gradient of J(Gρ) with respect to ρ for ρ = 0
at the vertex vJ as follows.

(5.77) T (vJ ) = lim
ρ→0

J(rρ, (rρ)′, Gρ) − J(r, r′, G)

ρ

We consider the energy functional or, equivalently, the compliance which
is the most natural criterion to begin with. There are five such functionals
relevant for the analysis of this paper: E0(r) on the entire graph G , Eρ(rρ)

on the entire graph with the hole Gρ , ECS(r) on the graph G \ SJ0

, where

the star-graph without hole SJ0

has been cut out along edges ei, i ∈ IJ0,
E0

S(r; v) on the star-graph without hole, and Eρ
S(r; v) on the star-graph with

hole. Obviously

(5.78) E0
S(r;u) = 〈S0u, u〉,
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(5.79) Eρ
S(r;u) = 〈Sρu, u〉,

(5.80) E0(r) = ECS(r) + E0
S(r, r), Eρ(rρ) = ECS(rρ) + Eρ

S(rρ, rρ),

where it is understood that in Eρ
S(rρ, ·) and E0

S(r, ·) we insert ui = rρ(ℓi)
and ui = r0(ℓi), respectively. Thus

(5.81) Eρ(rρ) − E0(r) = 〈Sρ(r̃), r̃〉 − 〈S0(r̃), r̃〉,
where r̃ solves the problem on G \ SJ0

and ui = r̃i(ℓi), i ∈ IJ0. Thus the
asymptotic analysis of the last section carries over to the entire graph. As
we have done the complete asymptotic analysis up to order 2 in the homo-
geneous case only, we consequently dwell on this case now,the more general
case will be subject of a forthcoming publication.

5.1. Homogeneous graphs. In order to find an expression of the topolog-
ical gradient in terms of the solutions r at the node vJ0, the one that is cut
out, we need to express the solution in terms of the data ui.

Example 5.1. We consider the star-graph as above with 3 edges. Obviously

(5.82) ui −
1

3

3
∑

j=1

uj = sinh(ℓ)r′i(0),
1

3

3
∑

j=1

uj = cosh(ℓ)ri(0).

Thus using the fact that
3
∑

i=1
‖ui − 1

3

3
∑

j=1
uj‖2 =

3
∑

i=1
‖ui‖2 − 1

3 (‖
3
∑

i=1
‖)2 we can

express the bilinear expression 〈Sρ(u), u〉 in terms of ‖r0(0)‖2 and ‖(r0)′(0)‖2

(where we omit the index 0) as follows

(5.83)

〈Sρ
i (u), u〉 = 〈S0

i (u), u〉

+ρ

{

(1 − 1
3σ)

3
∑

i=1
‖r′i(0)‖2 + (σ − 1)

3
∑

i=1
‖ri(0)‖2

}

This says that the energy function in the homogeneous case, when cutting
out a symmetric hole e.g. σi = σ =

√
3, i = 1, 2, 3, we have

(5.84) TE(r, vJ0) =

{

(1 − 1

3
σ)

3
∑

i=1

‖r′i(0)‖2 + (σ − 1)

3
∑

i=1

‖ri(0)‖2

}

The situation will be different for such vertices having a higher edge-degree
as 6, and those having non-symmetric holes. We expect that such networks
are more likely to be reduced to edge-degree 3 by tearing a hole. But this
has to be confirmed by more detailed studies.

5.2. Sensitivity with respect to edge inclusion. We now consider a
different situation where a node with edge degree dJ = N is released into
a node of edge degree 3 and one of degree N − 1 by introduction of a new
edge eN+1. See the figure 7 below.
We consider this procedure in an explicit example with edge degree 4.
Let, therefore, vJ be a node with edge degree 4. As visualized in figure 7,
we will introduce an additional new edge eρ5 of length ρ > 0 which together
with the two new edges eρ1, e

ρ
2 given by
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Figure 7. N-node turns into 3-node plus (N+1)-node

eρ1 :=
ℓ1e1 − ρeN+1

‖ℓ1e1 − ρeN+1‖

eρ2 :=
ℓ2e1 − ρeN+1

‖ℓ2e2 − ρeN+1‖
,(5.85)

where in our case study below N = 4.
The new lengths ℓ − σ of the edges eρ1, e

ρ
2 (we consider a symmetric situa-

tion where the new additional edge eN+1 equally divides the angle between
e1, e2 with an inclination α towards the corresponding unit vectors) can b e
computed by elementary trigonometry. The number σ is then found to be

(5.86) σ = ρ cosα− ρ2 1

2ℓ
(1 − 1

ℓ
cos2 α) +O(ρ3)

It is interesting to notice that for cosα > 1
2 the new graph has actually

a smaller total length. This is in contrast to the standard situation where
cutting out a hole - which in fact implies introducing new the edges forming
that hole - has the opposite effect. For the sake of simplicity, we calculate
the sensitivities with respect to introducing the new edge of length ρ for the
Laplacian on the graph only. Thus, we do not consider an extra stiffening
part due to the presence of a term cri.

(5.87)











































−r′′i = 0 in Ii, i = 1, . . . , 5

ri(ℓ) = ui, i = 1, . . . 4,

r1(σ) = r2(σ) = r5(ρ),

r′1(σ) + r′2(σ) − r′5(ρ) = 0,

r3(0) = r4(0) = r5(0),

r′3(0) + r′4(0) + r′5(0) = 0

We perform a similar analysis as in section 4 and therefore omit the details.
We obtain
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rρ
1(x) =

1

ℓ
(u1 −

1

4

4
∑

i=1

ui)x+
1

4

4
∑

i=1

ui

− ρ

2ℓ2

{

[
1

2
cosα+ 1](u2 − u1) + (2 − cosα)(u1 −

1

4

4
∑

i=1

ui)

}

(x− ℓ)

= r01(x)

− ρ

2ℓ2

{

[
1

2
cosα+ 1](u2 − u1) + (2 − cosα)(u1 −

1

4

4
∑

i=1

ui)

}

(x− ℓ)

rρ
2(x) = r02(x)

− ρ

2ℓ2

{

([
1

2
cosα+ 1](u1 − u2) + (2 − cosα(u2 −

1

4

4
∑

i=1

ui)

}

(x− ℓ)

rρ
3(x) = r03(x)

− ρ

2ℓ2

{

[1 − 1

2
cosα](u2 − u1) + (2 − cosα(u2 −

1

4

4
∑

i=1

ui)

}

(x− ℓ)

rρ
4(x) = r04(x)

− ρ

2ℓ2

{

[1 − 1

2
cosα](u1 − u2) + (2 − cosα)(u1 −

1

4

4
∑

i=1

ui)

}

(x− ℓ)

In order to calculate the energy we use the Steklov-Poincaré mapping and
multiply by ri(ℓ).
As before, the calculations can be done for scalar problems as well as for vec-
torial in-plane models. We dispense with hte siplay of the lengthy formulae.
Instead, we give two different scenarios for topological derivatives.

Example 5.2. In the scalar case we may set u1 = u2 and u3 = u4 = 0, i.e.,
we apply Dirichlet conditions at the ends of edges 3 and 4 and pull at the
end of the edges 1 and 2 by the same amount. This results in:

(5.88) 〈Sρu, u〉 = 〈S0u, u〉 − ρ

2ℓ2
(2 − cosα)u2

Obviously, the introduction of a new edge is enhanced. One obtains a de-
composition into two multiple nodes with edge degree 3

Example 5.3. In the second example we take the planar model and set
u1 = ue1, u2 = ue2 and again u3 = 0 = u4. Now we obtain

(5.89) 〈Sρu, u〉 = 〈S0u, u〉 − 3ρ

4ℓ2

[

cos(α)(cos2 α+
2

3
cosα− 4

3
)

]

u2

For small enough angles α (e.g. 0 < α < π/6) the expression with ρ, i.e. the
topological derivative of the energy becomes negative. This shows that in the
planar situation, the opportunity to create an additional edge depends on the
angles between the edges 1 and 2.
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Obviously, the examples above can be generalized to more general networks
including distributed loads and obstacles. It is also possible to extend this
analysis to 3-d networks. This is subject to a forthcoming publication.

6. Conclusion and further work

We have provided a first sensitivity-analysis of topological changes in con-
tinuous networks carrying a process described by an elliptic model. The
analysis is performed for scalar and vectorial planar graphs representative
of heat flow (after proper transformation with respect to time) and mechan-
ical networks. As this work is purely analytical, a numerical study will be
presented elsewhere. Moreover, 3-d networks which are obviously more re-
alistic will by discussed in a forthcoming publication. The analysis initiated
here will be extended to bilevel optimization problems where the sensitivity
analysis (upper level) is applied to an optimal structure with the optimiza-
tion (lower level) being performed with respect to thickness and material
properties. All this will be important in lightweight- and nano-structures as
well as in macro- and micro-flow networks.
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