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ON THE CONVERGENCE OF FORMAL MAPPINGS

NORDINE MIR

Abstract. Let f : (M, p) → (M ′, p′) be a formal (holomorphic) nonde-
generate map, i.e. with formal holomorphic Jacobian Jf not identically
vanishing, between two germs of real analytic generic submanifolds in
C

n, n ≥ 2, p′ = f(p). Assuming the target manifold to be real algebraic,
and the source manifold to be minimal at p in the sense of Tumanov, we
prove the convergence of the so-called reflection mapping associated to f .
From this, we deduce the convergence of such mappings from minimal
real analytic generic submanifolds into real algebraic holomorphically
nondegenerate ones, as well as related results on partial convergence of
such maps. For the proofs, we establish a principle of analyticity for
formal CR power series. This principle can be used to reobtain the
convergence of formal mappings of real analytic CR manifolds under a
standard nondegeneracy condition.

1. Introduction

A formal (holomorphic) mapping f : (Cn, p) → (Cn′
, p′), (p, p′) ∈ C

n ×
C

n′
, n, n′ ≥ 1, is a vector (f1, . . . , fn′) where each fj ∈ C[[z− p]] is a formal

holomorphic power series in z−p, and f(p) = p′. In the case n = n′, a formal
mapping f is called nondegenerate if its formal holomorphic Jacobian Jf

does not vanish identically as a formal power series in z − p. An important
class of nondegenerate formal maps f consists of those which are invertible,
namely those for which Jf (p) 6= 0. We call such maps formal equivalences or
formal invertible maps. If M,M ′ are two smooth real real analytic generic
submanifolds in C

n and C
n′

respectively (through p, p′ respectively) and
of real codimension c and c′ respectively, we say that a formal mapping
f : (Cn, p) → (Cn′

, p′) sends M into M ′ if

ρ′(f(z), f(z)) = a(z, z̄) · ρ(z, z̄),

where ρ = (ρ1, . . . , ρc) and ρ′ = (ρ′1, . . . , ρ
′
c′) are local real analytic defining

functions for M,M ′ respectively and a(z, z̄) is a c′ × c matrix with entries
in C[[z − p, z̄ − p̄]]. It is easy to see that such a definition is independent of
the choice of defining functions for M and M ′. If f is formal mapping as
above sending M into M ′, we may also say that f is a formal CR mapping
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2 NORDINE MIR

from M into M ′. This is motivated by the fact that, if, in addition, f is
convergent near p, then f is a real analytic CR mapping from M into M ′.

A natural question which arises is to give necessary and sufficient con-
ditions so that any formal equivalence between real analytic generic sub-
manifolds must be convergent. Chern and Moser [9] gave the first results
in this direction by proving the convergence of formal equivalences between
Levi nondegenerate real analytic hypersurfaces. Later, Moser and Webster
[22] showed the analyticity of formal invertible mappings between certain
real analytic surfaces of dimension two in C

2, but which are not CR. Other
related work was done by Webster [27] and Gong [15]. (We also refer the
reader to the bibliography given in [6] for further information.) More re-
cently, Baouendi, Ebenfelt and Rothschild proved the convergence of formal
equivalences between minimal finitely nondegenerate real analytic generic
submanifolds [4, 5], as well as between minimal essentially finite ones1 [6]
(other situations are also treated in [5, 6]). The conditions of finite nonde-
generacy and essential finiteness are closely related to the notion of holo-
morphic nondegeneracy introduced by Stanton [24]. Let us recall that a
connected real analytic generic submanifold is holomorphically nondegen-
erate if, near any point p ∈ M , there is no non-trivial holomorphic vector
field, with holomorphic coefficients, tangent to M near p. Such submanifolds
have the property to be generically essentially-finite in the sense that, for
any such manifold M , there always exist a proper real analytic subvariety
S ⊂M (which may be empty) such that any point p ∈ M \ S is essentially
finite. Moreover, it was observed in [4] that the condition of holomorphic
nondegeneracy is necessary for the convergence of formal equivalences be-
tween real analytic generic submanifolds. Thus, to complete the previous
results, one has to treat the case of the non-essentially finite points of such
holomorphically nondegenerate submanifolds.

In the one-codimensional case, these non-essentially finite points were re-
cently treated in [21] where, in particular, it was shown that any formal CR
equivalence between minimal holomorphically nondegenerate real analytic
hypersurfaces must be convergent. The goal of this paper is to study the
higher-codimensional case. Assuming the target manifold to be real alge-
braic i.e. contained in a real algebraic subvariety of the same dimension, we
establish a result which gives a description of the analyticity properties of
formal CR nondegenerate maps from minimal real analytic generic subman-
ifolds of C

n into real algebraic ones (Theorem 2.1 below). As in [20, 21],
we prove that, given a formal map f : (M,p) → (M ′, p′) with Jf 6≡ 0, if M
is minimal at p, then the so-called associated reflection mapping (cf. [17])
must be convergent. As we shall see (cf. §8), such a result can be seen
as a result of partial convergence for formal CR nondegenerate maps. This
allows one also to deduce the convergence of such maps from real analytic

1See §3 for precise definitions.
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minimal generic submanifolds onto real algebraic holomorphically nondegen-
erate ones (Theorem 2.2 below). We should point out that our arguments
give also a quite simple proof of such a fact (see Proposition 7.2). In fact,
the algebraicity of the target manifold allows us to use certain tools from
basic field theory that we introduced in our previous works [19, 20].

2. Statement of main results

Let (M ′, p′) ⊂ C
n be a germ at p′ of a real algebraic generic submanifold

of CR dimension N and of real codimension c. This means that there exists
ρ′(ζ, ζ̄) = (ρ′1(ζ, ζ̄), . . . , ρ

′
c(ζ, ζ̄)) c real polynomials such that near p′

M ′ = {ζ ∈ (Cn, p′) : ρ′(ζ, ζ̄) = 0},

with ∂̄ρ′1 ∧ . . .∧ ∂̄ρ
′
c 6= 0, on M . We shall assume, without loss of generality,

that p′ is the origin. Then, for any point ω close to 0, one defines its
associated Segre variety to be the n− c dimensional complex submanifold

Q′
ω = {ζ ∈ (Cn, 0) : ρ′(ζ, ω̄) = 0}. (2.1)

Moreover, since M ′ is generic, renumbering the coordinates if necessary, and
after applying the implicit function theorem, one can assume that any Segre
variety can be described as a graph of the form

Q′
ω = {ζ ∈ (Cn, 0) : ζ̄∗ = Φ̄′(ω, ζ̄ ′)}, ζ = (ζ ′, ζ∗) ∈ C

N × C
c,

Φ̄′ = (Φ̄′
1, . . . , Φ̄

′
c) denoting a convergent power series mapping near 0 ∈

C
n+N , with Φ̄′(0) = 0. Our main result is the following.

Theorem 2.1. Let f : (M, 0) → (M ′, 0) be a formal nondegenerate CR map
between two germs at 0 of real analytic generic submanifolds in C

n of the
same CR dimension. Assume that M is minimal at 0 ∈ M and that M ′ is
real algebraic. Then, the formal holomorphic map

C
n × C

N ∋ (z, θ) 7→ Φ̄′(f(z), θ) ∈ C
c

is convergent.

Such a result was established in [21] in the one-codimensional case (for
unbranched mappings) without assuming that the target manifold M ′ is
real algebraic. As in [21], Theorem 2.1 allows us to derive the following
convergence result.

Theorem 2.2. Let f : (M, 0) → (M ′, 0) be a formal nondegenerate CR map
between two germs at 0 of real analytic generic submanifolds in C

n of the
same CR dimension. Assume that M is minimal at 0 ∈ M and that M ′ is
real algebraic and holomorphically nondegenerate. Then, f is convergent.

As mentioned in the introduction, Theorem 2.2, for unbranched maps,
follows from [21] in the hypersurface case, but in the higher codimensional
case the result is new and was not previously known even in the case where
M and M ′ are both algebraic. Another application of Theorem 2.1 is given
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in §8 and deals with partial convergence of formal CR nondegenerate maps.
For this, we refer the reader to Theorem 8.1 and Corollary 8.3.

Our approach for proving Theorem 2.1 is essentially based on two steps.
The first step is a formulation of the reflection principle via the jet method
and follows [20]. The general idea is to show that, under the assumptions
of Theorem 2.1, the composition of any component of the Segre variety
map of M ′ (as defined in §4) with the map f satisfy certain polynomial
equations restricted on M , and more precisely, is algebraic over a certain
field of formal power series. The second step consists in proving that a formal
CR power series (i.e. a formal holomorphic power series) which satisfies such
a polynomial identity, is necessarily convergent (Theorem 5.1). This is based
on the theory of Segre sets by Baouendi, Ebenfelt and Rothschild [3], and
on some of their techniques of propagation. One should, however, point out
several differences with the methods of [3, 6] (see especially Proposition 5.5).

The paper is organized as follows. §3 contain some background material
for the reader’s convenience. In §4, we use some ideas from [20] to prove our
reflection identities. §5 is devoted to the proof of a principle of analyticity for
formal CR functions. Such a result (Theorem 5.1) seems to us interesting in
itself. In §6, we prove the main results of the paper. In §7, we formulate some
remarks concerning Theorem 2.2 which show that, under the assumptions of
that Theorem, the convergence of formal nondegenerate maps can be derived
in a quite simple manner. In §8, we apply Theorem 2.1 to the study of partial
convergence for formal CR maps. Finally, in §9, we apply the principle
proved in §5 to establish the convergence of formal mappings between real
analytic CR manifolds under a standard nondegeneracy condition.

Acknowledgements. This work has been completed while I was invited
by the department of Mathematics of the university of Wuppertal, Germany,
during the period May-July 1999. I would like to thank Prof. K. Diederich,
C. Eppel and Prof. G. Herbort for arranging my visit. I would like also
to thank Prof. K. Diederich for interesting conversations. I am indebted
to Prof. M. Derridj for his precious help, all his encouragements and for
having spent many of his time thinking of my numerous questions. Finally,
I wish also to thank the referee for many valuable comments and helpful
suggestions.

3. Preliminaries, notations and definitions.

3.1. Finite nondegeneracy, essential finiteness and holomorphic non-

degeneracy of real analytic generic submanifolds. Let M be a real
analytic generic submanifold through p ∈ C

n, of CR dimension N and of
real codimension c. We shall always assume that c,N ≥ 1, and, for conve-
nience, that the reference point p is the origin. Let ρ = (ρ1, . . . , ρc) be a set
of real analytic defining functions for M near 0, i.e.

M = {z ∈ (Cn, 0) : ρ(z, z̄) = 0}, (3.1)
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with ∂̄ρ1 ∧ . . . ∧ ∂̄ρc 6= 0, on M . The complexification M of M is the
2n− c-dimensional complex submanifold of C

2n given by

M = {(z,w) ∈ (C2n, 0) : ρ(z,w) = 0}. (3.2)

We shall assume, without loss of generality, that the matrix ∂ρ/∂z∗ is not
singular at the origin, z = (z′, z∗) ∈ C

N × C
c. In this case, we define the

following vector fields tangent to M,

Lj =
∂

∂wj

− ρwj
(z,w)

[

∂ρ

∂w∗
(z,w)

]−1 ∂

∂w∗
, j = 1, . . . ,N,

(3.3)

which are the complexifications of the (0, 1) vector fields tangent to M . Let
us also recall that the invariant Segre varieties attached to M are defined
by

Qw = {z ∈ (Cn, 0) : ρ(z, w̄) = 0},

for w close to 0. A fundamental map which arises in the mapping problems is
the so-called variety Segre map λ : w 7→ Qw (cf. [14, 12, 13]). A real analytic
generic submanifold M is called finitely nondegenerate at p = 0 ∈M if

SpanC{L
αρj,z(p, p̄) : α ∈ N

N , 1 ≤ j ≤ d} = C
n.

Here, for 1 ≤ j ≤ d, ρj,z denotes the complex gradient of ρj with respect
to z. In this case, one can show that the Segre variety map λ is actually
one-to-one near p = 0. More generally, M is called essentially finite at
0 ∈M if the Segre variety map λ is finite-to-one near 0 [14, 7]. The interest
of such conditions lies in the fact that, given a holomorphically nondegen-
erate generic real analytic submanifold M (as defined in the introduction),
the set of finitely nondegenerate or essentially finite points is always, at
least, dense in M (see [3]). Furthermore, the set of points w ∈ M such
that λ−1(Qw) is positive-dimensional forms a proper (possibly empty) real
analytic subvariety S ⊂M , provided that the submanifoldM is holomorphi-
cally nondegenerate. This set of points is precisely the set of non-essentially
finite points of M .

3.2. Minimality condition in terms of Segre sets. Another nondegen-
eracy condition which will be used in this paper is the minimality condition
introduced by Tumanov [25]. Let us recall that a real analytic generic sub-
manifold M is said to be minimal at p ∈M (or of finite type in the sense of
Kohn and Bloom-Graham) if there is no proper CR submanifold contained
in M through p, and with the same Cauchy-Riemann dimension. In or-
der to give a characterization of minimality for real analytic CR manifolds,
Baouendi, Ebenfelt and Rothschild introduced the so-called Segre sets in [3].
These sets will play an important role in our proofs. They are defined as
follows. Define the first Segre set N1(p) attached to M at p ∈ M to be the
classical Segre variety Qp. Inductively, for k ∈ N, define

Nk+1(p) =
⋃

q∈Nk(p)

Qq.
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Recall that the sets Nj(p) are in general not analytic for j > 1. If M is
given by (3.1) near p = 0, as in §3.1, by the implicit function theorem, one
can choose coordinates z = (z′, z∗) ∈ C

N ×C
c so that any Segre variety can

be described as a graph as follows

Qw = {z ∈ (Cn, 0) : z∗ = Φ(w̄, z′)},

Φ = (Φ1, . . . ,Φc) being a C
c-valued holomorphic map near 0 ∈ C

N+n,
Φ(0) = 0. The reality of M also implies that

Φ(w′, Φ̄(z′, z∗, w′), z′) ≡ z∗, (z,w′) ∈ C
n × C

N . (3.4)

(Here and in what follows, for any formal power series g(x) ∈ C[[x]], x =
(x1, . . . , xk), ḡ(x) is the formal power series obtained by taking the complex
conjugates of the coefficients of g.) The coordinates are said to be normal
for M if, moreover, the condition Φ(z, 0) ≡ z∗ holds. It is well known (cf.
[9, 7]) that given a real analytic generic submanifold M , one can always
find such coordinates. With these notations (and without assuming that
the z-coordinates are normal for M), the Segre sets can be parametrized by
the following mappings (vk)k∈N, called the Segre sets mappings. First set
v0 := 0 ∈ C

n. Inductively, N2k+1, k ≥ 0, can be parametrized by the map

(C(2k+1)N , 0) ∋ (t1, t2, . . . , t2k+1) 7→

v2k+1(t1, . . . , t2k+1) := (t1,Φ(v̄2k(t2, . . . , t2k+1), t1)) (3.5)

and N2k by

(C2kN , 0) ∋ (t1, t2, . . . , t2k) 7→

v2k(t1, . . . , t2k) := (t1,Φ(v̄2k−1(t2, . . . , t2k), t1)). (3.6)

Notice that, for any nonnegative integer b, (vb+1(t1, . . . , tb+1), v̄b(t2, . . . , tb+1)) ∈
M. We can now state a useful characterization of minimality which is con-
tained in [2].

Theorem 3.1. [2] If M is minimal at 0, there exists d0 ∈ N large enough
such that, in any neighborhood O of 0 ∈ C

d0N , there exists (t01, . . . , t
0
d0

) ∈ O,

such that vd0
(t01, . . . , t

0
d0

) = 0 and such that vd0
is submersive at (t01, . . . , t

0
d0

).

4. Formal nondegenerate CR maps with values in real

algebraic CR manifolds

4.1. Real algebraic CR manifolds and field extensions. In this sec-
tion, we collect and recall some facts from [18, 19, 20] which will be used in
the proof of Theorem 2.1.

As in §2, let (M ′, p′) be a germ through p′ = 0 ∈ C
n of a real algebraic

generic submanifold of CR dimensionN and of real codimension c. Following
the notations of that section, let ρ′ = (ρ′1, . . . , ρ

′
c) be a set of defining real

polynomials for M ′ near 0. Thus,

M ′ = {ζ ∈ (Cn, 0) : ρ′(ζ, ζ̄) = 0}, (4.1)
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with ∂̄ρ′1 ∧ . . . ∧ ∂̄ρ
′
c 6= 0, on M ′. We can assume that the coordinates ζ at

the target space are chosen so that if ζ = (ζ ′, ζ∗) ∈ C
N × C

c, the matrix
∂ρ′/∂ζ∗ is not singular at the origin. This allows one to represent M ′ as
follows

M ′ = {ζ ∈ (Cn, 0) : ζ̄∗ = Φ̄′(ζ, ζ̄ ′)}, (4.2)

Φ̄′ = (Φ̄′
1, . . . , Φ̄

′
c) being a C

c-valued holomorphic algebraic map near 0 ∈
C

N+n with Φ̄′(0) = 0. (We recall here that a holomorphic function in k
variables near 0 is called algebraic if it is algebraic over the quotient field of
the polynomials in k indeterminates.) Write, for ν = 1, . . . , c, the expansion

Φ̄′
ν(ω, θ) =

∑

β∈NN

qβ,ν(ω)θβ. (4.3)

Here, ω ∈ C
n and θ ∈ C

N . We also write

Φ̄′
θα(ω, θ) = (Φ̄′

θα,1(ω, θ), . . . , Φ̄
′
θα,c(ω, θ)) = (∂α

θ Φ̄′
1(ω, θ), . . . , ∂

α
θ Φ̄′

c(ω, θ)).
(4.4)

With these notations, the Segre variety map λ′ : (Cn, 0) ∋ ω 7→ Q′
ω associ-

ated to M ′ can be identified with the holomorphic map

(Cn, 0) ∋ ω 7→ (qβ,ν(ω)) β∈NN

1≤ν≤c

. (4.5)

Here, the Segre variety Q′
ω, for ω close to 0, is defined by (2.1). The fam-

ily of holomorphic algebraic functions defined by (4.5) will be denoted C.
For k ∈ N

∗, let Fk be the quotient field of the germs at 0 ∈ C
k of al-

gebraic functions in C
k. For any positive integer l ∈ N, we define Pl to

be the smallest field contained in FN+n and containing C and the family
(θ, Φ̄′

θβ ,j
(ω, θ))j=1,... ,c,|β|≤l. We then define P ⊂ FN+n to be the set

P = ∪l∈NPl. (4.6)

One can easily check that P is also a subfield of FN+n, since, for any l,
Pl ⊂ Pl+1. By definition, an element b = b(ω, θ) ∈ FN+n belongs to P if
there exists a positive integer l and two holomorphic polynomials Q1 and

Q2 such that Q2

(

(Φ̄′
θβ ,j

(ω, θ))j≤c,|β|≤l, θ
)

6≡ 0 in FN+n and such that

b = b(ω, θ) =
Q1

(

(Φ̄′
θβ ,j

(ω, θ))j≤c,|β|≤l, θ
)

Q2

(

(Φ̄′
θβ ,j

(ω, θ))j≤c,|β|≤l, θ
) .

We need to state the following proposition, established in [20] (Proposition
1) in the hypersurface case, but which follows with the same proof in the
higher codimensional case.

Proposition 4.1. Let M ′ be a real algebraic generic submanifold of CR
dimension N through the origin in C

n. Assume that M ′ is given near 0 by
(4.2). Let C be the family of algebraic holomorphic functions (in n variables)
defined by (4.5) and P be the field of algebraic holomorphic functions (in
N + n variables) defined by (4.6). Then, the following holds. The family C
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is contained in the algebraic closure of P, and hence, the algebraic closure
of C is contained in the algebraic closure of P.

Remark 1. An inspection of the proof of Proposition 1 from [20] shows
that there exists l0, which depends only on M ′ such that C is contained
in the algebraic closure of Pl0 . Moreover, if M ′ is holomorphically non-
degenerate, l0 is nothing else than the so-called Levi-type of M ′ (see [3]).
Indeed, we define l0 as follows. Consider, for any positive integer l, the
map ψl : (CN+n, 0) ∋ (ω, θ) 7→ (θ, (Φ̄′

θβ ,j
(ω, θ))j≤c,|β|≤l) and denote by rl

the generic rank of such a map. Finally, put r(M ′) = maxl∈N rl. Then,
l0 = inf{l ∈ N : rl = r(M ′)}. When M ′ is holomorphically nondegenerate,
then it is well-known (cf. [3]) that, in that case, the integer r(M ′) equals
N + n and, by definition, l0 is the Levi-type of M ′.

We recall also the following criterion of holomorphic nondegeneracy from
[18, 19].

Theorem 4.2. Let M ′ be a real algebraic generic submanifold through the
origin in C

n. Assume also that M ′ is given near 0 by (4.2). Let C be the
family of algebraic holomorphic functions (in n variables) defined by (4.5)
and P be the field of algebraic holomorphic functions (in N + n variables)
defined by (4.6). Then, the following conditions are equivalent:

(i) M ′ is holomorphically nondegenerate (at 0)
(ii) The algebraic closure of the field P is FN+n

(iii) The algebraic closure of the field generated by C is Fn

4.2. Jets and the reflection principle. In this section, we assume that
we are in the following setting. Let f : (M,p) → (M ′, p′) be a formal CR
map between two real analytic generic submanifolds in C

n, with the same
CR dimension N and same real codimension c. We assume that f is a
nondegenerate map, i.e. that its formal holomorphic Jacobian Jf is not
identically vanishing. We also assume that M ′ is a real algebraic generic
submanifold and, without loss of generality, that p and p′ are the origin. We
use the notations introduced in §3 for M , and those introduced in §4.1 for
M ′. The goal of this section is to prove the following proposition.

Proposition 4.3. Let M ⊂ C
n be a real analytic generic submanifold

through the origin and M ′ ⊂ C
n be a real algebraic generic submanifold

through the origin with the same CR dimension. Assume that M ′ is given
near 0 by (4.2). Let C be the family of algebraic functions (in n vari-
ables) associated to M ′ defined by (4.5). Let χ ∈ C and f : M → M ′

be a formal CR map between M and M ′ with Jf 6≡ 0. Then, there exists
l0 ∈ N

∗ (depending only on M ′), a positive integer k0 (depending only on M ′

and χ) and a family of convergent power series δi = δi
(

(Λγ)|γ|≤l0 , z, w
)

∈

C{(Λγ −∂
γ f̄(0))|γ|≤l0 , z, w}, i = 0, . . . , k0, such that the formal power series
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identity
k0
∑

i=0

δi
(

(∂γ f̄(w))|γ|≤l0 , z, w
)

(χ ◦ f(z))i = 0,

holds for (z,w) ∈ M such that δk0

(

(∂γ f̄(w))|γ|≤l0 , z, w
)

6≡ 0 in M. Here,

M is the complexification of M as defined by (3.2).

To prove Proposition 4.3, we will use an approach which is contained in
[20]. We shall first state several preliminary results needed for its proof.

Recall first that the coordinates at the target space are denoted by ζ. We
write

f = (f ′, f∗) = (f ′1, . . . , f
′
N , f

∗) (4.7)

in the ζ = (ζ ′, ζ∗) ∈ C
N × C

c coordinates. Since f maps formally M into
M ′, there exists a(z, z̄) a c× c matrix with coefficients in C[[z, z̄]] such that
the following formal vectorial identity

f∗(z) − Φ̄′(f(z), f ′(z)) = a(z, z̄) · ρ(z, z̄), (4.8)

holds. Equivalently this gives

f̄∗(w) − Φ̄′(f(z), f̄ ′(w)) = a(z,w) · ρ(z,w), in C[[z,w]]. (4.9)

Define

D(z,w) = det
(

Lj f̄
′
i(w)

)

1≤i,j≤N
∈ C[[z,w]]. (4.10)

Here, Lj , for j = 1, . . . , N , is the vector field defined by (3.3). By applying
the vector fields Lj, j = 1, . . . ,N , to (4.9) and Cramer’s rule, one obtains
the following known lemma (cf. [5, 12]).

Lemma 4.4. Let f : (M, 0) → (M ′, 0) be a formal CR mapping as in Propo-
sition 4.3. With the notations introduced in (4.10) and (4.4), the following
holds. For any multi-index α ∈ N

N , one has the following c-dimensional
formal identity

D2|α|−1(z,w) Φ̄′
θα(f(z), f̄ ′(w)) = Vα

(

(∂β f̄(w))|β|≤|α|, z, w
)

,

for (z,w) ∈ M. Here, Vα = (V 1
α , . . . , V

c
α) ∈ (C{(Λβ −∂

β f̄(0))|β|≤|α|, z, w})
c.

The following lemma contains two known and easy facts.

Lemma 4.5. Let f : (M, 0) → (M ′, 0) be a formal CR mapping as in
Proposition 4.3. Let D be as in (4.10). Then, the following holds.

(i) There exists a convergent power series U = U(z,w, (Λβ)|β|=1) ∈

C{z,w, (Λβ−∂
β f̄(0))|β|=1)} such that D(z,w) = U

(

z,w, (∂β f̄(w))|β|=1

)

.

(ii) D(z,w) 6= 0 for (z,w) ∈ M.
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Proof of Proposition 4.3. Let P be the subfield of FN+n defined by (4.6).
We also recall that for the positive integer l0 mentioned in Remark 1, Pl0

is the smallest field contained in FN+n and containing C and the family
(θ, Φ̄′

θβ ,j
(ω, θ))1≤j≤c,|β|≤l0). Let χ ∈ C. Since, by Proposition 4.1, χ is al-

gebraic over P and, according to Remark 1, also over Pl0 , we obtain the
existence of a positive integer k0 and a family (bj(ω, θ))0≤j≤k0−1 ⊂ Pl0 such
that the following identity

(χ(ω))k0 +
k0−1
∑

j=0

bj(ω, θ) (χ(ζ))j ≡ 0 (4.11)

holds in the field FN+n. By definition, for j = 0, . . . , k0 − 1, there exist
holomorphic polynomials Q1,j, Q2,j such that

Q2,j

(

(Φ̄′
θβ ,j(ω, θ))j≤c,|β|≤l0, θ

)

6≡ 0, (4.12)

and such that

bj(ω, θ) =
Q1,j

(

(Φ̄′
θβ ,j

(ω, θ))j≤c,|β|≤l0, θ
)

Q2,j

(

(Φ̄′
θβ ,j

(ω, θ))j≤c,|β|≤l0, θ
) . (4.13)

Now, one sees that (4.11), (4.12) and (4.13) imply that there exist holo-
morphic polynomials sj, j = 0, . . . , k0, such that, in some neighborhood of
0 ∈ C

2n−c, the following identity

k0
∑

i=0

si

(

(Φ̄′
θα,µ(ω, θ))µ≤c,|α|≤l0, θ

)

(χ(ω))i ≡ 0 (4.14)

holds, with the additional non-degeneracy condition

sk0

(

(Φ̄′
θα,µ(ω, θ))µ≤c,|α|≤l0, θ

)

6≡ 0. (4.15)

Note that k0 and the family (si)i≤k0
depend only on χ and M ′. Putting,

for (z,w) ∈ M, ω = f(z) and θ = f̄ ′(w) in (4.14), one obtains the following
formal identity (cf. [20])

k0
∑

i=0

si

(

(Φ̄′
θα,µ(f(z), f̄ ′(w)))µ≤c,|α|≤l0 , f̄

′(w)
)

((χ ◦ f)(z))i ≡ 0.
(4.16)

From Lemma 4.4 and Lemma 4.5 (ii), we have the following formal identity

Φ̄′
θα,µ(f(z), f̄ ′(w)) =

V µ
α

(

(∂β f̄(w))|β|≤|α|, z, w
)

D2|α|−1(z,w)
, in M,

for any α ∈ N
N , and 1 ≤ µ ≤ c. Thus, plugging this in (4.16), we obtain,

for (z,w) ∈ M,

k0
∑

i=0

si











V µ
α

(

(∂β f̄(w))|β|≤|α|, z, w
)

D2|α|−1(z,w)





1≤µ≤c,|α|≤l0

, f̄ ′(w)






((χ ◦ f)(z))i ≡ 0.

(4.17)



ON THE CONVERGENCE OF FORMAL MAPPINGS 11

We claim that for (z,w) ∈ M

sk0











V µ
α

(

(∂β f̄(w))|β|≤|α|, z, w
)

D2|α|−1(z,w)





1≤µ≤c,|α|≤l0

, f̄ ′(w)






6≡ 0.

(4.18)

Indeed, we have first to notice that, by definition, the left hand side of (4.18)
is equal to

sk0

(

(Φ̄′
θα,µ(f(z), f̄ ′(w)))1≤µ≤c,|α|≤l0 , f̄

′(w)
)

.

Denote Q(ω, θ) = sk0

(

(Φ̄′
θα(ω, θ))µ≤c,|α|≤l0, θ

)

. Assuming (4.18) false, we

would get Q(f(z), f̄ ′(w)) ≡ 0, for (z,w) ∈ M. Since f is nondegenerate, one
can easily show that the rank of the formal holomorphic map M ∋ (z,w) 7→
(f(z), f̄ ′(w)) ∈ C

2n−c is 2n − c. (By the rank of a formal holomorphic
mapping g(x) = (g1(x), . . . , gk(x)), we mean its rank in the quotient field
of C[[x]].) By standard arguments about formal power series, this implies
that Q is identically zero as a formal power series, and hence, identically
zero as a convergent one. This contradicts (4.15) and thus proves (4.18). To
conclude the proof of Proposition 4.3, we observe the following. Since each
si, 0 ≤ i ≤ k0, is a polynomial, one sees that multiplying (4.17) by enough
powers of D(z,w), we have reached the desired conclusion in view (i) and
(ii) of Lemma 4.5. This finishes the proof of Proposition 4.3.2

Remark 2. By Proposition 4.1, Proposition 4.3 also holds for any function
χ belonging to the algebraic closure of the field generated by C.

Remark 3. It is worth mentioning that if, in Proposition 4.3, M ′ is further-
more assumed to be holomorphically nondegenerate, then one can obtain a
more precise statement. Indeed, when M ′ is holomorphically nondegenerate,
by Theorem 4.2, the algebraic closure of the field generated by the family C
coincides with Fn. Thus, in view of Remark 2, we can apply Proposition 4.3
to the algebraic functions χ(ω) = ωi, for i = 1, . . . , n, taken as coordinates.
This gives the following proposition. (Recall also that by Remark 1, when
M ′ is holomorphically nondegenerate, l0 = l(M ′), the Levi-type of M ′.)

Proposition 4.6. Let M ⊂ C
n be a real analytic generic submanifold

through the origin and M ′ ⊂ C
n be a real algebraic generic submanifold

through the origin with the same CR dimension. Let f : (M, 0) → (M ′, 0)
be a formal nondegenerate CR map and assume that M ′ is holomorphically
nondegenerate. Then, for j = 1, . . . , n, there exists a positive integer kj

(depending only on M ′) and a family of convergent power series δi,j =

δi,j
(

(Λγ)|γ|≤l(M ′), z, w
)

∈ C{(Λγ − ∂γ f̄(0))|γ|≤l(M ′), z, w}, i = 0, . . . , kj ,

such that the formal identity

kj
∑

i=0

δi,j
(

(∂γ f̄(w))|γ|≤l(M ′), z, w
)

(fj(z))
i = 0



12 NORDINE MIR

holds for (z,w) ∈ M, with δkj ,j

(

(∂γ f̄(w))|γ|≤l(M ′), z, w
)

6≡ 0 on M.

Remark 4. In view of the works of Baouendi, Ebenfelt and Rothschild [3,
5, 6], Proposition 4.3 can be viewed as a generalized reflection identity. We
shall propose in the next section an algebraic interpretation of this identity,
which can be compared to the work of Coupet, Pinchuk and Sukhov [10].

5. A principle of analyticity for formal CR power series

Throughout this section, which is independent of §4, we shall consider
one real analytic generic submanifold M , of CR dimension N and of real
codimension c through the origin in C

n, n > 1. We shall also use the
notations introduced for M in §3. In particular, the complexification of M
is still denoted by M. The purpose of §5 is to prove the following principle of
convergence for formal CR functions. Recall that by a formal CR function,
we mean a formal holomorphic power series.

Theorem 5.1. Let M be a real analytic generic submanifold at 0 ∈ C
n. Let

h(z) be a holomorphic formal power series in C[[z]], z ∈ C
n. Assume that:

(i) M is minimal at 0.
(ii) there exists a formal power series mapping X(w) = (X1(w), . . . ,Xm(w)) ∈

(C[[w]])m, w ∈ C
n, X(0) = 0, and a family of convergent power se-

ries Uj(X, z,w) ∈ C{X, z,w}, j = 0, . . . , l, l ∈ N
∗, such that the

relation

l
∑

j=0

Uj(X(w), z, w) (h(z))j = 0 (5.1)

holds as a formal power series identity for (z,w) ∈ M, and such
that

Ul(X(w), z, w) 6≡ 0, for (z,w) ∈ M. (5.2)

Then h(z) is convergent.

The proof of Theorem 5.1 will be divided in three distinct steps.

5.1. Algebraic dependence of the jets.

Proposition 5.2. Let M be real analytic generic submanifold through the
origin in C

n and h(z) be a formal holomorphic power series in z = (z1, . . . , zn).
Assume that h satisfies (ii) of Theorem 5.1. Then, for any multi-index
µ ∈ N

n, there exists two positive integers l(µ), p(µ), a family of conver-

gent power series Ui,µ

(

(Λγ)|γ|≤|µ|, z, w
)

∈ C{(Λγ − ∂γX(0))|γ|≤|µ|, z, w},

i = 0, . . . , l(µ), such that the formal identity

l(µ)
∑

i=0

Ui,µ

(

(∂γX(w))|γ|≤|µ|, z, w
)

(∂µh(z))i = 0
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holds for (z,w) ∈ M, and such that Ul(µ),µ

(

(∂γX(w))|γ|≤|µ|, z, w
)

6≡ 0, for

(z,w) ∈ M. Here, X(w) is the formal power series mapping given by (ii) of
Theorem 5.1.

Proof. Since h(z) satisfies (ii) of Theorem 5.1, there exists a formal power
series mapping X(w) = (X1(w), . . . ,Xm(w)) ∈ (C[[w]])m, w ∈ C

n, X(0) =
0, and a family of convergent power series Uj(X, z,w) ∈ C{X, z,w}, j =
0, . . . , l, such that the formal identities (5.1) and (5.2) hold. For the proof
of the proposition, we assume that the complexification of M is given by
M = {(z,w) ∈ (C2n, 0) : w∗ = Φ̄(z,w′)}, with Φ̄ as defined in §3.2. (Recall
that w = (w′, w∗) ∈ C

N × C
c.) It will be convenient to introduce for any

integer k, a subring Ak ⊂ C[[z,w′]] which is defined as follows. Let

Πk
X : C{(Λγ − ∂γX(0))|γ|≤k, z, w

′} → C[[z,w′]]

be the substitution homomorphism defined by

(Λγ)|γ|≤k 7→
(

∂γX(w′, Φ̄(z,w′))
)

|γ|≤k
, z 7→ z, w′ 7→ w′.

Ak is, by definition, the ring image Πk
X(C{(Λγ − ∂γX(0))|γ|≤k, z, w

′}). Fi-
nally, we define Bk to be the quotient field of Ak. The reader can now easily
check that, to prove the proposition, it is equivalent to prove that

(∗)µ ∀µ ∈ N
n, ∂µh(z) is algebraic over the field B|µ|.

We shall prove (∗)µ by induction on |µ|. For |µ| = 0, (∗)0 follows from

(5.1) and (5.2) and the definition of B0. Assume that (∗)µ holds for all

|µ| = k. This means precisely that, for any µ ∈ N
n such that |µ| = k, there

exist two positive integers l(µ), p(µ), a family of convergent power series

ai,µ

(

(Λγ)|γ|≤|µ|, z, w
′
)

∈ C{(Λγ −∂
γX(0))|γ|≤|µ|, z, w

′}, i = 0, . . . , l(µ), such

that the formal identity

l(µ)
∑

i=0

ai,µ

(

(∂γX(w′, Φ̄(z,w′)))|γ|≤|µ|, z, w
′
)

(∂µh(z))i ≡ 0 (5.3)

holds in C[[z,w′]], and such that

al(µ),µ

(

(∂γX(w′, Φ̄(z,w′)))|γ|≤|µ|, z, w
′
)

6≡ 0. (5.4)

Moreover, we can choose l(µ) minimal satisfying a non-trivial relation such
as (5.3). This implies that

l(µ)
∑

j=1

jaj,µ

(

(∂γX(w′, Φ̄(z,w′)))|γ|≤|µ|, z, w
′
)

(∂µh(z))j−1 6≡ 0,
(5.5)

in C[[z,w′]]. In what follows, for j = 1, . . . , n, 1j is the multiindex of N
n

with 1 at the j-th digit and 0 elsewhere. Applying ∂zj
for j = 1, . . . , n to
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(5.3), we obtain

(

∂µ+1jh(z)
)

l
∑

j=1

jaj,µ

(

(∂γX(w′, Φ̄(z,w′)))|γ|≤|µ|, z, w
′
)

(∂µh(z))j−1 ∈ Ak+1[∂
µh(z)],

(5.6)

whereAk+1[∂
µh(z)] is the subring of C[[z,w′]] generated by Ak+1 and ∂µh(z).

By (5.5) and (5.6), we see that ∂µ+1jh(z) is algebraic over the field Bk+1(∂
µh(z)),

which is the subfield of Frac C[[z,w′]] generated by Bk+1 and ∂µh(z). Since
(∗)µ holds, ∂µh(z) is algebraic over Bk ⊂ Bk+1, and thus, we see that

∂µ+1jh(z) is algebraic over Bk+1 according to the transitivity of algebraicity
over fields [28]. This shows that (∗)ν holds for all multiindeces ν ∈ N

n such
that |ν| = k+1. This completes the proof of (∗)µ for all multiindeces µ ∈ N

n

and thus the proof of Proposition 5.2.2

5.2. Non-trivial relations at the level of the Segre sets. In this sec-
tion, we shall make use of the Segre sets mappings vj , j ∈ N, associated to
M as defined by (3.5) and (3.6). We shall also keep the notations introduced
in §3 for M . Our main purpose here is to establish the following result.

Proposition 5.3. Under the assumptions and notations of Theorem 5.1, the
following holds. For any multi-index µ ∈ N

n, and for any d ∈ N, there exist
two positive integers τ = τ(µ, d), p = p(µ, d), and a family of convergent

power series giµd = giµd

(

(Λγ)|γ|≤p, z, w
)

∈ C{(Λγ − ∂γX(0))|γ|≤p, z, w},

i = 0, . . . , τ , such that the formal identity

τ
∑

j=0

gjµd

(

(∂γX ◦ v̄d)|γ|≤p, vd+1, v̄d

)

(∂µh ◦ vd+1)
j ≡ 0

holds in the ring of formal power series in (d+1)N indeterminates, and such

that gτµd

(

(∂γX ◦ v̄d)|γ|≤p, vd+1, v̄d

)

6≡ 0. Here, X(w) is the formal power

series mapping given by (ii) of Theorem 5.1 and N is the CR dimension of
M .

Remark 5. If M is a generic real analytic submanifold through the origin in
C

n, and h(z) is a formal holomorphic power series in z ∈ C
n satisfying (ii) of

Theorem 5.1, then, by applying Proposition 5.2, for any multi-index µ ∈ N
n,

there exist two positive integers l(µ), p(µ), a family of convergent power

series Ui,µ

(

(Λγ)|γ|≤|µ|, z, w
)

∈ C{(Λγ −∂
γX(0))|γ|≤|µ|, z, w}, i = 0, . . . , l(µ),

such that the formal identity

l(µ)
∑

i=0

Ui,µ

(

(∂γX(w))|γ|≤|µ|, z, w
)

(∂µh(z))i = 0 (5.7)

holds for (z,w) ∈ M, and such that Ul(µ),µ

(

(∂γX(w))|γ|≤|µ|, z, w
)

6≡ 0 on

M. If, furthermore, M is minimal at 0, then for d0 large enough, it follows
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from Theorem 3.1 and the definition of the Segre sets mappings given by
(3.5) and (3.6) that, for d ≥ d0, the holomorphic map

(CdN , 0) ∋ (t1, t2, . . . , td) 7→ (vd+1(t1, t2, . . . ), v̄d(t2, . . . )) ∈ M

is generically submersive. Thus, by elementary facts about formal power
series, this implies that for d ≥ d0,

Ul(µ),µ

(

(∂γX ◦ v̄d)|γ|≤|µ|, vd+1, v̄d

)

6≡ 0.

This means that the algebraic relations

l(µ)
∑

i=0

Ui,µ

(

(∂γX ◦ v̄d)|γ|≤|µ|, vd+1, v̄d

)

(∂µh ◦ vd)
i = 0

will still be non-trivial for d ≥ d0. This proves Proposition 5.3 for d ≥ d0.
However, in general, plugging z = vd+1 and w = v̄d in (5.7) for d < d0, could
lead to trivial relations. Thus, one has to work a little bit more to prove
Proposition 5.3 for d < d0.

For the proof of Proposition 5.3, we need to introduce the following defi-
nition, in which only the generic submanifold M is involved.

Definition 5.1. LetM be a generic real analytic submanifold through the ori-
gin, of CR dimension N , and vk, k ∈ N, the associated Segre sets mappings
as defined by (3.5) and (3.6). Let Y (w) = (Y1(w), . . . , Yr(w)) ∈ (C[[w]])r ,
be a formal power series mapping in w = (w1, . . . , wn). Given d ∈ N and
a formal power series q(z) ∈ C[[z1, . . . , zn]], we say that q satisfies property
P(M,Y, d) if there exists a family of convergent power series Aj(Λ0, z, w) ∈
C{(Λ0 − Y (0), z, w}, j = 0, . . . , p, p ∈ N

∗, such that the identity

p
∑

j=0

Aj(Y ◦ v̄d, vd+1, v̄d) (q ◦ vd+1)
j ≡ 0

holds in the ring of formal power series in (d+1)N indeterminates and such
that Ap(Y ◦ v̄d, vd+1, v̄d) 6≡ 0.

We will need the following lemma to derive Proposition 5.3.

Lemma 5.4. Let M be a real analytic generic submanifold through the
origin in C

n. Let Y (w) = (Y1(w), . . . , Yr(w)) ∈ (C[[w]])r, be a formal
power series mapping in w = (w1, . . . , wn). Let d ∈ N and q(z) ∈ C[[z]],
z = (z1, . . . , zn). Then, if q(z) satisfies property P(M,Y, d+2), there exists
an integer n0 (depending on Y , q and d) such that q(z) satisfies property
P(M, (∂βY )|β|≤n0

, d).

Proof of Lemma 5.4. Let Y , q(z) and d be as in the Lemma. We assume
that q(z) satisfies property P(M,Y, d+2). By definition, there exists a family
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of convergent power series Aj(Λ0, z, w) ∈ C{(Λ0 − Y (0), z, w}, j = 0, . . . , p,
p ∈ N

∗, such that the formal identity

p
∑

j=0

Aj(Y ◦ v̄d+2, vd+3, v̄d+2) (q ◦ vd+3)
j ≡ 0 (5.8)

holds and such that Ap(Y ◦ v̄d+2, vd+3, v̄d+2) 6≡ 0. Here,

vd+3 = vd+3(t1, t2, . . . , td+3) = vd+3(t1, t
′) = vd+3(t),

v̄d+2 = v̄d+2(t2, . . . , td+3) = v̄d+2(t
′).

Thus, (5.8) holds in the ring C[[t1, . . . , td+3]]. For simplicity of notations,
we put, for j = 0, . . . , p,

Θj(t) = Aj

(

((Y ◦ v̄d+2)(t
′), vd+3(t), v̄d+2(t

′)
)

. (5.9)

Thus, (5.8) can be rewritten as

p
∑

j=0

Θj(t) ((q ◦ vd+3)(t))
j ≡ 0, with (5.10)

Θp(t) 6≡ 0, in C[[t]]. (5.11)

Consider the set E defined by

{α ∈ N
N : ∃j ∈ {1, . . . , p}, such that

[

∂|α|Θj

∂tα1
(t)

]

t1=t3

6≡ 0, in C[[t′]]}.

Observe that by (5.11), there exists a multiindex α ∈ N
N such that

[

∂|α|Θp

∂tα1
(t)

]

t1=t3

6≡ 0

in C[[t′]]. This implies that E is not empty. Let α0 ∈ N
N such that |α0| =

min{|β| : β ∈ E}. Then, if we apply
∂|α

0|

∂tα
0

1

to (5.10), it follows from Leibniz’s

formula that

∂|α
0|Θ0

∂tα
0

1

(t) +
p

∑

j=1

∂|α
0|Θj

∂tα
0

1

(t) ((q ◦ vd+3)(t))
j =

∑

β∈NN ,|β|<|α0|
1≤j≤p

∂βΘj

∂tβ1
(t)ϑβ,j(t),

(5.12)

where, for any β, j, ϑβ,j(t) ∈ C[[t]]. By the choice of α0, we have, for
|β| < |α0|,

[

∂βΘj

∂tβ1
(t1, t

′)

]

t1=t3

≡ 0, in C[[t′]], j = 1, . . . , p. (5.13)
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Thus, if we restrict equation (5.12) to t1 = t3, we get by (5.13) the following
identity in the ring C[[t′]]

p
∑

j=0

[

∂|α
0|Θj

∂tα
0

1

(t1, t
′)

]

t1=t3

((q ◦ vd+3)(t3, t2, t3, . . . , td+3))
j ≡ 0.

(5.14)

Here again, for simplicity of notations, we put

Θ′
j(t

′) =

[

∂|α
0|Θj

∂t
′α0

1

(t1, t
′)

]

t1=t3

. (5.15)

We observe that, by the choice of α0, there exists j ∈ {1, . . . , p} such that
Θ′

j(t
′) 6≡ 0. Denote m1 = Sup{j ∈ {1, . . . , p} : Θ′

j(t
′) 6≡ 0}. It follows from

the reality condition (3.4) and the definition of the Segre sets mappings
given by (3.5) and (3.6) that

vd+3(t3, t2, t3, . . . , td+1) = vd+1(t3, . . . , td+3).

Thus, (5.14) reads as

m1
∑

j=0

Θ′
j(t

′) ((q ◦ vd+1)(t3, . . . , td+3))
j ≡ 0, (5.16)

with, moreover,

Θ′
m1

(t′) 6≡ 0. (5.17)

First case : d ≥ 1. (5.17) implies that there exists β0 ∈ N
N such that

[

∂|β
0|Θ′

m1

∂tβ
0

2

(t2, t3, . . . , td+3)

]

t2=t4

6≡ 0. (5.18)

Thus, applying
∂|β

0|

∂tβ
0

2

to (5.16) and after evaluation at t2 = t4, we obtain in

the ring C[[t3, t4, . . . , td+3]]

m1
∑

j=0

[

∂|β
0|Θ′

j

∂tβ
0

2

(t′)

]

t2=t4

((q ◦ vd+1)(t3, . . . , td+3))
j ≡ 0.

(5.19)

We shall now see that (5.19) gives the statement of the Lemma. By definition
of the Segre sets mappings given by (3.5) and (3.6) and by the definition of
the Θj given by (5.9), we have, for 0 ≤ j ≤ m1,

Θj(t1, t
′) = Aj

(

Y ◦ v̄d+2(t
′), t1,Φ(v̄d+2(t

′), t1), v̄d+2(t
′)

)

= G1
j

(

(Y ◦ v̄d+2)(t
′), v̄d+2(t

′), t1
)

,
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where G1
j (Λ0, w, t1) ∈ C{Λ0 − Y (0), w, t1}. Using (5.15), we obtain

Θ′
j(t

′) =

[

∂|α
0|G1

j

∂tα
0

1

]

(

(Y ◦ v̄d+2)(t
′), v̄d+2(t

′), t3
)

=

[

∂|α
0|G1

j

∂tα
0

1

]

(

(Y (t2, Φ̄(vd+1, t2)), t2, Φ̄(vd+1, t2), t3
)

.

Here, vd+1 = vd+1(t3, t4, . . . , td+3). As a consequence, we have

∂|β
0|Θ′

j

∂tβ
0

2

(t′) = G2
j

(

(∂γY (t2, Φ̄(vd+1, t2))|γ|≤|β0|, vd+1, t2, t3
)

,

where G2
j = G2

j

(

(Λγ)|γ|≤|β0|, w, t2, t3
)

∈ C{(Λγ − ∂γY (0))|γ|≤|β0|, w, t2, t3}.

Here again, by (3.4), (3.5) and (3.6), we have v̄d+2(t4, t3, t4, t5, . . . ) = v̄d(t4, t5, . . . ),
and thus
[

∂|β
0|Θ′

j

∂tβ
0

2

(t′)

]

t2=t4

= G2
j

(

((∂γY ◦ v̄d+2)(t4, t3, t4, . . . ))|γ|≤|β0|, vd+1(t3, t4, . . . ), t4, t3
)

= G2
j

(

((∂γY ◦ v̄d)(t4, . . . , td+3))|γ|≤|β0|, vd+1(t3, t4, . . . ), t4, t3
)

= Bj

(

(∂γY ◦ v̄d)|γ|≤|β0|, vd+1, v̄d

)

, (5.20)

where Bj for j = 0, . . . ,m1, is a convergent power series in its arguments.
Consequently, from (5.19) and (5.20) we have the relation

m1
∑

j=0

Bj

(

(∂γY ◦ v̄d)|γ|≤|β0|, vd+1, v̄d

)

(q ◦ vd+1)
j ≡ 0, in C[[t3, . . . , td+3]],

which is non-trivial according to (5.18) and (5.20). In conclusion, q(z) sat-
isfies property P(M, (∂γY )|γ|≤|β0|, d).

Second case : d = 0. In this case, almost the same procedure used in the
case d ≥ 1 can be applied. Indeed, by (5.17), we have Θ′

m1
(t2, t3) 6≡ 0 and

therefore, there exists a multi-index ̺0 ∈ N
N such that

[

∂|̺
0|Θ′

m1

∂t̺
0

2

(t2, t3)

]

t2=0

6≡ 0. (5.21)

Thus, applying
∂|̺

0|

∂t̺
0

2

to (5.16) and after evaluation at t2 = 0, we obtain in

the ring C[[t3]]

m1
∑

j=0

[

∂|̺
0|Θ′

j

∂t̺
0

2

(t2, t3)

]

t2=0

((q ◦ v1)(t3))
j ≡ 0. (5.22)
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As in the case d ≥ 1, we have for j = 1, . . . ,m1,

∂|̺
0|Θ′

j

∂t̺
0

2

(t2, t3) = G3
j

(

(∂γY (t2, Φ̄(v1(t3), t2))|γ|≤|̺0|, v1(t3), t2, t3
)

,

where G3
j = G3

j

(

(Λγ)|γ|≤|̺0|, w, t2, t3
)

∈ C{(Λγ − ∂γY (0))|γ|≤|̺0|, w, t2, t3}.

By the normality of the coordinates for M , we have for j = 0, . . . ,m1,
[

∂|̺
0|Θ′

j

∂t̺
0

2

(t2, t3)

]

t2=0

= G3
j

(

(∂γY (0))|γ|≤|̺0|, v1(t3), 0, t3
)

.
(5.23)

We leave it to the reader to check that, similarly to the case d ≥ 1, (5.23),
(5.22) and (5.21) give the desired statement of the lemma for d = 0, i.e.
that q(z) satisfies property P(M, (∂γY )|γ|≤|β0|, 0). This completes the proof
of Lemma 5.4.2

Proof of Proposition 5.3. Let µ ∈ N
n. Since h(z) satisfies (ii) of The-

orem 5.1, by Proposition 5.2, there exist two positive integers l(µ), p(µ)

and a family of convergent power series Ui,µ

(

(Λγ)|γ|≤|µ|, z, w
)

∈ C{(Λγ −

∂γX(0))|γ|≤|µ|, z, w}, i = 0, . . . , l(µ), such that the formal identity

l(µ)
∑

i=0

Ui,µ

(

(∂γX(w))|γ|≤|µ|, z, w
)

(∂µh(z))i = 0 (5.24)

holds on M and such that

Ul(µ),µ

(

(∂γX(w))|γ|≤|µ|, z, w
)

6= 0 (5.25)

for (z,w) ∈ M. Notice that to prove the proposition we have to show
that for any d ∈ N, there exists p = p(µ, d) such that ∂µh(z) satisfies
property P(M, (∂βX)|β|≤p, d). Since M is minimal at 0 ∈ M , it follows
from Theorem 3.1 and the definition of the Segre sets mappings given
by (3.5) and (3.6) that there exists d0 ∈ N (which can be assumed to

be even) such that the holomorphic map C
(d0+1)N ∋ (t1, . . . , td0+1) 7→

(vd0+1(t1, t2, . . . , td0+1), v̄d0
(t2, . . . , td0+1)) ∈ M is generically submersive.

By elementary facts about formal power series and by (5.25), this implies
that

Ul(µ),µ

(

(∂γX ◦ v̄d0
)|γ|≤|µ|, vd0+1, v̄d0

)

6≡ 0.

This means that the following algebraic relation obtained from (5.24),

l(µ)
∑

i=0

Ui,µ

(

(∂γX ◦ v̄d0
)|γ|≤|µ|, vd0+1, v̄d0

)

((∂µh) ◦ vd0+1)
i ≡ 0,

(5.26)

is still non-trivial, i.e. that ∂µh(z) satisfies property P(M, (∂βX)|β|≤|µ|, d0).
(Observe that in Remark 5, we have shown that ∂µh(z) satisfies property
P(M, (∂βX)|β|≤|µ|, d) for any d ≥ d0.) Applying Lemma 5.4 to q(z) =

∂µh(z) and Y = (∂βX)|β|≤|µ|, we obtain that there exists p(µ, d0 − 2) ∈ N
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such that ∂µh(z) satisfies property P(M, (∂βX)|β|≤p(µ,d0−2), d0 − 2). Hence,
using inductively Lemma 5.4, we obtain that for any even number 0 ≤ d ≤
d0, there exists p(µ, d) ∈ N such that ∂µh(z) satisfies property P(M, (∂βX)|β|≤p(µ,d), d).

Since by Remark 5, ∂µh(z) satisfies also property P(M, (∂βX)|β|≤|µ|, d0 +1),
we can again, in the same way, use Lemma 5.4 to conclude that for any odd
number 1 ≤ d ≤ d0, there exists p(µ, d) ∈ N such that ∂µh(z) satisfies
property P(M, (∂βX)|β|≤p(µ,d), d). This completes the proof of Proposition
5.3.2

5.3. Propagation procedure. We prove here the last proposition needed
for the proof of Theorem 5.1.

Proposition 5.5. Let M be a generic real analytic submanifold through the
origin, and vk, k ∈ N, the associated Segre sets mappings as defined by (3.5)
and (3.6). Let h(z) ∈ C[[z1, . . . , zn]] and d ∈ N. Let µ ∈ N

n and assume that
there exists Yµd(w), a formal power series mapping in w = (w1, . . . , wn),
such that ∂µh(z) satisfies property P(M,Yµd, d+ 2) as defined in Definition
5.1. Then, the following holds. If for any multiindices ν ∈ N

n, ∂νh ◦ vd+1 is
convergent, then ∂µh ◦ vd+3 is convergent.

For the proof of Proposition 5.5, we need the following two lemmas which
are both consequences of the Artin approximation theorem [1]. We refer the
reader to [21] for the proof of the first one and to [6, 21] for the proof of the
second one.

Lemma 5.6. Let T (x, u) = (T1(x, u), . . . ,Tr(x, u)) ∈ (C[[x, u]])r, x ∈ C
q,

u ∈ C
s, with T (0) = 0. Assume that T (x, u) satisfies an identity in the ring

C[[x, u, y]], y ∈ C
q, of the form

ϕ(T (x, u);x, u, y) = 0,

where ϕ ∈ C[[W,x, u, y]] with W ∈ C
r. Assume, furthermore, that for

any multi-index β ∈ N
q, the formal power series

[

∂|β|ϕ

∂yβ
(W ;x, u, y)

]

y=x

is

convergent, i.e. belongs to C{W,x, u}. Then, for any given positive integer
e, there exists an r-tuple of convergent power series T e(x, u) ∈ (C{x, u})r

such that ϕ(T e(x, u);x, u, y) = 0 in C[[x, u, y]] and such that T e(x, u) agrees
up to order e (at 0) with T (x, u).

Lemma 5.7. Any formal power series in r indeterminates, which is al-
gebraic over the field of meromorphic functions (in r variables), must be
convergent.

Remark 6. We would like to mention that the use of the Artin approximation
theorem is not a novelty in the study of many mapping problems (cf. [11,
8, 20, 6, 21] as well as many other articles).

Proof of Proposition 5.5. Let µ ∈ N
n and d ∈ N be as in the statement

of the proposition. We assume that for any multiindex ν ∈ N
n, ∂νh ◦ vd+1
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is convergent. By assumption, there exists Yµd(w) ∈ (C[[w]])r , r = r(µ, d) ∈
N
∗, a formal power series mapping in w = (w1, . . . , wn) such that ∂µh(z)

satisfies property P(M,Yµd, d+2). By definition, this means that there exists
a family of convergent power series Aj = Aj(Λ0, z, w) ∈ C{Λ0−Yµd(0), z, w},
j = 0, . . . , k, k = k(µ, d), such that the formal power series identity

k
∑

j=0

Aj

(

(Yµd ◦ v̄d+2)(t
′), vd+3(t), v̄d+2(t

′)
)

(((∂µh) ◦ vd+3)(t))
j ≡ 0

(5.27)

holds in C[[t]], with t = (t1, t
′) = (t1, t2, . . . , td+3) and such that

Ak((Yµd ◦ v̄d+2)(t
′), vd+3(t), v̄d+2(t

′)) 6≡ 0. (5.28)

We would like to apply Lemma 5.6 with y = t1, x = t3, u = (t2, t4, t5, . . . , td+3),
T (x, u) = (Yµd ◦ v̄d+2)(t2, . . . , td+3) − Yµd(0), W = Λ′

0 (Λ′
0 ∈ C

r) and

ϕ(Λ′
0; t3, (t2, t4, t5, . . . , td+3), t1) =

k
∑

j=0

Aj

(

Λ′
0 + Yµd(0), vd+3(t), v̄d+2(t

′)
)

(((∂µh) ◦ vd+3)(t))
j . (5.29)

For this, one has to check that any derivative with respect to t1 of ϕ evaluated
at t1 = t3 is in fact convergent with respect to the variables Λ′

0 and t′.
Because of the analyticity of the functions Ai, i = 0, . . . , k (and of the Segre
sets mappings), we see that we have only to consider the derivatives of [∂µh◦
vd+3(t)]

j , for j = 0, . . . , l, evaluated at t1 = t3. These derivatives involve
analytic terms coming for the differentiation of vd+3 (which are convergent)
and products involving powers of derivatives of h evaluated at t1 = t3. Let
[(∂γh) ◦ vd+3(t)]t1=t3 be such a derivative for some γ ∈ Nn. By the reality
condition (3.4) and by (3.5) and (3.6), we have

vd+3(t3, t2, t3, t4, . . . , td+3) = vd+1(t3, t4, . . . , td+3).

Thus, [(∂γh) ◦ vd+3(t)]t1=t3 = ((∂γh) ◦ vd+1) (t3, . . . , td+3) which is conver-
gent by our hypothesis. As a consequence, ϕ satifies the assumptions of
Lemma 5.6. Thus, by applying that Lemma, one obtains for any positive
integer e, a convergent power series mapping T e(t′), which agrees up to
order e with (Yµd ◦ v̄d+2)(t

′) and such that

k
∑

j=0

Aj

(

T e(t′), vd+3(t), v̄d+2(t
′)

)

(((∂µh) ◦ vd+3)(t))
j ≡ 0.

Observe that (5.28) implies that, for e large enough, say e = e0, the following
condition will be satisfied

Ak

(

T e0(t′), vd+3(t), v̄d+2(t
′)

)

6≡ 0,

in C[[t]]. This allows one to apply Lemma 5.7 to conclude that ∂µh ◦ vd+3

is convergent.2
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5.4. Completion of the proof of Theorem 5.1. Let h(z) be the formal
power series of the Theorem and X(w) the associated formal power series
mapping given by (ii). By Proposition 5.3, for any multi-index µ ∈ N

n, and
for any d ∈ N, there exists two positive integers τ = τ(µ, d), p = p(µ, d), and

a family of convergent power series giµd = giµd

(

(Λγ)|γ|≤p, z, w
)

∈ C{(Λγ −

∂γX(0))|γ|≤p, z, w}, i = 0, . . . , τ , such that the identity

τ
∑

j=0

gjµd

(

(∂γX ◦ v̄d)|γ|≤p, vd+1, v̄d

)

((∂µh) ◦ vd+1)
j ≡ 0

holds in C[[t]] where t = (t1, . . . , td+1) ∈ C
(d+1)N , and with the additional

nondegeneracy condition gτµd

(

(∂γX ◦ v̄d)|γ|≤p, vd+1, v̄d

)

6≡ 0. In view of

Definition 5.1, this means that, for any multiindex µ ∈ N
n and for any

d ∈ N, ∂µh(z) satisfies property P(M, (∂γX)|γ|≤p(µ,d), d). Observe first that
since for any ν ∈ N

n, ∂νh(z) satisfie property P(M, (∂γX)|γ|≤p(ν,0), 0), it
follows from Lemma 5.7 (and from Definition 5.1) that ∂νh ◦ v1 is con-
vergent for any multiindex ν ∈ N

n. From this and the fact that ∂µh(z)
satisfies property P(M, (∂γX)|γ|≤p(µ,2), 2), it follows from Proposition 5.5
that ∂µh ◦ v3 is convergent, for all multiindices µ ∈ N

n. Thus, by induction,
we see that Proposition 5.5 gives that for any odd number d, and for any
multiindex µ ∈ N

n, ∂µh ◦ vd is convergent. Choose d0 ∈ N satisfying the
statement of Theorem 3.1. Without loss of generality, d0 can be assumed
to be odd. By the previous considerations, we know that h ◦ vd0

is conver-
gent in some neighborhood U of 0 ∈ C

d0N . By Theorem 3.1, there exists
(t01, . . . , t

0
d0

) ∈ U such that vd0
(t01, . . . , t

0
d0

) = 0 and such that vd0
is submer-

sive at (t01, . . . , t
0
d0

). Thus, we may apply the rank theorem to conclude that

vd0
has a right convergent inverse θ(z) ∈ (C{z})d0N defined near 0 ∈ C

n

such that θ(0) = (t01, . . . , t
0
d0

) and such that vd0
◦θ(z) = z. This implies that

h(z) is convergent. The proof of Theorem 5.1 is complete.

6. Proofs of Theorem 2.1 and Theorem 2.2

Proof of Theorem 2.1. Recall that M ′ is given near 0 by (4.2) and that
C is the family of algebraic holomorphic functions (in n variables) defined
by (4.5) and constructed from M ′. By Proposition 4.3, for any χ ∈ C, there
exists l0 ∈ N

∗, a positive integer k0 and a family of convergent power series

δi = δi
(

(Λγ)|γ|≤l0 , z, w
)

∈ C{(Λγ − ∂γ f̄(0))|γ|≤l0 , z, w}, i = 0, . . . , k0, such

that the formal power series identity

k0
∑

i=0

δi
(

(∂γ f̄(w))|γ|≤l0 , z, w
)

((χ ◦ f)(z))i = 0, (6.1)

holds for (z,w) ∈ M such that δk0

(

(∂γ f̄(w))|γ|≤l0 , z, w
)

6≡ 0 in M. Since

M is minimal at 0 and χ ◦ f satisfies (ii) of Theorem 5.1 by (6.1), we may
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apply that theorem to conclude that χ ◦ f is convergent. In other words, for
any α ∈ N

N and for any 1 ≤ ν ≤ c, qα,ν ◦ f is convergent. To conclude the
proof of Theorem 2.1, we have to show that this implies that the reflection
mapping

C
n × C

N ∋ (z, θ) 7→ Φ̄′(f(z), θ) ∈ C
c (6.2)

is convergent. To see this, it suffices to observe that sinceM ′ is real algebraic,
the map C

n × C
N ∋ (ζ, θ) 7→ Φ̄′

ν(ω, θ) ∈ C, 1 ≤ ν ≤ c, is algebraic,
and thus, an approximation argument similar to the one used in the proof
of Proposition 1 from [20] shows that for any ν ∈ {1, . . . , c}, Φ̄′

ν(ω, θ) is
algebraic over the field generated by C and the family of algebraic functions
C and θ. Since f is nondegenerate, this implies that the formal power series
C

n×C
N ∋ (z, θ) 7→ Φ̄′

ν(f(z), θ) is algebraic over the field generated by C, the
family of formal power series Cf = ((qβ,ν ◦ f)(z)) β∈NN

1≤ν≤c

and θ. But since the

family Cf is a family of convergent power series, Lemma 5.7 implies that the
formal power series Φ̄′

ν(f(z), θ) is actually convergent for any ν ∈ {1, . . . , c}.
This completes the proof of Theorem 2.1.2

Remark 7. If, in Theorem 2.1, the target manifold is given in normal coor-
dinates i.e. if Φ̄′(ω, 0) = ω∗ where Φ̄′ is given by (4.2), then the following
holds. The normal components f∗ ∈ C

c (as in (4.7)) of a formal nondegener-
ate CR map f from a real analytic generic submanifold into a real algebraic
one are necessarily convergent provided that the source manifold is minimal.
Indeed, this follows from Theorem 2.1 by taking θ = 0.

Proof of Theorem 2.2. By the Taylor expansion (4.3) and by Theorem
2.1, we know that for any β ∈ N

N and any 1 ≤ ν ≤ c, qβ,ν ◦ f is convergent.
Equivalently, we have the convergence of χ ◦ f for any algebraic function
χ ∈ C, where C is the family of algebraic functions defined by (4.5). Observe
that since f is nondegenerate, Lemma 5.7 implies that for any algebraic
holomorphic function q = q(ω) in the algebraic closure of the field gener-
ated by the family C, q ◦ f must also be convergent. To conclude that f
is convergent when M ′ is holomorphically nondegenerate, it suffices to ap-
ply Theorem 4.2 (iii) which states that this algebraic closure, in that case,
coincides with all the field of algebraic functions Fn.2

7. Remarks concerning Theorem 2.2

The purpose of this section is to show how the convergence result given
by Theorem 2.2 can be derived from the arguments of §5 more simply than
the arguments given in §6. Thus, let f : (M, 0) → (M ′, 0) be a formal
nondegenerate CR map from a real analytic generic submanifold into a real
algebraic one. We also assume that M ′ is holomorphically nondegenerate.
Then, by Proposition 4.6, we know that for each component fj of f , j =
1, . . . , n, there exists a positive integer kj and a family of convergent power

series δi,j = δi,j
(

(Λγ)|γ|≤l(M ′), z, w
)

∈ C{(Λγ − ∂γ f̄(0))|γ|≤l(M ′), z, w}, i =
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0, . . . , kj , such that the formal identity

kj
∑

i=0

δi,j
(

(∂γ f̄(w))|γ|≤l(M ′), z, w
)

(fj(z))
i = 0 (7.1)

holds for (z,w) ∈ M, with δkj ,j

(

(∂γ f̄(w))|γ|≤l(M ′), z, w
)

6≡ 0 on M. Here,

we recall that l(M ′) is the Levi-type of M ′ as in Remark 1 and that M is
the complexification of M as defined in §3.1. Equation (7.1) means that for
each j = 1, . . . , n, fj(z) satisfies the statement (ii) of Theorem 5.1, with
associated formal power series mapping X(w) = (∂γ f̄(w))|γ|≤l(M ′). Thus, if

we apply Proposition 5.2 to h(z) = fj(z) (and to X(w) = (∂γ f̄(w))|γ|≤l(M ′))
for j = 1, . . . , n, we obtain the following result.

Proposition 7.1. Let M ⊂ C
n be a real analytic generic submanifold

through the origin and M ′ ⊂ C
n be a real algebraic generic submanifold

through the origin (with the same CR dimension). Let f : M → M ′

be a formal nondegenerate CR map between M and M ′ and assume that
M ′ is holomorphically nondegenerate. Then, for any multi-index µ ∈ N

n

and for any j ∈ {1, . . . , n}, there exists a positive integer l(µ, j), a family

of convergent power series δiµj = δiµj

(

(Λγ)|γ|≤l(M ′)+|µ|, z, w
)

∈ C{(Λγ −

∂γ f̄(0))|γ|≤l(M ′)+|µ|, z, w}, i = 0, . . . , l(µ, j), such that the formal identity

l(µ,j)
∑

i=0

δiµj

(

(∂γ f̄(w))|γ|≤l(M ′)+|µ|, z, w
)

(∂µfj(z))
i = 0,

holds for (z,w) ∈ M with δl(µ,j)µj

(

(∂γ f̄(w))|γ|≤l(M ′)+|µ|, z, w
)

6= 0 on M.

If furthermore M is assumed to be minimal at 0, then, in view of (7.1), we
may apply Proposition 5.3 to h(z) = fj(z) and X(w) = (∂γ f̄(w))|γ|≤l(M ′),
for j = 1, . . . , n. This gives the following proposition.

Proposition 7.2. Let M ⊂ C
n be a real analytic generic submanifold

through the origin and M ′ ⊂ C
n be a real algebraic generic submanifold

through the origin. Let f : M → M ′ be a formal nondegenerate CR map
between M and M ′ and assume that M is minimal at 0 and that M ′ is
holomorphically nondegenerate. Let N be the CR dimension of M (and of
M ′) and vj, j ∈ N, be the Segre sets mappings for M as defined by (3.5)
and (3.6). Then, for any multi-index µ ∈ N

n, for any d ∈ N and for any j ∈
{1, . . . , n}, there exist two positive integers l = l(µ, d, j), p = p(µ, d, j), and

a family of convergent power series ψµd
νj = ψµd

νj

(

(Λγ)|γ|≤p, z, w
)

∈ C{(Λγ −

∂γ f̄(0))|γ|≤p, z, w}, ν = 0, . . . , l, such that the formal identity

l
∑

ν=0

ψµd
νj

(

((∂γ f̄) ◦ v̄d)|γ|≤p, v̄d, vd+1

)

((∂µfj) ◦ vd+1)
ν ≡ 0
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holds in the ring of formal power series in (d+ 1)N determinates and such

that ψµd
lj

(

((∂γ f̄) ◦ v̄d)|γ|≤p, v̄d, vd+1

)

6≡ 0.

From Proposition 7.2, one sees that the convergence of the mapping f
(under the assumptions of Theorem 2.2) follows from successive applications
of Lemma 5.7. Indeed, for d = 0, Proposition 7.2, and Lemma 5.7 yield
the convergence of f and of all its jets on the first Segre set. From this,
Proposition 7.2 and Lemma 5.7, we obtain the convergence of f and of all
its jets on the second Segre set, and so on. This leads to the convergence of
h on the d0-th Segre set, where d0 is given by Theorem 3.1. As in the proof
of Theorem 5.1, this implies the convergence of f under the assumptions of
Theorem 2.2.

8. Partial convergence of formal CR maps

In this section, as in [21], we indicate several results which show how
Theorem 2.1 can be seen as a result of partial convergence for formal non-
degenerate CR maps. Before explaining what we mean by this, we have to
recall several facts.

Let M be a real analytic generic submanifold in C
n and p ∈M . Let K(p)

be the quotient field of C{z − p}, and H(M,p) be the vector space over
K(p) consisting of the germs at p of (1,0) vector fields, with meromorphic
coefficients, tangent to M (near p). The degeneracy of M at p, denoted
d(M,p), is defined to be the dimension of H(M,p) over K(p). It is shown
in [8, 3] that the mapping M ∋ p 7→ d(M,p) ∈ {0, . . . , n} is constant on
any connected component of M . Consequently, if M is a connected real
analytic generic submanifold, one can define its degeneracy d(M) to be the
degeneracy d(M, q) at any point q ∈ M . Observe that the germ (M,p),
p ∈M , is holomorphically nondegenerate if and only if d(M) = d(M,p) = 0.

If f is a formal nondegenerate CR map as in Theorem 2.1, f can or cannot
be convergent. The following result, which is of more interest when f is not
convergent, shows however that the map f is partially convergent in the
following sense.

Theorem 8.1. Let f : (M, 0) → (M ′, 0) be a formal nondegenerate CR
map between two germs at 0 in C

n of real analytic generic submanifolds.
Assume that M is minimal at 0 and that M ′ is real algebraic. Let d(M ′) be
the degeneracy of M ′. Then, there exists a holomorphic (algebraic) mapping
(independent of f) G(ω) = (G1(ω), . . . ,Gn−d(M ′)(ω)) defined near 0 ∈ C

n of

generic rank n− d(M ′) such that G ◦ f is convergent.

Proof. We use again the notations of §2 and §4.1. As in the proof of
Theorem 2.2, by using the expansion (4.3), we obtain for ν = 1, . . . , c,

Φ̄′
ν(f(z), θ) =

∑

β∈NN

(qβ,ν ◦ f)(z) θβ.
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Recall also that the qβ,ν(ω) are algebraic functions. By Theorem 2.1, we

have that for any β ∈ N
N and for any ν = 1, . . . , c, qβ,ν ◦ f is con-

vergent in some neighborhood of 0 in C
n. According to [8, 3], we can

choose qβ1,ν1(ω), . . . , qβr,νr(ω), r = n − d(M ′), of generic rank n − d(M ′)
in a neighborhood of 0 in C

n. Then, if we define Gi(ω) = qβi,νi(ω), for
i = 1, . . . , n − d(M ′), we obtain the desired statement of the Theorem.2

A suitable invariant which also measures the lack of convergence of a
given formal (holomorphic) mapping is its so-called transcendence degree.
We recall first how such an invariant is defined (cf. [21]). Let H : (CN , 0) →
(CN ′

, 0) be formal holomorphic mapping, N,N ′ ≥ 1, and V be a complex

analytic set through the origin in C
N × C

N ′
. Assume that V is given near

the origin in C
N+N ′

by V = {(x, y) ∈ C
N ×C

N ′
: ̺1(x, y) = . . . = ̺q(x, y) =

0}, ̺i(x, y) ∈ C{x, y}, i = 1, . . . , q. Then, the graph of H is said to be
formally contained in V if ̺1(x,H(x)) = . . . = ̺q(x,H(x)) = 0 in C[[x]].
Furthermore, if VH is the germ of the complex analytic set through the
origin in C

N+N ′
defined as the intersection of all the complex analytic sets

through the origin in C
N+N ′

formally containing the graph of H, then the
transcendence degree of H is defined to be the integer dimC VH − N . This
definition is in complete analogy with the one introduced in [10] in the C∞

mapping problem. The following proposition from [21] shows the relevance
of the previous concept and why this transcendence degree is related to the
convergence properties of formal mappings.

Proposition 8.2. Let H : (CN , 0) → (CN ′
, 0) be formal holomorphic map-

ping. Then, the following conditions are equivalent:
i) H is convergent.
ii) The transcendence degree of H is zero.

The following is a consequence of Theorem 8.1.

Corollary 8.3. Let f : (M, 0) → (M ′, 0) be a formal CR mapping between
two germs at 0 of real analytic generic submanifolds. Assume that M is
minimal at 0, M ′ is real algebraic and that f is nondegenerate, i.e. Jf 6≡ 0.
Denote by Df the transcendence degree of f . Then, Df ≤ d(M ′), where
d(M ′) denotes the degeneracy of M ′. Equivalently, there exists a complex
analytic set of (pure) dimension n+d(M ′) which contains formally the graph
of f .

Proof. The proof is similar to the one given in [21]. For the sake of
completeness, we recall it.

From Theorem 8.1, there exists G(ω) = (G1(ω), . . . ,Gn−d(M ′)(ω)) ∈ (C{ω})n−d(M ′)

of generic rank n − d(M ′) such that G ◦ f is convergent. Put δj(z) :=
(Gj ◦ f)(z) ∈ C{z}, for j = 1, . . . , n − d(M ′). Then, the graph of f is
formally contained in the complex analytic set

A = {(z, ω) ∈ (C2n, 0) : Gj(ω) = δj(z), j = 1, . . . , n− d(M ′)}.
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Let A = ∪k
i=1Γi be the decomposition of A into irreducible components. For

any positive integer σ, one can find, according to the Artin approximation
theorem [1], a convergent power series mapping fσ(z) ∈ (C{z})n defined
in some small neighborhood Uσ of 0 in C

n, which agrees with f(z) up to
order σ (at 0) and such that the graph of fσ, denoted G(fσ), is contained
in A. Since G(fσ) is contained in A, it must be contained in an irreducible
component of A. Thus, at least one subsequence of (fσ)σ∈N∗ is contained in
one of such irreducible components, say Γ1. We can assume without loss of
generality that such a subsequence is (fσ)σ∈N∗ itself. We first observe that
this implies that the graph of f is formally contained in Γ1. Moreover, since
f is a formal nondegenerate map, for σ0 large enough, the family (fσ)σ≥σ0

is also a family of holomorphic maps of generic rank n. In particular, this
implies that the generic rank of the family of holomorphic functions

((Gi ◦ f
σ0)(z))1≤i≤n−d(M ′) ,

is n − d(M ′). As a consequence, if z0 is close enough to 0 in C
n and is

chosen so that the rank of the preceding family at z0 equals n− d(M ′), the
implicit function theorem shows that A is an n+d(M ′)-dimensional complex
submanifold near (z0, f

σ0(z0)) ∈ Γ1. Since Γ1 is irreducible, it is pure-
dimensional, and thus, Γ1 is an n+d(M ′) pure-dimensional complex analytic
set containing formally the graph of f . By definition of the transcendence
degree, this implies that Df ≤ d(M ′).2

Remark 8. One should observe that Theorem 2.2 also follows from Corollary
8.3. Indeed, if, in Corollary 8.3, M ′ is furthermore assumed to be holomor-
phically nondegenerate, then d(M ′) = 0 and thus the transcendence degree
of f is zero. By Proposition 8.2, this implies that f is convergent.

9. Concluding remarks

In this last section, we indicate how Theorem 5.1 can be applied to the
study of the convergence of formal mappings between real analytic CR man-
ifolds in complex spaces of possibly different dimensions. Our last result will
be expressed by means of a standard nondegeneracy condition which takes
its source in [23, 26, 12]. The situation is the following one.

Let f : (M, 0) → (M ′, 0) be a formal CR mapping between two germs at

0 of real analytic generic submanifolds in C
n and C

n′
respectively, n, n′ ≥ 2.

(We wish to mention that all the following considerations are also valid for a
target real analytic set, but for simplicity, we restrict our attention to generic
manifolds.) We shall use the notations defined in §3 for M . In particular,
the CR dimension of M is N and its real codimension is c. Following the
terminology of [10], we define the characteristic variety of f at 0 ∈ C

n′
as

follows. If M ′ is a real analytic generic submanifold through 0 as above, of
CR dimension N ′ and of real codimension c′, we can assume that it is given
near 0 by

M ′ = {ζ ∈ (Cn′
, 0) : ρ′(ζ, ζ̄) = 0},
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with

∂̄ρ′1 ∧ . . . ∧ ∂̄ρ
′
c′ 6= 0, on M ′.

Here, ρ′ = (ρ′1, . . . , ρ
′
c′) is a set of local real analytic defining functions for

M ′ near 0 ∈ C
n′

. Consider the vector fields Lj , j = 1, . . . ,N , tangent to the
complexification M of the source manifold M as defined by (3.3). It will be
better to see these vector fields, for fixed z ∈ (Cn, 0), as a basis of holomor-
phic vector fields tangent to the Segre variety Qz̄, and thus, we shall denote

them Lj
(z,w) for j = 1, . . . , N . For any multi-index γ = (γ1, . . . , γN ) ∈ N

N ,

we define Lγ
(z,w) =

[

L1
(z,w)

]γ1

. . .
[

LN
(z,w)

]γN

. Finally, for any multi-index

γ ∈ N
N , let Ξγ be the C

c′ formal map defined by

C
n × C

n × C
n′

∋ (z,w, ζ) 7→ Lγ
(z,w)ρ

′(ζ, f̄(w)) ∈ C
c′ . (9.2)

Observe that there exists a C
c′-valued convergent power series mapping

Nγ = Nγ

(

(Λβ)|β|≤|γ|, z, w, ζ
)

∈
(

C{Λ0, z, w, ζ}[(Λβ))1≤|β|≤|γ|]
)c′

such that

Ξγ(z,w, ζ) = Nγ

(

(∂β f̄(w))|β|≤|γ|, z, w, ζ
)

, in C[[z,w, ζ]].
(9.3)

The characteristic variety of f at 0 ∈ C
n is then defined to be the germ at

0 ∈ C
n′

of the complex analytic set

C(f, 0) = {ζ ∈ (Cn′
, 0) : Ξγ(0, 0, ζ) = 0, γ ∈ N

N}.

This set is the infinitesimal analog of the usual determinacy set for holomor-
phic mappings

{ζ ∈ (Cn′
, 0) : f(Q0) ⊂ Q′

ζ},

where Q′
ζ is the Segre variety associated to M ′ and ζ ∈ (Cn′

, 0). With this
in mind, we have the following natural result.

Theorem 9.1. Let f : (M, 0) → (M ′, 0) be a formal mapping between two

germs at 0 of real analytic generic submanifolds in C
n and C

n′
respectively.

Assume that M is minimal at 0 and that the characteristic variety C(f, 0)
is zero-dimensional. Then f is convergent.

Proof. Since f maps formally M to M ′, we have

ρ′(f(z), f̄(w)) = 0, (9.4)

as a formal power series identity for (z,w) ∈ M. Thus, if, for γ ∈ N
N , we

apply Lγ
(z,w) to (9.4), it follows from the definition of Ξγ given in (9.2), that

Lγ
(z,w)

(

ρ′(f(z), f̄(w))
)

= Ξγ(z,w, f(z)) = 0, (9.5)

for (z,w) ∈ M. Observe that it follows from (9.3) and (9.5) that

Nγ

(

(∂β f̄(w))|β|≤|γ|, z, w, f(z)
)

= 0, for (z,w) ∈ M. (9.6)
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Since the characteristic variety C(f, 0) is zero-dimensional, in view of (9.3),
the holomorphic mapping Ik (2)

C
n′d(n,k)+2n+n′

∋ ((Λβ)|β|≤k, z, w, ζ) 7→
(

(Λβ)|β|≤k, z, w,
(

Nγ((Λβ)|β|≤|γ|, z, w, ζ)
)

|γ|≤k

)

(9.7)

is finite-to-one near J0 = ((∂β f̄(0))|β|≤k, 0, 0, 0) ∈ C
n′d(n,k)+2n+n′

for k large
enough. It then follows from [16] (p.15) (see also [18]) that, for any j =
1, . . . , n′, ζj is integral over the ring formed by all the convergent power
series of the form

(B ◦ Ik)
(

(Λβ)|β|≤k, z, w, ζ
)

,

B running over all the convergent power series centered at

J1 = ((∂β f̄(0))|β|≤k, 0, 0, 0) ∈ C
n′d(n,k)+2n+c′d(N,k).

Explicitly, for any j = 1, . . . , n′, there exists a positive integer νj and con-
vergent power series Bt,j near J1, t = 0, . . . , νj − 1, such that the following
identities hold in a neigborhood of J0:

ζ
νj

j +
∑

t<νj

(Bt,j ◦ Ik)
(

(Λβ)|β|≤k, z, w, ζ
)

ζt
j = 0. (9.8)

Putting ζ = f(z) and (Λβ)|β|≤k = (∂β f̄(w))|β|≤k for (z,w) ∈ (C2n, 0) in

(9.8), we obtain that for (z,w) ∈ (C2n, 0) and for j = 1, . . . , n′, the following
formal identities hold in C[[z,w]]:

(fj(z))
νj +

∑

t<νj

(Bt,j ◦ Ik)
(

(∂β f̄(w))|β|≤k, z, w, f(z)
)

(fj(z))
t = 0.

(9.9)

But in view of the definition of Ik given in (9.7) and in view of (9.6), we
have for j = 1, . . . , n′, for t = 0, . . . , νj − 1 and for (z,w) ∈ M,

(Bt,j ◦ Ik)
(

(∂β f̄(w))|β|≤k, z, w, f(z)
)

=

Bt,j

(

(∂β f̄(w))|β|≤k, z, w,
(

Nγ((∂β f̄(w))|β|≤|γ|, z, w, f(z))
)

|γ|≤k

)

=

Bt,j

(

(∂β f̄(w))|β|≤k, z, w, 0
)

. (9.10)

Thus, from (9.9), we obtain for j = 1, . . . , n′,

(fj(z))
νj +

∑

t<νj

Bt,j

(

(∂β f̄(w))|β|≤k, z, w, 0
)

(fj(z))
t = 0,

(9.11)

on M. As a consequence, we see that for each j = 1, . . . , n′, the formal holo-
morphic power series fj(z), j = 1, . . . , n′, satisfies (ii) of Theorem 5.1. Since
M is minimal at 0, from that theorem, we conclude that f is convergent.2

Remark 9. It should be mentioned that Theorem 9.1 above could also be
derived from the techniques of [6].

2d(i, j) = Card{α ∈ N
i : |β| ≤ j}, i, j ∈ N

∗.
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We conclude by mentioning several situations where Theorem 9.1 applies.
It contains the cases of formal invertible mappings of Levi-nondegenerate
real analytic hypersurfaces, finite mappings of minimal essentially finite real
analytic generic manifolds or, more generally, mappings with injective Segre
homomorphim (in the sense of [6]) from minimal real analytic generic man-
ifolds into real analytic essentially finite ones (the proof is contained in [6]).
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