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LIE GROUP STRUCTURES ON AUTOMORPHISM GROUPS OF

REAL-ANALYTIC CR MANIFOLDS

BERNHARD LAMEL, NORDINE MIR, AND DMITRI ZAITSEV

Abstract. Given any real-analytic CR manifold M , we provide general conditions on M guar-
anteeing that the group of all its global real-analytic CR automorphisms AutCR(M) is a Lie group
(in an appropriate topology). In particular, we obtain a Lie group structure for AutCR(M) when
M is an arbitrary compact real-analytic hypersurface embedded in some Stein manifold.

1. Introduction

There exist a wide variety of results concerned with the structure of the automorphism group
of a given geometric structure. In Riemannian Geometry, the classical Myers-Steenrod theorem
[MS39] states that the group of all isometries of a Riemannian manifold is a Lie group. H. Cartan
[Ca35] proved an analogous result for the group of holomorphic automorphisms of a bounded
domain in C

N . Cartan’s techniques have in turn been used to establish general results for groups
of diffeomorphisms of real or complex manifolds, see e.g. [BM45].

In this paper, we consider an analogous question for CR manifolds (that one can think of as a
boundary or CR version of Cartan’s Theorem mentioned above):

Under what conditions on a real-analytic CR manifold M is the group AutCR(M) of all real-

analytic CR automorphisms of M a Lie group in an appropriate topology?

Here for every r ∈ N ∪ {∞, ω}, we equip AutCR(M) with a natural topology that we call
“compact-open Cr topology”, which is defined as follows. For open subsets Ω ⊂ Rn and Ω′ ⊂ Rn′

,
consider the space Cr(Ω, Ω′) of all maps of class Cr from Ω to Ω′. If r ∈ N ∪ {∞}, Cr(Ω, Ω′) is
equipped with the topology of uniform convergence on compacta together with all partial deriva-
tives of order up to r. In case r = ω, the space Cω(Ω, Ω′) is equipped with its topology as an
inductive limit of Fréchet spaces of holomorphic maps between open neighborhoods of Ω and Ω′

in C
n and C

n′

respectively. The compact-open Cr topology on AutCR(M) is now induced by the
appropriate topology relative to the coordinate charts for the maps and their inverses (see e.g.
[BRWZ04] for a more detailed discussion). For brevity, we adopt the order k < ∞ < ω for any
integer k.
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In this paper, we exhibit general sufficient conditions on M that provide an affirmative answer
to the above question. We begin with the following special case of our more general results, that
is particularly easy to state:

Corollary 1.1. Let M be a compact real-analytic hypersurface in a Stein manifold of complex

dimension at least two. Then the group AutCR(M) of all (global) real-analytic CR automorphisms

of M is a Lie group in the compact-open Cω topology and the action AutCR(M) × M → M is

real-analytic. Furthermore, the compact-open Cr topologies on AutCR(M) coincide for r = ∞, ω
and r ≥ k, where k is an integer depending only on M .

Corollary 1.1 is a direct consequence of the following more general result that also applies to CR
manifolds of higher codimension. In the following statement, the notions of essential finiteness,
finite nondegeneracy and minimality must be understood in the sense of [BER99b] (see also
Section 3 for more details).

Theorem 1.2. Let M be a real-analytic CR manifold. Assume that M has finitely many connected

components, is minimal everywhere and that there exists a compact subset K ⊂ M such that:

(i) M is essentially finite at all points of K;

(ii) M is finitely nondegenerate at all points of M \ K.

Then AutCR(M) is a Lie group in the compact-open Cω topology and the action AutCR(M) ×
M → M is real-analytic. Furthermore, the compact-open Cr topologies on AutCR(M) coincide for

r = ∞, ω and r ≥ k for some integer k, where k is an integer depending only on M .

Theorem 1.2 provides a generalization of all known corresponding results for real-analytic CR
manifolds. It also covers new situations, such as in Corollary 1.1; indeed, any real-analytic compact
hypersurface in a Stein manifold is essentially finite and minimal at each of its points (see e.g.
[DF78, BER99b]).

For the case of real hypersurfaces whose Levi form is nondegenerate at every point, the con-
clusion of Theorem 1.2 follows from the work of E. Cartan [Ca32a, Ca32b], Chern-Moser [CM74],
Tanaka [Ta67] and Burns-Schnider [BS77]. For the case of Levi-degenerate CR manifolds, the
same conclusion was recently obtained by Baouendi, Rothschild, Winkelmann and the third au-
thor [BRWZ04] for the class of finitely nondegenerate minimal CR manifolds, which corresponds
here to our Theorem 1.2 with K = ∅. (We should point out that the results in those mentioned
papers also apply for merely smooth CR manifolds as well, based on the previous work [KZ05],
but in this paper we shall focus on the real-analytic category.)

In addition to the compact hypersurface case considered in Corollary 1.1, an important class of
CR manifolds for which the previously known results do not apply and for which the conclusion of
Theorem 1.2 holds is that of compact minimal real-analytic CR submanifolds embedded in a Stein
manifold. Again, the condition of essential finiteness holds here at every point, see [DF78, BER99b]
(whereas the condition of finite nondegeneracy holds only outside a proper real-analytic subvariety
which need not be empty in general); Therefore taking K = M in Theorem 1.2, we obtain the
following extension of Corollary 1.1 to higher codimension:
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Corollary 1.3. Let M be a compact real-analytic CR submanifold in a Stein manifold. Assume

that M is minimal at every point. Then the group AutCR(M) of all (global) real-analytic CR

automorphisms of M is a Lie group in the compact-open Cω topology and the action AutCR(M)×
M → M is real-analytic. Furthermore, the compact-open Cr topologies on AutCR(M) coincide for

r = ∞, ω and r ≥ k, where k is an integer depending only on M .

On the other hand, Theorem 1.2 also applies to cases with M noncompact also not covered by
previously known results. Let us illustrate this with an example:

Example 1.4. The hypersurface M ⊂ C
2 given by

|z|2 − |w|4 = 1

is Levi-nondegenerate at all its points except the circle S1 × {0} ⊂ M , where M is essentially
finite. Hence, Theorem 1.2 applied with K := S1 × {0}, yields that AutCR(M) is a Lie group. On
the other hand, M is not finitely nondegenerate at any point of K and hence the results from
[BRWZ04] do not apply to M .

Our proof of Theorem 1.2 makes use of the recent developments providing a relationship be-
tween various notions and results concerning jet parametrization of local CR diffeomorphisms
[BER97, Z97, BER99a, E01, KZ05, LM07] and Lie group structures on (local and) global groups of
automorphisms of CR manifolds [BRWZ04]. In the next section, we give in Theorem 2.2 new suffi-
cient conditions on a connected real-analytic CR manifold M , in terms of local jet parametrization
properties of CR automorphisms, that ensure that AutCR(M) is a Lie group. Then the remainder
of the paper is devoted to prove that under the assumptions of Theorem 1.2 the conditions of
Theorem 2.2 are fulfilled. To this end, we establish, following the analysis of the first two authors’
paper [LM07], a new parametrization theorem (Theorem 3.1) for local CR automorphisms that
may be of independent interest. The proof of Theorem 1.2 is given in Section 5. We conclude the
paper by giving in Section 6 an alternative proof of Corollary 1.3 following [Z97] that does not
make use of Theorem 2.2 but requires compactness of the manifold M .

Acknowledgement. The third author would like to thank A. Isaev for helpful discussions.

2. New sufficient conditions for the automorphism group being a Lie group

Let M be a real-analytic manifold and k a positive integer. We use the notation Gk(M) for the
fiber bundle of all k-jets of local real-analytic diffeomorphisms of M . For every point p ∈ M , we
denote by Gk

p(M) the fiber of Gk(M) at p. Given a germ of a local real-analytic diffeomorphism

h : (M, p) → M , we write jk
ph ∈ Gk

p(M) for the corresponding k-jet. For instance, jk
p id is the k-jet

of the identity map of M , regarded as a germ at p. In local coordinates, jk
ph is given by the source

p, the target h(p) and the collection of all partial derivatives of h at p up to order k. (See e.g.
[GG73] for more details on this terminology.)

We now fix an arbitrary set S of germs of local real-analytic diffeomorphisms h : (M, p) → M
with possibly varying reference point p ∈ M and, as in [BRWZ04], consider the following condition.
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Definition 2.1. Let k be a positive integer and p0 ∈ M . We say that S has the real-analytic jet

parametrization property of order k at p0 if there exist open neighbourhoods Ω′ of p0 in M , Ω′′ of
jk
p0

id in Gk(M) and a real-analytic map Ψ: Ω′×Ω′′ → M such that, for every germ h : (M, p) → M

in S with p ∈ Ω′ and jk
ph ∈ Ω′′, the identity h(·) ≡ Ψ(·, jk

ph) holds in the sense of germs at p.

The following theorem is one of the key ingredients in the proof of Theorem 1.2.

Theorem 2.2. Let M be a connected real-analytic CR manifold. Assume that there exist an integer

k and a compact subset K ⊂ M such that the following holds:

(i) For every p0 ∈ K, the set of all germs at p0 of local CR diffeomorphisms of M has the

real-analytic jet parametrization property of order k at p0;

(ii) The set of all germs at all points of local CR diffeomorphisms has the real-analytic jet

parametrization property at every point p0 ∈ M \K of some finite order possibly depending

on p0.

Then AutCR(M) is a Lie group in the compact-open Cω topology and the action AutCR(M) ×
M → M is real-analytic. Furthermore, the compact-open Cr topologies on AutCR(M) coincide for

r = ∞, ω and r ≥ k, where k is an integer depending only on M .

In the case K = ∅, Theorem 2.2 is contained in [BRWZ04]. Heuristically speaking the points
of M \ K in Theorem 2.2 (ii) fulfil a ”strong” jet parametrization property (namely, a so-called
complete system in the sense of [KZ05, BRWZ04]). In Theorem 2.2, we allow some points to satisfy
a weaker property (namely condition (i)), but we have to pay the price by requiring that all these
points lie in a compact subset of M .

Proof of Theorem 2.2. Let K ⊂ M be the compact subset as in Theorem 2.2. We first apply the
parametrization property for the set of all germs at a fixed point p0 ∈ K, which holds in view of (i);
without loss of generality we may assume that K is nonempty. By Definition 2.1, for every fixed
p0 ∈ K, we can find open neighbourhoods Ω′ of p0 in M , Ω′′ of jk

p0
id in Gk(M) and a real-analytic

map Ψ: Ω′ × Ω′′ → M such that, for every germ h : (M, p0) → M of a local CR diffeomorphism

of M with jk
p0

h ∈ Ω′′, we have the identity h(·) ≡ Ψ(·, jk
p0

h) in the sense of germs at p0. Let Ω̃′

(resp. Ω̃′′) be a smaller neighbourhood of p0 in Ω′ (resp. of jk
p0

id in Ω′′) which is relatively compact
in Ω′ (resp. Ω′′), chosen for every p0 ∈ K. Without loss of generality, all neighbourhoods here are
connected. Using the compactness of K and passing to a finite subcovering, we obtain a finite
collection of points p1, . . . , ps ∈ K, the corresponding neighbourhoods

Ω′
m ⊃⊃ Ω̃′

m ∋ pm, Ω′′
m ⊃⊃ Ω̃′′

m ∋ jk
pm

id,

and real-analytic maps Ψm : Ω′
m × Ω′′

m → M for m = 1, . . . , s, such that (Ω̃′
m) is a covering of K.

We next define neighbourhoods U and Ũ of the identity mapping in AutCR(M) with respect to
the compact-open Ck topology as follows:

(2.0.1) Ũ := {g ∈ AutCR(M) : jk
pm

g ∈ Ω̃′′
m, 1 ≤ m ≤ s}, U := {g ∈ Ũ : g−1 ∈ Ũ}.
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It is clear from the definition of the topology chosen that U is indeed an open set. Obviously
the same conclusion holds for the compact-open C∞ topology as well as for the compact-open Cr

topology for any r ≥ k.
Our main step of the proof will be to show that U is relatively compact in AutCR(M). We shall

prove it with respect to the compact-open Ck topology, which is Fréchet and hence, in particular,
metrizable. Thus it suffices to prove that the closure of U is sequentially compact. Let (fn) be
any sequence in U , for which we shall prove that there exists a convergent subsequence. In view
of (2.0.1), we have

jk
pm

fn ∈ Ω̃′′
m ⊂⊂ Ω′′

m ⊂ Gk(M), m = 1, . . . , s,

for every n. Hence, passing to a subsequence, we may assume that jk
pm

fn converges to some
Λm ∈ Ω′′

m for each m = 1, . . . , s.
Following the strategy of [BRWZ04], we denote by O the open set of points q ∈ M with the

property that (fn) converges in the compact-open Cω (and hence any Cr with r ≥ k) topology
in a neighbourhood V of q in M to a map f : V → M such that the Jacobian of f at q is
nonzero. We want to show that O is nonempty and closed in M . By our construction, we have
fn(·) ≡ Ψ1(·, jk

p1
fn) in the sense of germs at p1 and hence, by the identity principle for real-

analytic functions, all over Ω′
1. Since jk

p1
fn converges to Λ1 ∈ Ω′′

1, it clearly follows that fn|Ω′

1
→

f := Ψ1(·, Λ1) as n → +∞ in the compact-open Cω topology on Ω′
1. In particular, we also have

jk
p1

fn → jk
p1

f and since jk
p1

f ∈ Ω′′
1 ⊂ Gk(M), we immediately see that p1 ∈ O, proving that O

is nonempty. To show that O is closed, let q0 be any point in the closure of O in M . We now
distinguish two cases.

Case 1. q0 /∈ K. Here we can repeat the arguments of the proof of [BRWZ04, Lemma 3.3] to
show that q0 ∈ O.

Case 2. q0 ∈ K. Here we only have the restricted parametrization given by (i) and hence cannot
use the same arguments as in Case 1; instead, we use our construction. Since the neighbourhoods
Ω̃′

m, m = 1, . . . , s, cover K, we have q0 ∈ Ω̃′
m0

⊂⊂ Ω′
m0

for some m0 and let pm0
∈ K be

the corresponding point. The sequence of the k-jets Λn
m0

:= jk
pm0

fn converges to Λm0
by our

assumptions above and therefore

(2.0.2) fn(·) ≡ Ψm0
(·, Λn

m0
) → Ψm0

(·, Λm0
),

which immediately implies that q0 ∈ O.
Summarizing, we have shown that O is nonempty, open and closed in M and therefore O =

M , i.e. (fn) converges on M to a real-analytic map f : M → M which is automatically CR.
Furthermore, by our construction of U , also the sequence of the inverses f−1

n is in U . Hence similar
arguments show that this sequence converges to another real-analytic CR self-map g of M . Then
it follows that g ◦ f = f ◦ g = id and therefore f ∈ AutCR(M). This completes the proof that the
chosen neighbourhood U of id in AutCR(M) is relatively compact. Since any g ∈ AutCR(M) has
gU as its neighbourhood, it follows that the whole group AutCR(M) is locally compact.

As in [BRWZ04], we make use of the following theorem of Bochner-Montgomery [BM46], [MZ55,
Theorem 2, p. 208]:
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Theorem 2.3 (Bochner-Montgomery). Let G be a locally compact topological group acting effec-

tively and continuously on a smooth manifold M by smooth diffeomorphisms. Then G is a Lie

group and the action G × M → M is smooth.

Indeed, we have just shown that G := AutCR(M) is locally compact. Since the action AutCR(M)×
M → M is obviously effective, Theorem 2.3 shows that AutCR(M) is a Lie group and its action is
smooth. The coincidence of the compact-open Cr topologies on AutCR(M) for r ≥ k also follows
from the proof. Finally the analyticity of the action follows from another result of Bochner-
Montgomery [BM45]:

Theorem 2.4 (Bochner-Montgomery). Let G be a Lie group acting continuously on a real-analytic

manifold M by real-analytic diffeomorphisms. Then the action G × M → M is real-analytic.

The proof of Theorem 2.2 is complete. �

3. Parametrization of local CR diffeomorphisms

In order to deduce Theorem 1.2 from Theorem 2.2, we will establish a jet parametrization
property of local CR diffeomorphisms for a certain class of real-analytic CR submanifolds in
complex space. Such a property has already been established by the first two authors in [LM07] for
an appropriate class of CR manifolds for local CR diffeomorphisms which furthermore fix a given

point of the manifold. However, in view of Definition 2.1, we need to extend such a parametrization
property to local CR diffeomorphisms which do not necessarily fix a base point. In what follows,
we make the above statements precise and show how they may be derived from the analysis given
in the paper [LM07].

The class of germs of real-analytic generic submanifolds we shall consider in this paper is the one
introduced by the first two authors in [LM07], denoted by C, whose definition we now recall. Denote
by (M, p0) a germ of a real-analytic generic submanifold of CN (or, more generally, of any complex
manifold) of CR dimension n and real codimension d, i.e. N = n+d, Tp0

M + iTp0
M = Tp0

CN and
n = dimC(Tp0

M ∩ iTp0
M). Let ρ = (ρ1, . . . , ρd) be a real-analytic vector valued defining function

for M in some neighbourhood U of p0 in CN satisfying ∂ρ1∧. . .∧∂ρd 6= 0. Using standard notation,
we write ρ as a convergent power series (after shrinking U if necessary)

ρ(Z, Z) =
∑

α,β∈NN

ραβ(Z − p0)
α(Z − p0)

β, Z ∈ U,

where ρα,β ∈ C
d satisfy ρα,β = ρβ,α, and complexify it to the power series

ρ(Z, ζ) =
∑

ραβ(Z − p0)
α(ζ − p0)

β, ∂ρ1 ∧ · · · ∧ ∂ρd 6= 0,

with (Z, ζ) ∈ CN×CN , which we still denote by ρ. It is easy to see that the complexification ρ(Z, ζ)
is still convergent in a suitable neighbourhood of (p0, p0) that (after shrinking U again if necessary)
can be chosen of the form U ×U ⊂ CN ×CN . Recall that the Segre variety Sq of a point q ∈ U is
the n-dimensional complex submanifold of U given by Sq := {Z ∈ U : ρ(Z, q) = 0}. Furthermore,
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the complexification of M is defined to be the 2n + d-dimensional complex submanifold of U × U
given by

(3.0.3) M := {(Z, ζ) ∈ U × U : ρ(Z, ζ) = 0} =
{
(Z, ζ) ∈ U × U : Z ∈ Sζ̄

}
.

For every integer k and for q ∈ CN , we denote by Jk,n
q (CN) the space of all jets at q of order k of

n-dimensional complex submanifolds of CN passing through q. For every q ∈ M sufficiently close
to p0, we consider the anti-holomorphic map πk

q defined as follows:

(3.0.4) πk
q : Sq → Jk,n

q (CN), πk
q (ξ) = jk

q Sξ,

where jk
q Sξ denotes the k-jet at q of the submanifold Sξ (see e.g. [Z99] for more details on jets of

complex submanifolds used here, and also [LM07]).
Following [LM07], we say that the germ (M, p0) belongs to the class C if the anti-holomorphic

map πk
p0

is generically of full rank n = dim Sp0
in any neighborhood of p0, for k sufficiently large.

For (M, p0) ∈ C, we denote by κM(p0) the smallest integer k for which the map πk
p0

is of generic
rank n. Since the Segre varieties are associated to (M, p0) in a biholomorphically invariant way,
the integer κM (p0) is a biholomorphic invariant of the germ (M, p0). Note furthermore that the
condition for a germ of real-analytic generic submanifold to belong to the class C is an open

condition in the sense that, if M ∈ C is given by the equation ρ(Z, Z̄) = 0 as above, then M̃ ∈ C

for any M̃ given by the equation ρ̃(Z, Z̄) = 0 with ρ̃ sufficiently close to ρ in the C∞ topology
(see e.g. [GG73] for details on this topology; here it is enough to assume that ρ̃ is close to ρ in
the Ck-topology for a suitable k). In particular, there exists a neighbourhood V of p0 in M such
that (M, q) ∈ C for all q ∈ V and moreover, it is clear from the definition that κM(q) is upper

semi-continuous on V .
We also recall that M is essentially finite (resp. finitely nondegenerate) at p0 if the map πk

p0
is

finite near p0 (resp. an immersion at p0) for k sufficiently large (see [BHR96, BER99b] for more
details). It follows that finite nondegeneracy of M at p0 implies essential finiteness of M at p0

which in turn implies that (M, p0) ∈ C. Recall also that M is minimal at p0 if there does not exist
any CR submanifold of lower dimension contained in M and passing through p0 with the same
CR dimension as that of M (see [Tu88, BER99b]).

For a real-analytic CR submanifold M ⊂ CN that is not necessarily generic and for a point
p0 ∈ M , we say that (M, p0) is in the class C if it is in the class C when considered as a generic
submanifold of its intrinsic complexification, i.e. the minimal germ of a complex submanifold of CN

containing (M, p0) (see e.g. [BER99b] for this notion). Finally we should also note that the local
nondegeneracy conditions defined above are defined in the same way for abstract real-analytic CR
manifolds since such manifolds can always be locally embedded in some complex euclidean space
Cq for some integer q, see e.g. [BER99b].

Finally, we refer the reader to [LM07] for examples of manifolds that belong to the class C, as well
as for a more thorough discussion of the relation between this nondegeneracy condition and other
well-known nondegeneracy conditions such as essential finiteness and finite nondegeneracy. We only
stress in this paper the following fact that will be used implicitly in the proofs of Corollaries 1.1
and 1.3 and that follows from a result of [DF78] : for every compact real-analytic CR submanifold
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Σ embedded in some Stein manifold and for every q ∈ Σ, Σ is essentially finite at q, and in

particular (Σ, q) ∈ C (see [LM07] for more details).
The following parametrization theorem is the second main ingredient of the proof of Theo-

rem 1.2.

Theorem 3.1. Let M ⊂ CN be a real-analytic CR submanifold of codimension d and p0 ∈ M .

Assume that (M, p0) is minimal and belongs to the class C and set ℓ0 := 2(d + 1)κM(p0). Then

the set of all germs h : (M, p0) → M of local CR diffeomorphisms of M has the real-analytic jet

parametrization property of order ℓ0 at p0.

As mentioned above, the difference between Theorem 3.1 and [LM07, Theorem 7.3] is due
to the fact that the parametrization theorem given in [LM07] is obtained for the set of germs
h : (M, p0) → (M, p0) of local CR diffeomorphisms with fixed source p0 but also with fixed target
p0. The version given here by Theorem 3.1 allows to parametrize local CR diffeomorphisms which
send the point p0 to a varying target point p ∈ M (close to p0) that has to be regarded as an
additional parameter. We will provide a deformation version of [LM07, Theorem 7.3] which allows
us to treat this additional parameter in Theorem 3.2 below. (Note that it is not always possible to
parametrize in a proper sense the germs of all local CR diffeomorphisms with varying both source
and targets, see Remark 3.3 below).

Before we proceed, we need to introduce some further terminology. Given a real-analytic mani-
fold E and a point p0 ∈ C

N , a real-analytic family of germs at p0 of real-analytic generic subman-

ifolds (Mǫ)ǫ∈E of CN , is given by a family of convergent power series mapping in Z and Z̄ centered
at p0, ρ(Z, Z̄; ǫ) = (ρ1(Z, Z̄; ǫ), . . . , ρd(Z, Z̄; ǫ)) with ρ(p0, p̄0; ǫ) = 0 and ∂ρ1(·; ǫ)∧· · ·∧∂ρd(·; ǫ) 6= 0
for every ǫ ∈ E such that there exists a neighbourhood of {p0}×E ⊂ CN ×E on which ρ(Z, Z̄; ǫ) is
real-analytic in all its arguments. In particular, for each ǫ ∈ E, the set {Z ∈ C

N : ρ(Z, Z̄; ǫ) = 0}
defines a germ at p0 of a real-analytic generic submanifold Mǫ ⊂ CN of codimension d. Given a
fixed germ of a real-analytic generic submanifold M ⊂ CN through p0 and (Mǫ)ǫ∈E a real-analytic
family through p0 as defined above, we say that (Mǫ)ǫ∈E is a real-analytic deformation of (M, p0)
if there exists ǫ0 ∈ E such that (M, p0) = (Mǫ0 , p0).

We are now ready to state the following result.

Theorem 3.2. Let (M, p0) be a germ of a real-analytic generic submanifold of codimension d
that is minimal and in the class C and set ℓ0 = 2(d + 1)κM(p0). Let (Mǫ)ǫ∈E be a real-analytic

deformation of the germ (M, p0) (parametrized by some real-analytic manifold E) with (Mǫ0 , p0) =
(M, p0) for some ǫ0 ∈ E. Then there exist open neighbourhoods U0 of ǫ0 in E, U1 of p0 ∈ CN and

Ω of jℓ0
p0

Id in Gℓ0
p0

(CN) and a real-analytic map Ψ(Z, Λ; ǫ) : U1 × Ω × U0 → C
N , holomorphic in

its first factor such that for every germ of a biholomorphic map H : (CN , p0) → (CN , p0) sending

(Mǫ, p0) for some ǫ ∈ U0 into (M, p0) with jℓ0
p0

H ∈ Ω, we have

H(Z) = Ψ(Z, jℓ0
p0

H ; ǫ), for Z ∈ C
N close to p0.

Remark 3.3. It is natural to ask whether Theorem 3.2 remains true with the target manifold
(M, p0) also varying. Such a result holds for finitely nondegenerate manifolds [BER99a, KZ05].
However, it cannot hold for the more general class C (even in the real-analytic case) as the example
with M ⊂ C

2
(z,w) given by Imw = |z|4 shows, see [KZ05, Example 1.5].
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Let us now show how Theorem 3.1 follows from Theorem 3.2.

Proof of Theorem 3.1 assuming Theorem 3.2. Without loss of generality, we may assume that M
is generic. Let ρ = ρ(Z, Z̄) be a real-analytic vector valued defining equation for M in a neigh-
bourhood U of 0. Consider the real-analytic deformation of the germ (M, p0) obtained by vary-

ing the base point in some small neighbourhood Ũ ⊂ U i.e. defined by the family (Mp)p∈eU

where Mp is the germ at p0 of the real-analytic generic submanifold given by the equation
{Z ∈ CN : ρ(Z − p0 + p, Z̄ − p̄0 + p̄) = 0}. Applying Theorem 3.2 to this deformation, it is
not difficult to derive the following:

Proposition 3.4. Under the assumptions of Theorem 3.1, the set of all germs h : (M, p) →
(M, p0) of local CR diffeomorphisms of M with variable source point p has the real-analytic jet

parametrization property of order ℓ0 at p0.

The conclusion of Theorem 3.1 then follows easily from Proposition 3.4 and an application of
the inverse function theorem. We leave the details to the reader. �

4. Proof of Theorem 3.2

We assume that we are in the setting of Theorem 3.2. Without loss of generality, suppose that
p0 coincides with the origin in C

N and set n = N − d. Consider the given real-analytic family
(Mǫ)ǫ∈E and ǫ0 ∈ E satisfying (Mǫ0, 0) = (M, 0).

4.1. Normal coordinates and Segre mappings for the deformation. The first basic fact
needed for the construction of a mapping Ψ satisfying the conclusion of Theorem 3.2 is the choice
of a certain set of coordinates (the so-called “normal coordinates”) for each manifold Mǫ near the
origin and depending real-analytically on ǫ for ǫ close to ǫ0.

The coordinates we need are obtained from the standard construction of the normal coordinates
(cf. e.g. [BER99b]):

Lemma 4.1. Let (Mǫ)ǫ∈E be a real-analytic family of real-analytic generic submanifolds through

the origin in CN of codimension d and ǫ0 ∈ E as above. Then there exist germs of real-analytic

maps

Z : (CN × E, (0, ǫ0)) → (CN , 0) and Q : (Cn × C
n × C

d × E, (0, 0, 0, ǫ0)) → (Cd, 0),

holomorphic in all their components except E, such that for every fixed ǫ ∈ E sufficiently close to

ǫ0, the following holds:

(i) Z(0; ǫ) = 0 and the map Z(·; ǫ) : (CN , 0) → (CN , 0) is locally biholomorphic near 0;
(ii) in the local coordinates Z(·; ǫ) = (z, w) ∈ Cn × Cd near 0, the manifold Mǫ is given by

(4.1.1) w − Q(z, z, w; ǫ) = 0;

(iii) one has Q(z, 0, τ ; ǫ) ≡ Q(0, χ, τ ; ǫ) ≡ τ .
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We fix an open neighbourhood U0 of ǫ0 in E so that Lemma 4.1 holds. After possibly shrinking
U0 we may assume that for every ǫ ∈ U0, Mǫ is minimal at 0 and that κMǫ

(0) ≤ κM(0); we set
Q(z, χ, τ) := Q(z, χ, τ, ǫ0).

The next tools we need are the Segre mappings associated with the manifolds Mǫ, ǫ ∈ U0. Recall
that for every integer k ≥ 1, the k-th Segre (germ of a) mapping

vk
ǫ : (Ckn, 0) → (Cn × C

d, 0)

associated to (Mǫ, 0) and the chosen normal coordinates is defined inductively as follows (see
[BER99a]):

(4.1.2) v1
ǫ (t

1) := (t1, 0), vk+1
ǫ (t[k+1]) :=

(
tk+1, Q

(
tk+1, vk

ǫ (t
[k]); ǫ

))
,

where tk ∈ C
n, t[k] := (t1, . . . , tk) ∈ C

kn. Here and throughout the paper, for any power series
mapping θ, we denote by θ̄ the power series obtained from θ by taking complex conjugates of its
coefficients.

For every ǫ ∈ U0 and a germ of a biholomorphic map H : (CN , 0) → (CN , 0) sending (Mǫ, 0)
into (M, 0), we define

(4.1.3) Hǫ : (CN , 0) → (CN , 0), Hǫ := H(Z(·; ǫ)−1),

where Z(·; ǫ)−1 : (CN , 0) → (CN , 0) is the local inverse of Z(·; ǫ); Hǫ sends (Mǫ, 0) written in the
Z-coordinates into (M, 0), and Mǫ is given by (4.1.1). It is clear from the construction of the above
coordinates and from the Inverse Function Theorem that it is enough to prove the parametriza-
tion property for all our mappings Hǫ for ǫ sufficiently close to ǫ0 to obtain the conclusion of
Theorem 3.2.

After choosing normal coordinates Z ′ = (z′, w′) ∈ C
n × C

d for the target manifold M at p0,
which are fixed here, we write Hǫ = (fǫ, gǫ) ∈ Cn × Cd and also denote by Mǫ the germ at the
origin of the complexification of Mǫ. In our coordinates, it is defined as the germ of the complex
submanifold of CN × CN at the origin given by

Mǫ = {(Z, ζ) = ((z, w), (χ, τ)) ∈ C
n × C

d × C
n × C

d : w = Q(z, χ, τ ; ǫ)}.

4.2. Reflection identities with parameters. We now want to state a version with parameters
of the reflection identities given in [LM07, Propositions 9.1 and 9.2, Lemma 9.3 and Proposition
9.4]. For this, as in [LM07], it is convenient to introduce the following notation.

For every positive integer k, we denote by Jk
0,0(C

N) the space of all jets at the origin of order

k of holomorphic mappings from CN into itself and fixing the origin. In our normal coordinates
Z = (Z1, . . . , ZN) in CN , we identify a jet J ∈ Jk

0,0(C
N) with a polynomial map of the form

(4.2.1) J = J (Z) =
∑

α∈Nr , 1≤|α|≤k

Λk
α

α!
Zα,

where Λk
α ∈ CN . We thus have for a jet J ∈ Jk

0,0(C
N), the coordinates

(4.2.2) Λk := (Λk
α)1≤|α|≤k
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given by (4.2.1). Given a germ of a holomorphic map h : (CN , 0) → (CN , 0), h = h(t), for t

sufficiently small we use for the k-jet of h at t the notation jk
t h =: (t, h(t), ĵk

t h) (which is defined

as a germ at 0). Moreover, since h(0) = 0, we may also identify jk
0h with ĵk

0h, which we will freely
do in the sequel.

Given the normal coordinates (z, w) ∈ Cn × Cd = CN , we consider a special component of a
jet Λk ∈ Jk

0,0(C
N) defined as follows. Denote the set of all multiindices of length one having 0

from the n+1-th to the N -th component by S, and the projection onto the first n coordinates by
proj1 : CN → Cn (that is, proj1(z, w) = z). Then set

(4.2.3) Λ̃1 := (proj1(Λα))α∈S.

Note that for any local holomorphic map

(Cn × C
d, 0) ∋ (z, w) 7→ h(z, w) = (f(z, w), g(z, w)) ∈ (Cn × C

d, 0),

if jk
0h = Λk, then Λ̃1 = (∂f

∂z
(0)). We can therefore identify Λ̃1 with an n×n matrix or equivalently

with an element of J1
0,0(C

n). Throughout the paper, given any jet λk ∈ Jk
0,0(C

N), λ̃1 will always

denote the component of λk defined by (4.2.3).
In addition, for every positive integer r and an open neighborhood U0 of ǫ0 in E, we denote

by Sr = Sr(U0) the ring of germs at {0} × U0 of real-analytic functions on Cr × E that are
holomorphic in their first argument. Recall that this is the space of all real-analytic functions that
are defined in a connected open neighbourhood (depending on the function) of {0}×U0 in C

r ×E
(and holomorphic in their first argument).

We now collect the following versions of the reflection identities of [LM07, Section 9] with
parameters that are necessary in order to complete the proof of Theorem 3.2. The first basic
identity given by (4.2.4) is standard and may obtained by complexifying the identity Hǫ(Mǫ) ⊂ M
and applying the vector fields tangent to Mǫ.

Proposition 4.2. In the above setting, there exists a polynomial D = D(Z, ζ, ǫ, Λ1) ∈ S2N [Λ1]
and, for every α ∈ Nn \ {0}, a Cd-valued polynomial map Pα = Pα(Z, ζ, ǫ, Λ|α|) whose components

are in the ring S2N [Λ|α|] such that for ǫ ∈ U0 and for every map Hǫ : (Mǫ, 0) → (M, 0) the following

holds:

(i) D(0, 0, ǫ, Λ1) = det Λ̃1;

(ii) for all (Z, ζ) ∈ Mǫ near 0,

(4.2.4) (D(Z, ζ, ǫ, ĵ1
ζHǫ))

2|α|−1 Q̄χα(f̄ǫ(ζ), Hǫ(Z)) = Pα(Z, ζ, ǫ, ĵ
|α|
ζ Hǫ).

The next identity given by (4.2.5) involves the (transversal) derivatives of the mappings Hǫ and
follows easily from differentiating (4.2.4) and applying the chain rule.

Proposition 4.3. For any µ ∈ Nd \ {0} and α ∈ Nn \ {0}, there exist a Cd-valued polynomial

map Tµ,α(Z, ζ, Z ′, ζ ′, ǫ, λ|µ|−1, Λ|µ|) whose components belong to the ring S4N [λ|µ|−1, Λ|µ|] and a Cd-

valued polynomial map Qµ,α(Z, ζ, ǫ, Λ|α|+|µ|) whose components are in the ring S2N [Λ|α|+|µ|], such

that for ǫ ∈ U0, for every map Hǫ : (Mǫ, 0) → (M, 0) and for any (Z, ζ) ∈ Mǫ close to the origin,
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the following relation holds:

(4.2.5)
∂|µ|Hǫ

∂wµ
(Z) · Q̄χα,Z(f̄ǫ(ζ), Hǫ(Z)) = (∗)1 + (∗)2,

where

(4.2.6) (∗)1 := Tµ,α

(
Z, ζ, Hǫ(Z), Hǫ(ζ), ǫ, ĵ

|µ|−1
Z Hǫ, ĵ

|µ|
ζ Hǫ

)

and

(4.2.7) (∗)2 :=
Qµ,α(Z, ζ, ǫ, ĵ

|α|+|µ|
ζ Hǫ)

(D(Z, ζ, ǫ, ĵ1
ζHǫ))2|α|+|µ|−1

.

In the next lemma, we observe that for any given map Hǫ = (fǫ, gǫ), the (transversal) derivatives
of the normal component gǫ can be expressed (in an universal way) through the (transversal)
derivatives of the components of fǫ and some other terms that have to be seen as remainders. In
particular, this lemma will allow us (as in [LM07]) to derive the desired parametrizations of the
maps Hǫ and their derivatives on each Segre set from the corresponding parametrizations of the
maps fǫ and their derivatives.

Lemma 4.4. For any µ ∈ Nd \ {0}, there exists a Cd-valued polynomial map

Wµ = Wµ

(
Z, ζ, Z ′, ζ ′, ǫ, λ|µ|−1, Λ|µ|

)
,

whose components belong to the ring S4N [λ|µ|−1, Λ|µ|] and such that for ǫ ∈ U0, for every map

Hǫ : (Mǫ, 0) → (M, 0) and for any (Z, ζ) ∈ Mǫ close to the origin, the identity

(4.2.8)
∂|µ|gǫ

∂wµ
(Z) =

∂|µ|fǫ

∂wµ
(Z) · Qz(fǫ(Z), Hǫ(ζ)) + (∗)3

holds with

(4.2.9) (∗)3 := Wµ

(
Z, ζ, Hǫ(Z), Hǫ(ζ), ǫ, ĵ

|µ|−1
Z Hǫ, ĵ

|µ|
ζ Hǫ

)
.

The next statement is obtained as a direct combination of Lemma 4.4 and Proposition 4.3 and
provides the form of the system of equations fulfilled by any (transversal) derivative of fǫ.

Proposition 4.5. For any µ ∈ Nd \ {0} and α ∈ Nn \ {0}, there exist a Cd-valued polynomial

map T ′
µ,α(Z, ζ, Z ′, ζ ′, ǫ, λ|µ|−1, Λ|µ|) whose components belong to the ring S4N [λ|µ|−1, Λ|µ|] such that

for ǫ ∈ U0 and for every map Hǫ : (Mǫ, 0) → (M, 0) the following relation holds for (Z, ζ) ∈ Mǫ

close to 0:

(4.2.10)
∂|µ|fǫ

∂wµ
(Z) ·

(
Q̄χα,z(f̄ǫ(ζ), Hǫ(Z)) + Qz(fǫ(Z), Hǫ(ζ)) · Q̄χα,w(f̄ǫ(ζ), Hǫ(Z))

)
= (∗)′1 + (∗)2,

where (∗)2 is given by (4.2.7) and (∗)′1 is given by

(4.2.11) (∗)′1 := T ′
µ,α

(
Z, ζ, Hǫ(Z), Hǫ(ζ), ǫ, ĵ

|µ|−1
Z Hǫ, ĵ

|µ|
ζ Hǫ

)
.
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Since the proof of the above relations is analogous to those derived in [LM07], we leave the
details to the reader. We should point out that, in the reflection identities with parameters men-
tioned above, the most relevant fact is the location of the parameter ǫ in the identities. Indeed, the
parameter ǫ appears always in an appropriate place so that the results concerning the parametriza-
tion of solutions of singular analytic systems given in the next paragraph will be applicable. This
crucial fact explains why we can follow the analysis of [LM07] in order to derive Theorem 3.2.

4.3. Parametrization of solutions of singular analytic systems. We state here the two
versions of the parametrization results for singular systems needed for the proof of Theorem 3.2.
The first one is needed to have a parametrization of the compositions Hǫ ◦ vj

ǫ for all integers j,
where vj

ǫ is defined by (4.1.2).

Theorem 4.6. Let A : (Cm, 0) → C
m be a germ of a holomorphic map of generic rank m, X

a real-analytic manifold, Y a complex manifold and b = b(z, x, y) a Cm-valued real-analytic map

defined on an open neighbourhood V of {0}×X × Y in Cm ×X ×Y , holomorphic in (z, y). Then

there exists a real-analytic map Γ = Γ(z, λ, x, y) : Cm × GLm(C) × X × Y → Cm, defined on an

open neighbourhood Ω of {0} × GLm(C) × X × Y , holomorphic in all its components except X,

satisfying the following properties:

(i) If u : (Cm, 0) → (Cm, 0) is a germ of a biholomorphism satisfying A(u(z)) = b(z, x0, y0)
for some (x0, y0) ∈ X × Y , then necessarily u(z) = Γ(z, j1

0u, x0, y0);
(ii) For every λ ∈ GLm(C) and (x0, y0) ∈ X × Y , the map Γ satisfies Γ(0, λ, x0, y0) = 0 and

∂Γ

∂z
(0, λ, x0, y0) = λ.

The statement given by Theorem 4.6 follows directly from [LM07, Corollary 3.2] after an obvious
complexification argument.

The second version given below is needed to get a parametrization of the mappings (∂βHǫ) ◦ vj
ǫ

for all integers j and all multiindices β ∈ N
N \ {0}.

Proposition 4.7. Let Θ be an r × r matrix with holomorphic coefficients near the origin in Cm,

m, r ≥ 1, such that Θ is of generic rank r. Let X be a real-analytic manifold and Y a complex

manifold. Assume that c : Cm × X × Y → Cm and b : Cm × X × Y → Cr are real-analytic maps

defined on some neighbourhood V of {0}×X×Y such that (z, y) 7→ b(z, x, y) and (z, y) 7→ c(z, x, y)
are holomorphic on Vx = {(z, y) ∈ Cm × Y : (z, x, y) ∈ V } for each x ∈ X. Assume furthermore

that c satisfies

c(0, x, y) = 0, det cz(0, x, y) 6= 0, for every (x, y) ∈ X × Y.

Then there exists a real-analytic map Γ: Cm × X × Y → Cr defined on a neighbourhood of {0} ×
X × Y , holomorphic in all its components except X, such that if u : (Cm, 0) → Cr is a germ of

a holomorphic map satisfying Θ(c(z, x0, y0)) · u(z) = b(z, x0, y0) for some (x0, y0) ∈ X × Y , then

u(z) = Γ(z, x0, y0).

The statement given by Proposition 4.7 follows from [LM07, Proposition 6.3] and again a simple
complexification argument.
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4.4. Completion of the proof of Theorem 3.2. With the statements given in Sections 4.2
and 4.3 at our disposal, we can follow the plan of the proof of [LM07, Theorem 7.3] to get the
needed parametrization of the maps Hǫ restricted to any Segre set. More precisely, the reader may
verify that after applying the above statements as in [LM07], one obtains the following:

Proposition 4.8. In the above setting and shrinking the neighbourhood U0 if necessary, for every

positive integer j, there exists a real-analytic map

Ψj : C
nj × U0 × J

jκM(0)
0,0 (CN) → C

N ,

defined in a neighbourhood of {0} × U0 × Wj where Wj is an open set in the jet space containing

all the jets (at 0) of the maps Hǫ for ǫ ∈ U0, that is holomorphic in its first factor and satisfying

in addition

(4.4.1)
(
Hǫ ◦ vj

ǫ

) (
t[j]

)
= Ψj

(
t[j], ǫ, j

jκM(0)
0 Hǫ

)
,

for all t[j] sufficiently close to the origin.

We are now in a position to finish the proof of Theorem 3.2. For this, recall first that ℓ0 =
2(d + 1)κM(0) and consider the equation (4.4.1) for j = 2(d + 1) that we localize near the point
(ǫ0, j

ℓ0
0 Id) ∈ E×J ℓ0

0,0(C
N). Shrinking U0 if necessary, there exist open neighbourhoods O ⊂ C2n(d+1)

of the origin and O′ ⊂ J ℓ0
0,0(C

N) of jℓ0
0 Id such that Ψ2(d+1) is defined over O×U0×O′ and such that

for every ǫ ∈ U0 satisfying jℓ0
0 Hǫ ∈ O′, the identity (4.4.1) holds (with j = 2(d + 1)) for t[2(d+1)]

sufficiently close to the origin.
The rest of the proof closely follows the lines of [KZ05, Section 4]; it consists of using a version of

the implicit function with singularities [KZ05, Lemma 3.4] and resolving the obtained singularities
by using [KZ05, Lemma 4.3]. The differences between the situation treated in the present paper
and that of [KZ05] are the parameter dependence which is real-analytic in our case (instead of
smooth in [KZ05]) and the absence of the error terms in the formula (4.4.1) (in contrast to [KZ05]).
The details are left to the reader.

5. Proof of Theorem 1.2

Proof of Theorem 1.2. Suppose first that M is a connected real-analytic CR-submanifold in CN .
Then we claim that the conclusion of Theorem 1.2 follows from the conjunction of Theorem 2.2 and
Theorem 3.1. Indeed, assumption (i) of Theorem 1.2 and Theorem 3.1 imply that assumption (i) of
Theorem 2.2 is satisfied. (Note that the upper semi-continuity of the integer κM (p) on p ∈ K ⊂ M
in Theorem 3.1 is also used here in order to deduce the existence of the integer k satisfying the
conclusions of Theorem 2.2 (i)). Furthermore, assumption (ii) of Theorem 1.2 together with the
results of [BER99a, KZ05] imply that assumption (ii) of Theorem 2.2 is also satisfied. This proves
the claim.

If M is not connected, we may repeat the arguments of the proof of [BRWZ04, Theorem 6.2]
since M is assumed to have finitely many connected components.

Finally, when M is an abstract real-analytic CR manifold, the proof is the same as before since
it is based on purely local arguments and since any such manifold can locally be embedded as a
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CR submanifold of some complex euclidean space Cq for some integer q (see e.g. [BER99b]). The
proof of the theorem is complete. �

6. An elementary proof of Corollary 1.3

We conclude this paper by providing an elementary proof of Corollary 1.3 which avoids the use
of Theorem 2.2 and rather follows the proof of [Z97, Corollary 1.3]. Note that in any case one has
to make use of Theorem 3.1.

Proof of Corollary 1.3. Since M is compact (and everywhere minimal) and embedded in some
Stein manifold, we may apply Theorem 3.1 to conclude that there exists a finite number of points
p1, . . . , pk ∈ M and open neighbourhoods Ω′

j of pj in M covering M such that for every h ∈
AutCR(M) sufficiently close to the identity mapping, say in an open neighbourhood N of it,
Theorem 3.1 holds at all points pj with a parametrization Ψj defined in a neighborhood of Ω′

j×{pj}
with the jet order ℓj. Write ℓ = max ℓj. As in [Z97], our goal is to show that the image of the
neighbourhood N ⊂ AutCR(M) under the homeomorphism (onto its image)

h 7→ η(h) =
(
jℓ
p1

h, . . . , jℓ
pk

h, jℓ
p1

h−1, . . . , jℓ
pk

h−1
)
∈

(
Gℓ

p1
(M) × . . . × Gℓ

pk
(M)

)2
=: Y2

is a real-analytic subset of the target space, and that the group law is real-analytic. But it is
easy to single out the points in the image which give rise to a global automorphism of M . Any
(α, β) = (α1, . . . , αk, β1, . . . , βk) ∈ Y2 belongs to η(N ) if and only if for every j, m = 1, . . . , k, the
following identities are satisfied:

Ψj(·, αj) = Ψm(·, αm), Ψj(·, βj) = Ψm(·, βm) on Ω′
j ∩ Ω′

m,

Ψm (Ψm (·, αm) , βm) = Ψm (Ψm (·, βm) , αm) = Id near pm,

αj = jℓ
pj

(Ψj(·, αj)) , βm = jℓ
pm

(Ψm(·, βm)) .

From this, it is clear that η(N ) is a real-analytic subset of Y2, and again following [Z97], we see
that the group law is indeed real-analytic. This concludes the proof of Corollary 1.3. �
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