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Abstract. We prove the following finite jet determination result for CR mappings : Given a
smooth generic submanifold M ⊂ CN , N ≥ 2, that is essentially finite and of finite type at each
of its points, for every point p ∈ M there exists an integer ℓp, depending upper-semicontinuously
on p, such that for every smooth generic submanifold M ′ ⊂ CN of the same dimension as that of
M , if h1, h2 : (M, p) → M ′ are two germs of smooth finite CR mappings with the same ℓp jet at
p, then necessarily jk

p h1 = jk
ph2 for all positive integers k. Specified to the hypersurface case, this

result already provides several new unique jet determination properties for holomorphic mappings
at the boundary even in the real-analytic case. Among other things, it provides the finite jet
determination of arbitrary real-analytic CR mappings between real-analytic hypersurfaces of CN

of D’Angelo finite type. It also yields the following new boundary version of H. Cartan’s uniqueness
theorem: if Ω, Ω′ ⊂ CN are two bounded domains with smooth real-analytic boundary then there
exists an integer k, depending only on the boundary ∂Ω, such that if H1, H2 : Ω → Ω′ are two
proper holomorphic mappings extending smoothly up to ∂Ω near some point p ∈ ∂Ω and agreeing
up to order k at p, then necessarily H1 = H2.

1. Introduction

There exists a wide variety of results concerned with the rigidity of automorphisms of a given
geometric structure. In CR geometry, one classical result of this type is given by the uniqueness
result stating that every pseudo-conformal map (or equivalently local biholomorphic map) sending
Levi-nondegenerate real-analytic hypersurfaces of CN into each other, N ≥ 2, is uniquely deter-
mined by its 2-jet at any given point; this is a consequence of the solution to the biholomorphic
equivalence problem for the class of Levi-nondegenerate hypersurfaces, obtained by E. Cartan
[12, 13] in C2 and Tanaka [37] and Chern-Moser [15] in CN for arbitrary N ≥ 2. This result has
been the source of many recent developments and generalizations in several directions, see e.g.
the works [8, 9, 34, 1, 2, 4, 6, 20, 27, 30, 21, 28, 33, 31] and also the surveys [38, 5, 36, 39, 26]
for complete references on the subject. Most of the work mentioned above is concerned with es-
tablishing the unique jet determination property for holomorphic automorphisms. In this paper,
we are concerned with understanding the same phenomenon for finite holomorphic mappings (or
even arbitrary CR mappings) between generic manifolds that we allow to be of any codimension
and to have strong Levi-degeneracies. More precisely, we prove the following theorem (see §2 for
relevant definitions and notation).
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Theorem 1.1. Let M ⊂ CN be a smooth generic submanifold that is essentially finite and of finite

type at each of its points. Then for every point p ∈M there exists an integer ℓp, depending upper-

semicontinuously on p, such that for every smooth generic submanifold M ′ ⊂ CN of the same

dimension as that of M , if h1, h2 : (M, p) →M ′ are two germs of smooth finite CR mappings with

the same ℓp jet at p, then necessarily jk
ph1 = jk

ph2 for all positive integers k.

Here and throughout the paper by smooth we mean C∞-smooth. To put our main result into
the proper perspective, we should mention that Theorem 1.1 improves the very few finite jet
determination results for finite mappings in two important different directions. Under the same
assumptions as that of Theorem 1.1, Baouendi, Ebenfelt and Rothschild proved in [4] (see also
[6]) the finite jet determination of finite mappings whose k-jet at a given point, for k sufficiently
large, is the same as that of a given fixed finite map; the integer k does actually depend on this
fixed map.

Our result allows, on one hand, to compare arbitrary pairs of finite maps, and cannot be
derived from the mentioned result of [4]. From this point of view, Theorem 1.1 is more natural
and satisfactory. On the other hand, our main result also provides a dependence of the jet order
(required to get the determination of the maps) on the base point. This explicit control cannot
be obtained by the techniques of [4, 6] and is of fundamental importance in order to derive for
instance Theorem 1.3 below.

Note that Theorem 1.1 is new even in the case where the manifolds and mappings are real-
analytic, in which case the conclusion is that the mappings are identical. Note also that the
upper-semicontinuity of the jet order with respect to the base point mentioned in Theorem 1.1
was already obtained by the authors in [33] in the case of local biholomorphic self-maps of real-
analytic generic submanifolds of CN . The proof that we are giving of this fact in this paper has
the advantage to extend to a more general situation and to be at the same time somewhat simpler
than the proof given in [33].

Theorem 1.1 offers a number of remarkable new consequences. The first one is given by the
following finite jet determination result for arbitrary CR mappings between D’Angelo finite type
hypersurfaces (in the sense of [16]). To the authors’ knowledge, this result is the first of its kind
in the levi-degenerate case. (See also Corollary 5.2 below for a slightly more general version.)

Corollary 1.2. Let M,M ′ ⊂ CN be smooth real hypersurfaces of D’Angelo finite type. Then for

every point p ∈ M , there exists a positive integer ℓ = ℓ(M, p), depending upper-semicontinuously

on p, such that for any pair h1, h2 : (M, p) →M ′ of germs of smooth CR mappings, if jℓ
ph1 = jℓ

ph2,

then necessarily jk
ph1 = jk

ph2 for all positive integers k. If in addition both M and M ′ are real-

analytic, it follows that h1 = h2.

In another direction, a further consequence of Theorem 1.1 is given by the following.

Theorem 1.3. Let M be a compact real-analytic CR submanifold of CN that is of finite type at

each of its points. Then there exists a positive integer k, depending only on M , such that for every

real-analytic CR submanifold M ′ ⊂ CN of the same dimension as that of M and for every point

p ∈ M , local smooth CR finite mappings sending a neighbourhood of p in M into M ′ are uniquely

determined by their k-jet at p.

Theorem 1.3 follows from the conjunction of the upper-semicontinuity of the integer ℓp on p
in Theorem 1.1, a well-known result of Diederich-Fornæss [17] stating that compact real-analytic
CR submanifolds of CN do necessarily not contain any analytic disc and hence are essentially
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finite (see e.g. [3]) and the combination of the regularity result due to Meylan [35] with the recent
transversality result due to Ebenfelt-Rothschild [22]. In the case of local CR diffeomorphisms,
Theorem 1.3 was already obtained by the authors in [33].

When both manifolds M and M ′ are compact hypersurfaces in Theorem 1.3, we have the
following neater statement as an immediate consequence of Corollary 1.2.

Corollary 1.4. Let M,M ′ ⊂ CN be compact real-analytic hypersurfaces. Then there exists a

positive integer k depending only on M , such that for every point p ∈ M , local smooth CR

mappings sending a neighbourhood of p in M into M ′ are uniquely determined by their k-jet at p.

We note that the conclusion of Corollary 1.4 does not hold (even for automorphisms) if the
compactness assumption is dropped, as the following example shows.

Example 1.5. 1 Let Φ: C → C be a non-zero entire function satisfying

∂jΦ

∂zj
(n) = 0, j ≤ n, n ∈ N,

and consider the hypersurface M ⊂ C3
z1,z2,w given by the equation

Imw = Re
(
z1Φ(z2)

)
.

Then the entire automorphism

H(z1, z2, w) = (z1 + iΦ(z2), z2, w)

sends M into itself, agrees with the identity up to order n at each point (0, n, 0), n ∈ N, but
is not equal to the identity. This example shows that despite of the fact that local holomorphic
automorphisms of M are uniquely determined by a finite jet at every arbitrary fixed point of M
(since M is holomorphically nondegenerate and of finite type, see [6]), a uniform bound for the jet
order valid at all points of the manifold need not exist in general, unless additional assumptions
(like compactness) are added. Note also that in view of the results in [21], the above phenomenon
cannot happen in C2.

By a classical result of H. Cartan [14], given any bounded domain Ω ⊂ CN , any holomorphic
self-map of Ω agreeing with the identity mapping up to order one at any fixed point of Ω must be
the identity mapping. Our last application provides a new boundary version of this uniqueness
theorem for proper holomorphic mappings.

Corollary 1.6. Let Ω ⊂ C
N be a bounded domain with smooth real-analytic boundary. Then

there exists an integer k, depending only on the boundary ∂Ω, such that for every other bounded

domain Ω′ with smooth real-analytic boundary, if H1, H2 : Ω → Ω′ are two proper holomorphic maps

extending smoothly up to ∂Ω near some point p ∈ ∂Ω which satisfy H1(z) = H2(z) + o(|z − p|k),
then necessarily H1 = H2.

Corollary 1.6 follows immediately from Corollary 1.4. The authors do not know any other
analog of H. Cartan’s uniqueness theorem for arbitrary pairs of proper maps. A weaker version
of Corollary 1.6 appears in the authors’ paper [33] (namely when Ω = Ω′ and one of the map is

1This is an adaptation of an example which appeared in [21], which grew out of a discussion at the workshop
“Complexity of mappings in CR-geometry” at the American Institute of Mathematics in September 2006. The
authors would like to take this opportunity to thank the Institute for its hospitality.
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assumed to be the identity mapping). For other related results, we refer the reader to the papers
[11, 24, 23].

The paper is organized as follows. In the next section, we recall the basic concepts concerning
formal generic submanifolds and mappings which allow us to state a general finite jet determination
result (Theorem 3.1) in such a context for so-called CR-transversal mappings, and from which
Theorem 1.1 will be derived. In §4 we give the proof of Theorem 3.1 which involves the Segre
set machinery recently developed by Baouendi, Ebenfelt and Rothschild [2, 4, 3]. In order to be
able to compare arbitrary pairs of mappings, we have to derive a number of new properties of
the mappings under consideration, when restricted to the first Segre set. As a byproduct of the
proof, we also obtain a new sufficient condition for a CR-transversal map to be an automorphism
(Corollary 4.6). The last part of the proof, concerned with the iteration to higher order Segre sets,
is established by a careful analysis of standard reflection identities. During the course of the proof,
we also have to keep track of the jet order needed to get the determination of the maps so that this
order behaves upper-semicontinuously on base points when applied at varying points of smooth
generic submanifolds. This is done in the formal setting by defining new numerical invariants
associated to any formal generic submanifold; such invariants are used to provide an explicit jet
order that behaves upper-semicontinuously on the source manifold when this latter is subject to
arbitrary continuous deformations. The proofs of the results mentioned in the introduction are
then derived from Theorem 3.1 in §5.

2. Formal submanifolds and mappings

2.1. Basic definitions. For x = (x1, . . . , xk) ∈ Ck, we denote by C[[x]] the ring of formal power
series in x and by C{x} the subring of convergent ones. If I ⊂ C[[x]] is an ideal and F : (Ck

x, 0) →
(Ck′

x′, 0) is a formal map, then we define the pushforward F∗(I) of I to be the ideal in C[[x′]],
x′ ∈ C

k′
, F∗(I) := {h ∈ C[[x′]] : h◦F ∈ I}. We also call the generic rank of F and denote by RkF

the rank of the Jacobian matrix ∂F/∂x regarded as a C[[x]]-linear mapping (C[[x]])k → (C[[x]])k′
.

Hence RkF is the largest integer r such that there is an r × r minor of the matrix ∂F/∂x which
is not 0 as a formal power series in x. Note that if F is convergent, then RkF is the usual generic
rank of the map F . In addition, for any complex-valued formal power series h(x), we denote by
h̄(x) the formal power series obtained from h by taking complex conjugates of the coefficients. We
also denote by ordh ∈ N ∪ {+∞} the order of h i.e. the smallest integer r such that ∂αh(0) = 0
for all α ∈ Nk with |α| ≤ r − 1 and for which ∂βh(0) 6= 0 for some β ∈ Nk with |β| = r (if h ≡ 0,
we set ordh = +∞). Moreover, if S = S(x, x′) ∈ C[[x, x′]], we write ordx S to denote the order of
S viewed as a power series in x with coefficients in the ring C[[x′]].

2.2. Formal generic submanifolds and normal coordinates. For (Z, ζ) ∈ CN × CN , we
define the involution σ : C[[Z, ζ ]] → C[[Z, ζ ]] by σ(f)(Z, ζ) := f̄(ζ, Z). Let r = (r1, . . . , rd) ∈

(C[[Z, ζ ]])d such that r is invariant under the involution σ. Such an r is said to define a formal

generic submanifold through the origin, which we denote by M , if r(0) = 0 and the vectors
∂Zr1(0), . . . , ∂Zrd(0) are linearly independent over C. In this case, the number n := N − d is
called the CR dimension of M , the number 2N − d the dimension of M and the number d the
codimension of M . Throughout the paper, we shall freely write M ⊂ CN . The complex space
of vectors of T0C

N which are in the kernel of the complex linear map ∂Zr(0) will be denoted by
T 1,0

0 M . Furthermore, in the case d = 1, a formal generic submanifold will be called a formal

real hypersurface. These definitions are justified by the fact that, on one hand, if r ∈ (C{Z, ζ})d
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defines a formal generic submanifold then the set {Z ∈ CN : r(Z, Z̄) = 0} is a germ through the
origin in CN of a real-analytic generic submanifold and T 1,0

0 M is the usual space of (1, 0) tangent
vectors of M at the origin (see e.g. [3]). On the other hand, if Σ is a germ through the origin
of a smooth generic submanifold of CN , then the complexified Taylor series of a local smooth
vector-valued defining function for Σ near 0 gives rise to a formal generic submanifold as defined
above. These observations will be used to derive the results mentioned in the introduction from
the corresponding results for formal generic submanifolds given in §3.

Given a topological space T , by a continuous family of formal generic submanifolds (Mt)t∈T , we
mean the data of a formal power series mapping r(Z, ζ ; t) = (r1(Z, ζ ; t), . . . , rd(Z, ζ ; t)) in (Z, ζ)
with coefficients that are continuous functions of t and such that for each t ∈ T , Mt defines
a formal submanifold as described above. When T is furthermore a smooth submanifold and
the coefficients depend smoothly on t, we say that (Mt)t∈T is a smooth family of formal generic

submanifolds. An important example (for this paper) of such a family is given when considering a
smooth generic submanifold of CN near some point p0 ∈ CN and allowing the base point to vary.
In such a case, the smooth family of formal submanifolds is just obtained by considering a smooth
defining function ρ = (ρ1, . . . , ρd) for M near p0 and by setting r(Z, ζ ; p) to be the complexified
Taylor series mapping of ρ at the point p, for p sufficiently close to p0.

Given a family E of formal generic submanifolds of CN , a numerical invariant ι attached to the
family E and a submanifold M ∈ E , we will further say that ι(M) depends upper-semicontinuously

on continuous deformations of M if for every continuous family of formal generic submanifolds
(Mt)t∈T with Mt0 = M for some t0 ∈ T , there exists a neighbourhood ω of t0 in T such that
Mt ∈ E for all t ∈ ω and such that the function ω ∋ t 7→ ι(Mt) is upper-semicontinuous.

Throughout this paper, it will be convenient to use (formal) normal coordinates associated
to any formal generic submanifold M of CN of codimension d (see e.g. [3]). They are given
as follows. There exists a formal change of coordinates in CN × CN of the form (Z, ζ) =
(Z(z, w), Z̄(χ, τ)), where Z = Z(z, w) is a formal change of coordinates in C

N and where (z, χ) =
(z1, . . . , zn, χ1, . . . , χn) ∈ Cn ×Cn, (w, τ) = (w1, . . . , wd, τ1, . . . , τd) ∈ Cd ×Cd so that M is defined
through the following defining equations

(2.1) r((z, w), (χ, τ)) = w −Q(z, χ, τ),

where Q = (Q1, . . . , Qd) ∈ (C[[z, χ, τ ]])d satisfies

(2.2) Qj(0, χ, τ) = Qj(z, 0, τ) = τj , j = 1, . . . , d.

Furthermore if (Mt)t∈T is a continuous (resp. smooth) family of formal generic submanifolds with
M = Mt0 for some t0 ∈ T , then one may construct normal coordinates so that the formal power
series mapping Q = Q(z, χ, τ ; t) depends continuously (resp. smoothly) on t for t sufficiently close
to t0.

2.3. Formal mappings. Let r, r′ ∈ (C[[Z, ζ ]])d × (C[[Z, ζ ]])d define two formal generic subman-
ifolds M and M ′ respectively of the same dimension and let I(M) (resp. I(M ′)) be the ideal
generated by r (resp. by r′). Throughout the paper, given a formal power series mapping ϕ
with components in the ring C[[Z, ζ ]], we write ϕ(Z, ζ) = 0 for (Z, ζ) ∈ M to mean that each
component of ϕ belongs to the ideal I(M). Let now H : (CN , 0) → (CN , 0) be a formal holo-
morphic map. For every integer k, the k-jet of H , denoted by jk

0H , is simply the usual k-jet
at 0 of H . We associate to the map H another formal map H : (CN × CN , 0) → (CN × CN , 0)
defined by H(Z, ζ) = (H(Z), H̄(ζ)). We say that H sends M into M ′ if I(M ′) ⊂ H∗(I(M))
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and write H(M) ⊂ M ′. Note that if M,M ′ are germs through the origin of real-analytic generic
submanifolds of CN and H is convergent, then H(M) ⊂ M ′ is equivalent to say that H sends a
neighborhood of 0 in M into M ′. On the other hand, observe that if M,M ′ are merely smooth
generic submanifolds through the origin and h : (M, 0) → (M ′, 0) is a germ of a smooth CR map-
ping, then there exists a unique (see e.g. [3]) formal (holomorphic) map H : (CN , 0) → (CN , 0)
extending the Taylor series of h at 0 (in any local coordinate system). Then the obtained formal
map H sends M into M ′ in the sense defined above when M and M ′ are viewed as formal generic
submanifolds.

A formal map H : (CN , 0) → (CN , 0) sending M into M ′ where M,M ′ are formal generic
submanifolds of CN is called CR-transversal if

(2.3) T 1,0
0 M ′ + dH(T0C

N) = T0C
N ,

where dH denotes the differential of H (at 0). We say that H is a finite map if the ideal generated
by the components of the map H is of finite codimension in the ring C[[Z]]. If M,M ′ are merely
smooth generic submanifolds through the origin and h : (M, 0) → (M ′, 0) is a germ of a smooth CR
mapping, we say that h is CR-transversal (resp. finite) if its unique associated formal (holomorphic)
power series mapping extension is CR-transversal (resp. finite).

Finally, given M,M ′ two real-analytic CR submanifolds of CN , h : M → M ′ a smooth CR
mapping, k a positive integer and p a point in M , we will denote by jk

ph the usual k-jet of h at p.

Note that there exists a (not necessarily unique) formal holomorphic map (CN , p) → (CN , h(p))
extending the power series of h at p whose restriction to the intrinsic complexification of M at p
is unique (see e.g. [3]). We then say that h is a finite CR mapping if the above restricted map is
a finite formal holomorphic map.

2.4. Nondegeneracy conditions for formal submanifolds and numerical invariants. A
formal vector field V in CN × CN is a C-linear derivation of the ring C[[Z, ζ ]]. If M is a formal
generic submanifold of CN , we say that V is tangent to M if V (f) ∈ I(M) for every f ∈ I(M).

A formal (1,0)-vector field X in CN
Z × CN

ζ is of the form

(2.4) X =
N∑

j=1

aj(Z, ζ)
∂

∂Zj

, aj(Z, ζ) ∈ C[[Z, ζ ]], j = 1, . . . , N.

Similarly, a (0,1)-vector field Y in CN
Z × CN

ζ is given by

(2.5) Y =

N∑

j=1

bj(Z, ζ)
∂

∂ζj
, bj(Z, ζ) ∈ C[[Z, ζ ]], j = 1, . . . , N.

For a formal generic submanifold M of CN of codimension d, we denote by gM the Lie algebra
generated by the formal (1,0) and (0,1) vector fields tangent to M . The formal generic submanifold
M is said to be of finite type if the dimension of gM(0) over C is 2N−d, where gM(0) is the vector
space obtained by evaluating the vector fields in gM at the origin of C2N . Note that if M ⊂ CN

is a smooth generic submanifold through the origin, then the above definition coincides with the
usual finite type condition due to Kohn [29] and Bloom-Graham [10].

We now need to introduce a nondegeneracy condition for formal generic submanifolds, which
in the real-analytic case was already defined by the authors in [33]. Let therefore M be a formal
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generic submanifold of CN of codimension d and choose normal coordinates as in §2.2. For every
α ∈ Nn, we set Θα(χ) = (Θ1

α(χ), . . . ,Θd
α(χ)) := (Q1

zα(0, χ, 0), . . . , Qd
zα(0, χ, 0)).

Definition 2.1. We say that a formal submanifold M defined in normal coordinates as above is in

the class C if for k large enough the generic rank of the formal (holomorphic) map χ 7→ (Θα(χ))|α|≤k

is equal to n. If this is the case, we denote by κM the smallest integer k for which the rank condition

holds.

If the formal submanifold M 6∈ C, we set κM = +∞. In §4, we will show that for a formal
submanifold M , being in the class C is independent of the choice of normal coordinates. Further, it
will also be shown that κM ∈ N∪{+∞} is invariantly attached toM (see Corollary 4.5). Note that
if (Mt)t∈T is a continous family of formal generic submanifolds (parametrized by some topological
space T ) such that Mt0 = M for some t0 ∈ T and M ∈ C, then there exists a neighbourhood
ω of t0 in T such that Mt ∈ C for all t ∈ ω and furthermore the map ω ∋ t 7→ κMt

is clearly
upper-semicontinuous. This remark is useful to keep in mind during the proof of Theorem 3.1
below. Note also that the definition of the class C given here coincides with that given in [33] in the
real-analytic case. We therefore refer the reader to the latter paper for further details on that class
in the real-analytic case. We only note here that several comparison results between the class C
and other classes of generic submanifolds still hold in the formal category. For instance, recall that
a formal manifold is said to be essentially finite if the formal holomorphic map χ 7→ (Θα(χ))|α|≤k

is finite for k large enough. It is therefore clear that if M is essentially finite, then M ∈ C. As in
the real-analytic case, there are also other classes of formal submanifolds that are not essentially
finite and that still belong to the class C. We leave the interested reader to mimic in the formal
setting what has been done in the real-analytic case in [33].

If M is a smooth generic submanifold of CN and p ∈ M , we say that (M, p) is in the class C
(resp. essentially finite) if the formal generic submanifold associated to (M, p) (as explained in
§2.2) is in the class C (resp. is essentially finite).

For every formal submanifold M ⊂ CN , we need to define another numerical quantity that will
be used to give an explicit bound on the number of jets needed in Theorem 3.1. Given a choice of
normal coordinates Z = (z, w) for M , we set for any n-tuple of multiindeces α := (α(1), . . . α(n)),
α(j) ∈ Nn, and any n-tuple of integers s := (s1, . . . , sn) ∈ {1, . . . , d}n

(2.6) DZ
M(α, s) = det





∂Θ
s1

α(1)

∂χ1
. . .

∂Θ
s1

α(1)

∂χn

...
...

∂Θsn

α(n)

∂χ1
. . .

∂Θsn

α(n)

∂χn



 .

Let us write |α| := max
{
|α(j)| : 1 ≤ j ≤ n

}
. We now define for every integer k ≥ 1

(2.7) νZ
M(k) := inf

{
ordDZ

M(α, s) : |α| ≤ k
}
∈ N ∪ {+∞}.

Note that for a general formal submanifold M , the numerical quantity νZ
M(k) depends a priori on

a choice of normal coordinates for M ; it will be shown in §4.1 that νZ
M(k) is in fact independent

of such a choice, and thus is a biholomorphic invariant of M . In view of this result, we will simply
write νM(k) for νZ

M (k) for every k. Observe also that if M ∈ C then for all k ≥ κM , νM(k) < +∞.
We also define the following quantity

(2.8) νM(∞) := lim
k→∞

νM(k) = inf
k∈N

νM(k) ∈ N ∪ {+∞},
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and notice that νM(∞) = 0 if and only if for some k, the map χ 7→ (Θα(χ))|α|≤k is immersive;

this is equivalent to M being finitely nondegenerate (for other possible ways of expressing this
condition, see e.g. [3]).

Given the invariance of νM (k) for each k, it is also easy to see that if (Mt)t∈T is a continuous
family of generic submanifolds, then for every k ∈ N∗ ∪ {∞}, the mappings T ∋ t 7→ κMt

and
T ∋ t 7→ νMt

(k) are clearly upper-semicontinuous. Hence, the numerical quantities κM and νM (k)
for k ∈ N

∗ ∪ {∞} depend upper-semicontinuously on continuous deformations of M . This fact
has also to be kept in mind during the proof of Theorem 3.1 below.

2.5. Finite type and Segre sets mappings. We here briefly recall the definition of the Segre
sets mappings associated to any formal generic submanifold as well as the finite type criterion in
terms of these mappings due to Baouendi, Ebenfelt and Rothschild [2].

LetM be a formal submanifold of codimension d in C
N given for simplicity in normal coordinates

as in §2.2. Then for every integer j ≥ 1, we define a formal mapping vj : (Cnj, 0) → (CN , 0) called
the Segre set mapping of order j as follows. We first set v1(t1) = (t1, 0) and define inductively the
vj by the formula

(2.9) vj+1(t1, . . . , tj+1) = (tj+1, Q(tj+1, v̄j(t1, . . . , tj))).

Here and throughout the paper, each tk ∈ Cn and we shall also use the notation t[j] = (t1, . . . , tj)
for brevity. Note that for every formal power series mapping h ∈ C[[Z, ζ ]] such that h(Z, ζ) = 0 for
(Z, ζ) ∈ M, one has the identities h(vj+1, v̄j) ≡ 0 in the ring C[[t1, . . . , tj+1]] and h(v1(t1), 0) ≡ 0
in C[[t1]].

The following well-known characterization of finite type for a formal generic submanifold in
terms of its Segre sets mappings will be useful in the conclusion of the proof of Theorem 3.1.

Theorem 2.2. [2] Let M be a formal generic submanifold of CN . Then M is of finite type if and

only if there exists an integer 1 ≤ m ≤ (d+ 1) such that Rk vk = N for all k ≥ m.

3. Statement of the main result for formal submanifolds

We will derive in §5 the results mentioned in the introduction from the following finite jet
determination result for formal mappings between formal submanifolds.

Theorem 3.1. Let M ⊂ CN be a formal generic submanifold of finite type which is in the class

C. Then there exists an integer K depending only on M satisfying the following properties :

(i) For every formal generic manifold M ′ of CN with the same dimension as M , and for any

pair H1, H2 : (CN , 0) → (CN , 0) of formal CR-transversal holomorphic mappings sending

M into M ′ it holds that if the K-jets of H1 and H2 agree, then necessarily H1 = H2.

(ii) The integer K depends upper-semicontinuously on continuous deformations of M .

The upper-semicontinuity of the jet order K on continuous perturbations of M in the above
theorem is of fundamental importance in order to provide the upper-semicontinuity of the integer
ℓp on p in Theorem 1.1 (see §5 for details). We also mention here the following consequence of
Theorem 3.1 which, under additional assumptions on the manifolds, provides a finite jet determi-
nation result valid for pairs of arbitrary maps. In what follows, we say that a formal manifold M
of CN contains a formal curve if there exists a non-constant formal map γ : (Ct, 0) → (CN , 0) such

that for every h ∈ I(M), h(γ(t), γ(t)) ≡ 0.
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Corollary 3.2. Let M,M ′ ⊂ CN be a formal real hypersurfaces. Assume that M ∈ C and that M ′

does not contain any formal curve. Then there exists an integer K, depending only on M , such

that for any pair of formal holomorphic maps H1, H2 : (CN , 0) → (CN , 0) sending M into M ′ it

holds that if the K-jets of H1 and H2 agree, then necessarily H1 = H2. Furthermore, the integer

K can be chosen to depend upper-semicontinuously on continuous deformations of M .

Proof of Corollary 3.2. The corollary is an immediate consequence of Theorem 3.1 by noticing
that any formal real hypersurface that belongs to the class C is necessarily of finite type and by
using [32, Corollary 2.4] that in the setting of Corollary 3.2, any formal holomorphic mapping
H : (CN , 0) → (CN , 0) sending M into M ′ is either constant or CR-transversal. �

The proof of Theorem 3.1 is given the next section. In order to prove this theorem, we need
to establish several new properties of CR-transversal maps along the Segre variety (which is done
through §4.1–§4.2). Since the maps we consider will turn out to be not totally degenerate, that is,
their restriction to the Segre variety is of generic full rank, a careful analysis of the usual reflection
identities will suffice to iterate the determination property along higher order Segre sets (this is
carried out in §4.3). The well-known finite type criterion (given in Theorem 2.2) is finally used to
conclude the proof of the theorem.

4. Proof of Theorem 3.1

In this section, we use the notation and terminology introduced in §2. We let M,M ′ be two
formal generic submanifolds of CN with the same codimension d and fix a choice of normal coor-
dinates Z = (z, w) (resp. Z ′ = (z′, w′)) so that M (resp. M ′) is defined through the power series
mapping Q = Q(z, χ, τ) (resp. Q′ = Q′(z′, χ′, τ ′)) given in (2.1). Recall that we write

(4.1) Θα (χ) = Qzα(0, χ, 0), α ∈ N
n.

In what follows, we use analogous notations for M ′ by just adding a “prime” to the corresponding
objects.

For every formal map H : (CN , 0) → (CN , 0), we split the map

H = (F,G) = (F 1, . . . , F n, G1, . . . , Gd) ∈ C
n × C

d

according to the above choice of normal coordinates for M ′. If H sends M into M ′, we have the
following fundamental Cd-valued identity

(4.2) G(z,Q(z, χ, τ)) = Q′(F (z,Q(z, χ, τ)), F̄ (χ, τ), Ḡ(χ, τ)),

which holds in the ring C[[z, χ, τ ]]. Note that H is CR-transversal if and only the d × d matrix
Gw(0) is invertible (see e.g. [22]). Recall also that H is not totally degenerate if RkFz(z, 0) = n.

For every positive integer k, we denote by Jk
0,0(C

N ,CN) the jet space of order k of formal

holomorphic maps (CN , 0) → (CN , 0) and by jk
0 be the k-jet mapping. (After identifying the

jet space with polynomials of degree k, this is just the map which truncates the Taylor series at
degree k.) As done before, we equip the source space CN with normal coordinates Z for M and
the target space CN with normal coordinates Z ′ for M ′. This choice being fixed, we denote by Λk

the corresponding coordinates on Jk
0,0(C

N ,CN) and by T k
0 (CN) the open subset of Jk

0,0(C
N ,CN)

consisting of k-jets of holomorphic maps H = (F,G) for which Gw(0) is invertible. Hence, for
every formal CR-transversal mapping H sending M into M ′, we have jk

0H ∈ T k
0 (CN).
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4.1. Properties of CR-transversal maps on the first Segre set. We start by establishing
here a few facts concerning CR-transversal formal holomorphic mappings sending formal generic
submanifolds into each other. We will in particular derive the following list of important properties:

(1) we provide the invariance of the condition to be in the class C for a formal submanifold M
as well as the invariance of the associated numerical quantities κM and νM(k) for k ∈ N∗

(Corollary 4.5).
(2) we obtain some rigidity properties of CR-transversal mappings between submanifolds in

the class C, e.g. the fact that they are necessarily not totally degenerate with a certain
uniform bound on the degeneracy considered (see Corollary 4.2 and Equation (4.11)) as
well as their determination on the first Segre set by a finite jet (Corollary 4.9).

(3) as a byproduct of the proofs, we obtain a new sufficient condition on M that force any
CR transversal formal map sending M into another formal submanifold M ′ of the same
dimension to be a formal biholomorphism (Corollary 4.6).

All the above mentioned properties will be obtained as consequences of the following result,
which can be seen as a generalization in higher codimension of an analogous version obtained for
the case of hypersurfaces in [18].

Proposition 4.1. Let M,M ′ be formal generic submanifolds of C
N of the same dimension. Then

for every α ∈ Nn, there exists a universal Cd-valued holomorphic map Φα defined in a neighbour-

hood of {0}×T
|α|

0 (CN ) ⊂ C
dr|α| ×T

|α|
0 (CN ), where r|α| := card {β ∈ Nn : 1 ≤ |β| ≤ |α|}, such that

for every CR-transversal formal map H : (CN , 0) → (CN , 0) sending M into M ′, we have

(4.3) Θα(χ) = Φα

((
Θ′

β(F̄ (χ, 0))
)
|β|≤|α|

, j
|α|
0 H

)
.

Proof. We proceed by induction on the length of α. For every j = 1, . . . , n, we denote by ej the
multiindex of Nn having 1 at the j-th digit and zero elsewhere. Let H be as in the statement of
the proposition. Differentiating (4.2) with respect to zj , evaluating at z = τ = 0 and using the
fact that G(z, 0) ≡ 0 (which follows directly from (4.2)) yields

(4.4) Gw(0) · Θej
(χ) =

n∑

k=1

Θ′
ek

(F̄ (χ, 0)) (F k
zj

(0) + F k
w(0) · Θej

(χ)),

where Θej
is considered as a column vector and F k

w(0) as a row vector. We thus define polynomial
maps

A : C
dn × J1

0,0(C
N ,CN) → Md(C), Bj : C

dn × J1
0,0(C

N ,CN) → C
d, j = 1, . . . , n,

where Md denotes the space of d × d complex-valued matrices, so that for each j = 1, . . . , n, so
that for every map H as above

(4.5) A((Θ′
β(F̄ (χ, 0)))|β|=1, j

1
0H) =

∂G

∂w
(0) −

n∑

k=1

Θ′
ek

(F̄ (χ, 0)) · F k
w(0),

Bj((Θ
′
β(F̄ (χ, 0)))|β|=1, j

1
0H) =

n∑

k=1

Θ′
ek

(F̄ (χ, 0))F k
zj

(0).

Note also that for all Λ1 ∈ T 1
0 (CN), detA(0,Λ1) 6= 0. Therefore, Φej

:= A−1 · Bj is holomorphic

in a neighbhourhood of {0} × T 1
0 (CN) ⊂ Cdn ×T 1

0 (CN) and satisfies the desired property in view
of (4.4).
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To prove (4.3) for |α| > 1, one differentiates (4.2) with respect to zα and evaluates at z = τ = 0.
Using the induction to express every term Θβ with |β| < |α| by Φβ , we obtain for every formal
map H : (CN , 0) → (CN , 0) sending M into M ′ an expresssion of the form

A((Θ′
β(F̄ (χ, 0)))|β|=1, j

1
0H) · Θα(χ) = Bα

(
(Θ′

β(F̄ (χ, 0)))|β|≤|α|, j
|α|
0 H

)
,

where Bα : C
dr|α| × J1

0,0(C
N ,CN) → Cd is a universal polynomial map and A is given by (4.5). As

in the case of multiindices of length one, we conclude by setting Φα := A−1 · Bα. The proof of
Proposition 4.1 is complete. �

A number of interesting consequences may be derived from Proposition 4.1. For instance, it
immediately yields the following corollary; we note that we have not yet proved the independence
of the quantities κM and νM(k) for k ∈ N∗ ∪ {∞} on the choice of coordinates; however, this
invariance, stated in Corollary 4.5 below, is an immediate consequence of Corollary 4.2, so we
already state this latter in the invariant way.

Corollary 4.2. Let M,M ′ ⊂ C
N be a formal generic submanifolds of the same dimension. Sup-

pose that M belongs to the class C (as defined in §2.4) and that there exists a formal CR-transversal

map H : (CN , 0) → (CN , 0) sending M into M ′. Then necessarily H is not totally degenerate,

M ′ ∈ C, κM ′ ≤ κM , and for every integer k ≥ 1, νM(k) ≥ νM ′(k) + ord det F̄χ(χ, 0).

Proof. We start the proof by introducing some notation which will be used consistently from now
on. For any n-tuple of multiindeces of Nn α =

(
α(1), . . . , α(n)

)
and integers s = (s1, . . . , sn) ∈

{1, . . . , d}n, we write

(4.6) Θα,s =
(
Θs1

α(1) , . . . ,Θ
sn

α(n)

)
,

and

(4.7) Φα,s :=
(
Φs1

α(1) , . . . ,Φ
sn

α(n)

)

for the corresponding map given by Proposition 4.1. We thus have from the same Proposition
that

(4.8) Θα,s(χ) = Φα,s

((
Θ′

β(F̄ (χ, 0))
)
|β|≤|α|

, j
|α|
0 H

)
= Φα,s

(
Θ′

|α|(F̄ (χ, 0)), j
|α|
0 H

)
,

where we use the notation Θ′
k = (Θ′

β)|β|≤k for every integer k. We also write for any α, s

(4.9) ΥH
α,s(χ

′) := Φα,s

(
Θ′

|α|(χ
′), j

|α|
0 H

)
,

where we recall that Φα,s = Φα,s

(
X,Λ|α|

)
is holomorphic in a neighbourhood of {0}×T

|α|
0 (CN ) ⊂

C
dr|α| × T

|α|
0 (CN). Since M ∈ C, we can choose n-tuples of multiindeces α and integers s with

|α| = κM such that the formal map χ 7→ Θα,s(χ) is of generic rank n. Differentiating (4.8) with
respect to χ yields

(4.10)
∂Θα,s

∂χ
(χ) =

∂ΥH
α,s

∂χ′
(F̄ (χ, 0)) · F̄χ(χ, 0).

From (4.10), we immediately get that Rk F̄χ(χ, 0) = n i.e. that H is not totally degenerate. We
also immediately get that

Rk
∂ΥH

α,s

∂χ′
(χ′) = n,
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which implies in view of (4.9) that the generic rank of the map χ′ 7→ Θ′
κM

(χ′) is also n, which
shows that M ′ ∈ C and that κM ′ ≤ κM .

Let us now prove the inequality for νM . To this end, for every integer k ≥ 1 and for every choice
of α = (α(1), . . . , α(n)) ∈ Nn×· · ·×Nn with |α| ≤ k and s = (s1, . . . , sn) ∈ {1, . . . , d}n, we consider
the resulting equation (4.8). Differentiating (4.8) with respect to χ yields that the determinant
considered in (2.6) is expressed as the product of det F̄χ(χ, 0) with the determinant of

∂Φα,s

∂X

(
Θ′

|α|(χ
′), j

|α|
0 H

) ∣∣∣
χ′=F̄ (χ,0)

·
∂Θ′

|α|

∂χ′
(F̄ (χ, 0)).

Applying the Cauchy-Binet formula (allowing to express the determinant of this matrix product
as the sum of the product of corresponding minors of the factors), we get the equation

DZ
M(α, s) =




∑

|β|≤k

t∈{1,...,d}n

aβ,t(χ)DZ′

M ′(β, t)(χ′)
∣∣∣
χ′=F̄ (χ,0)




det F̄χ(χ, 0).

From this we see that the order of the of the right hand side is at least νM ′(k) + ord det F̄χ(χ, 0),
and since this holds for any choice of α and s as above, we obtain the inequality νM(k) ≥
νM ′(k) + ord det F̄χ(χ, 0). �

Remark 4.3. Under the assumptions and notation of the proof of Corollary 4.2, it also follows
from (4.10) that the order of the power series

χ 7→ det

(
∂ΥH

α,s

∂χ′
(F̄ (χ, 0))

)

is uniformly bounded by νM(k) for any choice of n-tuple of multiindeces α with |α| ≤ k and of
integers s = (s1, . . . , sn) for which ordDZ

M(α, s) = νM (k). This fact will be useful in the proof of
Corollary 4.9 and Proposition 4.14 below.

Remark 4.4. It is easy to see that the inequality νM ′(k) + ord det F̄χ(χ, 0) ≤ νM(k) may be
strict; consider for example M = {(z, w) ∈ C2 : Imw = |z|8}, M ′ = {(z, w) ∈ C2 : Imw = |z|4},
and H(z, w) = (z2, w). Our proof also gives the somewhat better inequality

νM ′(k) · ord F̄ (χ, 0) + ord det F̄χ(χ, 0) ≤ νM(k)

(in which equality holds in the above example in C2, but not in general). The inequality given in
Corollary 4.2 is strong enough in order to derive the invariance in Corollary 4.5 below, so we will
not dwell on this matter any longer.

From Corollary 4.2, the invariance of κM and νM(k) immediately follows.

Corollary 4.5. Let M be a formal generic submanifold of CN . Then the condition for M to

be in the class C is independent of the choice of (formal) normal coordinates. Moreover, for M
arbitrary, the integers κM and νM(k) for k ∈ N∗ ∪ {∞}, defined in §2.4, are also independent of

a choice of such coordinates and hence invariantly attached to the formal submanifold M .

Another consequence that is noteworthy to point out is given by the following criterion for a
CR-transversal map to be an automorphism. Note that the inequality for the numerical invariant
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νM given in Corollary 4.2 implies that for any CR-transversal map H sending the formal generic
submanifold M of CN , where M ∈ C, into another formal generic submanifold M ′ of CN with the
same dimension, it follows that

(4.11) ord det F̄χ(χ, 0) ≤ νM (∞).

Recalling that νM(∞) = 0 if and only if M is finitely nondegenerate, we therefore get:

Corollary 4.6. Let M,M ′ ⊂ C
N be formal generic submanifolds of the same dimension, and

assume that M ∈ C. Then a formal CR-transversal holomorphic map sending M into M ′ is an

automorphism if and only if for some k ≥ κM , νM(k) = νM ′(k). Furthermore, if M is finitely

nondegenerate, every formal CR-transversal map is a formal biholomorphism.

Remark 4.7. (i) A criterion analogous to the second part of Corollary 4.6 for a formal finite holo-
morphic mapping to be a biholomorphism was obtained in [22, Theorem 6.5] under the additional
assumption that M is of finite type. In fact, this latter result can also be seen as a consequence
of Corollary 4.6 in conjunction with the transversality result [22, Theorem 3.1]. Note also that
the second part of Corollary 4.6 does not hold for finite maps as can be seen by considering
M = M ′ = {(z, w1, w2) ∈ C3 : Imw1 = |z|2, Imw2 = 0} and H(z, w1, w2) = (z, w1, w

2
2).

(ii) A nice application of the preceding corollary is also a “one-glance” proof of the fact that
(for example) the hypersurfaces

M1 : Imw = |z1|
2 + Re z2

1 z̄
3
2 + Re z4

1 z̄2 +O(6), M2 : Imw = |z1|
2 + Re z2

1 z̄
2
2 + Re z4

1 z̄2 +O(6),

are not biholomorphically equivalent; indeed, both are finitely nondegenerate, and we have

κM1 = κM2 = 2, νM1(k) = νM2(k), for k 6= 2, but 2 = νM1(2) 6= νM2(2) = 1.

As a consequence of (4.11) and [32, Corollary 2.4], we also get following property that under
some additional assumptions on the manifolds, tangential flatness up to a certain order of a given
map implies that it is necessarily constant.

Corollary 4.8. Let M ⊂ CN be a formal real hypersurface given in normal coordinates as above,

and assume that M ∈ C. Then there exists an integer k such that for every formal real hypersurface

M ′ ⊂ CN not containing any formal curve and every formal holomorphic map H : (CN , 0) →
(Cn, 0) sending M into M ′, H = (F,G) is constant if and only if

Fzα(0) = 0, 1 ≤ |α| ≤ k.

For the purposes of this paper, the most important consequence of Proposition 4.1 lies in the
following finite jet determination property.

Corollary 4.9. Let M,M ′ ⊂ CN be formal generic submanifolds of the same dimension, given in

normal coordinates as above. Assume that M belongs to the class C. Then the integer

k0 := min
k≥κM

max{k, νM(k)}

satisfies the following property: For any pair H1, H2 : (CN , 0) → (CN , 0) of formal CR-transversal

holomorphic mappings sending M into M ′, if the k0-jets of H1 and H2 agree, then necessarily

H1(z, 0) = H2(z, 0). Furthermore, k0 depends upper-semicontinuously on continuous deformations

of M .
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Proof. Let k̃ be an integer with max
{
k̃, νM(k̃)

}
= k0. We choose α = (α(1), . . . , α(n)) with |α| ≤ k̃

and s = (s1, . . . , sn) such that ordDZ
M(α, s) = νM(k̃). We use the notation of the proof of Corollary

4.2, in particular, we consider the function Υ
Hj
α,s defined there, with this choice of α and s and for

a given pair H1, H2 of formal CR-transversal maps satisfying jk0
0 H1 = jk0

0 H2. In view of (4.9), we
have

(4.12) ΥH1
α,s(χ

′) = ΥH2
α,s(χ

′) =: Υα,s(χ
′).

We write Hj = (Fj, Gj) ∈ Cn × Cd, j = 1, 2. We now claim that F̄1(χ, 0) = F̄2(χ, 0) which yields
the desired result. Indeed first note that the identity

Υα,s(y) − Υα,s(x) = (y − x) ·

∫ 1

0

∂Υα,s

∂χ′
(ty + (1 − t)x)dt,

gives in view of (4.8) and (4.9) that

(4.13) 0 = (F̄2(χ, 0) − F̄1(χ, 0)) ·

∫ 1

0

∂Υα,s

∂χ′
(tF̄2(χ, 0) + (1 − t)F̄1(χ, 0))dt.

To prove the claim, it is therefore enough to show that

(4.14) det

(∫ 1

0

∂Υα,s

∂χ′
(tF̄2(χ, 0) + (1 − t)F̄1(χ, 0))dt

)
6≡ 0.

By Remark 4.3, the order of the power series χ 7→ det

(
∂Υα,s

∂χ′
(F̄2(χ, 0))

)
is at most νM(k̃) and

since F̄1(χ, 0) agrees with F̄2(χ, 0) up to order k0 ≥ νM(k̃), it follows that (4.14) automatically
holds. The proof of Corollary 4.9 is complete, up to the upper-semicontinuity of the integer k0,
which is a direct consequence of the upper-semicontinuity on continuous deformations of M of the
numerical invariants κM and νM(k) for all k ∈ N∗ ∪ {∞}. �

4.2. Finite jet determination of the derivatives on the first Segre set. Our next goal is
to establish a finite jet determination property similar to that obtained in Corollary 4.9, but this
time for the derivatives of the maps. For this, we will need a number of small technical lemmas.
In what follows, for every positive integer ℓ, we write ĵℓ

ζH̄ for (∂α
ζ H̄(ζ))1≤|α|≤ℓ and similarly for

ĵℓ
ZH to mean (∂α

ZH(Z))1≤|α|≤ℓ. We also keep the notation introduced in previous sections. We
start with the following.

Lemma 4.10. Let M,M ′ ⊂ CN be formal generic submanifolds of codimension d given in normal

coordinates as above. Then for every multiindex µ ∈ Nd \ {0}, there exists a universal Cd-valued

power series mapping Sµ = Sµ(Z, ζ, Z ′, ζ ′; ·) polynomial in its last argument with coefficients in

the ring C[[Z, ζ, Z ′, ζ ′]] such that for every formal holomorphic map H : (CN , 0) → (CN , 0) sending

M into M ′ with H = (F,G) ∈ Cn × Cd, the following identity holds for (Z, ζ) ∈ M:

(4.15) F̄τµ(ζ) ·Q′
χ′(f(Z), H̄(ζ)) = Sµ

(
Z, ζ,H(Z), H̄(ζ); ĵ

|µ|
Z H, (F̄τγ (ζ))|γ|≤|µ|−1, (Ḡτη(ζ))|γ|≤|µ|

)
.

Proof. The proof follows easily by induction and differentiating (4.2) with respect to τ . We leave
the details of this to the reader. �
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The following lemma is stated in [33, Lemma 9.3] for the case of biholomorphic self-maps of
real-analytic generic submanifolds but it (along with the proof) also applies to the case of arbitrary
formal holomorphic maps between formal generic submanifolds.

Lemma 4.11. Let M,M ′ ⊂ C
N be formal generic submanifolds of codimension d given in normal

coordinates as above. Then for every multiindex µ ∈ Nd \ {0}, there exists a universal Cd-valued

power series mapping Wµ(Z, ζ, Z ′, ζ ′; ·) polynomial in its last argument with coefficients in the ring

C[[Z, ζ, Z ′, ζ ′]] such that for every formal holomorphic map H : (CN , 0) → (CN , 0) sending M into

M ′ with H = (F,G) ∈ Cn × Cd the following identity holds

(4.16) Ḡτµ(ζ) = F̄τµ(ζ) · Q̄′
χ′(F̄ (ζ), H(Z)) +Wµ

(
Z, ζ,H(Z), H̄(ζ); ĵ

|µ|
Z H, ĵ

|µ|−1
ζ H̄

)
.

In particular, there exists a universal Cd-valued polynomial map Rµ = Rµ(χ, χ′; ·) of its arguments

with coefficients in the ring C[[χ, χ′]] such that for every map H as above, the following holds:

(4.17) Ḡτµ(χ, 0) = Rµ

(
χ, F̄ (χ, 0); (∂βH̄(χ, 0))1≤|β|≤|µ|−1, j

|µ|
0 H

)
,

Combining Lemma 4.10 and Lemma 4.11 together, we get the following.

Lemma 4.12. In the situation of Lemma 4.10, there exists, for every multiindex µ ∈ Nd \ {0},
a universal C

d-valued power series mapping Aµ = Aµ(z, χ, Z
′, ζ ′, ; ·) polynomial in its last ar-

gument with coefficients in the ring C[[z, χ, Z ′, ζ ′]] such that for every formal holomorphic map

H : (CN , 0) → (CN , 0) sending M into M ′ with H = (F,G) ∈ Cn ×Cd the following identity holds

(4.18) F̄τµ(χ, 0) ·Q′
χ′(F (z,Q(z, χ, 0)), H̄(χ, 0)) =

Aµ

(
z, χ,H(z,Q(z, χ, 0)), H̄(χ, 0); ((∂βH)(z,Q(z, χ, 0)))1≤|β|≤|µ|, (∂

βH̄(χ, 0))1≤|β|≤|µ|−1, j
|µ|
0 H

)
.

Proof. Setting Z = (z,Q(z, χ, 0)) and ζ = (χ, 0) in (4.15) and substituing Ḡτη(χ, 0) by its expres-
sion given by (4.17) yields the required conclusion of the lemma. �

We need a last independent lemma before proceeding with the proof of the main proposition of
this section.

Lemma 4.13. Let A = A(u, v) be a Ck-valued formal power series mapping, u, v ∈ Ck, satisfying

detAu(u, v) 6≡ 0 and A(0, v) ≡ 0. Assume that ordu (detAu(u, v)) ≤ ν for some nonnegative

integer ν. Then for every nonnegative integer r and for every formal power series ψ(t, v) ∈ C[[t, v]],
t ∈ Ck, if ordu (ψ(A(u, v), v)) > r(ν + 1), then necessarily ordt ψ(t, v) > r.

Proof. We prove the lemma by induction on r and notice that the statement automatically holds for
r = 0. Suppose that ψ is as in the lemma and satisfies ordu (ψ(A(u, v), v)) > r(ν+1) for some r ≥
1. Differentiating ψ(A(u, v), v) with respect to u, we get that the order (in u) of each component
of ψt(A(u, v), v) ·Au(u, v) is strictly greater than rν+r−1. Multiplying ψt(A(u, v), v) ·Au(u, v) by
the classical inverse of Au(u, v), we get the same conclusion for each component of the power series
mapping (detAu(u, v))ψt(A(u, v), v). By assumption, ordu (detAu(u, v)) ≤ ν and therefore the
order (in u) of each component of ψt(A(u, v), v) is strictly greater than rν+r−1−ν = (r−1)(ν+1).
From the induction assumption, we conclude that the order in t of each component of ψt(t, v)
(strictly) exceeds r − 1. To conclude that ordt ψ(t, v) > r from the latter fact, it is enough to
notice that ψ(0, v) ≡ 0 since ordu (ψ(A(u, v), v)) > r(ν + 1) ≥ 1 and A(0, v) ≡ 0. The proof of
Lemma 4.13 is complete. �
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We are now completely ready to prove the following main goal of this section.

Proposition 4.14. Let M,M ′ ⊂ CN be formal generic submanifolds of the same dimension, given

in normal coordinates as above. Assume that M belongs to the class C et let k0 be the integer given

in Corollary 4.9. Then the integer k1 := max{k0, κM(νM (∞) + 1)} has the following property: for

any pair H1, H2 : (CN , 0) → (CN , 0) of formal CR-transversal holomorphic mappings sending M
into M ′ and any nonnegative integer ℓ, if jk1+ℓ

0 H1 = jk1+ℓ
0 H2, then necessarily (∂αH1)(z, 0) =

(∂αH2)(z, 0) for all α ∈ NN with |α| ≤ ℓ. Furthermore, k1 depends upper-semicontinuously on

continuous deformations of M .

Proof. The proposition is proved by induction on ℓ. For ℓ = 0, the proposition follows immediately
from Corollary 4.9. Consider now a pair of maps H1, H2 as in the statement of the proposition
with the same k1 + ℓ jet at 0, where ℓ ≥ 1. Then from the induction assumption, we know that
(∂αH1)(z, 0) = (∂αH2)(z, 0) for all α ∈ NN with |α| ≤ ℓ− 1. Hence it is enough to show that for
all multiindices µ ∈ Nd with |µ| = ℓ,

(4.19)
∂µH̄1

∂τµ
(χ, 0) =

∂µH̄2

∂τµ
(χ, 0).

This is further simplified by noticing that Lemma 4.11 (more precisely (4.16) applied with Z = 0
and ζ = (χ, 0)) implies that it is enough to prove that for all µ ∈ Nd as above,

(4.20)
∂µF̄1

∂τµ
(χ, 0) =

∂µF̄2

∂τµ
(χ, 0).

Next, applying (4.18) to both H1 and H2, we get the order in z of each component of the power
series mapping given by

(4.21)
∂µF̄1

∂τµ
(χ, 0) ·Q′

χ′(F1(z,Q(z, χ, 0)), H̄1(χ, 0)) −
∂µF̄2

∂τµ
(χ, 0) ·Q′

χ′(F2(z,Q(z, χ, 0)), H̄2(χ, 0))

is at least k1 + 1. Consider the power series mapping

(4.22) ψ(z′, χ) :=
∂µF̄1

∂τµ
(χ, 0) ·Q′

χ′(z′, H̄1(χ, 0)) −
∂µF̄2

∂τµ
(χ, 0) ·Q′

χ′(z′, H̄2(χ, 0)),

and let F̂ (z, χ) ∈ C[[χ]][z] be the Taylor polynomial (in z) of order k1 of F1(z,Q(z, χ, 0)) viewed

as a power series in the ring C[[χ]][[z]]. Note that it follows from our assumptions that F̂ (z, χ)
coincides also with the Taylor polynomial (in z) of order k1 of F2(z,Q(z, χ, 0)) (also viewed as a
power series in the ring C[[χ]][[z]]). Hence since the order in z of each component of the power
series mapping given by (4.21) is at least k1 + 1, this also holds for the power series mapping

ψ(F̂ (z, χ), χ). Furthermore, we claim that

(4.23) ordz

(
det F̂z(z, χ)

)
≤ νM (∞).

Indeed, suppose not. Since

ordz

(
F̂ (z, χ) − F1(z,Q(z, χ, 0))

)
≥ k1 + 1,

we have

(4.24) ordz

(
F̂z(z, χ) −

∂

∂z
[F1(z,Q(z, χ, 0))]

)
≥ k1 ≥ νM(∞) + 1.
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Therefore (4.24) yields ordz

(
det

∂

∂z
[F1(z,Q(z, χ, 0))]

)
≥ νM(∞)+1 and hence in particular that

ord

(
det

∂F1

∂z
(z, 0)

)
≥ νM(∞) + 1,

which contradicts (4.11) and proves the claim. Since ordz

(
ψ(F̂ (z, χ), χ)

)
≥ k1 +1 > κM(νM +1)

and since F̂ (0, χ) ≡ 0, from (4.23) and Lemma 4.13 we conclude that ordz′ ψ(z′, χ) > κM , which
is equivalent to say that

(4.25)
∂µF̄1

∂τµ
(χ, 0) ·

∂Θ′
α

∂χ′
(F̄1(χ, 0)) =

∂µF̄2

∂τµ
(χ, 0) ·

∂Θ′
α

∂χ′
(F̄2(χ, 0)),

for all α ∈ Nn with |α| ≤ κM . By Corollary 4.2, the formal submanifold M ′ ∈ C and κM ′ ≤ κM .
Therefore since the formal map χ′ 7→ Θ′

κM
(χ′) is of generic rank n, and by assumption F̄1(χ, 0) =

F̄2(χ, 0), and since this map is not totally degenerate by virtue of Corollary 4.2, it follows from
(4.25) that (4.20) holds which completes the proof of Proposition 4.14. �

4.3. Iteration and proof of Theorem 3.1. We now want to iterate the jet determination
property along higher order Segre sets by using the reflection identities from [33] established for
holomorphic self-automorphisms. Such identities could not be used to establish Corollary 4.9 and
Proposition 4.14, since for CR-transversal mappings H = (F,G), the matrix Fz(0) need not be
invertible. On the other hand, they will be good enough for the iteration process, since Fz(z, 0)
has generic full rank in view of Corollary 4.2. We therefore first collect from [33] the necessary
reflection identities. Even though, as mentioned above, such identities were considered in [33]
only for holomorphic self-automorphisms of a given real-analytic generic submanifold of C

N , we
note here that their proof also yields the same identities for merely not totally degenerate formal
holomorphic maps between formal generic submanifolds. We start with the following version of
[33, Proposition 9.1].

Proposition 4.15. In the situation of Lemma 4.10, there exists a universal power series D =
D(Z, ζ ; ·) polynomial in its last argument with coefficients in the ring C[[Z, ζ ]] and, for every α ∈
Nn \ {0}, another universal Cd-valued power series mapping Pα = Pα(Z, ζ ; ·) (whose components

belong to the same ring as that of D), such that for every not totally degenerate formal holomorphic

map H : (CN , 0) → (CN , 0) sending M into M ′ with H = (F,G) ∈ Cn × Cd the following holds:

(i) D(Z, ζ ; ĵ1
ζH̄)|(Z,ζ)=(0,(χ,0)) = det

(
F̄χ(χ, 0)

)
6≡ 0;

(ii) (D(Z, ζ ; ĵ1
ζH))2|α|−1 Q̄′

χ′α(F̄ (ζ), H(Z)) = Pα(Z, ζ ; ĵ
|α|
ζ H̄), for (Z, ζ) ∈ M.

We also need the following version of [33, Proposition 9.4].

Proposition 4.16. In the situation of Lemma 4.10, for any µ ∈ Nd \ {0} and α ∈ Nn \ {0}, there

exist universal Cd-valued power series mappings Bµ,α(Z, ζ, Z ′, ζ ′; ·) and Qµ,α(Z, ζ ; ·) polynomial in

their last argument with coefficients in the ring C[[Z, ζ, Z ′, ζ ′]] and C[[Z, ζ ]] respectively such that

for every not totally degenerate formal holomorphic map H : (CN , 0) → (CN , 0) sending M into

M ′ with H = (F,G) ∈ Cn × Cd the following holds:

(4.26) Fwµ(Z) ·
(
Q̄′

χ′α,z′(F̄ (ζ), H(Z)) +Q′
z′(F (Z), H̄(ζ)) · Q̄χ′α,w′(F̄ (ζ), H(Z))

)
= (∗)1 + (∗)2,
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where (∗)1 is given by

(4.27) (∗)1 := Bµ,α

(
Z, ζ,H(Z), H̄(ζ); ĵ

|µ|−1
Z H, ĵ

|µ|
ζ H̄

)
,

and (∗)2 is given by

(4.28) (∗)2 :=
Qµ,α(Z, ζ, ĵ

|α|+|µ|
ζ H̄)

(D(Z, ζ, ĵ1
ζH̄))2|α|+|µ|−1

,

and where D is given by Proposition 4.15.

In what follows, we use the notation introduced for the Segre mappings given in §2.5 (associated
to a fixed choice of normal coordinates for M). We are now ready to prove the following.

Proposition 4.17. Let M,M ′ be formal generic submanifolds of CN of the same dimension given

in normal coordinates as above. Assume that M ′ belongs to the class C and let j be a positive

integer. Then for every nonnegative integer ℓ and for every pair H1, H2 : (CN , 0) → (CN , 0) of not

totally degenerate formal holomorphic mappings sending M into M ′, if (∂αH1) ◦ v
j = (∂αH2) ◦ v

j

for all α ∈ NN with |α| ≤ κM ′ + ℓ then necessarily for all β ∈ NN with |β| ≤ ℓ, one has

(∂βH1) ◦ v
j+1 = (∂βH2) ◦ v

j+1.

Proof. We prove the proposition by induction on ℓ.
For ℓ = 0, suppose that H1, H2 : (CN , 0) → (CN , 0) is a pair of not totally degenerate formal

holomorphic mappings sending M into M ′ satisfying

(4.29) (∂αH1) ◦ v
j = (∂αH2) ◦ v

j, |α| ≤ κM ′.

Then setting Z = vj+1(t[j+1]) and ζ = v̄j(t[j]) in Proposition 4.15 (ii) and using the above assump-
tion, one obtains that for all α ∈ NN with |α| ≤ κM ′

(4.30) Q̄′
χ′α(F̄1 ◦ v̄

j, H1 ◦ v
j+1) = Q̄′

χ′α(F̄2 ◦ v̄
j, H2 ◦ v

j+1).

In what follows, to avoid some unreadable notation, we denote by V j = V j(T 1, . . . , T j+1) the
Segre mapping of order j associated to M ′ and also write T [j] = (T 1, . . . , T j) ∈ Cn × . . . × Cn.
Next we note that we also have

(4.31) Hν ◦ v
j+1 = V j+1(Fν ◦ v

j+1, F̄ν ◦ v̄
j, Fν ◦ v

j−1, . . .), ν = 1, 2.

Since M ′ ∈ C, we may choose multiindices α(1), . . . , α(n) ∈ N
n and s1, . . . , sn ∈ {1, . . . , d} with

|αj| ≤ κM ′ such that the formal map Θ̄′ : z′ 7→ (Θ̄
′s1

α(1)(z
′), . . . , Θ̄

′sn

α(n)(z
′)) is of generic rank n.

Denote by Ψ the formal map (T j+1, . . . , T 1) 7→
(
Q̄

′si

χ′α(i) (T
j , V j+1(T j+1, T j, . . . , T 1))

)

1≤i≤n
. As in

the proof of Corollary 4.9, we write

Ψ(u, T [j]) − Ψ(v, T [j]) = (u− v) ·

∫ 1

0

ΨT j+1(tu+ (1 − t)v, T [j])dt,

and note that it follows from (4.30), (4.31) and (4.29) that

0 = Ψ(F1 ◦ v
j+1, F̄1 ◦ v̄

j, . . .) − Ψ(F2 ◦ v
j+1, F̄2 ◦ v̄

j , . . .)

= (F1 ◦ v
j+1 − F2 ◦ v

j+1) ·

∫ 1

0

ΨT j+1(tF1 ◦ v
j+1 + (1 − t)F2 ◦ v

j+1, F̄1 ◦ v̄
j, F1 ◦ v

j−1, . . .) dt.
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We now claim that det
∫ 1

0
ΨT j+1(tF1 ◦ v

j+1 + (1− t)F2 ◦ v
j+1, F̄1 ◦ v̄

j, . . .)dt 6≡ 0. Indeed if it were

not the case we would in particular have, after setting t[j] = 0 in the above determinant, that

(4.32) det

(
∂Θ̄′

∂z′
(F1 ◦ v

1)

)
≡ 0.

But since H1 is not totally degenerate, (4.32) implies that Rk Θ̄′ < n, a contradiction. This proves
the claim and hence that F1 ◦ v

j+1 = F2 ◦ v
j+1 and therefore that H1 ◦ v

j+1 = H2 ◦ v
j+1 in view

of (4.31). This completes the proof of the proposition for the case ℓ = 0.
Now assume that ℓ > 0 and suppose that (∂αH1) ◦ v

j = (∂αH2) ◦ v
j for all α ∈ NN with

|α| ≤ κM ′ + ℓ. From the induction assumption, we know that

(4.33) (∂βH1) ◦ v
j+1 = (∂βH2) ◦ v

j+1, ∀β ∈ N
N , |β| ≤ ℓ− 1.

It remains therefore to show the equality of the ℓ-th order derivatives restricted to the j + 1-th
Segre set. We first prove that this is so for the pure transversal derivatives i.e. that

(4.34) ∀µ ∈ N
d, |µ| = ℓ,

∂|µ|H1

∂wµ
◦ vj+1 =

∂|µ|H2

∂wµ
◦ vj+1.

Let µ be such a multiindex. Setting Z = vj+1(t[j+1]) and ζ = v̄j(t[j]) in (4.26) applied to both H1

and H2 and using (4.33), we get for all α ∈ Nn with |α| ≤ κM ′

(4.35)

(
∂|µ|F1

∂wµ
◦ vj+1

)
· Γα =

(
∂|µ|F2

∂wµ
◦ vj+1

)
· Γα,

where

Γα = Γα(t[j+1]) := Q̄′
χ′α,z′(F̄1 ◦ v̄

j, H1 ◦ v
j+1) +Q′

z′(F1 ◦ v
j+1, H̄1 ◦ v̄

j) · Q̄χ′α,w′(F̄ ◦ v̄j, H ◦ vj+1).

To conclude from (4.35) that
∂|µ|F1

∂wµ
◦vj+1 =

∂|µ|F2

∂wµ
◦vj+1, it is enough to show that the generic rank

of the family of matrices (Γα)|α|≤κM′ is n. This holds trivially since Γα(0, . . . , 0, tj+1) =
∂Θ̄′

α

∂z′
(tj+1)

and since M ′ ∈ C. Next using the identity (4.16) given by Lemma 4.11 applied to ζ = v̄j+1(t[j+1])

and Z = vj(t[j]), we immediately get that
∂|µ|Ḡ1

∂τµ
◦ v̄j+1 =

∂|µ|Ḡ2

∂τµ
◦ v̄j+1 which yields (4.34).

To complete the proof of the induction, we need to show that (∂βH1) ◦ v
j+1 = (∂βH2) ◦ v

j+1

for arbitrary β = (β1, . . . , βN) ∈ NN with |β| = ℓ. We prove it by induction on the number
cβ := β1 + . . . + βn. For cβ = 0, this follows from (4.34) proved above. Now if cβ > 0, we may

assume without loss of generality that β1 > 0 and write β = (1, 0, . . . , 0) + β̃ with |β̃| = ℓ− 1. By

(4.33) we know that ∂β̃H1 ◦ v
j+1 = ∂β̃H2 ◦ v

j+1 and hence by differentiating this latter identity
with respect to first variable of tj+1 ∈ C

n, we get
(4.36)

∂βH1◦v
j+1+Qz1(t

j+1, v̄j)·

((
∂ℓH1

∂w∂zβ̃

)
◦ vj+1

)
= ∂βH2◦v

j+1+Qz1(t
j+1, v̄j)·

((
∂ℓH2

∂w∂zβ̃

)
◦ vj+1

)
,

from which the desired equality ∂βH1 ◦ v
j+1 = ∂βH2 ◦ v

j+1 follows by using the induction assump-
tion. The proof of the proposition is therefore complete. �

Combining now Proposition 4.17, Proposition 4.14, Corollary 4.2 and Corollary 4.9, one gets
the following.
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Proposition 4.18. Let M,M ′ ⊂ CN be formal generic submanifolds of the same dimension.

Assume that M belongs to the class C. Then for every positive integer j, the integer

kj = k1 + κM(j − 1),

where k1 is the integer defined in Proposition 4.14, has the following property: If H1, H2 : (CN , 0) →

(CN , 0) are two formal CR-transversal holomorphic mappings sendingM into M ′ such that j
kj

0 H1 =

j
kj

0 H2, then necessarily H1 ◦ v
j = H2 ◦ v

j. Furthermore, kj depends upper-semicontinuously on

continuous deformations of M .

Completion of the proof of Theorem 3.1. Firstly, we may assume that M and M ′ are given in
normal coordinates as above and we denote by d the codimension of M . By Proposition 4.18, if
H1, H2 : (CN , 0) → (CN , 0) are two formal CR-transversal holomorphic mappings sending M into
M ′ with the same kd+1-jet, then necessarily H1 ◦ v

d+1 = H2 ◦ v
d+1. By the finite type assumption

on M , we have from Theorem 2.2 that Rk vd+1 = N and hence that H1 = H2. Furthermore,
it also follows from Proposition 4.18 that the integer kd+1 depends upper-semicontinuously on
perturbations of M , which completes the proof of Theorem 3.1. �

5. Application to smooth generic submanifolds and proofs of Theorem 1.1 and

Corollary 1.2

We have the following result obtained from Theorem 3.1 by considering the smooth deformation
of M given by varying its base point as explained in §2.2.

Theorem 5.1. Let M ⊂ CN be a smooth generic submanifold that is in the class C and of finite

type at each of its points. Then for every point p ∈ M there exists an integer ℓp, depending

upper-semicontinuously on p, such that for every smooth generic submanifold M ′ ⊂ CN of the

same dimension as that of M , if h1, h2 : (M, p) → M ′ are two germs of smooth CR-transversal

mappings with the same ℓp jet at p, then necessarily jk
ph1 = jk

ph2 for all positive integers k.

We also have the following slightly stronger version of Corollary 1.2 which is an immediate
consequence of Corollary 3.2 and the fact that any smooth real hypersurface of C

N that is of
D’Angelo finite type at some point p ∈ M necessarily does not contain any formal curve at that
point.

Corollary 5.2. Let M,M ′ ⊂ C
N be smooth real hypersurfaces. Assume that M ∈ C and that M ′

is of D’Angelo finite type at each of their points. Then for every p ∈ M , there exists an integer

ℓ = ℓ(p), depending upper-semicontinuously on p, such that if h1, h2 : (M, p) → M ′ are two germs

of smooth CR mappings with the same ℓ-jet at p, then necessarily jk
ph1 = jk

ph2 for all positive

integers k.

Proof of Theorem 1.1. Theorem 1.1 follows immediately from Theorem 5.1 since in the setting of
Theorem 1.1 smooth CR finite mappings are automatically CR-transversal (see [22]) and since
every germ of an essentially finite smooth generic submanifold of C

N is necessarily in the class
C. �

Proof of Corollary 1.2. Corollary 1.2 follows immediately from Corollary 5.2 since any smooth real
hypersurface of CN that is of D’angelo finite at some point p ∈ M is necessarily in the class C
at that point. (We note here that Corollary 1.2 could also be derived directly from Theorem 1.1
using some results from [7, 22].) The last part of the corollary follows from the first part after
applying the regularity result given in [19] (see also [25] for the case N = 2). �
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[12] E. Cartan. Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes I. Ann. Math.
Pura Appl., 11(4):17–90, 1932.

[13] E. Cartan. Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes II. Ann. Scuola
Norm. Sup. Pisa, 1(2):333–354, 1932.

[14] H. Cartan. Sur les groupes de transformations analytiques. Act. Sc. et Int. Hermann, Paris, 1935.
[15] S. S. Chern and J. K. Moser. Real hypersurfaces in complex manifolds. Acta Math., 133:219–271, 1974.
[16] J. P. D’Angelo. Real hypersurfaces, orders of contact, and applications. Ann. of Math. (2), 115(3):615–637,

1982.
[17] K. Diederich and J. E. Fornæss. Pseudoconvex domains with real-analytic boundary. Ann. of Math. (2),

107(2):371–384, 1978.
[18] K. Diederich and J. E. Fornæss. Proper holomorphic mappings between real-analytic pseudoconvex domains

in Cn. Math. Ann., 282(4):681–700, 1988.
[19] K. Diederich and S. Pinchuk. Regularity of continuous CR maps in arbitrary dimension. Michigan Math. J.,

51(1):111–140, 2003; Erratum in: Michigan Math. J, 51(3):667–668, 2003.
[20] P. Ebenfelt. Finite jet determination of holomorphic mappings at the boundary. Asian J. Math., 5(4):637–662,

2001.
[21] P. Ebenfelt, B. Lamel, and D. Zaitsev. Finite jet determination of local analytic CR automorphisms and their

parametrization by 2-jets in the finite type case. Geom. Funct. Anal., 13(3):546–573, 2003.
[22] Peter Ebenfelt and Linda P. Rothschild. Transversality of CR mappings. Amer. J. Math., 128(5):1313–1343,

2006.
[23] X. Huang. Some applications of Bell’s theorem to weakly pseudoconvex domains. Pacific J. Math., 158(2):305–

315, 1993.
[24] X. Huang. A boundary rigidity problem for holomorphic mappings on some weakly pseudoconvex domains.

Canad. J. Math., 47(2):405–420, 1995.
[25] X. Huang. Schwarz reflection principle in complex spaces of dimension two. Comm. Partial Differential Equa-

tions, 21(11-12):1781–1828, 1996.
[26] X. Huang. Local equivalence problems for real submanifolds in complex spaces. In Real methods in complex

and CR geometry, Lecture Notes in Math., 1848, pages 109–163. Springer, Berlin, 2004.



22 BERNHARD LAMEL AND NORDINE MIR

[27] S.-Y. Kim. Complete system of finite order for CR mappings between real analytic hypersurfaces of degenerate
Levi form. J. Korean Math. Soc., 38(1):87–99, 2001.

[28] S. Y. Kim and D. Zaitsev. Equivalence and embedding problems for CR-structures of any codimension. Topol-
ogy, 44(3):557–584, 2005.

[29] J. J. Kohn. Boundary behavior of ∂̄ on weakly pseudo-convex manifolds of dimension two. J. Differential
Geometry, 6:523–542, 1972.

[30] R. T. Kowalski. A hypersurface in C2 whose stability group is not determined by 2-jets. Proc. Amer. Math.
Soc., 130(12):3679–3686 (electronic), 2002.

[31] B. Lamel and N. Mir. Finite jet determination of local CR automorphisms through resolution of degeneracies.
To appear, Asian J. Math.

[32] B. Lamel and N. Mir. Remarks on the rank properties of formal CR maps. Science in China Series A,
49(11):1477–1490, 2006.

[33] Bernhard Lamel and Nordine Mir. Parametrization of local CR automorphisms by finite jets and applications.
J. Amer. Math. Soc., 20(2):519–572 (electronic), 2007.

[34] A. V. Loboda. On local automorphisms of real-analytic hypersurfaces. Math. USSR, Izv., 18:537–559, 1982.
[35] F. Meylan. A reflection principle in complex space. Indiana Univ. Math. J., 44:783–796, 1995.
[36] L.P. Rothschild. Mappings between real submanifolds in complex space. In Explorations in complex and Rie-

mannian geometry, pages 253–266. Amer. Math. Soc., Providence, RI, 2003.
[37] N. Tanaka. On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables. J. Math.

Soc. Japan, 14:397–429, 1962.
[38] A. G. Vitushkin. Holomorphic mappings and the geometry of hypersurfaces. In Encyclopaedia of Mathematical

Sciences, Vol. 7, Several Complex Variables I, pages 159–214. Springer-Verlag, Berlin, 1985.
[39] D. Zaitsev. Unique determination of local CR-maps by their jets: A survey. Rend. Mat. Acc. Lincei, s. 9, 2002.

Universität Wien, Fakultät für Mathematik, Nordbergstrasse 15, A-1090 Wien, Österreich
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