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Abstract. Embedding a partially ordered set into a product of chains is a classical way
to encode it. Such encodings have been used in various fields such as object oriented
programming or distributed computing. The embedding associates with each element a
sequence of integers which is used to perform comparisons between elements. A critical
measure is the space required by the encoding, and several authors have investigated ways
to minimize it, which comes to embedding partially ordered sets into small products of
chains. The minimum size of such an encoding has been called the encoding dimension
[24], and the string dimension [22] for a slightly different definition of embeddings.

This paper investigates some new properties of the encoding dimension. We clear up
the links with the string dimension and we answer the computational complexity questions
raised in [22] and [24]: both these parameters are NP-hard to compute.

1. Introduction

Partially ordered sets (orders for short) occur in numerous fields of computer science,
like distributed computing, programming languages, databases or knowledge representation.
Such applications have raised the need for storing and handling them efficiently. Many ways
of encoding partially ordered sets have been proposed in the literature. Depending on the
purposes, several criteria are commonly considered to guide the choice of the most appro-
priate encoding. One may cite the compromise between speeding up operations and saving
space, the choice between dynamic or static data structures with regard to possible modifi-
cations of the order, the complexity of generating the encoding from usual data structures
(like matrices or lists of successors), the restrictions on the data structures imposed by hard-
ware and software (e.g. storing the order in a database which can be then accessed only by
means of SQL requests). Performing fast comparisons between elements while saving space
is the most usual issue.

Here is a non-exhaustive list of approaches that have been studied: numbering the
elements in order to compress their lists of successors [1, 38], partitioning the order into
nice subsets like antichains [10, 16, 44] or chains [6, 16, 29, 33, 35, 39], mixing numbering
and partitioning [23, 47], seeing the order as the inclusion order on some geometrical shapes
[2, 18], describing the order as the union of nice orders on the same set of elements [8, 45],
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Figure 1: Examples of embeddings of the orders P and Q into some products of chains.

describing the order by combinations of boolean formulas on integer tuples [11, 19, 20, 21],
focusing on lattice operations [4, 41].

Another classical scheme consists in embedding the order into another one which is
known to have a nice representation. More formally, let P = (X,≤P ) be an order where
≤P is an order relation (i.e. reflexive, antisymmetric and transitive) on a ground set X,
and Q = (Y,≤Q) another order. An order embedding (embedding for short) of P into Q is a
mapping ϕ from X into Y such that for all x, y ∈ X, x ≤P y if and only if ϕ(x) ≤Q ϕ(y). We
will denote the existence of such an embedding of P into Q by P ↪→ Q. By requiring that
Q should belong to a particular class of orders, different interesting classes of embeddings
can be defined.

This article focuses on finite orders and investigates a class of embeddings which have
been highlighted by Habib et al [24], namely embeddings of orders into products of chains.
Let n ≥ 1 be an integer, a chain of size n is a total order with n elements. Up to an
isomorphism, it can be represented by the order {0 < 1 < 2 < · · · < n − 1} which is
denoted [n]. Then, let n1, n2, . . . , nd ≥ 1 be d ≥ 1 integers, we denote by [n1] × [n2] ×
· · · × [nd] the product of the d chains where the elements are the corresponding d-uples
{(x1, x2, . . . , xd) | ∀1 ≤ i ≤ d, 0 ≤ xi ≤ ni − 1} and where (x1, x2, . . . , xd) ≤ (y1, y2, . . . , yd)
if and only if ∀1 ≤ i ≤ d, xi ≤ yi.

Any embedding ϕ of P into some product of chains [n1] × [n2] × · · · × [nd], d ≥ 1
provides a simple way to encode P : each element x ∈ X is labelled by its image ϕ(x).
Among the advantages, this information can be stored locally and no spare data structure
is needed to perform the comparisons in P . Using pairwise comparisons of integers is simple
enough to be implemented in various contexts. Up to small adjustments depending on the
precise way the d-uples will be stored, the size of the label associated with each element

is
∑d

i=1dlog2(ni)e bits. The comparison between two elements requires d comparisons of
integers, that is O(d) time which can be shortened if they are parallelized. Figure 1 shows
the embeddings of two orders into some products of chains.

As a matter of fact, such embeddings have been intensively studied when some condi-
tions are imposed on d and the ni’s. The first important results concern the existence of
those embeddings for any order. From [14, 37], it is known that any order with n elements
can be embedded into some product of finite chains (of size n) and the smallest number of
chains for which it works is called the dimension of P and denoted dim(P ). A lot of results
about this parameter have been compiled in Trotter’s book [43]. Concerning the complex-
ity of computing dim(P ), Yannakakis showed in [46] that deciding whether dim(P ) ≤ 3 is
NP-complete, while deciding whether dim(P ) ≤ 2 can be done in linear time [34].
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Figure 2: Three embeddings achieving respectively dim(P ), dim2(P ) and edim(P ).

In [36], Novak generalized this parameter by noticing that for any k ≥ 1 and any
order P , there exists an embedding of P into some product [k]×[k]×· · ·×[k]. It introduced
the k-dimension, denoted dimk(P ), as the minimum number of chains in such a product
(note that dim(P ) = dimn(P )). The case k = 2, which is equivalent to label the elements
by subsets of a fixed set and then consider the inclusion order, has prompted a number of
theoretical studies [25, 27, 32, 42] and led to several heuristics to generate small embeddings
[9, 17, 30]. However it was shown in [27] that given k ≥ 2, deciding whether dimk(P ) ≤ d
for arbitrary P and d is NP-complete.

In [24, 26], Habib et al suggested to work with products of chains without any re-
strictions on the number d of chains and the sizes ni of the chains. It was presented as
a relaxation of the dimension and the k-dimension, and it necessarily leads to smaller la-
bels for the elements. Indeed we always have d ≥ dim(P ), but one may use chains much
smaller than [n] by using more than dim(P ) chains, and then save bits by comparison to the
dim(P )dlog2(n)e bits required by the classical dimension. Consequently, they introduced
a new parameter called the encoding dimension of P , denoted edim(P ), and defined as
follows:

edim(P ) = min{
d∑

i=1

dlog2(ni)e | d ≥ 1, n1, . . . , nd ≥ 2, P ↪→ [n1]× · · · × [nd]}

Figure 2 illustrates three different ways of embedding an order into some products of
chains and the respective numbers of bits of their labels.

The complexity of computing edim(P ) was not answered in [24]. The authors con-
jectured that it was hard, although they believed that it might exist good approximation
algorithms. In [13], de la Higuera and Nourine searched for optimal plane drawings of orders
of dimension 2. When dim(P ) = 2, one can derive from their work a polynomial algorithm
to compute min{dlog2(n1)e + dlog2(n2)e | P ↪→ [n1] × [n2]}. Note that it is not exactly
edim(P ) since it only considers embeddings into product of two chains.

In their study of vector clocks in distributed systems, Garg and Skawratananand [22]
introduced a class of encodings very close to order embeddings. For an order P = (X,≤P

), instead of the classical definition of embeddings, they consider mappings ϕ from X
into [n1]× · · · × [nd] such that x <P y if and only if ϕ(x) < ϕ(y), where these comparisons
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Figure 3: A string realizer of P .

are strict, but they do not require that ϕ is injective. Such mappings are called string
realizers and their existence is denoted P  [n1]×· · ·×[nd]. Figure 3 shows a string realizer
of an order (note that in this example it is not an embedding). Wishing to minimize the
number of bits of the labels of elements, they introduced the string dimension:

sdim(P ) = min{
d∑

i=1

dlog2(ni)e | d ≥ 1, n1, . . . , nd ≥ 2, P  [n1]× · · · × [nd]}

(it is not actually their original definition of string dimension, but we choose to retain this
one since it is their main optimization problem). Although they cite several references about
the dimension of the orders and its variations, including the encoding dimension, they do
not fully clear up how their string dimension relates to these former parameters.

Our paper aims at disclosing new properties of the encoding dimension. We also in-
vestigate its precise links with the string dimension. As a result, we manage to settle the
computational complexity of those two parameters: both are NP-hard to compute.

2. Definitions and notations

2.1. Partial order definitions

Let P = (X,≤P ) be an order. We only consider finite orders and we also denote by |P |
the cardinal of X. Let x, y ∈ X, x 6= y, we say that x and y are comparable in P if either
x ≤P y or y ≤P x. Otherwise we say that x and y are incomparable. An order where every
pair of elements is comparable (resp. incomparable) is called a chain (resp. an antichain).
By extension, for the order P = (X,≤P ) a non empty set Y of P is called a chain (resp.
an antichain) of P if every pair of elements of Y is comparable (resp. incomparable) in P .
The maximum cardinality of a chain of P minus 1 is called the height of P and denoted
h(P ). The maximum cardinality of an antichain of P is called the width of P and denoted
w(P ). An element x ∈ X is called the maximum (resp. the minimum) of P and denoted
max(P ) (resp. min(P )) if for all y ∈ X, y ≤P x (resp. x ≤P y).

The strict order relation for P = (X,≤P ) is denoted by <P and defined for all x, y ∈ X
as x <P y if x ≤P y and x 6= y. For each x ∈ X, the set of predecessors (resp. successors)
of x in P is defined by PredP (x) = {y ∈ X|y <P x} (resp. SuccP (x) = {y ∈ X|x <P y}).
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Moreover we say that x is covered by y in P , denoted by x ≺P y, if x <P y and there
is no element z ∈ X such that x <P z and z <P y. To manipulate this cover relation, for
each x ∈ X, we define the set of immediate predecessors (resp. immediate successors) of x
in P which is ImPred(x) = {y ∈ X|y ≺P x} (resp. ImSucc(x) = {y ∈ X|x ≺P y}).

2.2. Lattice definitions

A lattice L = (X,≤L) is an order such that for all x, y ∈ X, the pair {x, y} has an
infimum x∧L y and a supremum x∨L y. For instance, the set of all the subsets of {1, ..., n}
ordered by inclusion is a lattice. It is called the boolean lattice of dimension n and denoted
by [2]n for short since it is also isomorphic to [2] × [2] × ...[2], n times.

From an order P = (X,≤P ), several useful lattices can be constructed such as its
Dedekind-MacNeille completion and its lattice of ideals.

The Dedekind-MacNeille completion of P (denoted by DM(P ))) is the unique lattice
(up to an isomorphism) verifying the two properties: there exists an embedding of P into
DM(P )) and for any lattice L such that there exists an embedding of P into L, then there
exists an embedding of DM(P )) into L (see [31, 12] for proofs of its existence).

Let P = (X,≤) be an order, a set I ⊆ X is an ideal of P if and only if ∀x ∈ I,
PredP (x) ⊆ I. The set of all ideals of P ordered by inclusion is a lattice called the ideal
lattice of P and denoted I(P ). It is a distributive lattice (each of the operations ∧ and ∨ is
distributive with regard to the other). Conversely let L = (X,≤L) be a distributive lattice,
and J(L) = {j ∈ X | |ImPred(j)| = 1} be the set of its join-irreducible elements ordered
by ≤L, Birkhoff’s theorem [5, 12] states that L is isomorphic to I(J(L)).

3. Basic results

3.1. Bounds on the encoding dimension

Several bounds have been established for the encoding dimension, and in a few partic-
ular cases, some exact formulas have been set. We give here an overview of the results.
Proposition 3.1 (Folklore).

(1) Let P and Q be two orders, if P ↪→ Q then edim(P ) ≤ edim(Q) (Monotony).
(2) Let P be an order and x one of its elements. Then

edim(P \ {x}) ≤ edim(P ) ≤ edim(P \ {x}) + 2 (Continuity).
(3) Let P be an order, then edim(DM(P )) = edim(P ) (Completion).

Proof. Monotony: Obviously, if Q ↪→ [n1]×[n2]×...×[nd], then P ↪→ [n1]×[n2]×...×[nd]
and thus edim(P ) ≤ edim(Q). Continuity: The left part of the inequality comes from
monotony. Concerning the right part, let ϕ be an encoding for P \ {x}, by adding 2 bits
we can produce an embedding ϕ′ for P . Let ϕ be an optimal embedding of P \ {x} into
[n1]× [n2]× ...× [nd], we define the mapping ϕ′ from P into [n1]× [n2]× ...× [nd]× [2]× [2]
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as follows. For all y ∈ X \ {x}, if ϕ(y) = (ϕ1(y), ..., ϕd(y)) then

ϕ′(y) =





(ϕ(y), 0, 0) if y <P x,

(ϕ(y), 1, 1) if y >P x,

(ϕ(y), 1, 0) if y and x are incomparable.

P \  x x
+ 1,0

+ 1,1

+ 0,1

+ 0,0

Moreover, ϕ′(x) = (supy<P x ϕ1(y), ..., supy<P x ϕd(y), 0, 1). One can easily check that
ϕ′ remains an embedding. The way ϕ is extended is illustrated above.
Completion: this is a direct consequence of the definition of DM(P ), since all products
of chains are lattices.

The next propositions present some first bounds for the encoding dimension.

Proposition 3.2 (Folklore). Let P be an order with |P | = n, then

(1) dlog2(n)e ≤ edim(P );
(2) edim(P ) ≤ dlog2(k)edimk(P ) ∀2 ≤ k ≤ n. In particular, we have:

• for k = n : edim(P ) ≤ dlog2(n)edim(P ) ≤ dlog2(n)en
2 ;

• for k = 2 : edim(P ) ≤ dim2(P ) ≤ n.

Proof. Since any mapping φ from P into [n1] × [n2] × ... × [nd] has to be injective, we
have obviously n = |P | ≤ |[n1] × [n2] × ... × [nd]| = n1 × n2 × ... × nd. Thus log2(n) ≤∑d

i=1 log2(ni) ≤
∑d

i=1dlog2(ni)e. The upper bound involving dimk is directly derived from
the definition of dimk, and the bound dim(P ) ≤ n/2 is Hiragushi’s inequality [28, 43].

Proposition 3.3 ([24]). Let P be an order, C(P ) be the set of partitions into chains of P
then

edim(P ) ≤ min{
∑̀

i=1

dlog2 (|Ci| + 1)e | {C1, ..., C`} ∈ C(P )}

Consequently, edim(P ) ≤ w(P )dlog2(h(P ) + 2)e.

3.2. Classes of orders

For the class of distributive lattices, i.e. ideal lattices, an exact formula is given in [24].
It is related to Proposition 3.3.

Proposition 3.4 ([6, 7, 24]). Let P be an order, C(P ) be the set of partitions into chains
of P then

edim(I(P )) = min{
∑̀

i=1

dlog2 (|Ci| + 1)e | {C1, ..., C`} ∈ C(P )}

Proposition 3.5.

(1) Let An be the antichain of size n, then edim(An) = sp(n) = min{d |
( d
bd/2c

)
≥ n};

(2) Let [n] be the chain of size n, then edim(P ) = dlog2 (n)e;
(3) Let [2]n be the boolean lattice of dimension n, then edim([2]n) = n;

(4) Let [n1]×...×[nd] be a product of chains, then edim([n1]×...×[nd]) =
d∑

i=1
dlog2 (ni)e.

Proof.
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(1) edim(An) = sp(n) : We can show that edim(An) = dim2(An). Let ϕ be an embed-
ding of An into [n1]× [n2]× ...× [nd] with ϕ(x) = (ϕ1(x), ϕ2(x), ..., ϕd(x)). Suppose

that n1 ≥ 3. Then we can produce an embedding
∼
ϕ of An into [2]× [dn1

2 e]× [n2]×

... × [nd] defined by
∼
ϕ(x) = (

∼
ϕ0(x),

∼
ϕ1(x), ...,

∼
ϕd(x)), where if 0 ≤ ϕ1(x) < n1

2 , then
∼
ϕ0(x) = 0 and

∼
ϕ1(x) = ϕ1(x). And otherwise if n1

2 ≤ ϕ1(x) ≤ n1, then
∼
ϕ0(x) = 1

and
∼
ϕ1(x) = ϕ1(x) − dn1

2 e. It can be easily checked that
∼
ϕ remains an embedding.

Moreover this transformation does not increase the size of the embedding. We only
have to check that dlog2(n1)e is larger or equal to 1 + dlog2(d

n1

2 e)e = dlog2(2d
n1

2 e)e.

These values are actually equal since ∀k ∈ N, 2d n1

2 e ≤ 2k ⇐⇒ dn1

2 e ≤ 2k−1 ⇐⇒
n1

2 ≤ 2k−1 ⇐⇒ n1 ≤ 2k.
By starting from ϕ an optimal embedding of An and repeatedly applying this

transformation , we obtain an optimal embedding of An into a product where all

the chains are [2]. The smallest size of an embedding of An into some product [2]d

is by definition d = dim2(An) and thanks to Sperner’s Theorem [3, 15] it is known
that dim2(n) = sp(n).

(2) Let [n] be the chain of size n, then dlog2 (n)e ≤ edim([n]) from Proposition 3.2. We
also have edim([n]) ≤ dlog2 (n)edim(P ) from Proposition 3.2. Since [n] is a chain,
we have dim(P ) = 1. Finally edim([n]) = dlog2 (n)e;

(3) Let [2]n be a boolean lattice, we have n = dlog2 ([2]n)e ≤ edim([2]n) from Proposi-
tion 3.2. We also have edim([2]n) ≤ dim2([2]

n) = n. Finally edim([2]n) = n;
(4) The formula for P = [n1] × [n2] × ... × [nd] is not as obvious as it may look.

Proposition 3.2 provides the lower bound d
∑d

i=1(ni) log2(ni)e ≤ edim(P ) and since
P ↪→ [n1] × [n2] × ... × [nd], by definition of edim(P ), we have the upper

bound edim(P ) ≤
∑d

i=1dlog2(ni)e. Unfortunately these two bounds are not equal
in general. The exact formula requires more arguments.

The order P is clearly a distributive lattice and the order induced on its join
irreducible elements is [n1 − 1] ∪ [n2 − 1] ∪ ... ∪ [nd − 1]. From Proposition 3.4,

we have edim(I(P )) = min{
∑d

i=1dlog2 (|Ci| + 1)e | {C1, ..., Cd} ∈ C(I(P ))}. If we

choose Ci = [ni − 1] for all 1 ≤ i ≤ d, we obtain an embedding of size
∑d

i=1dlog2(ni−

1+1)e =
∑d

i=1dlog2 nie. Now any other partition into chains of [n1 − 1]∪ [n2 − 1]∪
...∪[nd − 1] has the form {Ci,j}1≤i≤d, 1≤j≤Ji

where {Ci,1, Ci,2, ..., Ci,Ji
} is a partition

of [ni − 1]. To bound the size of the associated embedding, we use the following
lemma.

Lemma 3.6. The function x 7→ dlog2 (x + 1)e is non-decreasing and sub-additive
over R+.

Proof. The functions x 7→ dxe is non-decreasing and sub-additive, as well as x 7→
log2 (x+1) where sub-additivity comes from concavity. So their composition is also
non-decreasing and sub-additive. It means that for any finite sequence of positive
reals (xi), we have dlog2 (

∑
i xi + 1)e ≤

∑
idlog2 (xi + 1)e.

Due to this sub-additivity we have for all 1 ≤ i ≤ d, dlog2(
∑

j |Ci,j | + 1)e ≤∑
jdlog2(|Ci,j | + 1)e, that is dlog2 nie ≤

∑
jdlog2(|Ci,j | + 1)e. Thus

∑
idlog2 nie ≤∑

i,jdlog2(|Ci,j |+1)e This shows that the minimum size of an embedding of [n1 − 1]×
[n2 − 1] × ... × [nd − 1] is

∑
idlog2 nie.
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3.3. Links with the string dimension

It turns out that the string dimension and the encoding dimension are exactly the
same parameter up to a small decomposition step. Let P = (X,≤P ) be an order, x, y ∈
X are twins if SuccP (x) = SuccP (y) and PredP (x) = PredP (y) (they are necessarily
incomparable). They are also called duplicated holdings in [43]. Being twins is an equivalence
relation denoted ∼ which can be used to quotient the order P (i.e. identify each set of twins
by a single element). The quotiented order on the quotiented set X/ ∼ is denoted P/ ∼.

Proposition 3.7. Let P = (X,≤P ) be an order. Then sdim(P ) = edim(P/ ∼).
Conversely, if P has a minimum and a maximum, then edim(P ) = sdim(P × [2]) − 1.

Proof. To prove the first equality, let ϕ be an embedding of P/ ∼ into [n1]× · · · × [nd]. Let
∼
x ∈ X/ ∼, label all the elements belonging to

∼
x by ϕ(

∼
x). It clearly provides a string realizer

of P . Inversely, let ϕ be a string realizer mapping P into [n1]×· · ·× [nd]. Let x, y ∈ X such
that ϕ(x) = ϕ(y). From the definition of a string realizer, x and y are necessarily twins.

Then let
∼
x ∈ X/ ∼, label

∼
x by ϕ(y) for an arbitrary y ∈

∼
x. This mapping of P/ ∼ into

[n1]× · · · × [nd] is clearly an injective string realizer, that is an order embedding.
For the second inequality, note that P ×[2] has no twins, thus from the first equality, we

have sdim(P×[2]) = edim(P×[2]). Since P ↪→ P×[2], we have edim(P ) ≤ edim(P×[2]) by
monotony. Moreover, from any embedding of P into [n1]×· · ·×[nd], one can easily construct
an embedding of P ×[2] into [n1]×· · ·×[nd]×[2]. It adds only one bit, thus edim(P ×[2]) ≤
edim(P ) + 1. For now, we only have edim(P ) ≤ edim(P × [2]) ≤ edim(P ) + 1.

Suppose that P has a minimum m and a maximum M , m 6= M . Consider an embed-
ding ϕ = (ϕ1, . . . , ϕd) of P × [2] into [n1] × · · · × [nd]. The elements (m, 1) and (M, 0)
of P × [2] are incomparable. Since (m, 1) 6≤ (M, 0), there exists 1 ≤ i ≤ d such that
ϕi((m, 1)) > ϕi((M, 0)). Since ϕ is an embedding, for all x, y ∈ X, we have ϕi((x, 1)) ≥
ϕi((m, 1)) > ϕi((M, 0)) ≥ ϕi((y, 0)). To construct a smaller embedding for P , choose from
ϕi((X, 0)) or ϕi((X, 1)) the set using the smallest range of integers. If ϕi((M, 0)) < bni/2c,
then consider the mapping ϕ′ = (ϕ′

1, . . . , ϕ
′
d) from X into [n1] × · · · × [bni

2 c] × · · · × [nd]
defined by: ∀1 ≤ j ≤ d, ϕ′

j(x) = ϕj((x, 0)). It is an order embedding. Otherwise con-

sider the mapping ϕ′ = (ϕ′
1, . . . , ϕ

′
d) from X into [n1]× · · · × [bni

2 c]× · · · × [nd] defined by:
∀1 ≤ j ≤ d, j 6= i, ϕ′

j(x) = ϕj((x, 1)) and ϕ′
i(x) = ϕi(x) − bni

2 c. In both case, ϕ′ use one

bit less than ϕ. Consequently edim(P ) ≤ edim(P × [2]) − 1 which completes the proof.

Remark 3.8. We conjecture that edim(P ) = sdim(P × [2]) − 1 holds for any order P .

Remark 3.9. As expected, the encoding dimension and the string dimension are very close
measures. One can easily derive bounds for one measure from bounds for the other measure.
Note that in [22], the authors provide the upper bound sdim(P ) ≤ w(P )dlog2(h(P ) + 2)e
which corresponds to the same bound presented in Section 3 for edim(P ). However they
claim that a corollary of their proof is: ∀k ≥ h(P )+ 2, dim(P ) = dimk(P ). This statement
is clearly false: consider An the antichain of size n, h(An) = 0, dim(An) = 2 but, as recalled

in Section 3.2, dim2(An) = sp(n) = min{d |
( d
bd/2c

)
≥ n} which tends to +∞ when n tends

to +∞.
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P P P QP

Q

Q Q

x x x

Figure 4: Examples of application of ⊕ (the join element is denoted by x).

4. NP-Completeness

4.1. Definitions and operations

We first give back the classical series operation on orders, denoted ⊕.

Definition 4.1 (⊕ operator). Let P = (X,≤P ) and Q = (Y,≤Q) be two orders s.t. X∩Y =
∅, the ⊕ operator is defined as follows: P ⊕Q = (X ∪ Y,≤P⊕Q) where for all u, v ∈ X ∪ Y ,

u ≤P⊕Q v if





(u, v ∈ X, and u ≤P v), or

(u, v ∈ Y, and u ≤Q v), or

(u ∈ X and v ∈ Y ).

We now introduce a slight variation of this operator.

Definition 4.2 (⊕ operator). Let P = (X,≤P ) and Q = (Y,≤Q) be two orders s.t. X∩Y =
∅, the ⊕ operator is defined as follows (max stands for maximum and min for minimum):

P ⊕ Q =





P ⊕ [1] ⊕ Q if P without max and Q without min,

P ⊕ Q if (P without max and Q with min) or (P with max and Q without min),

P \ {max(P )} ⊕ Q if P with max and Q with min,

Figure 4 illustrates the result of ⊕ in the three cases. In P⊕Q, the element between P
and Q is called the join element.

Definition 4.3 (Spaces of embeddings). Let P be an order, we define the spaces of chain
products in which P can be embedded as follow:

E(P ) = {(n1, n2, ..., nd) ∈ N
d | d ≥ 1, P ↪→ [n1]× [n2]× ... × [nd]}

Another set is associated with P , where the finite sequences in E(P ) are completed
with an infinite sequence of 1:

∼
E(P ) = {(n1, n2, ..., nd, 1, 1, ...) ∈ N

N∗

| (n1, n2, ..., nd) ∈ E(P )}

By ordering the set of ni decreasingly we get two new definitions:
E≥(P ) = {(n1, n2, ..., nd) ∈ N

d | (n1, n2, ..., nd) ∈ E(P ) and n1 ≥ n2... ≥ nd}
∼
E≥(P ) = {(n1, n2, ..., nd, 1, 1, ...) ∈ N

N
∗

| (n1, n2, ..., nd) ∈ E≥(P )}

Definition 4.4 (Volume of P ). Let P be an order then

vol(P ) = min{
d∏

i=1

ni | (ni)1≤i≤d ∈ E(P )}
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(0,0,1) (0,1,0) (1,0,0)

(1,1,1) (2,1,0)

(1,0)(0,2)

(2,3) (3,1)

P [3]x[2]x[2]

[4]x[4]

(0,0,1) (0,1,0) (1,0,0)

(1,1,1) (2,1,0)

Q

[6]x[5]x[2]P Q

(2,1,1)

(1+2,0+1,1)

(3+2,1+1,1)(2+2,3+1,1)

(0+2,2+1,1)

m

Figure 5: Constructing an embedding of P⊕Q from embeddings of P and Q (m is the join
element).

Remark 4.5. The volume of an order is closely related to its encoding dimension up

to rounding effects: we clearly have log2(vol(P )) = min{
∑d

i=1 log2(ni) | (n1, n2, ..., nd) ∈
E(P )} ≤ edim(P ). The equality holds if, for some optimal embedding, all the ni are powers
of 2.

We have introduced the infinite sequences
∼
E(P ) together with E(P ) for commodity. It

will simplify the description of the embeddings of P⊕Q which consist in pairing embeddings
of P and Q even when they use different numbers of chains. Moreover it preserves the

definition of volumes since we clearly have vol(P ) = min{
∏+∞

i=1 ni | (ni)i≥1 ∈
∼
E(P )}.

Proposition 4.6. Let P = (X,≤P ) and Q = (Y,≤Q) be two orders, then:
∼
E(P⊕Q) = {(ni + n′

i − 1)i≥1 | (ni)i≥1 ∈
∼
E(P ) and (n′

i)i≥1 ∈
∼
E(Q)}

Consequently,

vol(P⊕Q) = min{
+∞∏

i=1

(ni + n′
i − 1) | (ni)i≥1 ∈

∼
E(P ) and (n′

i)i≥1 ∈
∼
E(Q)}

Proof. First, let (ni)i≥1 ∈
∼
E(P ) and (n′

i)i≥1 ∈
∼
E(Q). Let us show that (ni + n′

i + 1)i≥1

belongs to
∼
E(P⊕Q) There exist d and d′ such that P ↪→ [n1] × · · · × [nd] and Q ↪→

[n′
1]× · · · × [n′

d′ ]. We denote D = max(d, d′). Let ϕ (resp. ϕ′) be an embedding of P (resp.
Q) into [n1] × · · · × [nD] (resp. [n′

1] × · · · × [n′
D]). Then we can construct the following

mapping from P⊕Q into [n1 + n′
1 − 1] × · · · × [nD + n′

D − 1] with:

Φ(x) =





ϕ(x) if x ∈ X \ max(P ) (if it exists),

(ϕ′
1(x) + n1 − 1, ..., ϕ′

D(x) + nD − 1) if x ∈ Y \ min(Q) (if it exists),

(n1 − 1, ..., nD − 1) for the join element,

(4.1)

One can easily check that Φ(x) is an order embedding (see Fig. 5 for an example).

Conversely, let (Ni)i≥1 ∈
∼
E(P⊕Q). There exists D ≥ 1 and Φ an embedding of P⊕Q

into [N1] × · · · × [ND]. Let m be the join element of P⊕Q, Φ(m) = (m1, ...,mD). On
one hand, Φ restricted to X is an embedding of P into [m1 + 1] × · · · × [mD + 1]. On the
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other hand, for x ∈ Y we can set φ′(x) = (Φ1(x) − m1, ...,ΦD(x) − mD). Each component
i of φ′(x) belongs to the interval [0, Ni − 1 − mi]. Once again, one can easily check that
φ′ is an embedding of Q into [N1 − m1] × · · · × [ND − mD]. In this way, (Ni)i≥1 has the

form (ni + n′
i − 1)i≥1 with (ni)i≥1 ∈

∼
E(P ) and (n′

i)i≥1 ∈
∼
E(Q) by setting ni = mi + 1 and

n′
i = Ni − mi.

Remark 4.7. Note that we focus on
∼
E(P⊕Q), but one can check that the same reasoning

apply to
∼
E(P ⊕ Q). As a result,

∼
E(P ⊕ Q) =

∼
E(P⊕Q) unless P has a maximum and Q

has a minimum. In this latter case,
∼
E(P ⊕ Q) = {(n′′

i )i≥1 | (ni)i≥1 ∈
∼
E(P ), (n′

i)i≥1 ∈
∼
E(Q) and ∃j ∈ N

∗, ∀i 6= j, n′′
i = ni + n′

i − 1, and n′′
j = nj + n′

j}.

In fact one can refine the latest formula on vol(P⊕Q): as shown below the optimum is
necessarily reached for embeddings which are paired by matching larger chains together.

Proposition 4.8. Let P and Q be two partial orders, then

vol(P⊕Q) = min{
+∞∏

i=1

(ni + n′
i − 1) | (ni)i≥1 ∈

∼
E≥(P ) and (n′

i)i≥1 ∈
∼
E≥(Q)}

.

Proof. Let (ni)i≥1 ∈
∼
E(P ) and (n′

i)i≥1 ∈
∼
E(Q), the formula in Proposition 4.6 calls for the

minimum of
∏d

i=1(mi + m′
i − 1) for all the permutations (mi)i≥1 (resp. (m′

i)i≥1) of (ni)i≥1

(resp. (n′
i)i≥1). However one can show that this minimum is reached by sorting (ni)i≥1 and

(n′
i)i≥1 decreasingly. This is proved thanks to the following lemma.

Lemma 4.9. Let a, b, a′, b′ ∈ R s.t. a ≥ b and a′ ≥ b′. Then

(a + a′ − 1)(b + b′ − 1) ≤ (a + b′ − 1)(a′ + b − 1)

This lemma can be easily checked by expanding the expressions. It ensures that if
(mi)i≥1 and (m′

i)i≥1 are two permutations achieving the minimum
∏+∞

i=1 (mi +m′
i − 1), and

if mI and m′
I′ are the respective maximum of (mi)i≥1 and (m′

i)i≥1, by transforming the
associations mI +m′

I −1 and mI′ +m′
I′ −1 into mI +m′

I′ −1 and mI′ +m′
I −1, the product

does not increase. By repeating this kind of exchanges which pair the values of (ni)i≥1 and
(n′

i)i≥1 decreasingly, one preserves a minimum product. Figure 6 illustrates this property.
Consequently the formula for the volume only requires the pairings of the decreasing

sequences in
∼
E(P ) and

∼
E(Q), that is

∼
E≥(P ) and

∼
E≥(Q).

4.2. Reduction

The next theorem and its corollary set the complexities of computing the encoding
dimension and the string dimension.

Theorem 4.10. The decision problem associated to the encoding dimension, i.e. deciding
whether edim(P ) ≤ k for arbitrary P and k, is NP-complete.
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P

Q3

3

5 6

P

Q

5 3

3

6

volume=(5+3−1)x(3+6−1)=56volume=(5+6−1)x(3+3−1)=50

Figure 6: Comparing associations of embeddings of P and Q to get the smaller embedding
of P⊕Q.

Proof. This problem belongs to NP. Let P = (X,≤P ) an order with n elements and k
an integer, note first that if k > n, we necessarily have edim(P ) ≤ k by Proposition 3.2.
Now suppose that k ≤ n, a certificate for P and k is composed of an integer d ≥ 1, a
d-uple (n1, . . . , nd) of integers such that ∀ 1 ≤ i ≤ d, ni ≥ 2 and

∑d
i=1dlog2(ni)e ≤ k,

and a mapping ϕ from X to [n1] × · · · × [nd]. Since d ≤ n due to constraints and k ≤ n
by assumption, the size of this certificate is polynomial with the size of P . Then checking
whether ϕ is an order embedding can be done in O(dn2) time.

Now we present a reduction from the decision problem associated to the dimension of
orders, i.e. given an order P deciding whether dim(P ) ≤ 3, which was proved NP-complete
by Yannakakis [46]. Let the order P be an instance for the dimension, we first construct an
order Q equal to

P ⊕ [2]3⊕[2]3...⊕[2]3︸ ︷︷ ︸
t times

as illustrated on the right.

Claim 1. For any order P , if dim(P ) ≤ 3 then edim(Q) ≤ 3dlog2(n + t)e.
Indeed, if dim(P ) ≤ 3 then (n, n, n) ∈ E(P ). By applying t times Proposi-

tion 4.6 with (2, 2, 2) ∈ E([2]3), we obtain that (n + t · (2 − 1), n + t · (2 −
1), n + t · (2 − 1)) ∈ E(Q). In other words, Q ↪→ [n + t] × [n + t] × [n + t].
Thus edim(Q) ≤ 3dlog2 (n + t)e.
Claim 2. For any order P , if dim(P ) ≥ 4 then edim(Q) ≥ 1 + 3 log2(t + 2);
Indeed, if dim(P ) ≥ 4 and (n1, n2, ..., nd) ∈ E≥(P ) then, for 1 ≤ i ≤ 4,

we have ni ≥ 2. By applying t times Proposition 4.8 with (2, 2, 2) ∈ [2]3,
we obtain that vol(Q) ≥ 2(2 + t)3. Since edim(Q) ≥ log2 vol(Q), we have
edim(Q) ≥ 1 + 3 log2 (t + 2).
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To sum up, we have:

(1) If dim(P ) ≤ 3 then edim(Q) ≤ 3dlog2(n + t)e = f(t);
(2) If dim(P ) ≥ 4 then edim(Q) ≥ 1 + 3 log2(t + 2) = g(t);
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Asymptotically f(t) is strictly smaller than g(t) which is a good news, since f(t) < g(t)
ensures that edim(Q) ≤ 3 if and only if dim(P ) ≤ 3. Thus given P we now look for t large
enough to have f(t) < g(t) but small enough so that the instance (Q, f(t)) for the encoding
dimension keeps a reasonable size.

We study g(t)−f(t) = 1+3 log2(t+2)−3dlog2(n+t)e. We choose to restrict ourselves to t
s.t. t + n = 2s, s ∈ N. Then g(t) − f(t) = 1 + 3 log2(2

s − n + 2) − 3s = 1 + 3 log2(1 −
n−2
2s ).

Since for all 0 ≤ ε ≤ 1
2 , log2(1 − ε) ≥ −2ε, if n−2

2s ≤ 1
2 , then g(t) − f(t) ≥ 1 − 6n−2

2s .
Thus a sufficient condition for g(t) − f(t) > 0 is 2s > 6(n − 2). To sum up, we wish
that t + n is a power of 2 and t + n > 6n − 12, i.e. t + n ≥ 6n − 11. We can choose
t + n = 2dlog2

(6n−11)e. Then t = 2dlog2
(6n−11)e − n ≤ 2 × 2log

2
(6n−11) − n = 11n − 22 which

implies that |Q| ≤ |P | + 8t ≤ n + 8(11n − 22). Finally by choosing this value for t, we can
decide whether dim(P ) ≤ 3 by checking if edim(Q) ≤ f(t) and our reduction is polynomial
with the size of P .

Corollary 4.11. The decision problem associated to the string dimension, i.e. deciding
whether sdim(P ) ≤ k for arbitrary P and k, is NP-complete.

Proof. The problem is in NP with arguments similar to the ones for the encoding dimension.
Now we use a reduction from the encoding dimension. Let P be an order and k ≥ 1 an
instance for the encoding dimension. Add a maximum, as well as a minimum, to P if

it is missing. This order P̂ (which is [1]⊕P⊕[1]) clearly satisfies edim(P̂ ) = edim(P ).

From Proposition 3.7, sdim(P̂ × [2]) = edim(P ) + 1. Thus edim(P ) ≤ k if and only if

sdim(P̂ × [2]) ≤ k + 1, and the instance P̂ × [2] and k + 1 for the string dimension is
polynomial with the size of the initial instance.

Remark 4.12. With our reduction, we did not manage to adjust the gap, materialized by
g(t) − f(t) or g(t)/f(t), to be large enough with regard to f(t) and g(t) so that we can
derive some non-approximability results.

5. Conclusion

Proving the NP-completeness of the encoding dimension and of the string dimension
answers the complexity questions raised by [22] and [24]. This hardness result could be
expected due to the closeness of difficult problems like the dimension or the k-dimension.
Such a classification encourages to head further researches towards particular classes of
orders for which computations could be polynomial or towards heuristics with good average
performances or good guaranteed ratios.

It is likely that approximating the encoding dimension with guaranteed ratios depending
on |P | is hard. Some non-approximability results have been proved in [27] concerning the
k-dimension for fixed k, but for the dimension, this question raised in [40] remains open.
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