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TOPOLOGICAL SENSITIVITY ANALYSIS FOR ELLIPTIC PROBLEMS ON GRAPHS

We consider elliptic problems on graphs under given loads and bilateral contact conditions. We ask the question which graph is best suited to sustain the loads and the constraints. More precisely, given a cost function we may look at a multiple node of the graph with edge degree N and ask as to whether that node should be resolved into a number of nodes of edge degree 3, in order to decrease the cost. Thus, we are looking into the sensitivity of a graph carrying an elliptic problem with respect to changing the topology of the graph by releasing nodes with high edge degree. In other words, we are looking into the topological gradient of an elliptic problem on a graph.

The paper is dedicated to Jean-Paul Zolésio on his 60th bithday

Introduction

For a considerable number of important problems the notion of topological derivatives has been introduced, and examples for such gradients have been reported in the literature. The list of problems considered comprises elliptic problems in 2 and 3 dimensions with and without obstacles, the equations of elasticity and the Helmholtz equation. See Sokolowski [START_REF] Sokolowski | Topological derivatives for elliptic problems[END_REF], Amstutz [START_REF] Amstutz | Aspects théoriques et numériques en optimisation de forme topologique[END_REF], Allaire et.al. [START_REF] Allaire | Structural optimization using topological and shape sensitivities via a level set method[END_REF], Masmoudi et. al. [START_REF] Masmoudi | tThe topological asymptotic expansion for the Maxwell equation and some applications[END_REF], Novotny et.al. [START_REF] Novotny | Topolgical sensitivity analysis for three -dimensional linear elastic problem[END_REF] and others together with the references therein. Topological derivatives are important in dealing with topology and shape optimization. The reason for this fact is that homeomorphic variations of the domains will not allow for topology changes. Thus if one considers a shape optimization problem and starts with a simply connected set, say, then all admissible variations will produce simply connected sets. If, therefore, an optimal shape would necessitate digging a hole into the domain, then it would not be possible to do this with the kind of domain variations mentioned. Topological gradients are obviously a key ingredient in topology optimization, the boundary between these disciplines becoming increasingly floating. However, the topological gradient is more a qualitative tool than a quantitative one: it helps to indicate where a hole has to be located. The actual optimization of the domain is then subject to shape-sensitivities. Topology optimization for graph-like problems has been considered in the engineering literature for a long time. See Rozvany et.al. [START_REF] Rozvany | Topology optimization of multi-purpose structures[END_REF] as an example. Truss optimization has also been the focus of many mathematical papers. In truss topology optimization one typically considers a sizing problem where the thickness of an individual bar may be set to zero. In an early paper [START_REF] Kočvara | How mathematics can help in design of mechanical structures[END_REF] We gratefully acknowledge the support of the DAAD PROCOPE program.

where, after a proper sizing optimization is performed on a truss, the positions of the nodes are subject to changes, the Kocvara and Zowe considered a non-smooth two-level problem. However, to best knowledge of the authors such truss problems do not describe flexible systems as they use rod-models instead of flexible beam models, nor do they consider 1-d elasticity models other than their finite element approximations. The method used there typically comes down to selecting rod elements out of a complete graph in order to decrease a given cost (the typical choice being the compliance). We instead aim at graph structures which are locally described by partial differential equations along the edges of the underlying graph. In this paper we confine ourselves with second order equations which are representative of 1d elasticity. Timoshenko-beam and Euler-Bernoulli beams will be discussed in a forthcoming publication. Similar to [START_REF] Kočvara | How mathematics can help in design of mechanical structures[END_REF], de Wolf [START_REF] De Wolf | Optimal dimensioning of pipe networks with application to gas transmission networks[END_REF] considered a flow network with simplified flow conditions and investigated topological sensitivities of the minimal resistance network. Again, the problem was treated as a bilevel non-smooth optimization problem. Finally, in a recent paper [START_REF] Durand | Architecture of optimal transport networks[END_REF] Durand considered optimal branching in biological networks and reestablished a Murray-type law. A general theory of abstract 'irrigational networks' has been recently provided by Brenot, Casselles and Morel [START_REF] Bernot | Branched transportation networks[END_REF]. Networks carrying dynamics appear in many applications, such as neuronal dynamics, waste-water management, blood flow, micro-flows, gas-and traffic networks and many more. In all these applications the optimization of the topology of the graph is crucial. Thus it appears reasonable to approach this kind of problem with a topological gradient calculus. To the best knowledge of the authors, topological gradients for partial differential equations on graphs have not been considered within the literature. The first author has been working on partial differential equations on networked domains during the last 10 years. See the monographs by Lagnese, Leugering and Schmidt [START_REF] Lagnese | Modeling, analysis and control of dynamic elastic multi-link structures[END_REF] and Lagnese and Leugering [START_REF] Lagnese | Domain decomposition methods in optimal control of partial differential equations[END_REF] for further reference on the modeling of such problems. For the sake of self-consistency we introduce the models below. The paper is organized as follows. In the second section we provide preliminaries on elliptic problems on graphs. The third section is devoted to the Steklov-Poincaré operator on the graph. In the fourth section we develop the asymptotic expansions for the problems on graphs with a hole. The last section will be devoted to asymptotic expansions of the energy and a tracking functional.

Preliminaries

We consider a simple planar graph (V, E) = G in R 2 , with vertices V = {v J |J ∈ J } and edges E = {e i |i ∈ I}. Let m = |J |, n = I be the numbers of vertices and edges, respectively. In general the edge-set may be a collection of smooth curves in R 2 , parametrized by their arc lengths. The restriction to planar graphs and straight edges is for the sake of simplicity only. The more general case, which is of course also interesting in the combination of shape and topology optimization, can also be handled. We associate to the edge e i its unit vector e i . e ⊥ i denotes the orthogonal unit vector. Given a 

I J := {i ∈ I|e i is incident at v J }
the incidence set, and d J = |I J | the edge degree of v J . The set of nodes splits into simple nodes J S and multiple nodes J M according to d J = 1 and d J > 1, respectively. On G we consider a function

(2.1) r : G → R np := Π p i i∈I R, p i ≥ 1 ∀i.
The numbers p i represent the degrees of freedom of the physical model used to describe the behavior of the edge with number i. For instance, p = 1 is representative of a heat problem, whereas p = 2, 3 is used in an elasticity context on graphs in 2 or 3 dimensions. The p ′ i s may change in the network in principle. However, in this paper we insist on p i = p = 2, ∀i. See Lagnese, Leugering and Schmidt [START_REF] Lagnese | Modeling, analysis and control of dynamic elastic multi-link structures[END_REF] and Lagnese and Leugering [START_REF] Lagnese | Domain decomposition methods in optimal control of partial differential equations[END_REF] for details on the modeling. Once the function r is understood as being representative of, say, a deformation of the graph, we may localize it to the edges (2.2)

r i := r| e i : [α i , β i ] → R p , i ∈ I,
where e i is parametrized by x ∈ [α i , β i ] =: I i ,0 ≤ α i < β i , ℓ i := β i -α i . See Figure 1
We introduce the incidence relation

d iJ := 1 if e i ends at v J -1 if e i starts at v J Accordingly, we define x iJ := 0 if d iJ = -1 ℓ i if d iJ = 1
We will use the notation r i (v J ) instead of r i (x iJ ). In order to represent the material considered on the graph, we introduce stiffness matrices (2.3)

K i := h i [(1 - 1 s i )I + 1 s i e i e T i ] Figure 2. A general graph
Obviously, the longitudinal stiffness is given by h i , whereas the transverse stiffness is given by h i (1-1 s i ). This can be related to 1-d analoga of the Lamé parameters. We introduce Dirichlet and Neumann simple nodes as follows.

As the displacements and, consequently, the forces are vectorial quantities, we may consider nodes, where the longitudinal (or tangential) displacement or forces are kept zero, while the transverse displacements of forces are not constrained, and the other way round. We thus define

J t D := {J ∈ J S |r i (v J ) • e i = 0} J n D := {J ∈ J S |r i (v J ) • e ⊥ i = 0} J t N := {J ∈ J S |d iJ K i r ′ i (v J ) • e i = 0} J n N := {J ∈ J S |d iJ K i r ′ i (v J ) • e ⊥ i = 0}
Notice that these sets are not necessarily disjoint. Obviously, the set of completely clamped vertices can be expressed as (2.4)

J 0 D := J t D ∩ J n D
Similarly, a vertex with completely homogenous Neumann conditions is express as J n N ∩ J t N . At tangential Dirchlet nodes in J t D we may, however, consider normal Neumann-conditions as in J n N and so on. In particular, in this paper we will consider bilateral contact conditions for the displacements at simple Dirichlet nodes. For the sake of simplicity we concentrate on such obstacles with respect to the transverse displacement only.

(2.5)

J c D := {J ∈ J S |r i (v J ) • e ⊥ i ∈ [a i , b i ]}, where a i ≤ b i for all i ∈ I D , D ∈ J c D .
We may then consider bilaterally constrained vertices where the the tangential force is zero, i.e. J c D ∩ J t N or those where with zero longitudinal displacement, i.e. J c D ∩ J t D . The most general treatment would obscure the presentation, and we thus restrict ourselves to the latter case. Thus, we always assume that a simple vertex under bilateral constraints admits only zero tangential forces. We may therefore define (2.6)

J c D := J ∈ J S |r i (v J ) • e ⊥ i ∈ [a i , b i ], d iJ K i r ′ i (v J )
• e i = 0, In this paper we do not consider constraints around multiple joints or bilateral constraints along an edge. Again, the more general situation can easily be handled with the analysis presented here. The basic assumption at a multiple node is that the deformation r is continuous across the joint. In truss design this is not the case, and consequently pin-joints are considered, however on a discrete level. One may consider pin-joints for networks of beams also on the continuous level, as in Lagnese, Leugering and Schmidt [START_REF] Lagnese | Modeling, analysis and control of dynamic elastic multi-link structures[END_REF] and [START_REF] Lagnese | Domain decomposition methods in optimal control of partial differential equations[END_REF]. In this paper we restrict ourselves to 'rigid' joints in the sense that the angles between edges in their reference configuration remain fixed. The continuity is expressed simply as

r i (v J ) = r j (v J ), i, j ∈ I J , J ∈ J M
We consider the energy of the system (2.7)

E 0 := 1 2 i∈I ℓ i 0 K i r ′ i • r ′ i + c i r i • r i dx
where the primes denote the derivative with respect to the running variable x i , c i represents an additional spring stiffness term or an elastic support.

In order to analyze the problem, we need to introduce a proper energy space

V := {r : G → R np |r i ∈ H 1 (I i ) (2.8) r i (v D ) = 0, i ∈ I D , D ∈ J 0 D (2.9) r i (v J ) = r j (v J ), ∀i, j ∈ I J , J ∈ J M } (2.10)
V is clearly a Hilbert space in (2.11)

H := L 2 (0, ℓ i ) np
We introduce the bilinear form on V × V (2.12) a(r, φ) :=

i∈I ℓ i 0 [K i r ′ i • φ ′ i + c i r i • φ i ]dx.
Let now distributed and boundary forces, f i , g J be given along the edge e i and at the node v J , respectively, which define a continuous linear functional in V

(2.13) L(φ) := i∈I f ℓ i 0 f i • φ i dx + J∈J g N g J • φ îJ (v J ),
where î indicates that the simple nodes have just one incident edge, and where f i ∈ H 1 (0, ℓ i ) * . We now consider minimizing the energy over the set of constrained displacements. To this end we introduce the convex and closed (and hence weakly closed) set

(2.14) K := V ∩ {(r i ) n i=1 |r i (v D ) • e ⊥ i ∈ [a i , b i ], i ∈ I D , D ∈ J c D }
The minimization problem now can be stated as follows

(2.15) min r∈K 1 2 a(r, r) -L(r)
That this convex optimization problem admits a unique solution is then proved by standard arguments. The classical first order necessary optimality conditions then read as follows.

(2.16)

n i=1 ℓ i 0 [K i r ′ i • (r ′ i -r ′ i ) + c i r i • (r i -r i )]dx - n i=1 ℓ i 0 f i • (r i -r i dx ≥ 0, ∀r ∈ K
In order to explore this variational inequality, we introduce active and inactive sets with respect to the bilateral obstacles.

(2.17)

A u := {i|i ∈ I D , D ∈ J c D , r i (v D ) • e ⊥ i = b i } A ℓ := {i|i ∈ I D , D ∈ J c D , r i (v D ) • e ⊥ i = a i } A 0 := {i|i ∈ I D , D ∈ J c D , a i < r i (v D ) • e ⊥ i < a i }
In order to define proper variations in (2.16), we introduce the Hilbert space (2.18)

V 0 = {φ ∈ V|φ i (v D ) • e ⊥ i = 0, i ∈ I D , D ∈ J c D } Obviously, if r ∈ K then r = r + φ ∈ K, ∀φ ∈ V 0 .
Taking these variations we obtain from (2.16) the following variational equation

(2.19) n i=1 ℓ i 0 [K i r ′ i • φ ′ i + c i r i • φ i -f i • φ i ]dx = 0, ∀φ ∈ V 0
This variational problem, in turn, can be further analyzed by integration by parts (if additional H 2 -regularity holds) in order to obtain (2.20)

J∈J c D d îJ [K i r ′ i (v J ) • e i ][φ i (v J ) • e i ] + J∈J N d îJ K i r ′ i (v J )φ î(v J ) - J∈J N g J • φ î(v J ) + J∈J M i∈I J d iJ K i r ′ i (v J ) • φ i (v J ) + n i=1 ℓ i 0 {-K i r ′′ i + c i r i -f i } • φ i dx = 0, ∀φ ∈ V 0
Now (2.20) clearly implies the strong statements:

(2.21)

-K i r ′′ i + c i r i = f i in (0, ℓ i ) J∈J M i∈I J d iJ K i r ′ i (v J ) = 0, J ∈ J M d iN K i r ′ i (v N ) = g N , i ∈ I N , N ∈ J N K i r ′ i (v D ) • e i = 0, i ∈ I D , D ∈ J c D
We now concentrate on the active and inactive sets. We may take variations in (2.16) as follows:

(2.22) ri = r i + ψ i , ψ ∈ V, ψ i (v D ) = 0, i ∈ I D , D ∈ J c D i ∈ A u : ψ i (v D ) • e ⊥ i ≤ 0 i ∈ A l : ψ i (v D ) • e ⊥ i ≥ 0 i ∈ A o : ψ i (v D ) • e ⊥ i = ±ε, ε small Obviously, taking variations in the inactive case, we obtain K i r ′ i (v D )•e ⊥ i = 0 which together with (2.21) 4 gives (2.23) K i r ′ i (v D ) = 0 i ∈ A o
In the active cases we get (2.24)

d iD K i r ′ i (v D ) • e ⊥ i [ψ i (v D ) • e ⊥ i ] ≥ 0, i ∈ A u ∪ A l and hence (2.25) d iD K i r ′ i (v D ) • e ⊥ i ≤ 0, i ∈ A u d iD K i r ′ i (v D ) • e ⊥ i ≥ 0, i ∈ A l
Putting all together ((2.21),(2.25), (2.23) and the conditions involved in V) we obtain the strong formulaiton of (2.16)

(2.26)                                                -K i r ′′ i + c i r i = f i , ∀i ∈ I r i (v D ) = 0, i ∈ I D , D ∈ J D d iD K i r ′ i (v N ) • e i = 0, i ∈ I D , D ∈ J c D d iN K i r ′ i (v N ) = g J , i ∈ I N , N ∈ J N r i (v J ) = r j (v J ), ∀i, j ∈ I J , J ∈ J M i∈I J d iJ K i r ′ i (v J ) = 0, J ∈ J M a i ≤ r i (v D ) • e ⊥ i ≤ b i , i ∈ I D , D ∈ J c D K i r ′ i (v D ) • e ⊥ i = 0 i ∈ A o d iD K i r ′ i (v D ) • e ⊥ i ≤ 0, i ∈ A u d iD K i r ′ i (v D ) • e ⊥ i ≥ 0, i ∈ A l where f i = 0, i ∈ I \ I f , g N = 0, J ∈ J N \ J g N .
Notice that (2.26) line 6 is an example of the classical Kirchhoff condition known from electrostatics. See Lagnese, Leugering and Schmidt [START_REF] Lagnese | Modeling, analysis and control of dynamic elastic multi-link structures[END_REF], [START_REF] Lagnese | Domain decomposition methods in optimal control of partial differential equations[END_REF] for the case without obstacles.

Steklov-Poincaré operators on graphs

In order to proceed with the introduction of a topological gradient, we consider a multiple node v 0 J , J ∈ J M . Let the edge degree d 0 J be greater or equal to three, thus we do not consider a serial junction. Ultimately we would like to cut out a star-subgraph (3.27)

S J 0 := {e i |i ∈ I J 0 } ⊂ E, (S J 0 , v J 0 ) = G J 0 ⊂ G
and connect the adjacent nodes. This we consider as digging a hole into the given graph. This constitutes the Steklov-Poincaré operator. The decomposition method applies to any subgraph. Thus the 'effect' of the subgraph can be represented in the context of the overall problem by the way of the Steklov-Poincaré operator corresponding to the subgraph. In order to be able to handle holes with varying sizes, we consider decomposing the graph into an exterior part and a subgraph containing the node v J 0 to be cut out. That node is considered together with its adjacent edges, however with edge-lengths ρ i . The latter star-graph, in turn, is then cut out of the subgraph. Therefore, we obtain the analogue of a ring-like subgraph which constitutes the Steklov-Poincaré subgraph. See Figure 3 for a typical general situation and Figure 4 for the exemplary local handling of subgraph removal. In order to simplify the notation, and in fact without loss of generality, we may consider the subgraph (from which the hole is then subsequently removed) as a star with edge degree d J (v J 0 ) = q.

We are led to study the following subproblem

(3.28)                -K i r ′′ i + c i r i = f i , i ∈ I J 0 r i (v J 0 ,i ) = u i , i ∈ I J 0 r i (v J 0 ) = r j (v J 0 ), ∀i, j ∈ I J 0 i∈I J d iJ K i r ′ i (v J 0 ) = 0,
where v J 0 i = v J 0 ,i are the nodes adjacent to v J . See Figure 4 We assume for simplicity that v J 0 is an interior node with edge degree q such that its adjacent nodes are not simple. Problem (3.28) admits a unique solution r i,0 , i = 1, . . . q. We consider the Dirichlet-Neumann-map or the 

S J 0 : R qp → R qp S i J 0 := d iJ K i r ′ i,0 (v J 0 , i), i ∈ I J 0
In order to simplify notation we may assume that the nodes v J 0 ,i , which are the nodes incident at v J 0 , have edge degree ≥ 3 in G, such that after cutting the corresponding edges out of G they are still multiple, but now in G \ G J 0 .

The relevance of the Steklov-Poincaré map in this context becomes apparent when we consider the overall problem. Indeed, we solve the problem (3.28) generate the Neumann data (3.29) and integrate those into the system with the hole as follows

(3.30)                                                                  -K i r ′′ i + c i r i = f i , ∀i ∈ I r i (v D ) = 0, i ∈ I D , D ∈ J D d iD K i r ′ i (v N ) • e i = 0, i ∈ I D , D ∈ J c D d iJ K i r ′ i (v N ) = g J , i ∈ I N , N ∈ J N r i (v J ) = r j (v J ), ∀i, j ∈ I J , J ∈ J M \ J 0 S i∈I J d iJ K i r ′ i (v J ) = 0, J ∈ J M \ J 0 S r k (v J ) = r ℓ (v J ) = r i (v J 0 ,i ) ∀k, ℓ ∈ I J 0 S , i ∈ I J 0 j∈I J 0 i d j,J 0 i K j r ′ j (v J 0 ,i ) + S i J 0 (r i (v J 0 ,i )) = 0, i ∈ I J 0 a i ≤ r i (v D ) • e ⊥ i ≤ b i , i ∈ I D , D ∈ J c D K i r ′ i (v D ) • e ⊥ i = 0 i ∈ A o d iD K i r ′ i (v D ) • e ⊥ i ≤ 0, i ∈ A u d iD K i r ′ i (v D ) • e ⊥ i ≥ 0, i ∈ A l
, where S i J 0 (r ĵ (v J 0 ,i )) i is the Steklov-Poincaré-map applied to the nodal data at v J 0 ,i . The problem (3.30) is equivalent to the original problem (2.26). Obviously, there is nothing special about cutting out a star-subgraph. One may as well cut out any subgraph, solve the corresponding Steklov-Poincaré problem, and read it into the graph problem with the 'hole'. The procedure itself is also completely natural in most of the known domain decomposition techniques. See Lagnese and Leugering [START_REF] Lagnese | Domain decomposition methods in optimal control of partial differential equations[END_REF] for domain decomposition techniques in the context of optimal control problems on networked domains.

Stars with a hole

We consider a star-graph G J 0 with q edges and center at the node v J 0 . As has been seen in the previous section, we may consider this problem completely independent of the original graph. In particular, we may without loss of generality, assume that the edges e i stretch from the center to the simple boundary nodes, which we will label from 1 to q. By this assumption we consider the multiple node at the center as being reached at x = 0 for all outgoing edges. Thus, the data u i are picked up at the ends x = ℓ i . (4.31)

                 -K i r ′′ i + c i r i = f i , i ∈ I r i (ℓ i ) = u i , i = 1, . . . , q r i (0) = r j (0), ∀i, j = 1, . . . , q q i=1 K i r ′ i (0) = 0.
We are going to cut out the center and connect the corresponding cut-nodes via a circuit as seen in the Figure 5. In general we have numbers ρ i ∈ [0, ℓ i ), i = 1, . . . , q which are taken to be the lengths of the edges that are We connect these nodes by edges e q+i , i = 1, . . . , q with lengths σ i (ρ i ). After that, these nodes receive a new edge degree. In this paper we assume that all these nodes have the same edge degree d i = 3. More complicated cutting procedures can be introduced, but obscure the ideas of this first paper on topological derivatives of graph problems.

The problem we have to solve is the following

(4.32)                        -K i r ′′ i + c i r i = f i , i ∈ I r i (ℓ i ) = u i , ı = 1, . . . , q r i (ρ i ) = r q+i (0) = r q+1-i (σ i (ρ i )), ∀i = 2, . . . , q r 1 (ρ 1 ) = r q+1 (0) = r 2q (σ 2q (ρ 2q )), -K i r ′ i (ρ i ) -K q+i r ′ q+i (0) + K q+i-1 r ′ q+i-1 (σ q+i-1 (ρ q+i-1 )) = 0, i = 2, . . . , q -K 1 r ′ 1 (ρ 1 ) -K q+1 r ′ q+1 (0) + K 2q r ′ 2q (σ 2q (ρ 2q )) = 0.
We proceed to derive the solutions to (4.31) and(4.32), respectively. To this end we look at

-K i r ′′ i + c i r i = f i ⇔ r ′′ i = c i K -1 i r i -K -1 i f i and define A i := c i K -1 i , F i := -c i A i f i .
The general solution of the homogeneous equation (f i = 0) is given by (4.33) r H i (x) = sinh(A

1 2 i x)a i + cosh(A 1 2
i x)b i The inhomogeneous equation is then solved by variation of constants as follows (4.34)

r I i (x) = A -1 2 i x 0 sinh(A 1 2
i (x -s)F i (s)ds.

We will treat the case f i = 0 only. The general case is then a matter of additional but straightforward calculus.

Lemma 4.1. The solution r to problem (4.31) with f i = 0, i = 1, . . . , q is given by

(4.35) r i (x) = sinh((A 1 2 i )(x))a i + cosh(A 1 2
i (x))b with the coefficient-vectors a i , b given by

a i = sinh(A 1 2 i ℓ i ) -1 (u i -cosh(A 1 2 i ℓ i ) •( q i=1 c i A -1 2 i coth A 1 2 i ℓ i ) -1 q i=1 c i A -1 2 i sinh(A 1 2 i ℓ i ) -1 u i (4.36) (4.37) b = ( q i=1 c i A -1 2 i coth(A 1 2 i ℓ i )) -1 q i=1 c i A -1 2 i sinh(A 1 2 i ℓ i ) -1 u i
The Stekov-Poincaré map is given by

(4.38) S i J 0 (u) = A 1 2 i (cosh(A 1 2 i ℓ i )a i + sinh(A 1 2 i ℓ i )b
) with a i , b according to (4.36),(4.37).

The situation appears to be much more simple in case all material parameters and geometrical data are equal.

(4.39)

c i = 1, K i = Id = A 1 2 , ℓ i = ℓ, f i = 0, i = 1, . . . q Example 4.1.
Let assumption (4.39) hold true. Then the solution r to (4.31) is given by

r i (x) = 1 sinh(ℓ) sinh(x)(u i - 1 q q j=1 u j ) (4.40) + 1 cosh(ℓ) cosh(x) 1 q q i=1 u i
The Steklov-Poincaré map is given by

(4.41) S i (u) J 0 = coth(ℓ)(u i - 1 q q j=1 u j ) + tanh(ℓ) 1 q q j=1 u j
We proceed to problem (4.32). Again, we will treat the general case first and will then restrict to assumption (4.39) in order to better reveal the underlying structure. We introduce the ansatz for the solution as follows (4.42) r ρ i (x) := sinh(A

1 2 i x)a ρ i + cosh(A 1 2 i x)b ρ i
From the Dirichlet conditions in (4.32) 2 we infer (4.43)

r ρ i (ℓ i ) = sinh(A 1 2 i (ℓ i ))a ρ i + cosh(A 1 2 i (ℓ i ))b ρ i = u i , i = 1, . . . , q.
From the continuity requirement in (4.32) 3,4 we obtain

r ρ i (ρ i ) = sinh(A 1 2 i ρ i )a ρ i + cosh(A 1 2 i ρ i )b ρ i = r ρ q+i (0) = b ρ q+i (4.44) = r ρ q+i-1 (σ q+i-1 (ρ q+i-1 )), i = 2, . . . q r ρ 1 (ρ 1 ) = sinh(A 1 2 1 ρ 1 )a ρ 1 + cosh(A 1 2 1 ρ 1 )b ρ 1 (4.45) = r ρ q+1 (0) = b ρ q+1 = r ρ 2q (σ 2q (ρ 2q
)) The Kirchhoff conditions in (4.32) result in

-c i A -1 2 i [cosh(A 1 2 i ρ i )a ρ i + sinh(A 1 2 i ρ i )b ρ i ] -c q+i A -1 2 q+i a ρ q+i (4.46) +c q+i-1 A -1 2 q+i-1 [cosh(A 1 2 q+i-1 (σ q+i-1 (ρ q+i-1 )))a ρ q+i-1 + sinh(A 1 2 q+i-1 (σ q+i-1 (ρ q+i-1 )))b ρ q+i-1 ] = 0, i = 2, . . . , q -c 1 A -1 2 1 [cosh(A 1 2 1 ρ 1 )a ρ 1 + sinh(A 1 2 1 ρ 1 )b ρ 1 ] -c q+1 A -1 2 q+1 a ρ q+1 (4.47) +c 2q A -1 2 2q [cosh(A 1 2 2q (σ 2q (ρ 2q )))a ρ 2q + sinh(A 1 2
2q (σ 2q (ρ 2q )))b ρ 2q ] = 0, This set of equations ( (4.43)-(4.47))constitutes 4q conditions on the 4q unknowns a ρ i , b ρ i , i = 1, . . . , 2q. The problem is as to whether there is an asymptotic expansion of r ρ i in terms of ρ for small ρ := (ρ i ) i=1,...,q . This problem is a singular perturbation problem. Notice that the graph with ρ = 0 is the original star-graph with q edges, while for every ρ > 0 (i.e. ρ i > 0), the graph has 2q edges and contains exactly one circuit. We may of course also formally start with a star-graph consisting of 2q edges with serial joints at x i = 0, x q+i = ρ i , i = 1, . . . , q so that the edges e i , i = 1, . . . , q have length ℓ i -ρ i to begin with, while the other edges e q+i , i = 1, . . . , q stretch from the center (at x q+i = 0) to the serial nodes at x q+i = ρ i . But still, the perturbation is then singular with respect to the subgraphs spanned by the edges e q+i , i = 1 . . . q. Our analysis depends on the expansion of the set of equations (4.43) to (4.47) up to second order terms. The asymptotic analysis is based on the expansions of sinh(x), cosh(x) on the matrix level. By spectral decomposition we have sinh(A

1 2 i (x))ξ = p j=1 sinh(λ 1 2 ij x)(ξ, φ ij )φ ij accordingly for cosh(A 1 2
i (x)). We use the asymptotic expansions (4.48) sinh(A

1 2 i (σ i (ρ i )))ξ = σ i (ρ i )A 1 2 i ξ + O(ρ 2 i ) cosh(A 1 2 i (σ i (ρ i )))ξ = ξ + O(ρ 2 i ) By (4.43) we have (4.49) a ρ i = (sin(A 1 2 i (ℓ i )) -1 (u i -cosh(A 1 2 i (ℓ i ))b ρ i ), i = 1, . . . , q
We expand (4.44) and(4.45)

A 1 2 i ρ i a ρ i + b ρ i = b ρ q+i (4.50) = σ q+i-1 (ρ q+i-1 )A 1 2 q+i-1 a ρ q+i-1 + b ρ q+i-1 + O(ρ 2 ), i = 2, . . . q (4.51) A 1 2 1 ρ 1 a ρ 1 + b ρ 1 = b ρ q+1 = σ 2q (ρ 2q )A 1 2 2q a ρ 2q + b ρ 2q + O(ρ 2 )
We now proceed to the Kirchhoff conditions at the multiple nodes (4.46),(4.47)

(4.52) -c i A -1 2 i [a ρ i + ρ i A 1 2 i b ρ i ] -c q+i A -1 2 q+i a ρ q+i +c q+i-1 A -1 2 q+i-1 [a ρ q+i-1 + σ q+i-1 (ρ q+i-1 )A 1 2 q+i-1 b ρ q+i-1 ] = 0 + O(ρ 2 ), i = 2, . . . , q and (4.53) -c 1 A -1 2 1 [a ρ 1 + ρ 1 A 1 2 1 b ρ 1 ] -c q+1 A -1 2 q+1 a ρ q+1 +c 2q A -1 2 2q [a ρ 2q + σ 2q (ρ 2q )A 1 2 2 b ρ 2q ] = 0 + O(ρ 2
) We reformulate the system (4.50),(4.51),(4.52),(4.53) as follows (4.54)

A 1 2 i-1 ρ i-1 -tanh(A 1 2 i-1 ℓ i-1 ) a ρ i-1 -A 1 2 i ρ i -tanh(A 1 2 i ℓ i ) a ρ i +σ q+i-1 (ρ q+i-1 )A 1 2 q+i-1 a ρ q+i-1 = cosh(A 1 2 i ℓ i ) -1 u i -cosh(A 1 2 i-1 ℓ i-1 ) -1 u i-1 , i = 2, . . . , q -A 1 2 1 ρ 1 -tanh(A 1 2 1 ℓ 1 ) a ρ 1 + A 1 2
q ρ q -tanh(A

1 2 q ℓ q ) a ρ q +σ 2q (ρ 2q )A 1 2
2q a ρ 2q = cosh(A

1 2 1 ℓ 1 ) -1 u 1 -cosh(A 1 2 q ℓ q ) -1 u q + O(ρ 2 ) (4.55) -c i A -1 2 i + (σ q+i-1 (ρ q+i-1 )c q+i-1 -ρ i c i ) tanh(A 1 2 i ℓ i ) a ρ i -c q+i A -1 2 q+i a ρ q+i + c q+i-1 A -1 2 q+i-1 a ρ q+i-1 = -σ q+i-1 (ρ q+i-1 )c q+i-1 -ρ i c i cosh(A 1 2 i ℓ i ) -1 u i , i = 2, . . . q -c 1 A -1 2 1 + (σ 2q (ρ 2q )c 2q -ρ 1 c 1 ) tanh(A 1 2 1 ℓ 1 )a ρ 1 -c q+1 A -1 2 q+1 a ρ q+1 + c 2q A -1 2 2q a ρ 2q = -σ 2q (ρ 2q )c 2q -ρ 1 c 1 cosh(A 1 2 1 ℓ 1 ) -1 u 1 + O(ρ 2
) Now, (4.54)-(4.55) constitute a system of 2q linear asymptotic equations to order 2 in the 2q variables a ρ i , i = 1, . . . , 2q. Theorem 4.1. The system of equations (4.52) to (4.55) admits a unique solution a ρ i , i = 1, . . . 2q. Moreover, we have the asymptotic expansion (4.56) a ρ i = a i + O(ρ), i = 1, . . . , q, where a i is given by (4.36) There exists a function s i (•) such that (4.57)

r ρ i (x) = r i (x) + O(ρ)s i (x), i = 1, . . . , q,
where r i is the solution of the star-graph problem (4.31) ρ = 0.

Proof. Using equations (4.50) and (4.51), taking appropriate differences, we realize that b i = b + O(ρ). This information is inserted into equations (4.52) and (4.53). If we write all quantities involving a ρ i with indices i = 1 . . . q on the left and the other terms on the right side, we obtain after summing up, using a 'telescope-sum', only O(ρ)-terms on the right hand side, i.e. we have (4.58)

q i=1 c i A -1 2 i a ρ i = O(ρ)
Then we use the expression (4.49) for a ρ i in (4.58) to obtain

q i=1 c i A -1 2 i sinh(A 1 2 i ℓ i ) -1 u i = q i=1 c i A -1 2 i coth(A 1 2 i ℓ i ) -1 b
From this and (4.37) we see that up to terms of order O(ρ), b = b. Then a ρ i , up to the order O(ρ), are given by a i in (4.36).

Homogeneous networks.

In this subsection we consider the network under the assumption (4.39), i.e. all material and geometrical quantities are the same, and a symmetric hole. Under this assumption the system of equations (4.54) to (4.55) reduces to (4.59)

a ρ i-1 -a ρ i -σρ coth(ℓ)a ρ q+i-1 = -1+ρ coth(ℓ) sinh(ℓ) (u i -u i-1 ) + O(ρ 2 ), -a ρ 1 + a ρ q -σρ coth(ℓ)a 2q = -1+ρ coth(ℓ) sinh(ℓ) (u 1 -u q ) + O(ρ 2 ), -(1 + (σ -1)ρ tanh(ℓ))a ρ i -a ρ q+i + a ρ q+i-1 = 1-σ cosh(ℓ) u i + O(ρ 2 ) -(1 + (σ -1)ρ tanh(ℓ))a ρ 1 -a ρ q+1 + a ρ 2q = 1-σ cosh(ℓ) u 1 + O(ρ 2 ),
where the first and the third equations hold for i = 2, . . . , q, respectively. This system has a very particular sparse structure which reflects the adjacency structure of the graph. To obtain the direct explicit solution is, nevertheless, a matter of substantial calculations. Instead we look at an example.

Example 4.2. In this example we reduce the graph to a tripod. See figure 5. Here we can solve (4.59) analytically an obtain (4.60)

a ρ i = 1 sinh(ℓ) (u i -1 3 3 j=1 u j ) +ρ 1 cosh(ℓ) (1 -1 3 σ) coth(ℓ) 2 (u i -1 3 3 j=1 u j ) + (σ -1) 1 3 3 j=1 u j + O(ρ 2 ),
It is apparent that (4.65),(4.66) provide the second order asymptotic expansion we were looking for. We consider the following experiment: we apply longitudinal forces u i = ue i with the same magnitude at the simple nodes of the network. The (outer) edges e i , 1 = 1, 2, 3 or, respectively the edges of the original star, are given by e 1 = (0, 1), e 2 = (-

√ 3 2 , - 1 2 
), e 3 = (

√ 3 2 , - 1 2 ) 
which together with the orthogonal complements

e ⊥ 1 = (-1, 0), e ⊥ 2 = ( 1 2 , - √ 3 2 
)

, e ⊥ 3 = ( 1 2 , √ 3 2 ) 
form the local coordinate systems of the edges. Obviously 

(4.67) r i (x) = 1 sinh(ℓ) u sinh(x)e i
This is in agreement with the fact that that particular reference configuration is completely symmetric. Now, the solution r ρ i to the perturbed system and (r ′ i ) ρ (ℓ) are then given by

r ρ i (x) = 1 sinh(ℓ) sinh(x)ue i +ρ(1 - σ 3 ) 1 sinh(ℓ) (coth(ℓ) sinh(x) -cosh(x)) ue i + O(ρ 2 ) (4.68) (r i ) ′ρ (ℓ) = coth(ℓ)ue i + ρ(coth(ℓ) 2 -1)(1 - σ 3 )ue i + O(ρ 2 )
The energy of the unperturbed system is given by

(4.69) E 0 = 1 2 3 i=1 ℓ 0 r ′ i • r ′ i + r i • r i dx = 3 2 coth(ℓ)u 2
The energy of the perturbed system is given by

E ρ = 1 2 3 i=1 ℓ-ρ 0 [r ′ i • r ′ i + r i • r i ]dx + 1 2 6 i=4 σρ 0 [r ′ i • r ′ i + r i • r i ]dx (4.70) = S ρ u, u = S 0 u, u + ρ 1 2 (1 - σ 3 ) ((coth(ℓ)) 2 -1) u 2 (4.71)
From these experiments we may draw the conclusion, that nodes of edge degree 3 under symmetric load, where the configuration is at 120 • between the edges (this amounts to σ = √ 3) are not going to be replaced by hole, which would, in turn result in 3 new multiple nodes of edge degree 3. This seems to support the optimality of such graphs being observed by Buttazzo [START_REF] Buttazzo | Some optimiization problems in mass transportation theory[END_REF].

Remark:

(1) Very similar formulae are obtained in the scalar case (r i (x) ∈ R, no planar representation!), relevant for instance in problems of heat transfer or electrical currents in networks. (2) If the loads are not symmetric, and/or if the geometry of the 'hole' is not uniform, the energy may in fact drop. A more detailed analysis is subject of forthcoming paper. Suffice it to say here, that nodes with higher edge degree, according to our analysis, are 'more likely' to be released by a hole, as even in the symmetric case the number σ(ρ) which measures the new edge-lengths will be less than 1. This is true e.g. for a node with edge degree 6 and beyond. Thus, the total length of the new edges is smaller than the total length of the removed edges. This, in turn, is intuitive with respect to the fact that in the higher-dimensional problem (in 2-or 3-d, no graphs), digging a hole reduces the amount of mass.

Example 4.3. Here we consider the homogeneous situation for a star with edge degree 6 at the multiple node. In this case σ = 1 for the symmetric situation. See Figure 6 We calculate

a ρ 1 = 1 sinh(ℓ) (u 1 - 1 6 6 j=1 u j ) (4.72) +ρ cosh(ℓ) cosh 2 (ℓ) -1 {(-u 5 -u 3 -4u 2 -4u 6 + 10u 1 ) -7(u 1 - 1 6 6 j=1 u j )   
Notice that the edges 2 and 6 are the 'neighboring' edges of edge 1 in the original star-graph. The other coefficients a ρ i , 1 = 2, . . . , 6 are then obvious. For the sake of brevity, we only display e.g. a ρ 12 :

a ρ 12 = 1 12 sinh(ℓ) [5(u 1 -u 6 ) + 3(u 2 -u 5 ) + (u 3 -u 4 )] -ρ cosh(ℓ) 144(cosh 2 (ℓ) -1) [25(u 1 -u 6 ) -9(u 2 -u 5 ) -7(u 3 -u 4 )] +O(ρ 2 ) (4.73)
Again, observe that edge 12, in terms of the edges of the original graph, has direct neighbors 1 and 6, the next level is 2 and 5 and finally we have 3 and 4. One realizes a consequent scaling. Also note that a ρ i = 0 if u i are all equal. This shows that the coefficients b ρ i in that case are independent of ρ and thus the energy will not change for this limiting case.

The topological derivative

We are now in the position to define the topological derivative of an elliptic problem on a graph. Let G be a graph, and let v J ∈ J M be a multiple node with edge degree d J . Let G ρ be the graph obtained from G by replacing v J with a cycle of length

d J i=1 c i ρ with vertices v 1 J , . . . v d J J of edge degree 3 each, such that the distance from v J to v i J is equal to ρ. Thus, the number n ρ of edges of G ρ is n + d J . Let J : G → R be a functional on the edges of G (5.74) J(r, r ′ , G) := n i=1 ℓ i 0 F (x, r i , r ′ i )
and let

(5.75)

J(r ρ , (r ρ ) ′ , G ρ ) := n+d J i=1 ℓ ρ i 0 F (x, r ρ i , (r ρ i ) ′ )
be its extension to Gρ. Assume we have an asymptotic expansion as follows (5.76)

J(r ρ , (r ρ ) ′ , G ρ ) = J(r, r ′ , G) + ρT (v J ) + O(ρ 2 )
then we define the topological gradient of J(G ρ ) with respect to ρ for ρ = 0 at the vertex v J as follows.

(5.77)

T (v J ) = lim ρ→0 J(r ρ , (r ρ ) ′ , G ρ ) -J(r, r ′ , G) ρ
We consider the energy functional or, equivalently, the compliance which is the most natural criterion to begin with. There are five such functionals relevant for the analysis of this paper: E 0 (r) on the entire graph G , E ρ (r ρ ) on the entire graph with the hole G ρ , E CS (r) on the graph G \ S J 0 , where the star-graph without hole S J 0 has been cut out along edges e i , i ∈ I J 0 , E 0 S (r; v) on the star-graph without hole, and E ρ S (r; v) on the star-graph with hole. Obviously (5.78) E 0 S (r; u) = S 0 u, u ,

(5.79) E ρ S (r; u) = S ρ u, u ,

(5.80) E 0 (r) = E CS (r) + E 0 S (r, r), E ρ (r ρ ) = E CS (r ρ ) + E ρ S (r ρ , r ρ ), where it is understood that in E ρ S (r ρ , •) and E 0 S (r, •) we insert u i = r ρ (ℓ i ) and u i = r 0 (ℓ i ), respectively. Thus (5.81)

E ρ (r ρ ) -E 0 (r) = S ρ (r), r -S 0 (r), r ,
where r solves the problem on G \ S J 0 and u i = ri (ℓ i ), i ∈ I J 0 . Thus the asymptotic analysis of the last section carries over to the entire graph. As we have done the complete asymptotic analysis up to order 2 in the homogeneous case only, we consequently dwell on this case now,the more general case will be subject of a forthcoming publication.

5.1. Homogeneous graphs. In order to find an expression of the topological gradient in terms of the solutions r at the node v J 0 , the one that is cut out, we need to express the solution in terms of the data u i .

Example 5.1. We consider the star-graph as above with 3 edges. Obviously

(5.82) u i - 1 3 3 j=1 u j = sinh(ℓ)r ′ i (0), 1 3 
3 j=1 u j = cosh(ℓ)r i (0).
Thus using the fact that

3 i=1 u i -1 3 3 j=1 u j 2 = 3 i=1 u i 2 -1 3 ( 3 i=1 
) 2 we can express the bilinear expression S ρ (u), u in terms of r 0 (0) 2 and (r 0 ) ′ (0) 2 (where we omit the index 0) as follows

(5.83) S ρ i (u), u = S 0 i (u), u +ρ (1 -1 3 σ) 3 i=1 r ′ i (0) 2 + (σ -1) 3 i=1 r i (0) 2
This says that the energy function in the homogeneous case, when cutting out a symmetric hole e.g.

σ i = σ = √ 3, i = 1, 2, 3, we have (5.84) T E (r, v J 0 ) = (1 - 1 3 σ) 3 i=1 r ′ i (0) 2 + (σ -1) 3 i=1 r i (0) 2
The situation will be different for such vertices having a higher edge-degree as 6, and those having non-symmetric holes. We expect that such networks are more likely to be reduced to edge-degree 3 by tearing a hole. But this has to be confirmed by more detailed studies.

5.2.

Sensitivity with respect to edge inclusion. We now consider a different situation where a node with edge degree d J = N is released into a node of edge degree 3 and one of degree N -1 by introduction of a new edge e N +1 . See the figure 7 below. We consider this procedure in an explicit example with edge degree 4. Let, therefore, v J be a node with edge degree 4. As visualized in figure 7, we will introduce an additional new edge e ρ 5 of length ρ > 0 which together with the two new edges e ρ 1 , e ρ 2 given by It is interesting to notice that for cos α > 1 2 the new graph has actually a smaller total length. This is in contrast to the standard situation where cutting out a hole -which in fact implies introducing new the edges forming that hole -has the opposite effect. For the sake of simplicity, we calculate the sensitivities with respect to introducing the new edge of length ρ for the Laplacian on the graph only. Thus, we do not consider an extra stiffening part due to the presence of a term cr i .

(5.87) We perform a similar analysis as in section 4 and therefore omit the details. We obtain

                     -r ′′ i =
Obviously, the examples above can be generalized to more general networks including distributed loads and obstacles. It is also possible to extend this analysis to 3-d networks. This is subject to a forthcoming publication.

Conclusion and further work

We have provided a first sensitivity-analysis of topological changes in continuous networks carrying a process described by an elliptic model. The analysis is performed for scalar and vectorial planar graphs representative of heat flow (after proper transformation with respect to time) and mechanical networks. As this work is purely analytical, a numerical study will be presented elsewhere. Moreover, 3-d networks which are obviously more realistic will by discussed in a forthcoming publication. The analysis initiated here will be extended to bilevel optimization problems where the sensitivity analysis (upper level) is applied to an optimal structure with the optimization (lower level) being performed with respect to thickness and material properties. All this will be important in lightweight-and nano-structures as well as in macro-and micro-flow networks.
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 6 Figure 6. Graph with 'critical' edge degree 6
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 7 Figure 7. N-node turns into 3-node plus (N+1)-node

  0 in I i , i = 1, . . . , 5 r i (ℓ) = u i , i = 1, . . . 4, r 1 (σ) = r 2 (σ) = r 5 (ρ), r ′ 1 (σ) + r ′ 2 (σ) -r ′ 5 (ρ) = 0, r 3 (0) = r 4 (0) = r 5 (0), r ′ 3 (0) + r ′ 4 (0) + r ′ 5 (0) = 0

where i = 1, 2, 3.

We also display the coefficients a ρ q+i , i = 1, 2, 3 in order to reveal the behavior of the edges introduced by cutting the hole.

The remaining b q+i , 1 = 1, 2, 3 are of course given by b i , i = 1, 2, 3 according to (4.50), (4.51). This completely determines the solution r ρ i (x), i = 1, . . . , 6. We list the first three members for easier reference:

The Steklov-Poincaré-map is then obtained using

In order to calculate the energy we use the Steklov-Poincaré mapping and multiply by r i (ℓ).

As before, the calculations can be done for scalar problems as well as for vectorial in-plane models. We dispense with hte siplay of the lengthy formulae. Instead, we give two different scenarios for topological derivatives.

Example 5.2. In the scalar case we may set u 1 = u 2 and u 3 = u 4 = 0, i.e., we apply Dirichlet conditions at the ends of edges 3 and 4 and pull at the end of the edges 1 and 2 by the same amount. This results in:

(5.88)

Obviously, the introduction of a new edge is enhanced. One obtains a decomposition into two multiple nodes with edge degree 3 Example 5.3. In the second example we take the planar model and set u 1 = ue 1 , u 2 = ue 2 and again u 3 = 0 = u 4 . Now we obtain

) u 2

For small enough angles α (e.g. 0 < α < π/6) the expression with ρ, i.e. the topological derivative of the energy becomes negative. This shows that in the planar situation, the opportunity to create an additional edge depends on the angles between the edges 1 and 2.