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The spectral action on the equivariant real spectral triple over A SU q (2) is computed explicitly. Properties of the differential calculus arising from the Dirac operator are studied and the results are compared to the commutative case of the sphere S 3 .

Introduction

The quantum group SU q (2) has already a rather long history of studies [START_REF] Klimyk | Quantum Groups and Their Representations[END_REF] being one of the finest examples of quantum deformation. This includes an approach via the noncommutative notion of spectral triple introduced by Connes [START_REF] Connes | Noncommutative Geometry[END_REF][START_REF] Connes | Noncommutative Geometry, Quantum Fields and Motives[END_REF] and various notions of Dirac operators were introduced in [START_REF] Bibikov | Dirac operators on the quantum group SU q (2) and the quantum sphere[END_REF][START_REF] Chakraborty | Equivariant spectral triples on the quantum SU (2) group[END_REF][START_REF] Chakraborty | Spectral triples and associated Connes-de Rham complex for the quantum SU (2) and the quantum sphere[END_REF][START_REF] Connes | Cyclic cohomology, quantum group symmetries and the local index formula for SU q (2)[END_REF][START_REF] Goswami | Some noncommutative geometric aspects of SU q (2)[END_REF]. Finally, a real spectral triple, which was exhibited in [START_REF] Dabrowski | The Dirac operator on SU q (2)[END_REF], is invariant by left and right action of U q (su(2)) and satisfies almost all postulated axioms of triples except the commutant and first-order properties. These, however, remain valid only up to infinitesimal of arbitrary high order. The last presentation generalizes in a straightforward way all geometric construction details of the spinorial spectral triple for the classical three-sphere. In particular, both the equivariant representation and the symmetries have a q → 1 proper classical limit. The goal of this article is to obtain the spectral action defined in [START_REF] Chamseddine | The spectral action principle[END_REF] by

S(D A , Φ, Λ) := Tr Φ(D A /Λ) ( 1 
)
where D is the Dirac operator, A is a selfadjoint one-form, D A = D + A + JAJ -1 and J is the reality operator. Here, Φ is any even positive cut-off function which could be replaced by a step function up to some mathematical difficulties investigated in [START_REF] Estrada | On summability of distributions and spectral geometry[END_REF]. This means that S counts the spectral values of |D A | less than the mass scale Λ. Actually, as shown in [START_REF] Chamseddine | Inner fluctuations of the spectral action[END_REF] S(D A , Φ, Λ) =

0<k∈Sd + Φ k Λ k -|D A | -k + Φ(0) ζ D A (0) + O(Λ -1 ), (2) 
ζ D A (0) = ζ D (0) + d k=1 (-1) k k -(AD -1 ) k . ( 3 
)
where D A = D A + P A , P A the projection on Ker D A , Φ k = 1 2 ∞ 0 Φ(t) t k/2-1 dt, d is the spectral dimension of the triple and Sd + is the strictly positive part of the dimension spectrum Sd of (A, H, D). Here, Sd + = Sd = { 1, 2, 3 }, so

S(D A , Φ, Λ) = 1≤k≤3 Φ k Λ k -|D A | -k + Φ(0) ζ D A (0). (4) 
Recall that the tadpole of order Λ k is the linear term in A ∈ Ω 1 D (A) in the Λ k part of (4). Note that there are no terms in Λ -k , k > 0 because the dimension spectrum is bounded below by 1. This spectral action has been computed on few examples: [3, 8, 9, 15, 22, 24-26, 30, 34]. Here, we compute (4) with the main difficulty which is to control the differential calculus generated by the Dirac operator. To proceed, we introduce two presentations of one-forms. The main ingredient is F = sign (D) which appears to be a one-form up to OP -∞ . In section 2, we discuss the spectral action of an arbitrary 3-dimensional spectral triple using cocycles. In sections 3 and 4 we recall the main results on SU q (2) of [START_REF] Dabrowski | The Dirac operator on SU q (2)[END_REF] and show that the full spectral action with reality operator given by ( 4) is completely determined by the terms

-A q |D| -p , 1 ≤ q ≤ p ≤ 3 .
This question of computation of spectral action was addressed in the epilogue of [START_REF] Van Suijlekom | The Geometry of Noncommutative Spheres and their Symmetries[END_REF]. In section 5, we establish a differential calculus up to some ideal in pseudodifferential operators and apply these results to the precise computation of previous noncommutative integrals. Section 6 is devoted to explicit examples, while in next section are given different comparisons with the commutative case of the 3-sphere corresponding to SU (2).

2 Spectral action in 3-dimension

Tadpole and cocycles

Let (A, H, D) be a spectral triple of dimension 3. For n ∈ N * and a i ∈ A, define

φ n (a 0 , • • • , a n ) := -a 0 [D, a 1 ]D -1 • • • [D, a n ]D -1 .
We also use notational integrals on the universal n-forms Ω n u (A) defined by

φn a 0 da 1 • • • da n := φ n (a 0 , a 1 , • • • , a n ).
and the reordering fact that (da 0 )a 1 = d(a 0 a 1 )a 0 da 1 .

We use the b -B bicomplex defined in [START_REF] Connes | Noncommutative Geometry[END_REF]: b is the Hochschild coboundary map (and b ′ is truncated one) defined on n-cochains φ by bφ(a 0 , . . . , a n+1 ) := b ′ φ(a 0 , . . . , a n+1 ) + (-1) n+1 φ(a n+1 a 0 , a 1 , . . . , a n ), b ′ φ(a 0 , . . . , a n+1 ) := n j=0 (-1) j φ(a 0 , . . . , a j a j+1 , . . . , a n+1 ).

Recall that B 0 is defined on the normalized cochains φ n by B 0 φ n (a 0 , a 1 , . . . , a n-1 ) := φ n (1, a 0 , . . . , a n-1 ), thus

φn dω = B 0 φn ω for ω ∈ Ω n-1 u (A).
Then B := N B 0 , where N := 1 + λ + . . . λ n is the cyclic skewsymmetrizer on the n-cochains and λ is the cyclic permutation λφ(a 0 , . . . , a n ) := (-1) n φ(a n , a 0 , . . . , a n-1 ). We will also encounter the cyclic 1-cochain N φ 1 :

N φ 1 (a 0 , a 1 ) := φ 1 (a 0 , a 1 )φ 1 (a 1 , a 0 ) and N φ 1 a 0 da 1 := N φ 1 (a 0 , a 1 ).

Remark 2.1. Assume the integrand of is in OP -3 . Since [D -1 , a] = -D -1 [D, a]D -1 ∈ OP -2 , this commutator introduces a integrand in OP -4 so has a vanishing integral: under the integral, we can commute D -1 with all a ∈ A and all one-forms.

Lemma 2.2. We have

(i) bφ 1 = -φ 2 .
(ii) bφ 2 = 0.

(iii) bφ 3 = 0.

(iv)

Bφ 1 = 0. (v) B 0 φ 2 = -(1 -λ)φ 1 .
(vi) bB 0 φ 2 = 2φ 2 + B 0 φ 3 .

(vii) Bφ 2 = 0.

(viii) B 0 φ 3 = N b ′ φ 1 .

(ix)

Bφ 3 = 3B 0 φ 3 . Proof. (i) bφ 1 (a 0 , a 1 , a 2 ) = -a 0 a 1 [D, a 2 ]D -1 --a 0 (a 1 [D, a 2 ] + [D, a 1 ]a 2 ) D -1 + -a 2 a 0 [D, a 1 ]D -1 = -a 0 [D, a 1 ] D -1 a 2 -a 2 D -1 = --a 0 [D, a 1 ]D -1 [D, a 2 ]D -1 = -φ 2 (a 0 , a 1 , a 2 )
where we have used the trace property of the noncommutative integral.

(ii) bφ 2 (a 0 , a 1 , a 2 , a 3 )

= -a 0 a 1 [D, a 2 ]D -1 [D, a 3 ]D -1 --a 0 (a 1 [D, a 2 ] + [D, a 1 ]a 2 ) D -1 [D, a 3 ]D -1 + -a 0 [D, a 1 ]D -1 (a 2 [D, a 3 ] + [D, a 2 ]a 3 )D -1 --a 3 a 0 [D, a 1 ]D -1 [D, a 2 ]D -1 = -a 0 [D, a 1 ] D -1 a 2 -a 2 D -1 [D, a 3 ]D -1 + -a 0 [D, a 1 ]D -1 [D, a 2 ] a 3 D -1 -D -1 a 3 = --a 0 [D, a 1 ]D -1 [D, a 2 ]D -1 [D, a 3 ]D -1 + -a 0 [D, a 1 ]D -1 [D, a 2 ]D -1 [D, a 3 ]D -1 = 0.
(iii) Using Remark 2.1, we get φ 3 (a 0 , a 1 , a 2 , a 3 ) = a 0 [D, a 1 ][D, a 2 ][D, a 3 ]|D| -3 , so similar computations as for φ 2 gives bφ 3 = 0.

(iv

) B 0 φ 1 (a 0 ) = [D, a 0 ]D -1 = Da 0 D -1 -a 0 = 0. (v) B 0 φ 2 (a 0 , a 1 ) = -[D, a 0 ]D -1 [D, a 1 ]D -1 = -a 0 D -1 [D, a 1 ] --a 0 [D, a 1 ]D -1 = -a 0 a 1 --a 0 D -1 a 1 D --a 0 [D, a 1 ]D -1 = --a 1 [D, a 0 ]D -1 --a 0 [D, a 1 ]D -1 = -φ 1 (a 1 , a 0 ) -φ 1 (a 0 , a 1 ). 
(vi) Since -bλφ 1 (a 0 , a 1 , a 2 ) = φ 1 (a 2 , a 0 a 1 )φ 1 (a 1 a 2 , a 0 ) + φ 1 (a 1 , a 2 a 0 ), one obtains that -bλφ 1 (a 0 , a 1 , a 2 ) =a 0 a 1 D -1 a 2 D + a 0 D -1 a 1 Da 2a 0 D -1 a 1 a 2 Da 0 a 1 a 2 . = -B 0 φ 3 (a 0 , a 1 , a 2 )φ 2 (a 0 , a 1 , a 2 ). Now the result follows from (i), (v).

So by direct expansion

(vii)

Bφ 2 = N B 0 φ 2 = -N (1 -λ)φ 1 = 0 since N (1 -λ) = 0. (viii) B 0 φ 3 (a 0 , a 1 , a 2 ) = -[D, a 0 ]D -1 [D, a 1 ]D -1 [D, a 2 ]D -1 = -a 0 D -1 [D, a 1 ]D -1 [D, a 2 ] --a 0 [D, a 1 ]D -1 [D, a 2 ]D -1 = -a 0 a 1 D -1 [D, a 2 ] --a 0 D -1 a 1 [D, a 2 ] --a 0 [D, a 1 ]D -1 [D, a 2 ]D -1 = -a 0 a 1 a 2 --a 0 a 1 D -1 a 2 D --a 0 D -1 a 1 Da 2 + -a 0 D -1 a 1 a 2 D --a 0 [D, a 1 ]D -1 [D, a 2 ]D -1
=a 0 a 1 a 2a 2 Da 1 a 0 D -1 + a 1 a 2 Da 0 D -1 + a 2 Da 0 a 1 D -1 a 0 Da 1 a 2 D -1a 0 Da 1 D -1a 0 a 1 Da 2 D -1 + a 0 a 1 a 2 .

Expanding (id + λ + λ 2 )b ′ φ 1 (a 0 , a 1 , a 2 ), we recover previous expression.

(ix) Consequence of (viii).

Scale-invariant term of the spectral action

We know from [START_REF] Chamseddine | Inner fluctuations of the spectral action[END_REF] that the scale-invariant term of the action can be written as

ζ D A (0) -ζ D (0) = --AD -1 + 1 2 -AD -1 AD -1 -1 3 -AD -1 AD -1 AD -1 . (5) 
In fact, this action can be expressed in dimension 3 as contributions corresponding to tadpole and the Yang-Mills and Chern-Simons actions in dimension 4:

Proposition 2.3. For any one-form A,

ζ D A (0) -ζ D (0) = -1 2 N φ 1 A + 1 2 φ 2 (dA + A 2 ) -1 2 φ 3 (AdA + 2 3 A 3 ). ( 6 
)
To prove this, we calculate now each terms of the action.

Lemma 2.4. For any one-form A, we have

(i) φ 2 dA = B 0 φ 2 A = -φ 1 A -λφ 1 A. (ii) AD -1 = φ 1 A = 1 2 N φ 1 A -1 2 φ 2 dA. (iii) AD -1 AD -1 = -φ 3 AdA + φ 2 A 2 . (iv) AD -1 AD -1 AD -1 = φ 3 A 3 .
Proof. (i) and (ii) follow directly from Lemma 2.2 (v). (iii) With the shorthand A = a i db i (summation on i)

-AD -1 AD -1 = -a 0 [D, b 0 ]D -1 a 1 [D, b 1 ]D -1 = - φ 3 AdA + -a 0 [D, b 0 ]a 1 b 1 D -1 --a 0 [D, b 0 ]a 1 D -1 b 1 .
We calculate further the remaining terms

-a 0 [D, b 0 ]a 1 b 1 D -1 --a 0 [D, b 0 ]a 1 D -1 b 1 = -a 0 Db 0 a 1 b 1 D -1 --a 0 b 0 Da 1 b 1 D -1 --a 0 Db 0 a 1 D -1 b 1 + -a 0 b 0 Da 1 D -1 b 1 , which are compared with φ 2 A 2 = φ 2 a 0 (db 0 )a 1 db 1 = φ 2 a 0 d(b 0 a 1 )db 1 -a 0 b 0 da 1 db 1 : φ 2 A 2 = -a 0 [D, b 0 a 1 ]D -1 [D, b 1 ]D -1 --a 0 b 0 [D, a 1 ]D -1 [D, b 1 ]D -1 = -a 0 Db 0 a 1 b 1 D -1 --a 0 Db 0 a 1 D -1 b 1 --a 0 b 0 a 1 Db 1 D -1 + -a 0 b 0 a 1 b 1 --a 0 b 0 Da 1 b 1 D -1 + -a 0 b 0 Da 1 D -1 b 1 + -a 0 b 0 a 1 Db 1 D -1 --a 0 b 0 a 1 b 1 = -a 0 Db 0 a 1 b 1 D -1 --b 1 a 0 Db 0 a 1 D -1 --a 0 b 0 Da 1 b 1 D -1 + -b 1 a 0 b 0 Da 1 D -1 .
(iv) Note that

φ 3 A 3 = φ 3 a 0 (db 0 )a 1 (db 1 )a 2 db 2 = φ 3 a 0 d(b 0 a 1 )d(b 1 a 2 )db 2 -a 0 b 0 da 1 d(b 1 a 2 )db 2 -a 0 d(b 0 a 1 b 1 )d(a 2 db 2 + a 0 b 0 d(a 1 b 1 )da 2 db 2 = -a 0 [D, b 0 a 1 ]D -1 [D, b 1 a 2 ]D -1 [D, b 2 ]D -1 -a 0 b 0 [D, a 1 ]D -1 [D, b 1 a 2 ]D -1 [D, b 2 ]D -1 -a 0 [D, b 0 a 1 b 1 ]D -1 [D, a 2 ]D -1 [D, b 2 ]D -1 + a 0 b 0 [D, a 1 b 1 ]D -1 [D, a 2 ]D -1 [D, b 2 ]D -1 .
Summing up the first two terms and the last two ones gives

φ 3 A 3 = -a 0 [D, b 0 ]a 1 D -1 [D, b 1 a 2 ]D -1 [D, b 2 ]D -1 -a 0 [D, b 0 ]a 1 b 1 D -1 [D, a 2 ]D -1 [D, b 2 ]D -1 .
Using Remark 2.1, we can commute under the integral D -1 with all a ∈ A and similarly

-AD -1 AD -1 AD -1 = -a 0 [D, b 0 ]a 1 D -1 [D, b 1 ]a 2 D -1 [D, b 2 ]D -1
which proves (iv).

We deduce Proposition 2.3 from (5) using the previous lemma.

3 The SU q (2) triple

The spectral triple

We briefly recall the main facts of the real spectral triple A(SU q (2)), H, D introduced in [START_REF] Dabrowski | The Dirac operator on SU q (2)[END_REF], see also [START_REF] Chakraborty | Equivariant spectral triples on the quantum SU (2) group[END_REF][START_REF] Chakraborty | On equivariant Dirac operator for SU q (2)[END_REF][START_REF] Connes | Cyclic cohomology, quantum group symmetries and the local index formula for SU q (2)[END_REF].

The algebra:

Let A := A(SU q (2)) be the * -algebra generated polynomially by a and b, subject to the following commutation rules with 0 < q < 1:

ba = q ab, b * a = q ab * , bb * = b * b, a * a + q 2 b * b = 1, aa * + bb * = 1 . (7) 
Lemma 3.1. For any representation π of A,

Spect π(bb * ) = { 0, q 2k | |k ∈ N } or π(b) = 0, Spect π(aa * ) = { 1, 1 -q 2k | k ∈ N } or π(b) = 0 and π(a) is a unitary. Proof. [31] Since { 0 } ∪ σ π(aa * ) = { 0 } ∪ σ π(a * a) , we get { 1 } ∪ B = { 1 } ∪ q 2 B ( 8 
) if B := σ π(bb * ) . Since 0 ≤ π(bb * ) ≤ 1, so B is a closed subset of [0, 1]. Assume b = 0.
Let s := sup(B) and suppose s = 1. Then s = q 2 x where x ∈ B. Thus s = q 2 x < x ≤ s gives s = 0 and the contradiction b = 0, thus 1 ∈ B. Similar argument for inf(B) implies 0 ∈ B.

Let C := { 0, q 2k | k ∈ N } ⊂ B and assume B\C = ∅. Then B\C = (q 2 B)\C by [START_REF] Chamseddine | Inner fluctuations of the spectral action[END_REF] and this is equal to q 2 (B\C) since q -2 > 1. If s := sup(B\C), then s = lim n (q 2 x n ) where x n ∈ B\C and s = q 2 lim n x n ≤ q 2 s implying s = 0. But B\C ⊂ { 0 } yields a contradiction, so B\C = ∅.

This lemma is interesting since it shows the appearance of discreteness for 0 ≤ q < 1 while for q = 1, SU q (2) = SU (2) ≃ S 3 and the spectrum of the commuting operator π(aa * ) and π(bb * ) are equal to [0, 1]. Moreover, all foregoing results on noncommutative integrals will involve q 2 and not q.

Any element of A can be uniquely decomposed as a linear combination of terms of the form a α b β b * γ where α ∈ Z, β, γ ∈ N, with the convention

a -|α| := a * |α| .
The spinorial Hilbert space: H = H ↑ ⊕ H ↓ has an orthonormal basis consisting of vectors |jµn↑ with j = 0, 1 2 , 1, . . . , µ = -j, . . . , j and n = -j + , . . . , j + , together with |jµn↓ for j = 1 2 , 1, . . . , µ = -j, . . . , j and n = -j -, . . . , j -(here x ± := x ± 1 2 ). It is convenient to use a vector notation, setting:

|jµn := |jµn↑ |jµn↓ (9)
and with the convention that the lower component is zero when n = ±(j + 1 2 ) or j = 0.

The representation π and its approximate π: It is known that representation theory of SU q (2) is similar to that of SU (2) [START_REF] Woronowicz | Twisted SU (2) group. An example of a non-commutative differential calculus[END_REF]. The representation π given in [START_REF] Dabrowski | The Dirac operator on SU q (2)[END_REF] is:

π(a) |jµn := α + jµn |j + µ + n + + α - jµn |j -µ + n + , π(b) |jµn := β + jµn |j + µ + n -+ β - jµn |j -µ + n -, π(a * ) |jµn := α+ jµn |j + µ -n -+ α- jµn |j -µ -n -, π(b * ) |jµn := β+ jµn |j + µ -n + + β- jµn |j -µ -n + (10) 
where

α + jµn := q µ+n-1/2 [j + µ + 1]   q -j-1/2 √ [j+n+3/2] [2j+2] 0 q 1/2 √ [j-n+1/2] [2j+1][2j+2] q -j √ [j+n+1/2] [2j+1]   , α - jµn := q µ+n+1/2 [j -µ]   q j+1 √ [j-n+1/2] [2j+1] -q 1/2 √ [j+n+1/2] [2j][2j+1] 0 q j+1/2 √ [j-n-1/2] [2j]   , β + jµn := q µ+n-1/2 [j + µ + 1]   √ [j-n+3/2] [2j+2] 0 -q -j-1 √ [j+n+1/2] [2j+1][2j+2] q -1/2 √ [j-n+1/2] [2j+1]   , β - jµn := q µ+n-1/2 [j -µ]   -q -1/2 √ [j+n+1/2] [2j+1] -q j √ [j-n+1/2] [2j][2j+1] 0 - √ [j+n-1/2] [2j]   with α± jµn := (α ∓ j ± µ -n -) * , β± jµn := (β ∓ j ± µ -n + )
* and with the q-number of α ∈ R be defined as

[α] := q α -q -α q-q -1 .

For the purpose of this paper it is sufficient to use the approximate spinorial * -representation π of SU q (2) presented in [START_REF] Dabrowski | The Dirac operator on SU q (2)[END_REF][START_REF] Van Suijlekom | The local index formula for SU q (2)[END_REF] instead of the full spinorial one π. This approximate representation is

π(a) := a + + a -, π(b) := b + + b -
with the following definitions:

a + |jµn := q j + +µ + q j + +n + +1 0 0 q j + +n |j + µ + n + , a -|jµn := q 2j+µ+n+ 1 2 q 0 0 1 |j -µ + n + , b + |jµn := q j+n-1 2 q j + +µ + q 0 0 1 |j + µ + n -, b -|jµn := -q j+µ q j + +n 0 0 q j -+n |j -µ + n -. (11) 
All disregarded terms are trace-class and do not influence residue calculations. More precisely, π(x)π(x) ∈ K q where K q is the principal ideal generated by the operators

J q |jµn := q j |jµn . (12) 
Actually, K q is independent of q and is contained in all ideals of operators such that µ n = o(n -α ) (infinitesimal of order α) for any α > 0, and

K q ⊂ OP -∞ .
We define the alternative orthonormal basis v j↑ m,l and v j↓ m,l and the vector notation

v j m,l := v j↑ m,l v j↓ m,l
where v j↑ m,l := |j, mj, lj + , ↑ , v j↓ m,l := |j, mj, lj -, ↓ .

Here j ∈ 1 2 N, 0 ≤ m ≤ 2j, 0 ≤ l ≤ 2j + 1 and v ↓,j m,l is zero whenever j = 0 or l = 2j or 2j + 1. The interest is that now, the operators a ± and b ± satisfy the simpler relations

a + v j m,l = q m+1 q l+1 v j + m+1,l+1 , a -v j m,l = q m+l+1 v j - m,l , b + v j m,l = q l q m+1 v j + m+1,l , b -v j m,l = -q m q l v j - m,l-1 . (13) 
Thus

a * + v j m,l = q m q l v j - m-1,l-1 , a * -v j m,l = q m+l+1 v j + m,l , b * + v j m,l = q l q m v j - m-1,l , b * -v j m,l = -q m q l+1 v j + m,l+1 . (14) 
Moreover, we have

a -a + = q 2 a + a -, b -b + = q 2 b + b -, b + a + = q a + b + , b -a -= q a -b -, a * -a + = q 2 a + a * -, a * -a -= a -a * -, a * -b + = q b + a * -, a * -b -= q b -a * -, a * + a -= q 2 a -a * + , b * -b + = b + b * -, b * -a + = q a + b * -, a -b + = q b + a -. (15) 
Note for instance that

a + a * + v j m,l = q 2 m q 2 l v j m,l , a * + a + v j m,l = q 2 m+1 q 2 l+1 v j m,l , b + b * + v j m,l = q 2l q 2 m v j m,l , b * + b + v j m,l = q 2l q 2 m+1 v j m,l ,
so applied to v j m,l , we get the first relation (and similarly for the others)

a * + a + -q 2 a + a * + + q 2 (b * + b + -b + b * + ) = 1 -q 2 , (16) 
a + a * + + a -a * -+ b + b * + + b -b * -= 1, (17) 
a * + a + + a * -a -+ q 2 (b * + b + + b * -b -) = 1, (18) 
a * -a --q 2 a -a * -+ q 2 b * -b --q 2 b -b * -= 0, (19) 
a + a * -+ b * -b + = 0, a * -a + + q 2 b * -b + = 0, (20) 
a -a * + + b * + b -= 0, a * + a -+ q 2 b * + b -= 0, ( 21 
) b + b * + -b * + b + + b -b * --b * -b -= 0, ( 22 
)
q a + b --b -a + + q a -b + -b + a -= 0. ( 23 
)
And two others: Note that we also use two other infinite dimensional * -representations π ± of A on ℓ 2 (N) defined as follows on the orthonormal basis

{ ε n : n ∈ N } of ℓ 2 (N) by π ± (a) ε n := q n+1 ε n+1 , π ± (b) ε n := ±q n ε n , (24) 
q n := 1q 2n . These representations are irreducible but not faithful since for instance π ± (bb * ) = 0.

The Dirac operator:

It is chosen the same as in the classical case of a 3-sphere with the round metric:

D |jµn := 2j+ 3 2 0 0 -2j-1 2 |jµn , (25) 
which means, with our convention, that D v j ml =

2j+ 3 2 0 0 -2j-1 2 v j ml .
Note that this operator is asymptotically diagonal with linear spectrum and the eigenvalues 2j + 1 2 for j ∈ 1 2 N, have multiplicities (2j + 1)(2j + 2), the eigenvalues -(2j + 1 2 ) for j ∈ 1 2 N * , have multiplicities 2j(2j + 1). So this Dirac operator coincide exactly with the classical one on the 3-sphere (see [START_REF] Bär | The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces[END_REF][START_REF] Homma | A representation of Spin(4) on the eigenspinors of the Dirac operator on S 3[END_REF]) with a gap around 0. Let D = F |D| be the polar decomposition of D, thus

|D| |jµn = d j + 0 0 d j |jµn , d j := 2j + 1 2 , (26) 
F |jµn = 1 0 0 -1 |jµn , (27) 
and it follows from [START_REF] Connes | Geometry from the spectral point of view[END_REF] and [START_REF] Gilkey | Asymptotic Formulae in Spectral Geometry[END_REF] that

F commutes with a ± , b ± . ( 28 
)
The reality operator: This antilinear operator J is defined on the basis of H by

J |j, µ, n, ↑ := i 2(2j+µ+n) |j, -µ, -n, ↑ , J |j, µ, n, ↓ := i 2(2j-µ-n) |j, -µ, -n, ↓ (29) 
thus it satisfies

J -1 = -J = J * and DJ = JD, J v j↑ m,l = i 2(m+l)-1 v j↑ 2j-m,2j+1-l , J v j↓ m,l = i -2(m+l)+1 v j↓ 2j-m,2j-1-l .
The Hopf map r For the explicit calculations of residues, we need a * -homomorphism r :

X → π + (A) ⊗ π -(A)
defined by the tensor product in the sense of Hopf algebras of representations π + and π -:

r(a + ) := π + (a) ⊗ π -(a), r(a -) := -q π + (b) ⊗ π -(b * ), r(b + ) := -π + (a) ⊗ π -(b), r(b -) := -π + (b) ⊗ π -(a * ). ( 30 
)
In fact, A is a Hopf * -algebra under the coproduct ∆(a

) := a ⊗ a -q b ⊗ b * , ∆(b) := a ⊗ b + b ⊗ a * .
These homomorphisms appeared in [START_REF] Woronowicz | Twisted SU (2) group. An example of a non-commutative differential calculus[END_REF] with the translation α ↔ a * , γ ↔ -b. In particular, if U := a b -qb * a * is the canonical generator of the K 1 (A)-group (∆a, ∆b) = (a, b) ⊗ U where the last ⊗ means the matrix product of tensors of components.

The grading:

According to the shift j → j ± appearing in formulae ( 13), [START_REF] Connes | Noncommutative manifolds, the instanton algebra and isospectral deformations[END_REF], we get a Z-grading on X defined by the degree +1 on a + , b + , a - * , b - * and -1 on a -, b -, a + * , b + * . Any operator T ∈ X can be (uniquely) decomposed as T = j∈J⊂Z T j where T j is homogeneous of degree j. For T ∈ X, T • will denote the 0-degree part of T for this grading and by a slight abuse of notations, we write r(T ) • instead of r(T • ).

The symbol map:

We also use the * -homomorphism σ: π ± (A) → C ∞ (S 1 ) defined for z ∈ S 1 on the generators by

σ π ± (a) (z) := z, σ π ± (a * ) (z) := z, σ π ± (b) (z) = σ π ± (b * ) (z) := 0.
The application (σ ⊗ σ) • r is defined on X (and so on B) with values in C ∞ (S 1 ) ⊗ C ∞ (S 1 ).

We define

dT := [D, T ] and δ(T

) := [|D|, T ]. Lemma 3.2. a ± , b ± are bounded operators on H such that for all p ∈ N, (i) δ(a ± ) = ±a ± , δ(b ± ) = ±b ± , (ii) δ p (π(a)) = a + + (-1) p a -, δ p (π(b)) = b + + (-1) p b -, (iii) δ(a p ± ) = ±p a p ± , δ(b p ± ) = ±p b p ± . Proof. (i) By definition, a ± |jµn = α ± 0 0 β ± |j ± µ + n +
where the numbers α ± and β ± depend on j, µ, n and q, so we get by [START_REF] Gayral | Heat kernel and number theory on NC-torus[END_REF] δ(a ± )|jµn =

(d j +± )α ± 0 0 d j ± β ± |j ± µ + n + - (d j + )α ± 0 0 d j β ± |j ± µ + n +
= ±α ± 0 0 ±β ± |j ± µ + n + = ±a ± |jµn and similar proofs for b ± . (ii) and (iii) are straightforward consequences of (i) and definition of π.

We note

B the * -subalgebra of B(H) generated by the operators in δ k (π(A)) for all k ∈ N, Ψ 0 0 (A) the algebra generated by δ k π(A) and δ k ([D, π(A)]) for all k ∈ N, X the * -subalgebra of B(H) algebraically generated by the set { a ± , b ± }.

Remark 3.3. By Lemma 3.2, we see that, modulo OP -∞ , X is equal to B and in particular contains π(A). Using (28), we get that B ⊂ Ψ 0 0 (A) ⊂ algebra generated by B and BF .

Note that, despite the last inclusion, F is not a priori in Ψ 0 0 (A).

The noncommutative integrals

Recall that for any pseudodifferential operator T , T := Res Theorem 3.4. The dimension spectrum (without reality structure given by J) of the spectral triple A(SU q (2)), H, D is simple and equal to {1, 2, 3}. Moreover, the corresponding residues for T ∈ B are

-T |D| -3 = 2(τ 1 ⊗ τ 1 ) r(T ) • , -T |D| -2 = 2 τ 1 ⊗ τ 0 + τ 0 ⊗ τ 1 r(T ) • , -T |D| -1 = 2 τ 0 ⊗ τ 0 -1 2 τ 1 ⊗ τ 1 r(T ) • , -F T |D| -3 = 0, -F T |D| -2 = 0, -F T |D| -1 = τ 0 ⊗ τ 1 -τ 1 ⊗ τ 0 r(T ) • ,
where the functionals τ 0 , τ 1 are defined for x ∈ π ± (A) by

τ 0 (x) := lim N →∞ Tr N x -(N + 1) τ 1 (x) , τ 1 (x) := 1 2π 2π 0 σ(x)(e iθ ) dθ, with Tr N x = N n=0 ε n , x ε n .
Proof. Consequence of [START_REF] Van Suijlekom | The local index formula for SU q (2)[END_REF]Theorem 4.1 and (4.3)].

Remark 3.5. Since F is not in B, the equation of Theorem 3.4 are not valid for all T ∈ Ψ 0 0 (A). But when

T ∈ Ψ 0 0 (A), T |D| -k = 0 for k / ∈ { 1, 2, 3 } since the dimension spectrum is { 1, 2, 3 } [38].
Compared to [START_REF] Van Suijlekom | The local index formula for SU q (2)[END_REF] where we had

τ ↑ 0 (x) := lim N →∞ Tr N x -(N + 3 2 ) τ 1 (x), τ ↓ 0 (x) := lim N →∞ Tr N x -(N + 1 2 ) τ 1 (x),
we replaced them with τ 0 :

τ ↑ 0 = τ 0 -1 2 τ 1 , τ ↓ 0 = τ 0 + 1 2 τ 1 .
Note that τ 1 is a trace on π ± (A) such that τ 1 (1) = 1, while τ 0 is not since τ 0 (1) = 0 and

τ 0 π ± (aa * ) = lim N →∞ ∞ n=0 (1 -q 2n ) -(N + 1) = -1 1-q 2 , (31) 
so, because of the shift, the replacement a ↔ a * gives

τ 0 π ± (a * a) = q 2 τ 0 π ± (aa * ) . ( 32 
)

The tadpole

Lemma 3.6. For SU q (2), the condition of the vanishing tadpole (see [START_REF] Connes | Noncommutative Geometry, Quantum Fields and Motives[END_REF]) is not satisfied.

Proof. For example, an explicit calculation gives

π(b)[D, π(b * )]D -1 = 2 1-q 2 : Let x, y ∈ π(A). Since [F, x] = 0, we have -x[D, y]D -1 = -xδ(y)|D| -1 = τ ′ r(xδ(y) 0 )
where

τ ′ := 2 τ 0 ⊗ τ 0 -1 2 τ 1 ⊗ τ 1 . By Lemma 3.2, π(b)δ π(b * ) = (b + + b -) (b -) * -(b + ) * = -b + b + * + b -b - * + b + b - * -b -b + * .
Since only the first two terms have degree 0, we get, using the formulae from Theorem 3.4

τ ′ r(-b + b + * ) = -τ ′ π + (aa * ) ⊗ π -(bb * ) = -2τ 0 π + (aa * ) τ 0 π -(bb * ) + 1 2 τ 1 π + (aa * ) τ 1 π -(bb * )
and

τ 1 π + (aa * ) = 1 2π 2π 0 1 dθ = 1, τ 1 π -(bb * ) = 0. Similarly, using (32) τ ′ r(-b -b - * ) = 2τ 0 π + (bb * ) τ 0 π -(a * a) = 2q 2 τ 0 π -(aa * ) τ 0 π + (bb * . Since τ 0 π ± (bb * ) = Tr π ± (bb * ) = ∞ n=0 q 2n = 1 1-q 2 and (31), -π(b)[D, π(b * )]D -1 = 2 1 1-q 2 1 1-q 2 + 2q 2 -1 1-q 2 1 1-q 2 = 2 1-q 2 .
In particular the pairing of the tadpole cyclic cocycle φ 1 with the generator of K 1 -group is nontrivial:

Remark 3.7.
Other examples: with the shortcut x instead of π(x),

(τ 1 ⊗ τ 1 ) r aδ(a * ) • = -1, (τ 1 ⊗ τ 1 )r a * δ(a) • = 1, (τ 0 ⊗ τ 0 ) r aδ(a * ) • = 1 q 2 -1 , (τ 0 ⊗ τ 0 ) r a * δ(a) • = q 2 q 2 -1 , -aδ(a * )|D| -1 = q 2 +3 2(q 2 -1) , -a * δ(a)|D| -1 = 3q 2 +1 2(q 2 -1) , -bδ(b)|D| -1 = 0, -b * δ(b * )|D| -1 = 0, -bδ(b * )|D| -1 = -2 q 2 -1 , -b * δ(b)|D| -1 = -2 q 2 -1 .
In particular, N Φ 1 does not vanish on 1-forms since

N Φ 1 ada * = N Φ 1 (a, a * ) = -1.
Let U be the canonical generator of the

K 1 (A)-group, U = a b -qb * a * acting on H ⊗ C 2 . Then for A U := 2 k,l=1 π(U kl ) dπ(U * kl ), using above remark, φ 1 A U = -2 as obtained in [38, page 391]: in fact, with P := 1 2 (1 + F ), ψ 1 (U, U * ) := 2 k,l -U kl δ(U * kl )P |D| -1 --U kl δ 2 (U * kl )P |D| -2 + 2 3 -U kl δ 3 (U * kl )P |D| -3 satisfies ψ 1 (U, U * ) = 2 k,l U kl δ(U * kl )P |D| -1 = φ 1 A U .
4 Reality operator and spectral action on SU q (2)

4.1 Spectral action in dimension 3 with [F, A] ∈ OP -∞ Let (A, H, D) a be real spectral triple of dimension 3. Assume that [F, A] ∈ OP -∞
, where F := D|D| -1 (we suppose D invertible). Let A be a selfadjoint one form, so A is of the form

A = i a i db i where a i , b i ∈ A. Thus, A ≃ AF mod OP -∞ where A := i a i δ(b i ) is the δ-one-form associated to A. Note that A and F commute modulo OP -∞ .
We define

D A := D A + P A , P A the projection on Ker D A , D A := D + A, A := A + JAJ -1 .
Theorem 4.1. The coefficients of the full spectral action (with reality operator) on any real spectral triple

(A, H, D) of dimension 3 such that [F, A] ∈ OP -∞ are (i) -|D A | -3 = -|D| -3 . (ii) -|D A | -2 = -|D| -2 -4 -A|D| -3 . (iii) -|D A | -1 = -|D| -1 -2 -A|D| -2 + 2 -A 2 |D| -3 + 2 -AJAJ -1 |D| -3 . (iv) ζ D A (0) = ζ D (0) -2 -A|D| -1 + -A(A + JAJ -1 )|D| -2 + -δ(A)(A + JAJ -1 )|D| -3 -2 3 -A 3 |D| -3 -2 -A 2 JAJ -1 |D| -3 . Proof. (i) We apply [22, Proposition 4.9]. (ii) By [22, Lemma 4.10 (i)], we have |D A | -2 = |D| -2 -( AD + D A + A 2 )|D| -4
. By the trace property of the noncommutative integral and the fact that A 2 |D| -4 is trace-class, we get

|D A | -2 = |D| -2 -2 AD|D| -4 = |D| -2 -4 AD|D| -4 . Since AD ∼ A|D| mod OP -∞
, we get the result. (iii) By [22, Lemma 4.10 (ii)], we have

-|D A | -1 = -|D| -1 -1 2 -( AD + D A + A 2 )|D| -3 + 3 8 -( AD + D A + A 2 ) 2 |D| -5 .
Following arguments of (ii), we get

-( AD + D A + A 2 )|D| -3 = 4 -A|D| -2 + 2 -A 2 |D| -3 + 2 -AJAJ -1 |D| -3 , -( AD + D A + A 2 ) 2 |D| -5 = 8 -A 2 |D| -3 + 8 -AJAJ -1 |D| -3 ,
and the result follows.

(iv) By [START_REF] Essouabri | Spectral action on noncommutative torus[END_REF]Lemma 4.5] gives

ζ D A (0) = 3 j=1 (-1) j j ( AD -1 ) j .
Moreover, we have

AD -1 = 2 A|D| -1 and ( AD -1 ) 2 = 2 (A|D| -1 ) 2 +2 A|D| -1 JAJ -1 |D| -1 . Since δ(A) ∈ OP 0 , we can check that (A|D| -1 ) 2 = A 2 |D| -2 + δ(A)A|D| -3 and, with the same argument, that A|D| -1 JAJ -1 |D| -1 = AJAJ -1 |D| -2 + δ(A)JAJ -1 |D| -3
. Thus, we get

-( AD -1 ) 2 = 2 -A(A + JAJ -1 )|D| -2 + 2 -δ(A)(A + JAJ -1 )|D| -3 . ( 33 
)
The third term to be computed is

-( AD -1 ) 3 = 2 -(A|D| -1 ) 3 + 4 -(A|D| -1 ) 2 JAJ -1 |D| -1 + 2 -A|D| -1 JAJ -1 |D| -1 A|D| -1 .
Any operator in OP -4 being trace-class here, we get

-( AD -1 ) 3 = 2 -A 3 |D| -3 + 4 -A 2 JAJ -1 |D| -3 + 2 -AJAJ -1 A|D| -3 . (34) 
Since AJAJ -1 A|D| -3 = A 2 JAJ -1 |D| -3 by trace property and the fact that δ(A) ∈ OP 0 , the result follows then from [START_REF] Klimyk | Quantum Groups and Their Representations[END_REF] and [START_REF] Knecht | Spectral action and big desert[END_REF].

Corollary 4.2. For the spectral action of A without the reality operator (i.e. D A = D + A), we get

-|D A | -2 = -|D| -2 -2 -A|D| -3 , -|D A | -1 = -|D| -1 --A|D| -2 + -A 2 |D| -3 , ζ D A (0) = ζ D (0) --A|D| -1 + 1 2 -A 2 |D| -2 + 1 2 -δ(A)A|D| -3 -1 3 -A 3 |D| -3 .
4.2 Spectral action on SU q (2): main result

On SU q (2), since F commutes with a ± and b ± , the previous lemma can be used for the spectral action computation.

Here is the main result of this section Theorem 4.3. In the full spectral action (4) (with the reality operator) of SU q (2) for a one-form

A and A its associated δ-one-form, the coefficients are:

-|D A | -3 = 2 , -|D A | -2 = -4 -A|D| -3 , -|D A | -1 = -1 2 + 2 -A 2 |D| -3 --A|D| -2 + -A|D| -3 2 , ζ D A (0) = -2 -A|D| -1 + -A 2 |D| -2 -2 3 -A 3 |D| -3 + -A|D| -3 1 2 -A|D| -2 --A 2 |D| -3 + 1 2 -A|D| -3 -A|D| -2 .
In order to prove this theorem, we will use a decomposition of one-forms in the Poincaré-Birkhoff-Witt basis of A with an extension of previous representations to operators like T JT ′ J -1 where T and T ′ are in X.

Balanced components and Poincaré-Birkhoff-Witt basis of A

Our objective is to compute all integrals in term of A and the computation will lead to functions of A which capture certain symmetries on A.

For convenience, let us introduce now these functions: Let A = i π(x i )dπ(y i ) on SU q (2) be one-form and A the associated δ-one-form. The x i and y i are in A and as such they can be uniquely written as finite sums

x i = α x i α m α and y i = β y i β m β where m α := a α 1 b α 2 b * α3 is the canonical monomial of A with α, β ∈ Z × N × N based on a fixed Poincaré-Birkhoff-Witt type basis of A. Remark 4.4. Any one-form A = i π(x i )dπ(y i ) on SU q (2) is characterized by a complex valued matrix A β α = i x i α y i β where α, β ∈ Z × N × N.
This matrix is such that

A = A β α M α β
where M α β := π(m α )δ π(m β ) . In the following, we note

Ā := Āβ α M α β so for any p ∈ N, Ā|D| -p = A|D| -p .
This presentation of one-forms is not unique modulo OP -∞ since, as we will see in section 5,

F = i x i dy i where x i , y i ∈ A, thus for any generator z, [F, z] = i x i d(y i z)-x i y i dz-zx i dy i = 0 mod OP -∞ .
We do not know however if this presentation is unique when the OP -∞ part is taken into account.

The δ-one-forms M α β are said to be canonical. Any product of n canonical δ-one forms, where

n ∈ N * , is called a canonical δ n -one-form. Thus, if A is a δ-one-form, A n = (A n ) β ᾱ M ᾱ β where ᾱ = (α, α ′ , • • • , α (n-1) ), β = (β, β ′ , • • • , β (n-1) ) are in Z n × N n × N n , (A n ) β ᾱ := A β α • • • A β (n-1) α (n-1)
and M ᾱ β is the canonical δ n -one form equals to

M α β • • • M α (n-1) β (n-1) . Definition 4.5. A canonical δ n -one-form is a-balanced if it is of the form a α 1 δ(a β 1 ) • • • a α (n-1) 1 δ(a β (n-1) 1 )
where n-1 i=0 α

(i) 1 + β (i) 1 = 0. For any δ-one-form A, the a-balanced components of A n are noted B a (A n ) β ᾱ. Note that B a (A) β ᾱ = A β 1 00 -β 1 00 δ α 1 +β 1 ,0 δ α 2 +α 3 +β 2 +β 3 ,0 . Definition 4.6. A canonical δ n -one-form is balanced if it is of the form m α δ(m β ) • • • m α (n-1) δ(m β (n-1) )
where n-1 i=0 α

(i) 1 + β (i) 1 = 0 and n-1 i=0 α (i) 2 + β (i) 2 = n-1 i=0 α (i) 3 + β (i)
3 . For any δ-one-form A, the balanced components of A n are noted B(A n ) β ᾱ.

Note that

B(A) β ᾱ = A β 1 β 2 β 3 -β 1 α 2 α 3 δ α 1 +β 1 ,0 δ α 2 +β 2 ,α 3 +β 3 .
As we will show, a contribution to the k th -coefficient in the spectral action, is only brought by one-forms A such that A k is balanced (and even a-balanced in the case k = 1). Note also that if A is balanced, then A k for k ≥ 1 is also balanced, whereas the converse is false.

4.4

The reality operator J on SU q (2)

For any n, p ∈ N,

q n := 1 -q 2n , q -n := 0 if n > 0, q ↑ n,p := q n+1 • • • q n+p , q ↓ n,p := q n • • • q n-(p-1) ,
with the convention q ↑ n,0 = q ↓ n,0 := 1. Thus, we have the relations

π ± (a p ) ε n = q ↑ n,p ε n+p , π ± (a * p ) ε n = q ↓ n,p ε n-p , π ± (b p ) ε n = (±q n ) p ε n , π ± (b * p ) ε n = (±q n ) p ε n ,
where

ε k := 0 if k < 0. The sign of x ∈ R is noted η x .
By convention, a j := a, a ±,j := a ± if j ≥ 0 and a j := a * , a ±,j := a * ± if j < 0. Note that, with convention

q ↑ α 1 n,p := q ↑ n,p if α 1 > 0, q ↑ α 1 n,p := q ↓ n,p if α 1 < 0, and q ↑ 0 n,p := 1,
we have for any

α 1 ∈ Z and p ≤ α 1 , π ± (a p α 1 ) ε n = q ↑ α 1
n,p ε n+ηα 1 p . Recall that the reality operator J is defined by

J v j↑ m,l = i 2(m+l)-1 v j↑ 2j-m,2j+1-l , J v j↓ m,l = i -2(m+l)+1 v j↓ 2j-m,2j-1-l ,
thus the real conjugate operators

a ± := Ja ± J -1 , b ± := Jb ± J -1 satisfy a + v j m,l := -q 2j+1-m q 2j+2-l 0 0 q 2j-l v j + m,l , a -v j m,l := -q 2j-m q 2j+2-l 0 0 q 2j-l v j - m-1,l-1 , b + v j m,l := q 2j+1-m q 2j+1-l 0 0 q 2j-1-l v j + m,l+1 , b -v j m,l := -q 2j-m q 2j+1-l 0 0 q 2j-1-l v j - m-1,l .
So the real conjugate operator behave differently on the up and down part of the Hilbert space. The difference comes from the fact that the index l is not treated uniformly by J on up and down parts. We note X the algebra generated by { a ± , b ± }, X the algebra generated by { a ± , b ± , a ± , b ± } and H ′ := ℓ 2 (N) ⊗ ℓ 2 (Z) and we construct two * -representations π ± of A:

The representation π + gives bounded operators on

H ′ while π -represents A into B(H ′ ⊗ C 2 ).
The representation π + is defined on the generators by:

π + (a) ε m ⊗ ε 2j := q 2j+1-m ε m ⊗ ε 2j+1 , π + (b) ε m ⊗ ε 2j := -q 2j-m ε m+1 ⊗ ε 2j+1
while π -is defined by:

π -(a) ε l ⊗ ε 2j ⊗ ε ↑↓ := -q 2j+1±1-l ε l ⊗ ε 2j+1 ⊗ ε ↑↓ , π -(b) ε l ⊗ ε 2j ⊗ ε ↑↓ := -q 2j±1-l ε l+1 ⊗ ε 2j+1 ⊗ ε ↑↓ ,
where ε ↑↓ is the canonical basis of C 2 and the + in ± corresponds to ↑ in ↑↓.

The link between π ± and π ± which explains the notations about these intermediate objects and the fact that π ± are representations on different Hilbert spaces, is in the parallel between equations ( 30), ( 35) and [START_REF] Schmüdgen | Commutator representations of differential calculi on the quantum group SU q (2)[END_REF].

Let us give immediately a few properties (x β equals x if the sign β is positive and equals x * otherwise)

π + (a β ) p ε m ⊗ ε 2j = q ↑ β 2j-m,p ε m ⊗ ε 2j+η β p , π -(a β ) p ε l ⊗ ε 2j ⊗ ε ↑↓ = (-1) p q ↑ β 2j±1-l,p ε l ⊗ ε 2j+η β p ⊗ ε ↑↓ , π + (b β ) p ε m ⊗ ε 2j = (-1) p q (2j-m)p ε m+η β p ⊗ ε 2j+η β p , π -(b β ) p ε l ⊗ ε 2j ⊗ ε ↑↓ = (-1) p q (2j±1-l)p ε l+η β p ⊗ ε 2j+η β p ⊗ ε ↑↓ .
Note that the π ± representations still contain the shift information, contrary to representations

π ± . Moreover, π ± (b) = π ± (b * ) while π ± (b) = π ± (b * ). The operators a ± , b ± are coded on H ′ ⊗ H ′ ⊗ C 2 as the correspondence a + ←→ π + (a) ⊗ π -(a), a -←→ -q π + (b * ) ⊗ π -(b * ), b + ←→ -π + (a) ⊗ π -(b), b -←→ -π + (b * ) ⊗ π -(a * ). ( 35 
)
We now set the following extension to B(H ′ ) of π + and to B(

H ′ ⊗ C 2 ) of π -by π ′ + (a) := π + (a) ⊗ V, π ′ + (b) := π + (b) ⊗ V (V is the shift of ℓ 2 (Z)), π ′ -(a) := π -(a) ⊗ V ⊗ 1 2 , π ′ -(b) := π -(b) ⊗ V ⊗ 1 2 .
So, we can define a canonical algebra morphism ρ from X into the bounded operators on

H ′ ⊗ H ′ ⊗ C 2 .
This morphism is defined on the generators part { a ± , b ± } of X by preceding correspondence and on the generators part { a ± , b ± } by -see [START_REF] Grosse | 8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory[END_REF]:

a + ←→ π ′ + (a) ⊗ π ′ -(a), a -←→ -q π ′ + (b * ) ⊗ π ′ -(b * ), b + ←→ -π ′ + (a) ⊗ π ′ -(b), b -←→ -π ′ + (b * ) ⊗ π ′ -(a * ). ( 36 
)
We note S the canonical surjection from H ′ ⊗ H ′ ⊗ C 2 onto H. This surjection is associated to the parameters restrictions on m, j, l, j ′ . In particular, the index j ′ associated to the second ℓ 2 (N) in H ′ ⊗ H ′ ⊗ C 2 is set to be equal to j. Any vector in H ′ ⊗ H ′ ⊗ C 2 not satisfying these restrictions is sent to 0 in H. Denote by I the canonical injection of H into H ′ ⊗ H ′ ⊗ C 2 (the index j is doubled). Thus, S ρ(•)I is the identity on X.

In the computation of residues of ζ T D functions, we can therefore replace the operator T by S ρ(T )I. We now extend τ 0 on π ′ ± (A) π ± (A): For x, y ∈ A, we set

Tr N π ′ + (x) π + (y) := N m=0 ε m ⊗ ε N , π ′ + (x) π + (y) ε m ⊗ ε N , Tr ↑ N π ′ -(x) π -(y) := N l=0 ε l ⊗ ε N -1 ⊗ ε ↑ , π ′ -(x) π -(y) ε l ⊗ ε N -1 ⊗ ε ↑ , Tr ↓ N π ′ -(x) π -(y) := N l=0 ε l ⊗ ε N +1 ⊗ ε ↓ , π ′ -(x) π -(y) ε l ⊗ ε N +1 ⊗ ε ↓ .
Actually, a computation on monomials of A shows that Tr

↓ N π ′ -(x) π -(y) = Tr ↑ N π ′ -(x) π -(y) . For convenience, we shall note Tr N π ′ -(x) π -(y) this functional. Lemma 4.7. Let x, y ∈ A. Then, (i) τ 0 π ′ ± (x) π ± (y) := lim N →∞ U N exists
where

U N := Tr N π ′ ± (x) π ± (y) -(N + 1)τ 1 π ± (x) τ 1 π ± (y) . (ii) U N = τ 0 π ′ ± (x) π ± (y) + O(N -k ) for all k > 0.
Proof. (i) We can suppose that x and y are monomials, since the result will follow by linearity. We will give a proof for the case of the π + representations, the case π -being similar, with minor changes.

We have π

+ (y) = ( π + a β 1 ) |β 1 | ( π + b) β 2 ( π + b * ) β 3 . A computation gives π + (y) ε m ⊗ ε 2j = (-1) β 2 +β 3 q (2j-m)(β 2 +β 3 ) q ↑ β 1 2j-m,|β 1 | ε m-β 3 +β 2 ⊗ ε 2j-β 3 +β 2 +β 1
and with the notation

t 2j,m := ε m ⊗ ε 2j , π ′ ± (x) π ± (y) ε m ⊗ ε 2j and T 2j := 2j m=0 t 2j,m , we get t 2j,m = (-1) β 2 +β 3 q (2j-m)(β 2 +β 3 ) q ↑ β 1 2j-m,|β 1 | q ↑ α 1 m-β 3 +β 2 ,|α 1 | q (m+β 2 -β 3 )(α 2 +α 3 ) δ α 1 +β 2 -β 3 ,0 × δ -α 3 +α 2 +β 1 ,0 = (-1) α 1 q (2j-m)(β 2 +β 3 )+(m-α 1 )(α 2 +α 3 ) q ↑ β 1 2j-m,|β 1 | q ↑ α 1 m-α 1 ,|α 1 | δ α 1 +β 2 -β 3 ,0 δ α 2 -α 3 +β 1 ,0 =: f α,β q 2jλ t ′ 2j,m =: f α,β q 2jκ t ′′ 2j,2j-m where t ′ 2j,m := q m(κ-λ) q ↑ β 1 2j-m,|β 1 | q ↑ α 1 m-α 1 ,|α 1 | , (37) 
t ′′ 2j,m := q m(λ-κ) q

↑ β 1 m,|β 1 | q ↑ α 1 2j-m-α 1 ,|α 1 | , (38) 
with λ := β 2 + β 3 ≥ 0 and κ := α 2 + α 3 ≥ 0. We will now prove that if λ = κ, then (T 2j ) is a convergent sequence. Suppose κ > λ. Let us note U ′ 2j := 2j m=0 t ′ 2j,m . Since the t ′ 2j,m are positive and t ′ 2j+1,m ≥ t ′ 2j,m for all j, m, U ′ 2j is an increasing real sequence. The estimate 

U ′ 2j ≤ 2j m=0 q m(κ-λ) ≤ 1 1-q κ-λ < ∞ proves then that U ′ 2j is a convergent sequence. With T 2j = f α,β q 2jλ U ′ 2j ,
U ′′ 2j ≤ 2j m=0 q m(λ-κ) ≤ 1 1-q λ-κ < ∞ proves then that U ′′ 2j is a convergent sequence. With T 2j = f α,β q 2jκ U ′′ 2j
, we have again our result. Moreover, note that if λ and κ are both different from zero, the limit of (T 2j ) is zero and more precisely,

T 2j = O(q 2jλ ) if κ > λ > 0, (39) 
T 2j = O(q 2jκ ) if λ > κ > 0. ( 40 
)
Suppose now that λ = κ = 0. In that case, (T 2j ) also converges rapidly to zero. Indeed, let us fix

q < ε < 1. we have ε -2jλ T 2j = 2j m=0 c m d 2j-m = c * d(2j) where c m := f α,β (q/ε) λm q ↑ α 1 m-α 1 ,|α 1 |
and d m := (q/ε) λm q

↑ β 1 m,|β 1 |
. Since both m c m and m d m are absolutely convergent series, their Cauchy product 2j ε -2jλ T 2j is convergent. In particular, lim j→∞ ε -2jλ T 2j = 0, and

T 2j = O(ε 2jλ ). ( 41 
)
Finally, T 2j has a finite limit in all cases except possibly when λ = κ = 0, which is the case when

α 1 = α 2 = α 3 = β 1 = β 2 = β 3 = 0. In that case, t 2j,m = 1. A straightforward computation gives τ 1 π ± (x) τ 1 π ± (y) = δ α 1 ,0 δ β 1 ,0 δ α 2 ,0 δ β 2 ,0 δ α 3 ,0 δ β 3 ,0 . Thus, U 2j = T 2j -(2j + 1)δ α 1 ,0 δ β 1 ,0 δ α 2 ,0 δ β 2 ,0 δ α 3 ,0 δ β 3 ,0
has always a finite limit when j → ∞.

(ii) The result is clear if λ = κ = 0 (in that case U N = τ 0 = 0). Suppose λ or κ is not zero.

In that case U 2j = T 2j . By (40), ( 39) and (41), we see that if λ > κ > 0 or κ > λ > 0 or κ = λ, (T 2j ) converges to 0 with a rate in O(ε 2jα ) where α > 0 and q ≤ ε < 1. Thus, it only remains to check the cases (κ > 0, λ = 0) and (κ = 0, λ > 0). In the first one, we get from [START_REF] Van Suijlekom | The Geometry of Noncommutative Spheres and their Symmetries[END_REF],

U 2j = f α,β 2j m=0 q mκ q ↑ β 1 2j-m,|β 1 | . If β 1 = 0, we are done. Suppose β 1 > 0. We have q ↑ β 1 2j-m,|β 1 | = ∞ p=0 l p q rp q 2|p| 1 (2j-m) where p = (p 1 , • • • , p β 1 ) and l p = (-1) |p| 1 1 2 p , r p := 2p 1 + • • • + 2β 1 p β 1 .
Thus, cutting the sum in two, we get, noting

L 2j := f α,β 2j m=0 q mκ , U 2j -L 2j = f α,β |p| 1 >κ/2 l p q rp q 4|p| 1 j -q (2j+1)κ-2|p| 1 1-q κ-2|p| 1 + f α,β 0 =|p| 1 ≤κ/2
l p q rp q 4|p| 1 j 2j m=0 q m(κ-2|p| 1 ) . Since 0 =|p| 1 ≤κ/2 l p q rp q 4|p| 1 j 2j m=0 q m(κ-2|p| 1 ) is in O j→∞ (jq 4j ), we have, modulo a rapidly decreasing sequence,

U 2j -L 2j ∼ f α,β |p| 1 >κ/2 l p q rp q 4|p| 1 j -q (2j+1)κ-2|p| 1 1-q κ-2|p| 1 =: f α,β q 2κj V 2j with V 2j = |p| 1 >κ/2 l p q rp 1-q (2|p| 1 -κ)(2j+1) 1-q 2|p| 1 -κ = |p| 1 >κ/2 2j m=0 l p q rp q (2|p| 1 -κ)m .
The family v m,p := (l p q rp q (2|p| 1 -κ)m ) (p,m)∈I , where

I = { (p, m) ∈ N β 1 × N : |p| 1 > κ/2 } is (absolutely) summable. Indeed |v m,p | ≤ |l p |q rp q m so
|v m,p | is summable as the product of two summable families. As a consequence, lim j→∞ V 2j exists and is finite, which proves that (q 2κj V 2j ), and thus (U 2j -L 2j ) converge rapidly to 0. Suppose now that β 1 < 0. In that case, q

↑ β 1 2j-m,|β 1 | = q ↓ 2j-m,|β 1 | = q ↑ 2j-(m+|β 1 |),|β 1 |
and by (37), we get

U 2j = f α,β 2j m=0 q mκ q ↑ 2j-(m+|β 1 |),|β 1 | = f α,β q -|β 1 |κ 2j+|β 1 | m=|β 1 | q mκ q ↑ 2j-m,|β 1 |
, so the same arguments as in case β 1 > 0 apply here, the summation on m simply shifted of |β 1 |. The same proof can be applied for the other case (κ = 0, λ > 0). This time, we only need to use [START_REF] Van Suijlekom | The local index formula for SU q (2)[END_REF] instead of [START_REF] Van Suijlekom | The Geometry of Noncommutative Spheres and their Symmetries[END_REF] and the preceding arguments follow by replacing κ by λ and β 1 by α 1 .

Remark 4.8. Contrary to the preceding τ 0 , the new functional contains the shift information. In particular, it filters the parts of nonzero degree.

If T ∈ X X, ρ(T ) ∈ π + (A) π + (A) ⊗ π -(A) π -(A).
For notational convenience, we define τ 1 on π ′ ± (A) π ± (A) as

τ 1 π ′ ± (x) π ± (y) := τ 1 π ± (x) τ 1 π ± (y) .
In the following, the symbol ∼ e means equals modulo a entire function.

Theorem 4.9. Let T ∈ X X. Then

(i) ζ T D (s) ∼ e 2(τ 1 ⊗ τ 1 ) ρ(T ) ζ(s -2) + 2(τ 0 ⊗ τ 1 + τ 1 ⊗ τ 0 ) ρ(T ) ζ(s -1) + 2(τ 0 ⊗ τ 0 -1 2 τ 1 ⊗ τ 1 ) ρ(T ) ζ(s), (ii) -T |D| -3 = 2(τ 1 ⊗ τ 1 ) ρ(T ) , (iii) -T |D| -2 = 2(τ 0 ⊗ τ 1 + τ 1 ⊗ τ 0 ) ρ(T ) , (iv) -T |D| -1 = 2(τ 0 ⊗ τ 0 -1 2 τ 1 ⊗ τ 1 ) ρ(T ) . Proof. (i) Since T ∈ X X, ρ(T ) is a linear combination of terms like π ′ + (x) π + (y) ⊗ π ′ -(z) π -(t)
, where x, y, z, t ∈ A. Such a term is noted in the following

T + ⊗ T -. Linear combination of these term is implicit. With the shortcut T c 1 ,••• ,cp := ε c 1 ⊗ • • • ⊗ ε cp , T ε c 1 ⊗ • • • ⊗ ε cp , recalling that v j,↓
m,l is 0 when j = 0, or l ≥ 2j, we get

ζ T D (s) = ∞ 2j=0 2j m=0 2j+1 l=0 v j,↑ m,l 0 , S ρ(T )I v j,↑ m,l 0 d -s j + + 0 v j,↓ m,l , S ρ(T )I 0 v j,↓ m,l d -s j = ∞ 2j=0 2j m=0 2j+1 l=0 ρ(T ) m,2j,l,2j,↑ d -s j + + ∞ 2j=1 2j m=0 2j-1 l=0 ρ(T ) m,2j,l,2j,↓ d -s j = ∞ 2j=0 Tr 2j (T + ) Tr ↑ 2j+1 (T -) + Tr 2j+1 (T + ) Tr ↓ 2j (T -) d -s j + .
By Lemma 4.7 (ii), for all k > 0,

Tr 2j (T ± ) = (2j + 3 2 )τ 1 (T ± ) + τ 0 (T ± ) -1 2 τ 1 (T ± ) + O (2j) -k , Tr 2j+1 (T ± ) = (2j + 3 2 )τ 1 (T ± ) + τ 0 (T ± ) + 1 2 τ 1 (T ± ) + O (2j) -k .
The result follows by noting that the difference of the Hurwitz zeta function ζ(s, 3 2 ) and Riemann zeta function ζ(s) is an entire function. (ii, iii, iv) are direct consequences of (i).

4.5

The smooth algebra C ∞ (SU q (2))

In [START_REF] Connes | Cyclic cohomology, quantum group symmetries and the local index formula for SU q (2)[END_REF][START_REF] Van Suijlekom | The local index formula for SU q (2)[END_REF], the smooth algebra C ∞ (SU q (2) is defined by pulling back the smooth structure C ∞ (D 2 q ± ) into the C * -algebra generated by A, through the morphism ρ and the application λ (the compression which gives an operator on H from an operator on l

2 (N) ⊗ l 2 (N) ⊗ l 2 (Z) ⊗ C 2 ).
The important point is that with [13, Lemma 2, p. 69], this algebra is stable by holomorphic calculus. By defining ρ := ρ • c and λ(•) := S(•)I, the same lemma (with same notation) can be applied to our setting, with c := π(x) → π(x) and

C := C ∞ (D 2 q + ) ⊗ C ∞ (S 1 ) ⊗ C ∞ (D 2 q + ) ⊗ C ∞ (S 1
) ⊗ M 2 (C) as algebra stable by holomorphic calculus containing the image of ρ. Here, we use Schwartz sequences to define the smooth structures. We finally obtain C ∞ (SU q (2)) with real structure as a subalgebra stable by holomorphic calculus of the C * -algebra generated by π(A) ∪ Jπ(A)J -1 and containing π(A) ∪ Jπ(A)J -1 .

Corollary 4.10. The dimension spectrum of the real spectral triple C ∞ (SU q (2)), H, D is simple and given by {1, 2, 3}. Its KO-dimension is 3.

Proof. Since F commutes with π(A), the pseudodifferential operators of order 0 (without the real structure and in the sense of [START_REF] Essouabri | Spectral action on noncommutative torus[END_REF]) are exactly (modulo OP -∞ ) the operators in B + BF . From Theorem 3.4 we see that the dimension spectrum of SU q (2) without taking into account the reality operator J is { 1, 2, 3 }, in other words, the possible poles of ζ b D : s → Tr(bF ε |D| -s ) (with ε ∈ { 0, 1 }, b ∈ B) are in { 1, 2, 3 }. Theorem 4.9 (i) shows that the possible poles are still { 1, 2, 3 } when we take into account the real structure of SU q (2), that is to say, when B is enlarged to BJBJ -1 . Indeed, any element of BJBJ -1 is in X X and it is clear from the preceding proof that adding F in the previous zeta function do not add any pole to { 1, 2, 3 }. All arguments goes true from the polynomial algebra A(SU q (2)) to the smooth pre-C * -algebra C ∞ (SU q (2)). KO-dimension refers just to J 2 = -1 and D J = J D since there is no chirality because spectral dimension is 3.

Noncommutative integrals with reality operator and one-forms on SU q (2)

The goal of this section is to obtain the following suppression of J: Theorem 4.11. Let A and B be δ-one-forms. Then

(i) -AJBJ -1 |D| -3 = 1 2 -A|D| -3 -B|D| -3 , (ii) -AJBJ -1 |D| -2 = 1 2 -A|D| -2 -B|D| -3 + 1 2 -A|D| -3 -B|D| -2 , (iii) -A 2 JBJ -1 |D| -3 = 1 2 -A 2 |D| -3 -B|D| -3 , (iv) -δ(A)A|D| -3 = -δ(A)JAJ -1 |D| -3 = 0.
We gather at the beginning of this section the main notations for technical lemmas which will follow.

For any pair (k, p)

∈ N 3 × N 3 such that k i ≤ |α i |, p i ≤ |β i |, where α, β ∈ Z × N × N, we define v k,p := g(p) |α 1 | k 1 q 2ηα 1 α 2 k 2 α 3 k 3 |β 1 | p 1 q 2η β 1 β 2 p 2 β 3 p 3 (-1) k 1 +p 1 +α 2 +α 3 +β 2 +β 3 q σ k,p , h k,p := α 1 + α 2 -α 3 -2(η α 1 k 1 + k 2 -k 3 ) + g(p) , g(p) := β 1 + β 2 -β 3 -2(η β 1 p 1 + p 2 -p 3 ) , σ k,p := k 1 + p 1 + σ t k,p + σ u k,p , σ t k,p := k 1 k 2 -k 3 (k 1 + k 2 ) + η β 1 p 1 |k| 1 + p 2 (|k| 1 + p 1 ) -p 3 (|k| 1 + p 1 + p 2 ) , σ u k,p := (k 3 + η β 1 p 1 -p 2 + p 3 )(k 1 + k 2 + k 3 ) -k 2 (k 1 + k 2 ) + (p 1 + p 2 )(-p 2 + p 3 ) + p 3 p 3 , t k,p = a b k 1 α 1 a b k 2 a * b k 3 a b p 1 β 1 a b p 2 a * b p 3 b |k| 1 +|p| 1 , u k,p = a b k 1 α 1 a * k2 a k 3 a b p 1 β 1 a * p2 a p 3 b | e k| 1 +|e p| 1 .
where we used the notation

k i := |α i | -k i , p i := |β i | -p i , so 0 ≤ k i ≤ |α i |, 0 ≤ p i ≤ |β i |.
We will also use the shortcut k := (k 1 , k 2 , k 3 ). For β 1 ∈ Z and j ∈ N, we define

w 1 (β 1 , j) := ∞ n=0 q 2jn (q ↑ β 1 n,|β 1 | ) 2 -δ j,0 , w α β := 2β 1 q β 1 (2α 3 +β 3 -β 2 ) w 1 (β 1 , α 3 + β 3
). We introduce the following notations:

q + k,p,n := q n(|k| 1 +|p| 1 ) q ↑ α 1 n+r + k,p -ηα 1 b k 1 , b k 1 q ↑ n-b k 3 +η β 1 b p 1 +b p 2 -b p 3 , b k 2 q ↓ n+η β 1 b p 1 +b p 2 -b p 3 , b k 3 q ↑ β 1 n+b p 2 -b p 3 ,b p 1 q ↑ n-b p 3 ,b p 2 q ↓ n,b p 3 , q - k,p,n := q n(| e k| 1 +|e p| 1 ) q ↑ α 1 n+r - k,p -ηα 1 b k 1 , b k 1 q ↓ n+k 3 +η β 1 b p 1 -p 2 +p 3 ,k 2 q ↑ n+η β 1 b p 1 -p 2 +p 3 ,k 3 q ↑ β 1 n-p 2 +p 3 ,b p 1 q ↓ n+p 3 ,p 2 q ↑ n,p 3 × (-1) | e k| 1 +|e p| 1 , r + k,p := η α 1 k 1 + k 2 -k 3 + η β 1 p 1 + p 2 -p 3 , r - k,p := η α 1 k 1 -k 2 + k 3 + η β 1 p 1 -p 2 + p 3 . Thus, π + (t k,p )ε n = q + k,p,n ε n+r + k,p and π -(u k,p )ε n = q - k,p,n ε n+r - k,p
. Lemma 4.12. We have

r (M α β ) • = k,p δ h k,p ,0 v k,p π + (t k,p ) ⊗ π -(u k,p )
where the summation is done on

k i , p i in N such that k i ≤ |α i |, p i ≤ |β i | for i ∈ { 1, 2, 3 }. Proof. Since π(m α ) = (a + + a -) α 1 (b + + b -) α 2 (b * + + b * -) α 3 , with v k := |α 1 | k 1 q 2ηα 1 α 2 k 2 α 3 k 3 , π(m α ) = k v k c k where c k := a |α 1 |-k 1 +,α 1 a k 1 -,α 1 b α 2 -k 2 + b k 2 -b * + α 3 -k 3 b * - k 3 .
By Lemma 3.2 (iii) we see that δ(π(m β )) = p w p d p where we introduce

w p := |β 1 | p 1 q 2η β 1 β 2 p 2 β 3
p 3 and d p := g(p) a

|β 1 |-p 1 +,β 1 a p 1 -,β 1 b β 2 -p 2 + b p 2 -b * + β 3 -p 3 b * - p 3 . As a consequence, (M α β ) • = k,p δ h(k,p),0 g(p) v k w p c k,p where c k,p = a b k 1 +,α 1 a k 1 -,α 1 b b k 2 + b k 2 -b * + b k 3 b * - k 3 a b p 1 +,β 1 a p 1 -,β 1 b b p 2 + b p 2 -b * + b p 3 b * - p 3 (42) 
With (42), we get r(c k,p ) = (-1)

k 1 +p 1 +α 2 +α 3 +β 2 +β 3 q k 1 +p 1 π + (t ′ k,p ) ⊗ π -(u ′ k,p ) where t ′ k,p = a b k 1 α 1 b k 1 a b k 2 b k 2 a * b k 3 b k 3 a b p 1 β 1 b p 1 a b p 2 b p 2 a * b p 3 b p 3 , u ′ k,p = a b k 1 α 1 b k 1 b b k 2 a * k2 b b k 3 a k 3 a b p 1 β 1 b p 1 b b p 2 a * p2 b b p 3 a p 3 .
A recursive use of relation ba j = q η j a j b yields the result.

Lemma 4.13. We have

(i) (τ 1 ⊗ τ 1 ) r(M α β ) • = β 1 δ α 1 ,-β 1 δ α 2 ,0 δ α 3 ,0 δ β 2 ,0 δ β 3 ,0 . (ii) (τ 1 ⊗ τ 0 + τ 0 ⊗ τ 1 ) r(M α β ) • = δ α 1 ,-β 1 δ α 2 +β 2 ,α 3 +β 3 w α β . In particular, if A is a δ-one-form, we have -A|D| -3 = 2β 1 A β 1 00 -β 1 00 , -A|D| -2 = 2w α β B(A) β α .
where we implicitly summed on all α, β indices.

Proof. (i) Using same notations of Lemma 4.12, we obtain by definition of τ 1 ,

τ 1 π + (t k,p ) = δ k,0 δ p,0 δ α 1 +α 2 -α 3 +β 1 +β 2 -β 3 ,0 , (43) 
τ 1 π -(u k,p ) = δ e k,0 δ e p,0 δ α 1 -α 2 +α 3 +β 1 -β 2 +β 3 ,0 . (44) 
We get

τ 1 π + (t k,p ) τ 1 π -(u k,p ) = δ k,0 δ p,0 δ α 2 ,0 δ α 3 ,0 δ β 2 ,0 δ β 3 ,0 δ α 1 ,-β 1 , so Lemma 4.
12 gives the result.

(ii

) Since π + (t k,p )ε n = q + k,p,n ε n+r + k,p and π -(u k,p )ε n = q - k,p,n ε n+r - k,p
, we get,

τ 0 π + (t k,p ) = δ r + k,p ,0 ∞ n=0 q + k,p,n -δ k,0 δ p,0 δ α 1 +α 2 -α 3 +β 1 +β 2 -β 3 ,0 , (45) 
τ 0 π -(u k,p ) = δ r - k,p ,0 ∞ n=0 q - k,p,n -δ e k,0 δ e p,0 δ α 1 -α 2 +α 3 +β 1 -β 2 +β 3 ,0 . (46) 
With ( 43) and ( 46) we get

τ 1 π + (t k,p ) τ 0 π -(u k,p ) = δ k,0 δ p,0 δ α 2 +β 2 ,α 3 +β 3 δ α 1 ,-β 1 ∞ n=0 δ k,0 δ p,0 q - k,p,n -δ α 3 +β 3 ,0 = δ k,0 δ p,0 δ α 2 +β 2 ,α 3 +β 3 δ α 1 ,-β 1 w 1 (β 1 , α 3 + β 3 ).
Using ( 44) and (45),

τ 0 π + (t k,p ) τ 1 π -(u k,p ) = δ e k,0 δ e p,0 δ α 2 +β 2 ,α 3 +β 3 δ α 1 ,-β 1 ∞ n=0 δ e k,0 δ e p,0 q + k,p,n -δ α 3 +β 3 ,0 = δ e k,0 δ e p,0 δ α 2 +β 2 ,α 3 +β 3 δ α 1 ,-β 1 w 1 (β 1 , α 3 + β 3 ).
Lemma 4.12 yields the result.

With notations of Lemma 4.12, it is direct to check that for given ᾱ = (α,

α ′ , • • • , α (n-1) ) and β = (β, β ′ , • • • , β (n-1) ), r (M ᾱ β ) • = K,P δ h K,P ,0 v K,P π + (t K,P ) ⊗ π -(u K,P ) (47) 
where

K = (k, k ′ , • • • k (n-1) ), P = (p, p ′ , • • • , p (n-1) ) with 0 ≤ k (j) i ≤ |α (j) i |, 0 ≤ p (j) i ≤ |β (j) i |, t K,P := t k,p t k ′ ,p ′ • • • t k (n-1) ,p (n-1) , u K,P := u k,p u k ′ ,p ′ • • • u k (n-1) ,p (n-1) , v K,P := v k,p v k ′ ,p ′ • • • v k (n-1) ,p (n-1) , h K,P := h k,p + h k ′ ,p ′ + • • • h k (n-1) ,p (n-1) .
In the following, we will use the shortcuts

A i := α i +α ′ i +• • •+α (n-1) i , B i := β i +β ′ i +• • • +β (n-1) i . In the case n = 2, we also note r ± K,P := r ± k,p + r ± k ′ ,p ′ and q ± K,P,n := q ± k ′ ,p ′ ,n q ± k,p,n+r ± k ′ ,p ′ . Thus, we have π + (t K,P ) ε m = q + K,P,m ε m+r + K,P and π -(u K,P ) ε m = q - K,P,n ε m+r - K,P
. We also introduce, still for n = 2,

v β 1 ,α ′ 1 ,β ′ 1 (l, j) := ∞ n=0 q l+2nj q ↑ -β ′ 1 -α ′ 1 -β 1 n+β ′ 1 +α ′ 1 +β 1 ,|β ′ 1 +α ′ 1 +β 1 | q ↑ β 1 n+β ′ 1 +α ′ 1 ,|β 1 | q ↑ α ′ 1 n+β ′ 1 ,|α ′ 1 | q ↑ β ′ 1 n,|β ′ 1 | -δ j,0 , V ᾱ β := 2[β 1 β ′ 1 + (β 2 -β 3 )(β ′ 2 -β ′ 3 )] q 2β 1 (α 2 +α 3 )+2β ′ 1 (α ′ 2 +α ′ 3 ) × v β 1 ,α ′ 1 ,β ′ 1 ((α 2 + β 2 + α 3 + β 3 )(α ′ 1 + β ′ 1 ), A 3 + B 3 ).
Lemma 4.14. We have

(i) (τ 1 ⊗ τ 1 ) r(M α β M α ′ β ′ ) • = β 1 β ′ 1 δ A 1 ,-B 1 δ A 2 ,0 δ A 3 ,0 δ B 2 ,0 δ B 3 ,0 . (ii) (τ 1 ⊗ τ 0 + τ 0 ⊗ τ 1 ) r(M α β M α ′ β ′ ) • = δ A 2 +B 2 ,A 3 +B 3 δ A 1 ,-B 1 V ᾱ β . (iii) (τ 1 ⊗ τ 1 ) r(M α β M α ′ β ′ M α ′′ β ′′ ) 0 = β 1 β ′ 1 β ′′ 1 δ A 1 ,-B 1 δ A 2 ,0 δ A 3 ,0 δ B 2 ,0 δ B 3 ,0 . (iv) (τ 1 ⊗ τ 1 ) r(δ(M α β )M α ′ β ′ ) 0 = -(α ′ 1 + β ′ 1 )β 1 β ′ 1 δ A 1 ,-B 1 δ A 2 ,0 δ A 3 ,0 δ B 2 ,0 δ B 3 ,0 . (v) In particular, if A is a δ-one-form, -A 2 |D| -3 = 2β 1 β ′ 1 B a (A 2 ) β ᾱ , -A 2 |D| -2 = 2V ᾱ β B(A 2 ) β ᾱ , -A 3 |D| -3 = 2β 1 β ′ 1 β ′′ 1 B a (A 3 ) β ᾱ , -δ(A)A|D| -3 = -Aδ(A)|D| -3 = 0.
Proof. We have

τ 1 (π + (t K,P )) = δ K,0 δ P,0 δ A 1 +A 2 -A 3 +B 1 +B 2 -B 3 ,0 , (48) 
τ 1 (π -(u K,P )) = δ e K,0 δ e P ,0 δ A 1 -A 2 +A 3 +B 1 -B 2 +B 3 ,0 . (49) 
and

τ 0 (π + (t K,P )) = δ r + K,P ,0 ∞ n=0 q + K,P,n -δ K,0 δ P,0 δ A 1 +A 2 -A 3 +B 1 +B 2 -B 3 ,0 , (50) 
τ 0 (π -(u K,P )) = δ r - K,P ,0 ∞ n=0 q - K,P,n -δ e K,0 δ e P ,0 δ A 1 -A 2 +A 3 +B 1 -B 2 +B 3 ,0 . (51) 
(i) Equations ( 48) and ( 49) give (τ

1 ⊗ τ 1 ) r(A A ′ ) 0 = δ A 1 ,-B 1 δ A 2 ,0 δ A 3 ,0 δ B 2 ,0 δ B 3 ,0 λ 0,0 . A compu- tation of v 0,0 with δ A 1 ,-B 1 δ A 2 ,0 δ A 3 ,0 δ B 2 ,0 δ B 3 ,0 = 1 gives the result.
(ii) Equations ( 48) and (51) yield

τ 1 (π + (t K,P )) τ 0 (π -(u K,P )) = δ K,0 δ P,0 δ A 2 +B 2 ,A 3 +B 3 δ A 1 ,-B 1 × v β 1 ,α ′ 1 ,β ′ 1 ((α 2 + β 2 + α 3 + β 3 )(α ′ 1 + β ′ 1 ), A 3 + B 3 ).
Equations ( 50) and (49) yield

τ 0 (π + (t K,P )) τ 1 (π -(u K,P )) = δ e K,0 δ e P ,0 δ A 2 +B 2 ,A 3 +B 3 δ A 1 ,-B 1 × v β 1 ,α ′ 1 ,β ′ 1 ((α 2 + β 2 + α 3 + β 3 )(α ′ 1 + β ′ 1 ), A 3 + B 3 )
and the result follows.

(iii) With (47) a direct computation gives

τ 1 (π + (t K,P )) = δ K,0 δ P,0 δ A 1 +A 2 -A 3 +B 1 +B 2 -B 3 ,0 , (52) 
τ 1 (π -(u K,P )) = δ e K,0 δ e P ,0 δ A 1 -A 2 +A 3 +B 1 -B 2 +B 3 ,0 . (53) 
Using ( 52) and ( 53), (τ

1 ⊗ τ 1 ) r(A A ′ A ′′ ) • = δ A 1 ,-B 1 δ A 2 ,0 δ A 3 ,0 δ B 2 ,0 δ B 3 ,0 v 0,0 . A computation of v 0,0 with δ A 1 ,-B 1 δ A 2 ,0 δ A 3 ,0 δ B 2 ,0 δ B 3 ,0 = 1 gives the result. (iv) We have δ(M α β )M α ′ β ′ = δ(x)δ(y)x ′ δ(y ′ ) + xδ 2 (y)
x ′ δ(y ′ ) where x, x ′ , y, y ′ are monomials (π omitted). Since

π(x) = k α k a b k 1 +,α 1 a k 1 -,α 1 b b k 2 + b k 2 -b * + b k 3 b * - k 3 =: k α k c k , we get δ(π(x)) = k g(k) α k c k . Similarly, δ(π(y)) = p g(p) β p c p and δ 2 (π(y)) = p g(p) 2 β p c p . Thus, with c K,P := c k c p c k ′ c p ′ , δ(x)δ(y)x ′ δ(y ′ ) = K,P g(k) g(p) g(p ′ ) α K β P c K,P , xδ 2 (y)x ′ δ(y ′ ) = K,P g(p) 2 g(p ′ ) α K β P c K,P , r(δ(M α β )M α ′ β ′ ) 0 = K,P δ h K,P ,0 g(k) + g(p) g(p) g(p ′ ) α K β P r(c K,P ) =: K,P λ K,P r(c K,P ) . Since r(c k ) = (-q) k 1 (-1) α 2 +α 3 π + (t k ) ⊗ π -(u k ) with t k , u k defined by t k := a b k 1 α 1 b k 1 a b k 2 b k 2 a * b k 3 b k 3 and u k := a b k 1 α 1 b k 1 b b k 2 a * k2 b b k 3 a k 3 , we get r(δ(M α β )M α ′ β ′ ) 0 = K,P λ K,P (-q) k 1 +k ′ 1 +p 1 +p ′ 1 (-1) A 2 +A 3 +B 2 +B 3 π + (t K,P ) ⊗ π -(u K,P )
where

t K,P = t k t p t k ′ t p ′ and u K,P = u k u p u k ′ u p ′ . Direct computations yield τ 1 π + (t K,P ) = δ K,0 δ P,0 δ A 1 +A 2 -A 3 +B 1 +B 2 -B 3 ,0 , τ 1 π -(u K,P ) = δ e K,0 δ e P ,0 δ A 1 -A 2 +A 3 +B 1 -B 2 +B 3 ,0 .
The result follows.

(v) For the last equality, note that by (iv)

-δ(A)A|D| -3 = -2 α 1 ,α ′ 1 ,β 1 ,β ′ 1 (α ′ 1 + β ′ 1 )β 1 β ′ 1 A β 1 00 α 1 000 A β ′ 1 00 α ′ 1 00 δ α 1 +α ′ 1 +β 1 +β ′ 1 ,0 .
The following change of variables

α 1 ↔ α ′ 1 , β 1 ↔ β ′ 1 ,
implies by symmetry that this is equal to zero.

For a given δ-1-form A, we say that A is homogeneous of degree in a equal to n ∈ Z if it is a linear combination of M α β such that α 1 + β 1 = n. From Lemma 4.14 (iv) we get, Corollary 4.15. Let A, A ′ be two δ-1-forms, then

-(A|D| -1 ) 2 = -A 2 |D| -2 , -A|D| -1 A ′ |D| -1 = -AA ′ |D| -2 -n -AA ′ |D| -3 , when A ′ homogenous of degree n. Lemma 4.16. We have (i) (τ 1 ⊗ τ 1 ) ρ M α β JM α ′ β ′ J -1 = β 1 β ′ 1 δ α 1 ,-β 1 δ α ′ 1 ,-β ′ 1 δ A 2 ,0 δ A 3 ,0 δ B 2 ,0 δ B 3 ,0 . (ii) (τ 0 ⊗ τ 1 + τ 1 ⊗ τ 0 ) ρ M α β JM α ′ β ′ J -1 = δ α 1 ,-β 1 δ α ′ 1 ,-β ′ 1 β ′ 1 w α β δ α ′ 2 +β ′ 2 +α ′ 3 +β ′ 3 ,0 δ α 2 +β 2 ,α 3 +β 3 +β 1 w α ′ β ′ δ α 2 +β 2 +α 3 +β 3 ,0 δ α ′ 2 +β ′ 2 ,α ′ 3 +β ′ 3 . (iii) (τ 1 ⊗ τ 1 ) ρ M α β M α ′ β ′ JM α ′′ β ′′ J -1 = β 1 β ′ 1 β ′′ 1 δ α 1 +α ′ 1 ,-β 1 -β ′ 1 δ α ′′ 1 ,-β ′′ 1 δ A 2 ,0 δ A 3 ,0 δ B 2 ,0 δ B 3 ,0 . (iv) (τ 1 ⊗ τ 1 ) ρ δ(M α β )JM α ′ β ′ J -1 = -(α ′ 1 + β ′ 1 )β 1 β ′ 1 δ α 1 ,-β 1 δ α ′ 1 ,-β ′ 1 δ A 2 ,0 δ A 3 ,0 δ B 2 ,0 δ B 3 ,0 . (v) In particular, if A and A ′ are δ-one forms, -AJA ′ J -1 |D| -3 = 2(β 1 A β 1 00 -β 1 00 )(β 1 Ā′ β 1 00 -β 1 00 ), -AJA ′ J -1 |D| -2 = 2(β 1 Ā′ β 1 00 -β 1 00 )(w α β B(A) β α ) + 2(β 1 A β 1 00 -β 1 00 )(w α β B( Ā′ ) β α ), -A 2 JA ′ J -1 |D| -3 = 2(β 1 Ā′ β 1 00 -β 1 00 )(β 1 β ′ 1 B a (A 2 ) β ᾱ), -δ(A)JAJ -1 = 0.
Proof. (i) Following notations of Lemma 4.12, we have

M α β JM α ′ β ′ J -1 = K,P v K,P c k,p Jc k ′ ,p ′ J -1 where K = (k, k ′ ), P = (p, p ′ ), λ K,P = g(p)g(p ′ )v k v k ′ w p w p ′ . Thus, ρ(M α β JM α ′ β ′ J -1 ) = (-1) A 2 +A 3 +B 2 +B 3 K,P (-q) k 1 +k ′ 1 +p 1 +p ′ 1 λ K,P T + K,P ⊗ T - K,P
where

T + K,P := π ′ + (t k t p ) π + (t k ′ t p ′ ) and T - K,P := π ′ -(u k u p ) π -(u k ′ u p ′ ) with t k := a b k 1 α 1 b * k1 α 1 a b k 2 b * k2 a * b k 3 b k 3 , u k := a b k 1 α 1 b * k1 α 1 b b k 2 a * k2 b * b k 3 a k 3 .
A direct computation leads to

τ 1 (T + K,P ) = δ K,0 δ P,0 δ α 1 +α 2 -α 3 +β 1 +β 2 -β 3 ,0 δ α ′ 1 +α ′ 2 -α ′ 3 +β ′ 1 +β ′ 2 -β ′ 3 ,0 , τ 1 (T - K,P ) = δ e K,0 δ e P ,0 δ α 1 -α 2 +α 3 +β 1 -β 2 +β 3 ,0 δ α ′ 1 -α ′ 2 +α ′ 3 +β ′ 1 -β ′ 2 +β ′ 3 ,0
which gives the result.

(ii) Using the commutation relations on A, we see that there are real functions of (K, P ), noted σ t K,P and σ u K,P such that

T + K,P = q σ t K,P π ′ + (t k,p ) π + (t k ′ ,p ′ ), T - K,P = q σ u K,P π ′ -(u k,p ) π -(u k ′ ,p ′ ), t k,p := a b k 1 α 1 a b k 2 a * b k 3 a b p 1 β 1 a b p 2 a * b p 3 b * k1 α 1 b * p1 β 1 b * k2+p2 b k 3 +p 3 , u k,p := a b k 1 α 1 a * k2 a k 3 a b p 1 β 1 a * p2 a p 3 b * k1 α 1 b * p1 β 1 b b k 2 +b p 2 b * b k 3 +b p 3 .
We have, under the hypothesis τ 1 (T - K,P ) = 1,

π + (t k ′ ,p ′ )ε m,2j = (-1) λ ′ q (2j-m)λ ′ q ↑ α ′ 1 2j-m-s+β ′ 1 ,|α ′ 1 | q ↑ β ′ 1 2j-m-s,|β ′ 1 | ε m+s,2j , s := -α ′ 2 + α ′ 3 -β ′ 2 + β ′ 3 = α ′ 1 + β ′ 1 , λ ′ := α ′ 2 + α ′ 3 + β ′ 2 + β ′ 3 , λ := α 2 + α 3 + β 2 + β 3 τ 1 (T + K,P ) = δ λ,0 δ λ ′ ,0 .
Proof. We give a proof for β and β ′ > 0, the other cases being similar. Since (q

↑ β m,|β| ) 2 = p i ∈{ 0,1 } (-1) |p| 1 q rp q 2|p| 1 m where p = (p 1 , • • • , p β ) and r p := 2(p 1 + • • • + βp β )
, we get, with the notations λ p,p ′ := (-1) |p+p ′ | 1 q rp+r p ′ and U 2j := 2j m=0 (q

↑ β m,|β| q ↑ β ′ 2j-m,|β ′ | ) 2 -1, U 2j = 2j m=0 |p+p ′ | 1 >0 λ p,p ′ q 2|p| 1 m+2|p ′ | 1 (2j-m) = |p| 1 ≥|p ′ | 1 ,|p| 1 >0 λ p,p ′ V 2j,p,p ′ + |p| 1 <|p ′ | 1 ,|p ′ | 1 >0 λ p,p ′ V ′ 2j,p,p ′ where V 2j,p,p ′ = q 4j|p ′ | 1 2j m=0 q 2(|p| 1 -|p ′ | 1 )m , V ′ 2j,p,p ′ = q 4j|p| 1 2j m=0 q 2(|p ′ | 1 -|p| 1 )m .
It is clear that V 2j,p,p ′ has 0 for limit when j → ∞ when |p ′ | 1 > 0, and V ′ 2j,p,p ′ has 0 for limit when j → ∞ when |p| 1 > 0. As a consequence,

U 2j = |p| 1 >0 λ p,0 V 2j,p,0 + |p ′ | 1 >0 λ 0,p ′ V ′ 2j,0,p ′ + o(1).
The result follows as

2j m=0 (q ↑ β m,|β| ) 2 -1 = |p| 1 >0 λ p,0 V 2j,p,0 and 2j m=0 (q ↑ β ′ m,|β ′ | ) 2 -1 = |p ′ | 1 >0 λ 0,p ′ V ′ 2j,0,p ′ .
Proof of Theorem 4.11. The result follows from Lemmas 4.13, 4.14 (v) and 4.16 (v).

Proof of Theorem 4.3 and corollaries

Lemma 4.18. We have on SU q (2), (i)

|D| -3 = 2. (ii) |D| -2 = 0. (iii) |D| -1 = -1 2 . (iv) ζ D (0) = 0.
Proof. (iv) We have by definition

ζ D (s) := Tr(|D| -s ) = ∞ 2j=0 2j m=0 2j+1 l=0 v j m,l , |D| -s v j m,l . Since |D| -s v j m,l = d -s j + 0 0 d -s j v j m,l where d j := 2j + 1 2 , we get ζ D (s) = ∞ 2j=0 (2j + 1)(2j + 2) d -s j + + ∞ 2j=1 (2j + 1)(2j) d -s j = 2 ∞ 2j=0 (2j + 1)(2j) d -s j .
With the equalities (2j + 1 

)(2j) = d 2 j -1 4 and ζ(s, 1 2 ) = (2 s -1)ζ(s) (here ζ(s, x) := n∈N 1 (n+x) s
ζ D (s) = 2(2 s-2 -1)ζ(s -2) -1 2 (2 s -1)ζ(s) (54) 
which entails that ζ D (0) = 0. (i, ii, iii) are direct consequences of equation (54).

Proof of Theorem 4.3. It is a consequence of Lemma 4.18 and Theorems 4.1, 4.11.

As we have seen, the computation of noncommutative integral on SU q (2) leads to certain function of A which filter some symmetry on the degree in a, a * , b, b * of the canonical decomposition. Precisely, it is the balanced features that appear and the following functions of A n , n ∈ { 1, 2, 3 }:

-A n |D| -p (55) 
where 1 ≤ n ≤ p ≤ 3. We will see in the next section a method for the computation of these integrals.

Corollary 4.19. Let u be a unitary in C ∞ SU q (2) and γ u (A) := π(u)Aπ(u * ) + π(u)dπ(u * ) be a gauge-variant of A. Then the following term of Theorem 4.3 are gauge invariant

-A|D| -3 , -A 2 |D| -3 --A|D| -2 , -2 -A|D| -1 + -A 2 |D| -2 -2 3 -A 3 |D| -3 .
Proof. It is sufficient to remark that all terms |D A | -k and ζ D A (0) in spectral action (4) are gauge invariant. This can also be seen via the computation D γu(A) = V u DV * u + V u P 0 V * u where P 0 is the projection on Ker D and [START_REF] Essouabri | Spectral action on noncommutative torus[END_REF]Prop. 5.1 (iii) and Prop. 4.8].) Corollary 4.20. In the case of the spectral action without the reality operator (i.e. D A = D+A), we get

V u = π(u)Jπ(u)J -1 and |D A | n-k = Res s=n-k Tr |D A | n-k (see
-|D A | -3 = 2, -|D A | -2 = -2 -A|D| -3 , -|D A | -1 = -1 2 --A|D| -2 + -A 2 |D| -3 , ζ D A (0) = --A|D| -1 + 1 2 -A 2 |D| -2 -1 3 -A 3 |D| -3 .
As a consequence, if A is a one-form such that A|D| -3 = 0, then the scale invariant term of the spectral action with or without J is exactly the same modulo a global factor of 2.

5 Differential calculus on SU q (2) and applications

The sign of D

There are multiple differential calculi on SU q (2), see [START_REF] Klimyk | Quantum Groups and Their Representations[END_REF][START_REF] Woronowicz | Twisted SU (2) group. An example of a non-commutative differential calculus[END_REF]. Thanks to [36, Theorem 3], the 3D and 4D ± differential calculi do not coincide with the one considers here: the right multiplication of one-forms by an element in the algebra A is a consequence of the chosen Dirac operator which was introduced according to some equivariance properties with respect to the duality between the two Hopf algebras SU q (2) and U q (su(2)).

It is known that the Fredholm module associated to (A, H, D) is one-summable since [F, π(x)] is trace-class for all x ∈ A. In fact, more can be said about F1 :

Proposition 5.1. Since F = 1 1-q 2 π(a * ) dπ(a) + q 2 π(b) dπ(b * ) + q 2 π(a) dπ(a * ) + q 2 π(b * ) dπ(b) , (56) 
F is a central one-form modulo OP -∞ .

Proof. Forgetting π, this follows from a * δa + q 2 b δb * + q 2 a δa * + q 2 b * δb

= (a * + + a * -)(a + -a -) + q 2 (b + + b -)(b * --b * + ) + q 2 (a + + a -)(a * --a * + ) + q 2 (b * + + b * -)(b + -b -) = [a * + a + -q 2 a + a * + + q 2 b * + b + -q 2 b + b * + ] + R = (1 -q 2 ) + R (57) 
by ( 16) where we check that the remainder R is zero:

R = -[a * + a -+ q 2 b * + b -] + [a * -a + + q 2 b * -b + ] -[a * -a --q 2 a -a * -+ q 2 b * -b --q 2 b -b * -] + (q 2 a + a * -+ q 2 q * -b + ) -(a * + a -+ q 2 b * + b -),
thus, applying ( 19), ( 20), ( 21), R = +(q 2 a + a * -+ q 2 q * -b + ) -(a * + a -+ q 2 b * + b -) = 0 using commutation relations [START_REF] Connes | Noncommutative Geometry, Quantum Fields and Motives[END_REF]. Now, replacing δ by d in (57) gives (56) since F commute with a ± , b ± and F is central by [START_REF] Goswami | Some noncommutative geometric aspects of SU q (2)[END_REF].

Proposition 5.2. The one-form in (56) is in fact exactly a function of the Dirac operator D:

π(a * ) dπ(a) + q 2 π(b) dπ(b * ) + q 2 π(a) dπ(a * ) + q 2 π(b * ) dπ(b) = ξ q (D) = F ξ q (|D|), (58) 
where ξ q (s) := q

[2s]-2s [s+1/2][s-1/2] . Moreover, F = lim q→0 ξ q (D).
Proof. First, let us observe that the one-form ω in (58) is invariant under the action of the U q (su(2)) × U q (su(2)): h ⊲ ω = ǫ(h) ω for any h ∈ U q (su(2)) × U q (su(2)). For instance, using notations of [START_REF] Dabrowski | The Dirac operator on SU q (2)[END_REF] e ⊲ ω = q

1 2 a * db + q 2 -q 1 2 -1 bda * + q -1 2 bda * -q -1-1 2 a * db = 0 = ǫ(e) ω.
Therefore, since both the representation π as well as the operator D are equivariant, the image of ω must be diagonal in the spinorial base. A tedious computation with the full spinorial representation π given in (10) yields v j↑ ml , ω v j↑ ml = q 8j+8 -q 8j+6 -(4j+3) q 4j+6 +(8j+6) q 4j+4 -(4j+3) q 4j+2 -q 2 +1 (q 4j+4 -1)(q 4j+2 -1)

= ξ q (2j + 3 2 ), v j↓ ml , ω v j↓ ml = -q 8j+4 +q 8j+2 +(4j+1) q 4j+4 -(8j+2) q 4j+2 +(4j+1) q 4j +q 2 -1

(q 4j+2 -1)(q 4j -1) = -ξ q (2j + 1 2 ).
These expressions have a clear q = 0 limit equal respectively to 1 and -1, so ω → F as q → 0.

In the q = 1 limit, these expressions yields identically 0, which is confirmed by the fact that all one-forms are central, it could be expressed as d(aa * + bb * ) = d 1.

Note that since the invariant one-form we constructed differs by OP -∞ from F , hence any commutator with it will be itself in OP -∞ . We do not know if a central form ω is automatically invariant by the action of both U q (su(2)), that is: h ⊲ ω = ǫ(h)ω.

Proposition 5.3. The order one calculus up to OP -∞ is not universal.

Proof. Let us take the one-form ω F from (56), which gives F . Then, for any x ∈ A(SU q (2)) we have π(xω Fω F x) = 0.

Corollary 5.4. Still modulo OP -∞ , 1 ∈ π Ω 2 u (A) . Proof. 1 = F 2 is by definition in π Ω 2 u (A) .
In fact, one checks, using ( 16), ( 19), ( 22) that

q 2 da da * -da * da = 1 -q 2 (59)
showing again that 1 ∈ π Ω 2 u (A) . Similarly, using ( 15) and ( 17), ( 22), [START_REF] Estrada | On summability of distributions and spectral geometry[END_REF], we get still up to OP -∞ q da db = db da, q da db * = db * da, da * db = q db da * , da * db * = q db * da * db db * = db * db, da da * + db db * = -1.

(60)

The use of the last equality of ( 60) and (59) gives Proposition 5.5. Up to OP -∞ , F is not a (universal) closed one-form, as da * da + q 2 da da * + q 2 db * db + q 2 db db * = -1q 2 . (61)

The ideal R

In order to perform explicit calculations of all terms of the spectral action, we observe that each δ-one-form could be expressed in terms of xδ(z)y, where z is one of the generators a, a * , b, b * and x, y are some elements of the algebra A(SU q (2)).

Then, for the computation of xdzy|D| -1 we can use the trace property of the noncommutative integral to get:

-xδ(z)y |D| -1 = -yxδ(z) |D| -1 + -xδ(z) |D| -1 δ(y) |D| -1 .
Therefore, the problem of calculating the tadpole-like integral could be in effect reduced to the calculation of much simpler integrals: xδ(z) for all generators z and the integrals of higher order in |D| -1 . However, it appears that the calculations of higher-order terms simplify a lot, when we further restrict the algebra by introducing an ideal, which is invisible to the parts of integral at dimension 2 and 3. For instance, consider the space of pseudodifferential operators T ∈ Ψ 0 (A) of order less or equal to zero (see [START_REF] Connes | The local index formula in noncommutative geometry[END_REF]), which satisfy

-T t |D| -2 = -t T |D| -2 = -T t |D| -3 = -t T |D| -3 = 0, ∀t ∈ Ψ 0 0 (A). ( 62 
)
The elements a -, b -b + , b -b * + and their adjoints are in this space up to OP -∞ : this is due to the fact that in Theorem 3.4, τ 1 ⊗ τ 1 r(x) = 0 when r(x) ∈ π ± (A) ⊗ π ± (A) mod OP -∞ contains tensor products of π ± (b) or π ± (b * ) since these elements are in the kernel of the grading σ.

Definition 5.6. Let R be the kernel in X of (σ ⊗ σ) • r where r is the Hopf-map defined in [START_REF] Grosse | 8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory[END_REF] and σ is the symbol map and let R be the vector space generated by R and R F .

Note that R is a * -ideal in X and a -, b -b + (= q 2 b + b -), b -b * + are in R.
By construction and Theorem 3.4, any T ∈ R satisfies (62) and R is invariant by F . Moreover, by [START_REF] Dabrowki | Dirac operators on all Podleś spheres[END_REF], [b -, b * -] ∈ R, so by ( 16) and ( 22), a * + a +q 2 a + a * + -(1q 2 ) ∈ R and by [START_REF] Estrada | On summability of distributions and spectral geometry[END_REF],

q a + b --b -a + ∈ R.
It is interesting to quote, thanks to Theorem 3.4 that if x ∈ R, then F x |D| -1 = 0 while a priori, x |D| -1 = 0. Note that F ∈ Ψ 0 (A) also satisfies ( 62 

δ(bb * ) = -δ(aa * ) = -δa a * -a δa * = -(a + -a -)(a * + + a * -) -(a + + a -)(a * --a * + ) = 2(a + a * --a -a * + ) is in R since a -∈ R yielding d(bb * ) ∈ R F .
We do not know if R is equal to the subset of the algebra generated by B and B F satisfying (62).

Lemma 5.7. R is a * -ideal in Ψ 0 (A) which is invariant by F , d, δ.

Proof. Since R is an ideal in X = B mod OP -∞ (see Remark 3.3), R appears to be an ideal in Ψ 0 (A) ⊂ algebra generated by B and B F . Since R is invariant by F , its invariance by d follows from its invariance by δ which is true on the generators of R.

Note that, according to Theorem 4.13, da |D| -2 = da |D| -3 = 0 while a * da |D| -3 = 2 which emphasize the role of "for all t" in (62).

Lemma 5.8. For any t ∈ Ψ 0 0 (A) and T ∈ R, we have t T |D| -1 = T t |D| -1 .

Proof. For any t ∈ B, we have

T t |D| -1 = t T |D| -1 + T |D| -1 δ(t) |D| -1 and moreover T |D| -1 δ(t) |D| -1 = T δ(t) |D| -2 -T δ 2 (t) |D| -3 which comes from |D| -1 δ(t)|D| -1 = δ(t)|D| -2 + [|D| -1 , δ(t)]|D| -1 = δ(t)|D| -2 -|D| -1 δ 2 (t)|D| -2 = δ(t)|D| -2 -δ 2 (t)|D| -3 + |D| -1 δ 3 (t)|D| -3 .
So we get the result because T satisfies (62).

Lemma 5.9. If ≃ means equality up to the ideal R, the following rules with d(.) = [D, .] of the first-order differential calculus hold (forgetting π)

a da ≃ da a, a * da ≃ -da * a, b da ≃ q da b, b * da ≃ q da b * , a da * ≃ -da a * , a * da * ≃ da * a * , b da * ≃ q -1 da * b, b * da * ≃ q -1 da * b * , a db ≃ q -1 db a, a * db ≃ q db a * , b db ≃ db b, b * db ≃ db b * ≃ -b db * , a db * ≃ q -1 db * a, a * db * ≃ q db * a * , b db * ≃ db * b ≃ -b * db, b * db * ≃ db * b * . Moreover a * da -q 2 da a * ≃ (1 -q 2 ) F, q 2 a da * -da * a ≃ (1 -q 2 ) F. (63) 
Proof. The table follows from relations [START_REF] Chamseddine | The spectral action principle[END_REF] and Lemma 3.2 with (28) (one can also use [START_REF] Connes | Noncommutative Geometry, Quantum Fields and Motives[END_REF].) For instance, since a -∈ R, using the fact that R is invariant by F ,

b da = (b + + b -)(a + -a -) F ≃ (b + + b -)(a + + a -) F = ba F = q ab F ≃ q (a + -a -) F b = q da b
or similarly, a * da = (a * + + a * -)(a +a -)F ≃ (a * +a * -)(a + + a -)F = -da * a. The second of equivalence of (63) is just the adjoint of the first one that we prove now: Similar considerations for the case x = a, a * lead to the remaining terms. Note that the presentation is not unique, since there still might remain terms, which are in R, for example:

a * da -q 2 da a * = (a * + + a * -)(a + -a -)F -q 2 (a + -a -)F (a * + + a * -) ≃ (a * + + a * -)(a + + a -)F -q 2 (a + + a -)(a * + + a * -)F = (a * a -q 2 aa * ) F = (1 -q 2 ) F.
b * db + db * b = d(bb * ) ∈ R. (ii) is direct.
Next we can start explicit calculation of the integrals, beginning with the tadpole terms. Application of the Leibniz rule yields to a presentation of one-forms which is different from the one of previous lemma. Each δ-one-form could be expressed, as a finite sum of the terms xδ(z)y, where z is one of the generators a, a * , b, b * and x, y are some elements of the algebra A SU q (2) . Proposition 5.12. For all x, y ∈ A SU q (2) and z ∈ {a, a * , b, b * } we have

-xδ(z)y |D| -1 = -yxδ(z) |D| -1 + -xδ(z)δ(y) |D| -2 --xδ(z)δ 2 (y) |D| -3 .
Proof. This is just the application of the trace property of the noncommutative integral, together with the identity: |D| -1 δ(z)|D| -1 = -|D| -1 , z .

Remark 5.13. The computation of tadpole-like integrals is reduced to the integrals xδ(z)|D| -1 for all generators z and the integrals of higher order in |D| -2 . However, the calculations of higher-order terms simplify a lot after we use the relations which hold up to the ideal R: this erases parts of integral depending on |D| -2 and |D| -3 . Thus, beside xδ(z) |D| -1 , we only need to compute xδ(z)δ(z ′ ) |D| -2 where z and z ′ are generators, since all the |D| -3 integrals have already been explicitly computed in section 4.6 (these integrals do not depend on q.) Besides the tadpole, the only integrals that need to be computed are A |D| -2 and A 2 |D| -2 where A is a δ-1-form. Working modulo R and using again Leibniz rule, we only need to compute xδ(z) |D| -2 and the previous integrals xδ(z)δ(z ′ ) |D| -2 .

Operators L q and M q

In the notation v j l,m of H, we have already use the j dependence in [START_REF] Connes | Noncommutative geometry and reality[END_REF] with J q v j m,l := q j v j m,l . Let L q and M q be the similar diagonal operators L q v j m,l := q 2l v j m,l , M q v j m,l := q 2m v j m,l .

We immediately get Lemma 5.14.

For n ∈ N * , (L q ) n |D -2 | = (M q ) n |D -2 | = 2 1-q 2n . Proof. We have Tr L n q |D| -2-s = ∞ 2j=0 2j m=0 2j+1 l=0 v j m,l , L n q |D| -2-s v j m,l = ∞ 2j=0 (2j + 1) 1-q 2n(2j+2) 1-q 2n d -2-s j + + ∞ 2j=0 (2j + 1) 1-q 2n(2j+2) 1-q 2n d -2-s j ∼ 0 1 1-q 2n ζ(s + 1, 3 2 ) + ζ(s + 1, 1 2 ∼ e 2 1-q 2n ζ(s + 1) .
where ∼ 0 means modulo a function holomorphic at 0. This gives the result for L n q and a similar computation can be done for M n q .

The interest of these operators stems in Lemma 5.15. We have

L q M q ∈ R. Moreover, b δb * ≃ M q -L q , b * δb ≃ L q -M q , bb * ≃ L q + M q , a δ(a * ) ≃ -aa * ≃ L q + M q -1, a * δa ≃ a * a ≃ 1 -q 2 (L q + M q ), da da * ≃ L q + M q -1, da * da ≃ q 2 (L q + M q ) -1, b n-2 (b * ) n db db ≃ (L q ) n + (M q ) n , b n-1 (b * ) n-1 db db * ≃ -(L q ) n -(M q ) n , b n (b * ) n-2 db * db * ≃ (L q ) n + (M q ) n . Proof. Since L q M q = q 2 a -a * -∈ R, we compute up to the ideal R b δb * = (b + + b -)(b * --b * + ) ≃ -b + b * + + b -b * -= M q -L q + L q M q (1 -q 2 ) ≃ M q -L q
and similarly for the other relations. 

-(bb * ) n |D| -1 = -2(1+q 2n ) (1-q 2n ) 2 , -(bb * ) n b * δb |D| -1 = -(bb * ) n b δb * |D| -1 = 2 1-q 2n+2 , -(bb * ) n a da * D -1 = -2q 4n+2 -2q 4n -2q 2n+2 +6q 2n (1-q 2n ) 2 (1-q 2n+2 ) , -(bb * ) n a * da D -1 = 6q 2n+2 -2q 2n -2q 2 -2 (1-q 2n ) 2 (1-q 2n+2 ) .
Note that the knowledge of these integral is enough for the computation of any term of the form xδ(z)|D| -1 , where z is a generator, since any other δ-one-form will be unbalanced. To show this proposition, we will use few symmetries, properties of the ideal R and replacement of δ-one-forms in terms of L q , M q as above. Let U be the following unitary operator on the Hilbert space: Proof. (i) is direct consequence of the trace property of and the fact that OP -4 operators are trace-class.

U v j↑ m,l = (-1) m+l v j + ↓ l,m , U v j↓ m,l = (-1) m+l v j -↑ l,
ii) We calculate:

-z x D -1 y D -1 = -z x y D -1 -D -1 [D, y] D -1 D -1 = -z xy D -2 --z xD -1 [D, y] D -2 = -z xy D -2 .
The last step is based on the observation that any integral with D -3 vanishes if the expression integrated contains b or b * .

Lemma 5.20. For any n ∈ N,

(i) -(bb * ) n b * db D -1 = 2 1-q 2n+2 . (ii) -(bb * ) n d(bb * ) D -1 = 0. (iii) -(bb * ) n |D| -1 = -2(1+q 2n ) (1-q 2n ) 2 .
Proof. (i) With n > 1, we begin with d ((b b * ) n ) D -1 = 0, which follows directly from the trace property of the noncommutative integral. Expanding the expression using Leibniz rule and the commutation

xD -1 = D -1 x + D -1 [D, x]D -1 , (65) 
we obtain

0 = n-1 k=0 -b k db b n-k-1 (b * ) n D -1 + n-1 k=0 -b n (b * ) k db * (b * ) n-k-1 D -1 =n -b n-1 (b * ) n db D -1 + -b n (b * ) n-1 db * D -1 + n-1 k=0 -b k db D -1 d(b n-k-1 (b * ) n )D -1 + b n (b * ) k db * D -1 d((b * ) n-k-1 )D -1 . Using Lemma 5.19, 0 =n -(bb * ) n-1 (b * db + b db * ) D -1 + -1 2 n(n -1)b n-2 (b * ) n db db + n 2 b n-1 (b * ) n-1 db db * + 1 2 n(n -1)b n (b * ) n-2 db * db * D -2 .
The integrals with D -2 could be easily calculated when we take restrict ourselves to calculations modulo ideal R:

n -(bb * ) n-1 (b * db + b db * ) D -1 = -2 n(n -1) -2n 2 + n(n -1) 1 1-q 2n = 4n 1 1-q 2n .
Hence (bb * ) n-1 (b * db + b db * ) D -1 = 4 1-q 2n , which together with Corollary 5.18 proves i). (ii) In a similar way, (bb

* ) n-1 d(bb * ) D -1 = 0 = (bb * ) n-1 d(aa * ) D -1 implies: 0 = n-1 k=0 (bb * ) n-k-1 d(bb * )(bb * ) k D -1 =n -(bb * ) n-1 d(bb * ) D -1 + 1 2 n(n -1) -(bb * ) n-2 d(bb * ) d(bb * ) D -2 =n -(bb * ) n-1 d(bb * ) D -1 ,
where in the last step we used that d(bb * ) ∈ R. The identity (ii) now follows from the equality aa * = 1bb * . (iii) Using Lemma 5.19, we get

A n := -(bb * ) n |D| -1 = -(bb * ) n (aa * + bb * )|D| -1
and we push now a * through |D| -1 and from cyclicity of the trace through (bb

* ) n , = A n+1 + -(bb * ) n q 2n a * a |D| -1 + -(bb * ) n q 2n aδ(a * ) |D| -2
the last term being calculated explicitly, since up to ideal R, aδ(a * ) ≃ L q + M q -1, = A n+1 (1q 2n+2 ) + q 2n A n + 4 1 1-q 2n+2 -1 1-q 2n , which leads to A n (1q 2n ) + 4 1-q 2n = A n+1 (1q 2n+2 ) + 4 1-q 2n+2 .

Assuming A n = fn (1-q 2n ) 2 we have fn+4 1-q 2n = f n+1 +4 1-q 2n+2 , and taking into account that A 0 = -2 1+q 2 (1-q 2 ) 2 , we obtain A n = -2 1+q 2n

(1-q 2n ) 2 .

Finally, to get Proposition 5.16, it remains to prove Lemma 5.21. For n ≥ 1, -(bb * ) n a da * D -1 = -2q 4n+2 -2q 4n -2q 2n+2 +6q 2n

(1-q 2n ) 2 (1-q 2n+2 ) , -(bb * ) n a * da D -1 = 6q 2n+2 -2q 2n -2q 2 -2 (1-q 2n ) 2 (1-q 2n+2 ) .

Proof. First, using Leibniz rule, (65) and Lemma 5.19 we have (for n ≥ 1)

-(bb * ) n a da * D -1 = -q 2n -(bb * ) n a * da --(bb * ) n da da * D -2 .

Further, we use the identity (56):

-(bb * ) n a * da + q 2 a da * + q 2 b db * + q 2 b * db D -1 = (1q 2 ) -(bb * ) n |D| -1 .

taking into account that F D = |D|. These equations give together a system of linear equations -(bb * ) n a da * D -1 + q 2n -(bb * ) n a * da D -1 = -4 1 1-q 2n+2 -1 1-q 2n , q 2 -(bb * ) n a da * D -1 + -(bb * ) n a * da D -1 = -2(1q 2 ) 1+q 2n (1-q 2n ) 2 -4q 2

1-q 2n+2

which is solved by the expressions stated in the lemma.

The noncommutative integrals at |D| -2

We need to separate this task into two problems. First, we shall to calculate all integrals x δ(z)|D| -2 , with x ∈ A(SU q (2)) and z being one of the generators. The second problem is to calculate x δ(y) δ(z) |D| -2 , with both y and z being the generators {a, a * , b, b * }. (q 2n+2 -1)(1-q 2n ) , n > 0 -(bb * ) n a * δ(a) |D| -2 = 4(1-q 2 ) (1-q 2n+2 )(1-q 2n ) .

Proof. Since aδ(a * ) ≃ L q + M q -1 and (bb * ) n ≃ L n q + M n q , we get (bb * ) n aδ(a * ) ≃ L n+1 q + M n+1 q -L n q -M n q and the second result is obtained from Lemma 5.14. The other integrals are computed in a similar way. ) n (da da * ) |D| -2 = 4(q 2n+2 -q 2n ) (1-q 2n+2 )(1-q 2n ) , n > 0 -(bb * ) n (da * da) |D| -2 = 4(q 2 -1)

(1-q 2n+2 )(1-q 2n ) .

Proof. This follows from Lemma 5.14 with the equivalences up to R gathered in Lemma 5.15. 

Examples of spectral action

A A |D| -3 A 2 |D| -3 A 3 |D| -3 A |D| -2 A 2 |D| -2 A |D| -1 ζ D A (0) a * da 2 2 2
4q 2 q 2 -1 4q 2 (q 2 +2) q 4 -1 3q 2 +1 2(q 2 -1)

11q 4 +36q 2 +13 3(q 4 -1)
b * db 0 0 0 0

-4 q 4 -1 -2 q 2 -1 4q 2 q 4 -1 ada * -2 2 -2
-4 q 2 -1 4(2q 2 +1) q 4 -1 q 2 +3 2(q 2 -1)

13q 4 +36q 2 +11
3(q 4 -1)

bdb * 0 0 0 0 -4 q 4 -1 -2 q 2 -1 4q 2 q 4 -1 1) Clearly the spectral action depends on q: for instance, S(D a * da , Φ, Λ) = 2 Φ 3 Λ 3 -8 Φ 2 Λ 2 + q 2 +15 2(1-q 2 ) Φ 1 Λ 1 + 11q 4 +36q 2 +13

3(q 4 -1)

Φ(0).

2) Moreover, for B := a δa * and A := B + B * , we get since B ≃ B * mod R,

-A p |D| -k = 2 p -B p |D| -k , 1 ≤ p ≤ k ≤ 3 . ( 66 
)
Thus the spectral action of the selfadjoint one-form A := ada * + (ada * ) * is S(D A , Φ, Λ) = 2 Φ 3 Λ 3 + 16 Φ 2 Λ 2 + q 2 -33 2(1-q 2 ) Φ 1 Λ 1 + 122q 4 +168q 2 -2 3(q 4 -1)

Φ(0). 

3) When

Remark that this spectral action still exists as q → 1! Note however that the symmetrization process (66) is not true in general, for instance if B := a δb and A := B + B * , then A 2 |D| -1 = 8(q 4 -q 2 -1)

(1-q 4 ) 2 while B 2 |D| -1 = 0 or [B, B * ]|D| -1 = 4 1-q 4 . 4) The spectral action can be also independent of q: for instance, if A = 1 1-q 2 ξ(D) is the q-dependent selfadjoint one-form given in (58), then,

S(D A , Φ, Λ) = 2 Φ 3 Λ 3 -8 Φ 2 Λ 2 + 15 2 Φ 1 Λ 1 -13 3 .
7 The commutative sphere S 3

Since SU (2) ≃ S 3 , we get a concrete spinorial representation of the algebra A := C ∞ (S 3 ) on the same Hilbert space H and same Dirac operator D with [START_REF] Connes | Noncommutative Geometry[END_REF] where q = 1 which means that q-numbers are trivial:   with α± jµn := (α ∓ j ± µn -) * , β± jµn := (β ∓ j ± µn + ) * . Note that the representation on the vectors v j m,l is not as convenient as in [START_REF] Connes | Geometry from the spectral point of view[END_REF]. One can check that the generators π(a), π(b) and their adjoint commute and that [x, [D ′ , y]] = 0 for any x, y ∈ A.

Conclusion

We computed in this paper the full spectral action on the SU q (2) spectral triple of [START_REF] Dabrowski | The Dirac operator on SU q (2)[END_REF] with the reality operator J (notice the change of definition for pseudodifferential operators.) The dimension spectrum being a finite set, there is only a finite number of terms in the spectral action expansion. The tadpole hypothesis is not satisfied on SU q (2). We saw that that the action depends on q and the limit q → 1 does not exist automatically. When it exists, such limit does not lead to the associated action on the commutative sphere S 3 . The sign F of the Dirac operator has special properties: first, it commutes modulo OP -∞ with elements of the algebra, and second, it can be seen as a one-form, giving terms independent of q in the spectral action. Here, we were interested in the computation of the spectral action of a quantum group. Naturally, it would be interesting to investigate other related cases like the Podleś spheres [START_REF] Dabrowski | Local index formula on the equatorial Podleś sphere[END_REF][START_REF] Dabrowki | Dirac operators on all Podleś spheres[END_REF] or the Euclidean quantum spheres [START_REF] Dabrowski | Geometry of quantum spheres[END_REF][START_REF] Landi | Noncommutative spheres and instantons[END_REF], especially the 4-sphere [START_REF] D'andrea | The isospectral Dirac operator on the 4dimensional quantum Euclidean sphere[END_REF].

  , this is equal toa 0 D -1 [D, a 1 ]D -1 [D, a 2 ] which means that -bλφ 1 (a 0 , a 1 , a 2 ) = -[D -1 , a 0 ][D, a 1 ]D -1 [D, a 2 ]a 0 [D, a 1 ]D -1 [D, a 2 ]D -1

  s=0 ζ T D (s) where ζ T D (s) := Tr(T |D| -s ).

  is the Hurwitz zeta function and ζ(s) := ζ(s, 1) is the Riemann zeta function) we get

  ) by Theorem 3.4 while F / ∈ R since F 2 = 1. Moreover other elements are in R like for instance d(b * b) = d(bb * ):

Remark 5 . 10 .

 510 The above written rules remain valid if dx is replaced by δ(x) and F by 1.Working modulo R simplifies the writing of a one-form: Lemma 5.11. (i) Every one-form A can be, up to elements from R, presented asA ≃ x a da + da * x a * + x b db + db * x b * ,where all x * are the elements of A. (ii) When A is selfadjoint, A can be written up to R (not in a unique way, though) asA ≃ x a dada * (x a ) * + x b dbdb * (x b ) * ,where x a , x b are arbitrary elements of A.Proof. (i) A basis for one-forms consists of the following forms:a α b β (b * ) γ d a α ′ b β ′ (b * ) γ ′ , where α, α ′ ∈ Z and β, γ, β ′ , γ ′ ∈ N.Using the Leibniz rule and the commutation rules within the algebra (up to the R according to Lemma 5.9), we reduce the problem to the case of the forms:a α b β (b * ) γ dx a α ′ b β ′ (b * ) γ ′ ,where x can be either of the generators a, a * , b, b * . If x = b or x = b * , the straightforward application of the rules of the differential calculus leads to the answer that the one-form could be expressed as: a α b β (b * ) γ db and db * a α b β (b * ) γ .

5. 2 . 2

 22 Automorphisms of the algebra and symmetries of integrals Proposition 5.16. For any n ∈ N * ,

1 . 5 . 19 .

 1519 m . Then, by explicit computations we have U * aU = a, U * a * U = a * , U * bU = b * , U * b * U = b, and U * DU = -D. Lemma 5.17. Each noncommutative integral (55) of an element of the algebra or differential forms is (up to sign) invariant under the algebra automorphism ρ defined by ρ(a) := a, ρ(a * ) := a * , ρ(b) := b * , ρ(b * ) := b. (64) Proof. For any homogeneous polynomial p and any k ∈ N, p(a, a * , b, b * , D) D -k = -U * p(a, a * , b, b * , D) D -n U = (-1) kp(U * aU, U * a * U, U * bU, U * b * U, U * DU ) D -k = (-1) k+dp(ρ(a), ρ(a * ), ρ(b), ρ(b * ), D) D -k , where d is the degree of p with respect to D. Corollary 5.18. For any n ∈ N, (bb * ) n b * db D -1 = (bb * ) n b db * D -Lemma For any x, y ∈ Ψ 0 (A), (i) -xy|D| -1 = -yx|D| -1 +xδ(y)|D| -2 -xδ 2 (y) |D| -2 . (ii)z x D -1 y D -1 =z xy D -2 , where z ∈ A contains b or b * .

Lemma 5 . 22 .

 522 The only a priori non-vanishing integrals of the type x δ(z) |D| -2 are for n ∈ N:-(bb * ) n b * δ(b) |D| -2 = -(bb * ) n bδ(b * ) |D| -2 = 0, -(bb * ) n aδ(a * ) |D| -2 = 4q 2n (1-q 2 )

Lemma 5 . 23 . 4 1 4 1

 52344 The only a priori non-vanishing integrals of the type x dy dz |D| -2 are for n ∈ N:-(bb * ) n (b * ) 2 db db |D| -2 = -q 2n+4 , -(bb * ) n db db * |D| -2 = -q 2n+2 , -(bb * ) n (a * b * )(da db) |D| -2 = 0, -(bb * ) n (ab * )(da * db) |D| -2 = 0, -(bb * ) n (a * b)(da db * ) |D| -2 = 0, -(bb * ) n (ab)(da * db * ) |D| -2 = 0, -(bb *

  It is clear from Theorem 4.3 that any one-form of the form ada, bdb, adb, a * db, etc... do not contribute to the spectral action. Indeed, only the balanced parts of one-forms give a possibly nonzero term in the coefficients. Let us now give the values of the terms A n |D| -p and the full ζ D A (0) for few examples

2 1-q 2n+2 and B 2 n |D| - 2 = 4 1 2 Φ 1 Λ 1 + 8 1+q

 2224218 B n := (bb * ) n b δb * , then by Lemma (5.15), B n ≃ B * n , so for A n := B n +B * n , the equation (66) is still valid and B p n |D| -k are all zero but B n |D| -1 = -q 4n+4 , soS(D An , Φ, Λ) = 2 Φ 3 Λ 3 -1 2n+2 Φ(0).

  [α] = α. So π(a) |jµn := α + jµn |j + µ + n + + α - jµn |j -µ + n + , π(b) |jµn := β + jµn |j + µ + n -+ β - jµn |j -µ + n -, π(a * ) |jµn := α+ jµn |j + µ -n -+ αjµn |j -µ -n -, π(b * ) |jµn := β+ jµn |j + µ -n + + βjµn |j -µ -n +(68)where α + jµn := j + µ + 1

  we obtain our result. Suppose now that λ > κ. Let us note U ′′ 2j :=

	2j m=0 t ′′ 2j,m . Since the t ′′ 2j,m are positive and 2j is an increasing real sequence. The estimate 2j,m for all j, m, U ′′ 2j+1,m ≥ t ′′ t ′′

Table 1 :

 1 Values of noncommutative integrals

Note that a similar result for a different spectral triple over SUq(2) when q = 0 was obtained in[13, eq. (48)] 

Partially supported by Polish Government grants 189/6.PRUE/2007/7; 115/E-343/SPB/6.PR UE/DIE and N 201 1770 33

and then, (T + K,P ) m,2j = q σ t K,P +sλ (-1)

Following the proof of Lemma 4.7, we see that τ 0 (T + K,P ) is possibly nonzero only in the two cases λ ′ = 0 or λ = 0. Suppose first λ = λ ′ = 0. In that case, we have

where the second equality comes from Lemma 4.17.

In the case (λ = 0, λ ′ > 0), we get α ′ 1 = -β ′ 1 and thus, (T + K,P ) m,2j = q σ t K,P q mλ (q

Let us note U 2j = 2j m=0 q mλ (q

As in the proof of Lemma 4.7 (ii), we can conclude that U 2j -L 2j converges to 0. The case β ′ 1 ≤ 0 is similar. In the other case (λ > 0, λ ′ = 0), the arguments are the same, replacing λ by λ ′ and α 1 ,

A similar computation of τ 0 (T - K,P ) can be done following the same arguments. We find eventually

) and the result follows. (iii) The same arguments of (i) apply here with minor changes. (iv) follows from a slight modification of the proof of Lemma 4.14 (iv). (v) is a straightforward consequence of (i, ii, iii, iv). Lemma 4.17. Let β, β ′ ∈ Z. Then,

Translation of Dirac operator

In general the Dirac operator is defined in a more symmetric way than that we did. So, although not absolutely necessary here, we define for the interested reader the unbounded self-adjoint translated operator D ′ on H by the constant λ as

For instance, this gives for λ = -1 2 in the case of S 3 , see [START_REF] Homma | A representation of Spin(4) on the eigenspinors of the Dirac operator on S 3[END_REF],

As the following lemma shows, the computation of noncommutative integrals involving D can be reduced to the computation of certain noncommutative integrals involving D ′ :

, then for any 1-form A on a spectral triple of dimension n,

Proof. Recall from [22, Proposition 4.8] that for any pseudodifferential operator P ,

Moreover, by [START_REF] Essouabri | Spectral action on noncommutative torus[END_REF]Lemma 4.3], for any s ∈ C and

where

mod OP -N -1 and K p,s are complex numbers that can be explicitly computed. Precisely, we find K p,s = (-s 2 ) p V (p) where V (p) is the volume of the p-simplex. Since the spectral dimension is n, we work modulo OP -(n+1) , and for s = n -2, we get from (69):

As a consequence, we have for P ∈ OP 0 (the OP 0 spaces are the same for D or D ′ ),

Since A and AF are in OP 0 , we get both formulae.

Tadpole and spectral action on S 3

We consider now the commutative spectral triple (C ∞ (S 3 ), H, D). It is 1-summable since jµn s | [F, π(x)] |jµn s = 0 when x = a, a * , b, b * for any j, µ, n, s = ↑, ↓. All integrals of above lemma are zero for S 3 : Proposition 7.2. There is no tadpole of any order on the commutative real spectral triple (C ∞ (S 3 ), H, D). In fact, for any one-form or δ-one-form A, AD -p = 0 for p ∈ { 1, 2, 3 }.

Proof. We first want to prove AD -p = 0 for p ∈ { 1, 2, 3 } and any one-form A. Since the representation is real, that is any matrix elements of the generators are real, so must be the trace of AD -p . Hence AD -p = A * D -p . The reality operator J introduced in (29) satisfies, when q = 1, the commutative relation JxJ -1 = x * for x ∈ A. Thus JAJ -1 = -A * , so AD -p = J (A * D -p ) J -1 = -A * D -p and AD -p = 0. Similar proof for the δ-form AF .

For any selfadjoint one-form A, D A := D + A = D. Thus, the spectral action for the real spectral triple C ∞ (S 3 ), H, D for D A is trivialized by

But it is more natural to compare with the spectral action of D+A. This is obtained respectively from Lemma 4.18 and general heat kernel approach [START_REF] Gilkey | Asymptotic Formulae in Spectral Geometry[END_REF]:

since all terms of (2) in Λ n-k are zero for k odd and ζ D+A (0) = 0 when n is odd: as a verification, |D + A| -2 is zero according to [START_REF] Essouabri | Spectral action on noncommutative torus[END_REF]Lemma 4.10], Lemmas 4.18 and Proposition 7.2. Similarly, ζ D+A (0) = 0 because in (3), all terms with k odd are zero (same proof as in Proposition 7.2) but for k even, it is not that easy to show that AD -1 AD -1 = 0. Moreover, the curvature term does not depend on A: which as (70) is not identical to (67) which contains a nonzero constant term Λ 0 for q = 1.