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 for a slightly different definition of embeddings.

This paper investigates some new properties of the encoding dimension. We clear up the links with the string dimension and we answer the computational complexity questions raised in [22] and [24]: both these parameters are N P-hard to compute.

Introduction

Partially ordered sets (orders for short) occur in numerous fields of computer science, like distributed computing, programming languages, databases or knowledge representation. Such applications have raised the need for storing and handling them efficiently. Many ways of encoding partially ordered sets have been proposed in the literature. Depending on the purposes, several criteria are commonly considered to guide the choice of the most appropriate encoding. One may cite the compromise between speeding up operations and saving space, the choice between dynamic or static data structures with regard to possible modifications of the order, the complexity of generating the encoding from usual data structures (like matrices or lists of successors), the restrictions on the data structures imposed by hardware and software (e.g. storing the order in a database which can be then accessed only by means of SQL requests). Performing fast comparisons between elements while saving space is the most usual issue.

Here is a non-exhaustive list of approaches that have been studied: numbering the elements in order to compress their lists of successors [START_REF] Agrawal | Efficient management of transitive relationships in large data and knowledge bases[END_REF][START_REF] Schubert | Determining type, part, color and time relationships[END_REF], partitioning the order into nice subsets like antichains [START_REF] Cohen | Type-extension type tests can be performed in constant time[END_REF][START_REF] Fall | The foundations of taxonomic encodings[END_REF][START_REF] Vitek | Efficient type inclusion tests[END_REF] or chains [START_REF] Bouchet | Etude combinatoire des ordonnés finis[END_REF][START_REF] Fall | The foundations of taxonomic encodings[END_REF][START_REF] Jagadish | A compression technique to materialize transitive closure[END_REF][START_REF] Mattern | Virtual time and global states in distributed systems[END_REF][START_REF] Mehlhorn | Data Structures and Algorithms 2: Graph Algorithms and NP-completness[END_REF][START_REF] Simon | An improved algorithm for transitive closure on acyclic digraphs[END_REF], mixing numbering and partitioning [START_REF] Gil | Efficient subtyping tests with pq-encoding[END_REF][START_REF] Zibin | Efficient subtyping tests with pq-encoding[END_REF], seeing the order as the inclusion order on some geometrical shapes [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF][START_REF] Fishburn | Geometric containment orders: a survey[END_REF], describing the order as the union of nice orders on the same set of elements [START_REF] Capelle | Representation of an order as union of interval orders[END_REF][START_REF] West | Parameters of partial orders and graphs: packing, covering and representation[END_REF], describing the order by combinations of boolean formulas on integer tuples [START_REF] Dahl | Logical encoding of conceptual graph type lattices[END_REF][START_REF] Gambosi | Posets, boolean representation and quick path searching[END_REF][START_REF] Gambosi | On locally presented posets[END_REF][START_REF] Gambosi | Efficient representation of taxonomies[END_REF], focusing on lattice operations [START_REF] At-Kaci | Efficient implementation of lattice operations[END_REF][START_REF] Talamo | An efficient data structure for lattice operations[END_REF].

Another classical scheme consists in embedding the order into another one which is known to have a nice representation. More formally, let P = (X, ≤ P ) be an order where ≤ P is an order relation (i.e. reflexive, antisymmetric and transitive) on a ground set X, and Q = (Y, ≤ Q ) another order. An order embedding (embedding for short) of P into Q is a mapping ϕ from X into Y such that for all x, y ∈ X, x ≤ P y if and only if ϕ(x) ≤ Q ϕ(y). We will denote the existence of such an embedding of P into Q by P → Q. By requiring that Q should belong to a particular class of orders, different interesting classes of embeddings can be defined.

This article focuses on finite orders and investigates a class of embeddings which have been highlighted by Habib et al [START_REF] Habib | Embedding partially ordered sets into chain-products[END_REF], namely embeddings of orders into products of chains. Let n ≥ 1 be an integer, a chain of size n is a total order with n elements. Up to an isomorphism, it can be represented by the order

{0 < 1 < 2 < • • • < n -1} which is denoted [n]. Then, let n 1 , n 2 , . . . , n d ≥ 1 be d ≥ 1 integers, we denote by [n 1 ] × [n 2 ] × • • • × [n d ]
the product of the d chains where the elements are the corresponding d-uples

{(x 1 , x 2 , . . . , x d ) | ∀1 ≤ i ≤ d, 0 ≤ x i ≤ n i -1} and where (x 1 , x 2 , . . . , x d ) ≤ (y 1 , y 2 , . . . , y d ) if and only if ∀1 ≤ i ≤ d, x i ≤ y i .
Any embedding ϕ of P into some product of chains

[n 1 ] × [n 2 ] × • • • × [n d ],
d ≥ 1 provides a simple way to encode P : each element x ∈ X is labelled by its image ϕ(x). Among the advantages, this information can be stored locally and no spare data structure is needed to perform the comparisons in P . Using pairwise comparisons of integers is simple enough to be implemented in various contexts. Up to small adjustments depending on the precise way the d-uples will be stored, the size of the label associated with each element is d i=1 log 2 (n i ) bits. The comparison between two elements requires d comparisons of integers, that is O(d) time which can be shortened if they are parallelized. Figure 1 shows the embeddings of two orders into some products of chains.

As a matter of fact, such embeddings have been intensively studied when some conditions are imposed on d and the n i 's. The first important results concern the existence of those embeddings for any order. From [START_REF] Dushnik | Partially ordered sets[END_REF][START_REF] Ore | Theory of graphs[END_REF], it is known that any order with n elements can be embedded into some product of finite chains (of size n) and the smallest number of chains for which it works is called the dimension of P and denoted dim(P ). A lot of results about this parameter have been compiled in Trotter's book [START_REF] Trotter | Combinatorics and Partially Ordered Sets: Dimension Theory[END_REF]. Concerning the complexity of computing dim(P ), Yannakakis showed in [START_REF] Yannakakis | The complexity of partial order dimension problem[END_REF] that deciding whether dim(P ) ≤ 3 is N P-complete, while deciding whether dim(P ) ≤ 2 can be done in linear time [START_REF] Mcconnell | Linear-time transitive orientation[END_REF].
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Figure 2: Three embeddings achieving respectively dim(P ), dim 2 (P ) and edim(P ).

In [START_REF] Novak | On the pseudo-dimension of ordered sets[END_REF], Novak generalized this parameter by noticing that for any k ≥ 1 and any order P , there exists an embedding of P into some product

[k]×[k]ו • •×[k].
It introduced the k-dimension, denoted dim k (P ), as the minimum number of chains in such a product (note that dim(P ) = dim n (P )). The case k = 2, which is equivalent to label the elements by subsets of a fixed set and then consider the inclusion order, has prompted a number of theoretical studies [START_REF] Habib | Bit-vector encoding for partially ordered sets[END_REF][START_REF] Habib | Computational aspects of the 2-dimension of partially ordered sets[END_REF][START_REF] Markowski | The representation of posets and lattices by sets[END_REF][START_REF] Trotter | Embedding finite posets in cubes[END_REF] and led to several heuristics to generate small embeddings [START_REF] Caseau | Encoding of multiple inheritance hierarchies and partial orders[END_REF][START_REF] Filman | Polychotomic encoding: A better quasi-optimal bit-vector encoding of tree hierarchies[END_REF][START_REF] Krall | Near optimal hierarchical encoding of types[END_REF]. However it was shown in [START_REF] Habib | Computational aspects of the 2-dimension of partially ordered sets[END_REF] that given k ≥ 2, deciding whether dim k (P ) ≤ d for arbitrary P and d is N P-complete.

In [START_REF] Habib | Embedding partially ordered sets into chain-products[END_REF][START_REF] Habib | A new dimensional parameter and a removal theorem for boolean dimension[END_REF], Habib et al suggested to work with products of chains without any restrictions on the number d of chains and the sizes n i of the chains. It was presented as a relaxation of the dimension and the k-dimension, and it necessarily leads to smaller labels for the elements. Indeed we always have d ≥ dim(P ), but one may use chains much smaller than [n] by using more than dim(P ) chains, and then save bits by comparison to the dim(P ) log 2 (n) bits required by the classical dimension. Consequently, they introduced a new parameter called the encoding dimension of P , denoted edim(P ), and defined as follows:

edim(P ) = min{ d i=1 log 2 (n i ) | d ≥ 1, n 1 , . . . , n d ≥ 2, P → [n 1 ] × • • • × [n d ]}
Figure 2 illustrates three different ways of embedding an order into some products of chains and the respective numbers of bits of their labels.

The complexity of computing edim(P ) was not answered in [START_REF] Habib | Embedding partially ordered sets into chain-products[END_REF]. The authors conjectured that it was hard, although they believed that it might exist good approximation algorithms. In [START_REF] De La Higuera | Drawing and encoding two dimensional posets[END_REF], de la Higuera and Nourine searched for optimal plane drawings of orders of dimension 2. When dim(P ) = 2, one can derive from their work a polynomial algorithm to compute min{ log 2 (n 1 ) + log 2 (n 2 ) | P → [n 1 ] × [n 2 ]}. Note that it is not exactly edim(P ) since it only considers embeddings into product of two chains.

In their study of vector clocks in distributed systems, Garg and Skawratananand [START_REF] Garg | String realizers of posets with aplications to distributed computing[END_REF] introduced a class of encodings very close to order embeddings. For an order P = (X, ≤ P ), instead of the classical definition of embeddings, they consider mappings ϕ from X

into [n 1 ] × • • • × [n d ]
such that x < P y if and only if ϕ(x) < ϕ(y), where these comparisons
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Figure 3: A string realizer of P .

are strict, but they do not require that ϕ is injective. Such mappings are called string realizers and their existence is denoted P

[n 1 ]ו • •×[n d ].
Figure 3 shows a string realizer of an order (note that in this example it is not an embedding). Wishing to minimize the number of bits of the labels of elements, they introduced the string dimension:

sdim(P ) = min{ d i=1 log 2 (n i ) | d ≥ 1, n 1 , . . . , n d ≥ 2, P [n 1 ] × • • • × [n d ]}
(it is not actually their original definition of string dimension, but we choose to retain this one since it is their main optimization problem). Although they cite several references about the dimension of the orders and its variations, including the encoding dimension, they do not fully clear up how their string dimension relates to these former parameters.

Our paper aims at disclosing new properties of the encoding dimension. We also investigate its precise links with the string dimension. As a result, we manage to settle the computational complexity of those two parameters: both are N P-hard to compute.

Definitions and notations

Partial order definitions

Let P = (X, ≤ P ) be an order. We only consider finite orders and we also denote by |P | the cardinal of X. Let x, y ∈ X, x = y, we say that x and y are comparable in P if either x ≤ P y or y ≤ P x. Otherwise we say that x and y are incomparable. An order where every pair of elements is comparable (resp. incomparable) is called a chain (resp. an antichain). By extension, for the order P = (X, ≤ P ) a non empty set Y of P is called a chain (resp. an antichain) of P if every pair of elements of Y is comparable (resp. incomparable) in P . The maximum cardinality of a chain of P minus 1 is called the height of P and denoted h(P ). The maximum cardinality of an antichain of P is called the width of P and denoted w(P ). An element x ∈ X is called the maximum (resp. the minimum) of P and denoted max(P ) (resp. min(P )) if for all y ∈ X, y ≤ P x (resp. x ≤ P y).

The strict order relation for P = (X, ≤ P ) is denoted by < P and defined for all x, y ∈ X as x < P y if x ≤ P y and x = y. For each x ∈ X, the set of predecessors (resp. successors) of x in P is defined by P red P (x) = {y ∈ X|y < P x} (resp. Succ P (x) = {y ∈ X|x < P y}).

Moreover we say that x is covered by y in P , denoted by x ≺ P y, if x < P y and there is no element z ∈ X such that x < P z and z < P y. To manipulate this cover relation, for each x ∈ X, we define the set of immediate predecessors (resp. immediate successors) of x in P which is ImP red(x) = {y ∈ X|y ≺ P x} (resp. ImSucc(x) = {y ∈ X|x ≺ P y}).

Lattice definitions

A lattice L = (X, ≤ L ) is an order such that for all x, y ∈ X, the pair {x, y} has an infimum x ∧ L y and a supremum x ∨ L y. For instance, the set of all the subsets of {1, ..., n} ordered by inclusion is a lattice. It is called the boolean lattice of dimension n and denoted by [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF] n for short since it is also isomorphic to

[2] × [2] × ...[2], n times.
From an order P = (X, ≤ P ), several useful lattices can be constructed such as its Dedekind-MacNeille completion and its lattice of ideals.

The Dedekind-MacNeille completion of P (denoted by DM (P ))) is the unique lattice (up to an isomorphism) verifying the two properties: there exists an embedding of P into DM (P )) and for any lattice L such that there exists an embedding of P into L, then there exists an embedding of DM (P )) into L (see [START_REF] Macneille | Partially ordered sets[END_REF][START_REF] Davey | Introduction to lattices and orders[END_REF] for proofs of its existence).

Let P = (X, ≤) be an order, a set I ⊆ X is an ideal of P if and only if ∀x ∈ I, P red P (x) ⊆ I. The set of all ideals of P ordered by inclusion is a lattice called the ideal lattice of P and denoted I(P ). It is a distributive lattice (each of the operations ∧ and ∨ is distributive with regard to the other). Conversely let L = (X, ≤ L ) be a distributive lattice, and J(L) = {j ∈ X | |ImP red(j)| = 1} be the set of its join-irreducible elements ordered by ≤ L , Birkhoff's theorem [START_REF] Birkhoff | Lattice Theory[END_REF][START_REF] Davey | Introduction to lattices and orders[END_REF] states that L is isomorphic to I(J(L)).

Basic results

Bounds on the encoding dimension

Several bounds have been established for the encoding dimension, and in a few particular cases, some exact formulas have been set. We give here an overview of the results. Proposition 3.1 (Folklore).

(1) Let P and Q be two orders, if P → Q then edim(P ) ≤ edim(Q) (Monotony).

(2) Let P be an order and x one of its elements. Then edim(P \ {x}) ≤ edim(P ) ≤ edim(P \ {x}) + 2 (Continuity).

(3) Let P be an order, then edim(DM (P )) = edim(P ) (Completion).

Proof. Monotony:

Obviously, if Q → [n 1 ]×[n 2 ]×...×[n d ], then P → [n 1 ]×[n 2 ]×...×[n d ]
and thus edim(P ) ≤ edim(Q). Continuity: The left part of the inequality comes from monotony. Concerning the right part, let ϕ be an encoding for P \ {x}, by adding 2 bits we can produce an embedding ϕ for P . Let ϕ be an optimal embedding of P \ {x} into

[n 1 ] × [n 2 ] × ... × [n d ], we define the mapping ϕ from P into [n 1 ] × [n 2 ] × ... × [n d ] × [2] × [2]
as follows. For all y ∈ X \ {x}, if ϕ(y) = (ϕ 1 (y), ..., ϕ d (y)) then

ϕ (y) =     
(ϕ(y), 0, 0) if y < P x, (ϕ(y), 1, 1) if y > P x, (ϕ(y), 1, 0) if y and x are incomparable.

P \ x x + 1,0 + 1,1 + 0,1 + 0,0
Moreover, ϕ (x) = (sup y< P x ϕ 1 (y), ..., sup y< P x ϕ d (y), 0, 1). One can easily check that ϕ remains an embedding. The way ϕ is extended is illustrated above. Completion: this is a direct consequence of the definition of DM (P ), since all products of chains are lattices.

The next propositions present some first bounds for the encoding dimension. Proposition 3.2 (Folklore). Let P be an order with

|P | = n, then (1) log 2 (n) ≤ edim(P ); (2) edim(P ) ≤ log 2 (k) dim k (P ) ∀2 ≤ k ≤ n.
In particular, we have:

• for k = n : edim(P ) ≤ log 2 (n) dim(P ) ≤ log 2 (n) n 2 ; • for k = 2 : edim(P ) ≤ dim 2 (P ) ≤ n. Proof. Since any mapping φ from P into [n 1 ] × [n 2 ] × ... × [n d ] has to be injective, we have obviously n = |P | ≤ |[n 1 ] × [n 2 ] × ... × [n d ]| = n 1 × n 2 × ... × n d . Thus log 2 (n) ≤ d i=1 log 2 (n i ) ≤ d i=1 log 2 (n i ) .
The upper bound involving dim k is directly derived from the definition of dim k , and the bound dim(P ) ≤ n/2 is Hiragushi's inequality [START_REF] Hiragushi | On the dimension of orders[END_REF][START_REF] Trotter | Combinatorics and Partially Ordered Sets: Dimension Theory[END_REF]. Consequently, edim(P ) ≤ w(P ) log 2 (h(P ) + 2) .

Classes of orders

For the class of distributive lattices, i.e. ideal lattices, an exact formula is given in [START_REF] Habib | Embedding partially ordered sets into chain-products[END_REF]. It is related to Proposition 3.3. (1) Let A n be the antichain of size n, then edim

(A n ) = sp(n) = min{d | d d/2 ≥ n}; (2) Let [n] be the chain of size n, then edim(P ) = log 2 (n) ; (3) Let [2] n be the boolean lattice of dimension n, then edim([2] n ) = n; (4) Let [n 1 ]×...×[n d ] be a product of chains, then edim([n 1 ]×...×[n d ]) = d i=1 log 2 (n i ) . Proof. (1) edim(A n ) = sp(n) : We can show that edim(A n ) = dim 2 (A n ). Let ϕ be an embed- ding of A n into [n 1 ] × [n 2 ] × ... × [n d ] with ϕ(x) = (ϕ 1 (x), ϕ 2 (x), ..., ϕ d (x)
). Suppose that n 1 ≥ 3. Then we can produce an embedding

∼ ϕ of A n into [2] × [ n 1 2 ] × [n 2 ] × ... × [n d ] defined by ∼ ϕ(x) = ( ∼ ϕ 0 (x), ∼ ϕ 1 (x), ..., ∼ ϕ d (x)), where if 0 ≤ ϕ 1 (x) < n 1 2 , then ∼ ϕ 0 (x) = 0 and ∼ ϕ 1 (x) = ϕ 1 (x). And otherwise if n 1 2 ≤ ϕ 1 (x) ≤ n 1 , then ∼ ϕ 0 (x) = 1 and ∼ ϕ 1 (x) = ϕ 1 (x) -n 1
2 . It can be easily checked that ∼ ϕ remains an embedding. Moreover this transformation does not increase the size of the embedding. We only have to check that log 2 (n 1 ) is larger or equal to 1 + log 2 ( n 1

2 ) = log 2 (2 n 1 2 ) . These values are actually equal since ∀k ∈ N,

2 n 1 2 ≤ 2 k ⇐⇒ n 1 2 ≤ 2 k-1 ⇐⇒ n 1 2 ≤ 2 k-1 ⇐⇒ n 1 ≤ 2 k .
By starting from ϕ an optimal embedding of A n and repeatedly applying this transformation , we obtain an optimal embedding of A n into a product where all the chains are [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF]. The smallest size of an embedding of A n into some product [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF] d is by definition d = dim 2 (A n ) and thanks to Sperner's Theorem [START_REF] Anderson | Combinatorics of Finite Sets[END_REF][START_REF] Engel | Sperner Theory[END_REF] it is known that dim 2 (n) = sp(n).

(2) Let [n] be the chain of size n, then log 2 (n) ≤ edim([n]) from Proposition 3.2. We also have edim(

[n]) ≤ log 2 (n) dim(P ) from Proposition 3.2. Since [n] is a chain, we have dim(P ) = 1. Finally edim([n]) = log 2 (n) ; (3) Let [2] n be a boolean lattice, we have n = log 2 ([2] n ) ≤ edim([2] n ) from Proposi- tion 3.2. We also have edim([2] n ) ≤ dim 2 ([2] n ) = n. Finally edim([2] n ) = n; (4) The formula for P = [n 1 ] × [n 2 ] × ... × [n d ]
is not as obvious as it may look. Proposition 3.2 provides the lower bound

d i=1 (n i ) log 2 (n i ) ≤ edim(P ) and since P → [n 1 ] × [n 2 ] × ... × [n d ]
, by definition of edim(P ), we have the upper bound edim(P ) ≤ d i=1 log 2 (n i ) . Unfortunately these two bounds are not equal in general. The exact formula requires more arguments.

The order P is clearly a distributive lattice and the order induced on its join irreducible elements is 

[n 1 -1] ∪ [n 2 -1] ∪ ... ∪ [n d -1]. From Proposition 3.
C i = [n i -1] for all 1 ≤ i ≤ d, we obtain an embedding of size d i=1 log 2 (n i - 1 + 1) = d i=1 log 2 n i . Now any other partition into chains of [n 1 -1] ∪ [n 2 -1] ∪ ...∪[n d -1] has the form {C i,j } 1≤i≤d, 1≤j≤J i where {C i,1 , C i,2 , ..., C i,J i } is a partition of [n i -1].
To bound the size of the associated embedding, we use the following lemma.

Lemma 3.6. The function x → log 2 (x + 1) is non-decreasing and sub-additive over R + .

Proof. The functions x → x is non-decreasing and sub-additive, as well as x → log 2 (x + 1) where sub-additivity comes from concavity. So their composition is also non-decreasing and sub-additive. It means that for any finite sequence of positive reals (x i ), we have log 2 ( i x i + 1) ≤ i log 2 (x i + 1) .

Due to this sub-additivity we have for all 1

≤ i ≤ d, log 2 ( j |C i,j | + 1) ≤ j log 2 (|C i,j | + 1) , that is log 2 n i ≤ j log 2 (|C i,j | + 1) . Thus i log 2 n i ≤ i,j log 2 (|C i,j |+1) This shows that the minimum size of an embedding of [n 1 -1]× [n 2 -1] × ... × [n d -1] is i log 2 n i .

Links with the string dimension

It turns out that the string dimension and the encoding dimension are exactly the same parameter up to a small decomposition step. Let P = (X, ≤ P ) be an order, x, y ∈ X are twins if Succ P (x) = Succ P (y) and P red P (x) = P red P (y) (they are necessarily incomparable). They are also called duplicated holdings in [START_REF] Trotter | Combinatorics and Partially Ordered Sets: Dimension Theory[END_REF]. Being twins is an equivalence relation denoted ∼ which can be used to quotient the order P (i.e. identify each set of twins by a single element). The quotiented order on the quotiented set X/ ∼ is denoted P/ ∼. Proposition 3.7. Let P = (X, ≤ P ) be an order. Then sdim(P ) = edim(P/ ∼). Conversely, if P has a minimum and a maximum, then edim(P ) = sdim(P × [2]) -1.

Proof. To prove the first equality, let ϕ be an embedding of 

P/ ∼ into [n 1 ] × • • • × [n d ]. Let ∼ x ∈ X/ ∼,
P into [n 1 ] × • • • × [n d ]. Let x, y ∈ X such that ϕ(x) = ϕ(y).
From the definition of a string realizer, x and y are necessarily twins. Then let

∼ x ∈ X/ ∼, label ∼ x by ϕ(y) for an arbitrary y ∈ ∼ x. This mapping of P/ ∼ into [n 1 ] × • • • × [n d ]
is clearly an injective string realizer, that is an order embedding.

For the second inequality, note that P × [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF] has no twins, thus from the first equality, we have sdim(P × [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF]) = edim(P × [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF]). Since P → P ×[2], we have edim(P ) ≤ edim(P × [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF]) by monotony. Moreover, from any embedding of P into [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF]. It adds only one bit, thus edim(P × [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF]) ≤ edim(P ) + 1. For now, we only have edim(P ) ≤ edim(P × [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF]) ≤ edim(P ) + 1.

[n 1 ]ו • •×[n d ], one can easily construct an embedding of P ×[2] into [n 1 ]ו • •×[n d ]×
Suppose that P has a minimum m and a maximum M , m = M . Consider an embed-

ding ϕ = (ϕ 1 , . . . , ϕ d ) of P × [2] into [n 1 ] × • • • × [n d ].
The elements (m, 1) and (M, 0) of P × [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF] are incomparable. Since (m, 1) ≤ (M, 0), there exists 1 ≤ i ≤ d such that ϕ i ((m, 1)) > ϕ i ((M, 0)). Since ϕ is an embedding, for all x, y ∈ X, we have ϕ i ((x, 1)) ≥ ϕ i ((m, 1)) > ϕ i ((M, 0)) ≥ ϕ i ((y, 0)). To construct a smaller embedding for P , choose from ϕ i ((X, 0)) or ϕ i ((X, 1)) the set using the smallest range of integers. If ϕ i ((M, 0)) < n i /2 , then consider the mapping ϕ = (ϕ 1 , . . . , ϕ d ) from

X into [n 1 ] × • • • × [ n i 2 ] × • • • × [n d ]
defined by: ∀1 ≤ j ≤ d, ϕ j (x) = ϕ j ((x, 0)). It is an order embedding. Otherwise consider the mapping ϕ

= (ϕ 1 , . . . , ϕ d ) from X into [n 1 ] × • • • × [ n i 2 ] × • • • × [n d ] defined by: ∀1 ≤ j ≤ d, j = i, ϕ j (x) = ϕ j ((x, 1)) and ϕ i (x) = ϕ i (x) -n i 2 .
In both case, ϕ use one bit less than ϕ. Consequently edim(P ) ≤ edim(P × [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF]) -1 which completes the proof. Remark 3.8. We conjecture that edim(P ) = sdim(P × [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF]) -1 holds for any order P . Remark 3.9. As expected, the encoding dimension and the string dimension are very close measures. One can easily derive bounds for one measure from bounds for the other measure. Note that in [START_REF] Garg | String realizers of posets with aplications to distributed computing[END_REF], the authors provide the upper bound sdim(P ) ≤ w(P ) log 2 (h(P ) + 2) which corresponds to the same bound presented in Section 3 for edim(P ). However they claim that a corollary of their proof is: ∀k ≥ h(P ) + 2, dim(P ) = dim k (P ). This statement is clearly false: consider A n the antichain of size n, h

(A n ) = 0, dim(A n ) = 2 but, as recalled in Section 3.2, dim 2 (A n ) = sp(n) = min{d | d d/2
≥ n} which tends to +∞ when n tends to +∞. 
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NP-Completeness

Definitions and operations

We first give back the classical series operation on orders, denoted ⊕.

Definition 4.1 (⊕ operator). Let P = (X, ≤ P ) and Q = (Y, ≤ Q ) be two orders s.t. X ∩Y = ∅, the ⊕ operator is defined as follows:

P ⊕ Q = (X ∪ Y, ≤ P ⊕Q ) where for all u, v ∈ X ∪ Y , u ≤ P ⊕Q v if      (u, v ∈ X, and u ≤ P v), or (u, v ∈ Y, and u ≤ Q v), or (u ∈ X and v ∈ Y ).
We now introduce a slight variation of this operator.

Definition 4.2 (⊕ operator). Let P = (X, ≤ P ) and Q = (Y, ≤ Q ) be two orders s.t. X ∩Y = ∅, the ⊕ operator is defined as follows (max stands for maximum and min for minimum):

P ⊕ Q =      P ⊕ [1] ⊕ Q if P
without max and Q without min, P ⊕ Q if (P without max and Q with min) or (P with max and Q without min), P \ {max(P )} ⊕ Q if P with max and Q with min, Figure 4 illustrates the result of ⊕ in the three cases. In P ⊕Q, the element between P and Q is called the join element. Definition 4.3 (Spaces of embeddings). Let P be an order, we define the spaces of chain products in which P can be embedded as follow:

E(P ) = {(n 1 , n 2 , ..., n d ) ∈ N d | d ≥ 1, P → [n 1 ] × [n 2 ] × ... × [n d ]}
Another set is associated with P , where the finite sequences in E(P ) are completed with an infinite sequence of 1:

∼ E(P ) = {(n 1 , n 2 , ..., n d , 1, 1, ...) ∈ N N * | (n 1 , n 2 , ..., n d ) ∈ E(P )}
By ordering the set of n i decreasingly we get two new definitions:

E ≥ (P ) = {(n 1 , n 2 , ..., n d ) ∈ N d | (n 1 , n 2 , ..., n d ) ∈ E(P ) and n 1 ≥ n 2 ... ≥ n d } ∼ E ≥ (P ) = {(n 1 , n 2 , ..., n d , 1, 1, ...) ∈ N N * | (n 1 , n 2 , ..., n d ) ∈ E ≥ (P )}
Definition 4.4 (Volume of P ). Let P be an order then

vol(P ) = min{ d i=1 n i | (n i ) 1≤i≤d ∈ E(P )} (0,0,1) (0,1,0) (1,0,0) (1,1,1) (2,1,0) (1,0) (0,2) (2,3) (3,1) 
P [3]x[2]x[2]
[4]x [START_REF] At-Kaci | Efficient implementation of lattice operations[END_REF] (0,0,

Q [START_REF] Bouchet | Etude combinatoire des ordonnés finis[END_REF]x [START_REF] Birkhoff | Lattice Theory[END_REF]x [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF] P Q

(2,1,1) (1+2,0+1 ,1) 
(3+2,1+1,1) (2+2,3+1,1) (0+2,2+1,1) m Figure 5: Constructing an embedding of P ⊕Q from embeddings of P and Q (m is the join element).

Remark 4.5. The volume of an order is closely related to its encoding dimension up to rounding effects: we clearly have log 2 (vol(P )) = min{ d i=1 log 2 (n i ) | (n 1 , n 2 , ..., n d ) ∈ E(P )} ≤ edim(P ). The equality holds if, for some optimal embedding, all the n i are powers of 2.

We have introduced the infinite sequences ∼ E(P ) together with E(P ) for commodity. It will simplify the description of the embeddings of P ⊕Q which consist in pairing embeddings of P and Q even when they use different numbers of chains. Moreover it preserves the definition of volumes since we clearly have vol(P

) = min{ +∞ i=1 n i | (n i ) i≥1 ∈ ∼ E(P )}.
Proposition 4.6. Let P = (X, ≤ P ) and Q = (Y, ≤ Q ) be two orders, then:

∼ E(P ⊕Q) = {(n i + n i -1) i≥1 | (n i ) i≥1 ∈ ∼ E(P ) and (n i ) i≥1 ∈ ∼ E(Q)} Consequently, vol(P ⊕Q) = min{ +∞ i=1 (n i + n i -1) | (n i ) i≥1 ∈ ∼ E(P ) and (n i ) i≥1 ∈ ∼ E(Q)} Proof. First, let (n i ) i≥1 ∈ ∼ E(P ) and (n i ) i≥1 ∈ ∼ E(Q). Let us show that (n i + n i + 1) i≥1 belongs to ∼ E(P ⊕Q) There exist d and d such that P → [n 1 ] × • • • × [n d ] and Q → [n 1 ] × • • • × [n d ]. We denote D = max(d, d ). Let ϕ (resp. ϕ ) be an embedding of P (resp. Q) into [n 1 ] × • • • × [n D ] (resp. [n 1 ] × • • • × [n D ]
). Then we can construct the following mapping from 

P ⊕Q into [n 1 + n 1 -1] × • • • × [n D + n D -1] with: Φ(x) =      ϕ(x) if x ∈ X \ max(P ) (if it exists), (ϕ 1 (x) + n 1 -1, ..., ϕ D (x) + n D -1) if x ∈ Y \ min(Q) (if it exists), ( n 
(P ⊕ Q) = {(n i ) i≥1 | (n i ) i≥1 ∈ ∼ E(P ), (n i ) i≥1 ∈ ∼ E(Q) and ∃j ∈ N * , ∀i = j, n i = n i + n i -1, and n j = n j + n j }.
In fact one can refine the latest formula on vol(P ⊕Q): as shown below the optimum is necessarily reached for embeddings which are paired by matching larger chains together. Proposition 4.8. Let P and Q be two partial orders, then

vol(P ⊕Q) = min{ +∞ i=1 (n i + n i -1) | (n i ) i≥1 ∈ ∼ E ≥ (P ) and (n i ) i≥1 ∈ ∼ E ≥ (Q)} . Proof. Let (n i ) i≥1 ∈ ∼ E(P ) and (n i ) i≥1 ∈ ∼ E(Q),
the formula in Proposition 4.6 calls for the minimum of d i=1 (m i + m i -1) for all the permutations (m i ) i≥1 (resp. (m i ) i≥1 ) of (n i ) i≥1 (resp. (n i ) i≥1 ). However one can show that this minimum is reached by sorting (n i ) i≥1 and (n i ) i≥1 decreasingly. This is proved thanks to the following lemma. This lemma can be easily checked by expanding the expressions. It ensures that if (m i ) i≥1 and (m i ) i≥1 are two permutations achieving the minimum +∞ i=1 (m i + m i -1), and if m I and m I are the respective maximum of (m i ) i≥1 and (m i ) i≥1 , by transforming the associations m I + m I -1 and m I + m I -1 into m I + m I -1 and m I + m I -1, the product does not increase. By repeating this kind of exchanges which pair the values of (n i ) i≥1 and (n i ) i≥1 decreasingly, one preserves a minimum product. Figure 6 illustrates this property.

Consequently the formula for the volume only requires the pairings of the decreasing sequences in ∼ E(P ) and

∼ E(Q), that is ∼ E ≥ (P ) and ∼ E ≥ (Q).

Reduction

The next theorem and its corollary set the complexities of computing the encoding dimension and the string dimension.

Theorem 4.10. The decision problem associated to the encoding dimension, i.e. deciding whether edim(P ) ≤ k for arbitrary P and k, is N P-complete. Proof. This problem belongs to N P. Let P = (X, ≤ P ) an order with n elements and k an integer, note first that if k > n, we necessarily have edim(P ) ≤ k by Proposition 3.2. Now suppose that k ≤ n, a certificate for P and k is composed of an

integer d ≥ 1, a d-uple (n 1 , . . . , n d ) of integers such that ∀ 1 ≤ i ≤ d, n i ≥ 2 and d i=1 log 2 (n i ) ≤ k, and a mapping ϕ from X to [n 1 ] × • • • × [n d ].
Since d ≤ n due to constraints and k ≤ n by assumption, the size of this certificate is polynomial with the size of P . Then checking whether ϕ is an order embedding can be done in O(dn 2 ) time. Now we present a reduction from the decision problem associated to the dimension of orders, i.e. given an order P deciding whether dim(P ) ≤ 3, which was proved N P-complete by Yannakakis [START_REF] Yannakakis | The complexity of partial order dimension problem[END_REF]. Let the order P be an instance for the dimension, we first construct an order Q equal to 

P ⊕ [2] 3 ⊕[2] 3 ...⊕[2]
(n + t • (2 -1), n + t • (2 - 1), n + t • (2 -1)) ∈ E(Q). In other words, Q → [n + t] × [n + t] × [n + t]. Thus edim(Q) ≤ 3 log 2 (n + t) . Claim 
(Q) ≥ 2(2 + t) 3 . Since edim(Q) ≥ log 2 vol(Q), we have edim(Q) ≥ 1 + 3 log 2 (t + 2). ¡ ¢ ¡¢ £ ¤ ¥ ¥ ¦ ¦ § § ¨© © ¡ ¡ ¡ ¡ ¡ ¡ ! ! " " # # $ $ % & ' ( ) ) 0 0 1 ¡1 1 ¡1 2 ¡2 2 ¡2 3 ¡3 3 ¡3 4 ¡4 4 ¡4 5 5 6 6 7 7 8 8 9 9 @ @ A B C D E ¡E E ¡E F ¡F F ¡F G G H H P t cubes
To sum up, we have:

(1) If dim(P ) ≤ 3 then edim(Q) ≤ 3 log 2 (n + t) = f (t);

(2) If dim(P ) ≥ 4 then edim(Q) ≥ 1 + 3 log 2 (t + 2) = g(t);

Asymptotically f (t) is strictly smaller than g(t) which is a good news, since f (t) < g(t) ensures that edim(Q) ≤ 3 if and only if dim(P ) ≤ 3. Thus given P we now look for t large enough to have f (t) < g(t) but small enough so that the instance (Q, f (t)) for the encoding dimension keeps a reasonable size.

We study g(t)-f (t) = 1+3 log 2 (t+2)-3 log 2 (n+t) . We choose to restrict ourselves to t s.t. t + n = 2 s , s ∈ N. Then g(t)f (t) = 1 + 3 log 2 (2 sn + 2) -3s = 1 + 3 log 2 (1 -n-2 2 s ). Since for all 0 ≤ ≤ 1 2 , log 2 (1 -) ≥ -2 , if n-2 2 s ≤ 1 2 , then g(t)f (t) ≥ 1 -6 n-2 2 s . Thus a sufficient condition for g(t)f (t) > 0 is 2 s > 6(n -2). To sum up, we wish that t + n is a power of 2 and t + n > 6n -12, i.e. t + n ≥ 6n -11. We can choose t + n = 2 log 2 (6n -11) . Then t = 2 log 2 (6n-11)n ≤ 2 × 2 log 2 (6n-11)n = 11n -22 which implies that |Q| ≤ |P | + 8t ≤ n + 8(11n -22). Finally by choosing this value for t, we can decide whether dim(P ) ≤ 3 by checking if edim(Q) ≤ f (t) and our reduction is polynomial with the size of P .

Corollary 4.11. The decision problem associated to the string dimension, i.e. deciding whether sdim(P ) ≤ k for arbitrary P and k, is N P-complete.

Proof. The problem is in N P with arguments similar to the ones for the encoding dimension. Now we use a reduction from the encoding dimension. Let P be an order and k ≥ 1 an instance for the encoding dimension. Add a maximum, as well as a minimum, to P if it is missing. This order P (which is [START_REF] Agrawal | Efficient management of transitive relationships in large data and knowledge bases[END_REF]⊕P ⊕ [START_REF] Agrawal | Efficient management of transitive relationships in large data and knowledge bases[END_REF]) clearly satisfies edim( P ) = edim(P ). From Proposition 3.7, sdim( P × [2]) = edim(P ) + 1. Thus edim(P ) ≤ k if and only if sdim( P × [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF]) ≤ k + 1, and the instance P × [START_REF] Alon | Degrees of freedom versus dimension for containment orders[END_REF] and k + 1 for the string dimension is polynomial with the size of the initial instance. Remark 4.12. With our reduction, we did not manage to adjust the gap, materialized by g(t)f (t) or g(t)/f (t), to be large enough with regard to f (t) and g(t) so that we can derive some non-approximability results.

Conclusion

Proving the N P-completeness of the encoding dimension and of the string dimension answers the complexity questions raised by [START_REF] Garg | String realizers of posets with aplications to distributed computing[END_REF] and [START_REF] Habib | Embedding partially ordered sets into chain-products[END_REF]. This hardness result could be expected due to the closeness of difficult problems like the dimension or the k-dimension. Such a classification encourages to head further researches towards particular classes of orders for which computations could be polynomial or towards heuristics with good average performances or good guaranteed ratios.

It is likely that approximating the encoding dimension with guaranteed ratios depending on |P | is hard. Some non-approximability results have been proved in [START_REF] Habib | Computational aspects of the 2-dimension of partially ordered sets[END_REF] concerning the k-dimension for fixed k, but for the dimension, this question raised in [START_REF] Spinrad | Dimension and algorithms[END_REF] remains open.
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 1 Figure 1: Examples of embeddings of the orders P and Q into some products of chains.
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  4, we have edim(I(P )) = min{ d i=1 log 2 (|C i | + 1) | {C 1 , ..., C d } ∈ C(I(P ))}. If we choose
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 4 Figure 4: Examples of application of ⊕ (the join element is denoted by x).
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 114147 ..., n D -1) for the join element, One can easily check that Φ(x) is an order embedding (see Fig.5for an example). Conversely, let (N i ) i≥1 ∈ ∼ E(P ⊕Q). There exists D ≥ 1 and Φ an embedding ofP ⊕Q into [N 1 ] × • • • × [N D ]. Let m be the join element of P ⊕Q, Φ(m) = (m 1 , ..., m D ). On one hand, Φ restricted to X is an embedding of P into [m 1 + 1] × • • • × [m D + 1]. On the other hand, for x ∈ Y we can set φ (x) = (Φ 1 (x)m 1 , ..., Φ D (x)m D ). Each component i of φ (x) belongs to the interval [0, N i -1m i ]. Once again, one can easily check that φ is an embedding of Q into [N 1m 1 ] × • • • × [N Dm D ]. In this way, (N i ) i≥1 has the form (n i + n i -1) i≥1 with (n i ) i≥1 ∈ ∼ E(P ) and (n i ) i≥1 ∈ ∼ E(Q) by setting n i = m i + 1 and n i = N im i .Note that we focus on ∼ E(P ⊕Q), but one can check that the same reasoning apply to ∼ E(P ⊕ Q). As a result, ∼ E(P ⊕ Q) = ∼ E(P ⊕Q) unless P has a maximum and Q has a minimum. In this latter case, ∼ E
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 49 Let a, b, a , b ∈ R s.t. a ≥ b and a ≥ b . Then (a + a -1)(b + b -1) ≤ (a + b -1)(a + b -1)
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 6 Figure 6: Comparing associations of embeddings of P and Q to get the smaller embedding of P ⊕Q.

  label all the elements belonging to It clearly provides a string realizer of P . Inversely, let ϕ be a string realizer mapping

∼

x by ϕ( ∼ x).

  2. For any order P , if dim(P ) ≥ 4 then edim(Q) ≥ 1 + 3 log 2 (t + 2); Indeed, if dim(P ) ≥ 4 and (n 1 , n 2 , ..., n d ) ∈ E ≥ (P ) then, for 1 ≤ i ≤ 4, we have n i ≥ 2. By applying t times Proposition 4.8 with (2, 2, 2) ∈ [2] 3 , we obtain that vol