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Abstract  

When moving from one arbitrary location at another, a parallel manipulator may change its assembly-mode without 

crossing a singularity. Because the non-singular change of assembly-mode cannot be simply detected, the actual 

assembly-mode during motion is difficult to track. This paper proposes a global explanatory approach to help better 

understand non-singular assembly-mode changing motions for 3-RPR planar parallel manipulators. The approach 

consists in fixing one of the actuated joints and analyzing the configuration-space as a surface in a 3-dimensional 

space. Such a global description makes it possible to display all possible non-singular assembly-mode changing 

trajectories. 

1. Introduction 

Most parallel manipulators have singularities that limit the motion of the moving platform. The most dangerous ones are 

the singularities associated with the direct kinematics, where two assembly-modes coalesce. Indeed, approaching such a 

singularity results in large actuator torques or forces, and in a loss of stiffness. Hence, these singularities are undesirable. 

There exists three main ways of coping with singularities, which have their own merits. A first approach consists in 

eliminating the singularities at the design stage by properly determining the kinematic architecture, the geometric 

parameters and the joint limits [1-2]. This approach is safe but difficult to apply in general and restricts the design 

possibilities. A second approach is the determination of the singularity-free regions in the workspace [3-7]. This solution 

does not involve a priori design restrictions but, because of the complexity of the singularity surfaces, it may be difficult 

to determine definitely safe regions. Finally, a third way consists in planning singularity-free trajectories in the 

manipulator workspace [8-11]. With this solution one is also faced with the complexity of the singularity equations but 

larger zones of the workspace may be exploited. This paper addresses a feature that has drawn the interest of quite few 

researchers but yet may concern many parallel manipulators, even planar ones [12, 13]: the fact that the manipulator can 

change its assembly-mode without passing through a singularity. Planar parallel manipulators with three extensible leg 

rods, referred to 3-RPR1, have received a lot of attention because they have interesting potential applications in planar 

motion systems [12-18]. As shown in [13], moreover, the study of the 3-RPR planar manipulator may help better 

understand the kinematic behavior of its more complex spatial counterpart, the 6-dof octahedral manipulator. Planar 

parallel manipulators may have up to six assembly-modes [14]. It was first pointed out that to move from one assembly-

mode to another, a 3-RPR planar parallel manipulator should cross a singularity [14]. But [12] showed, using numerical 

experiments, that this statement is not true in general. In fact, an analogous phenomenon exists in serial manipulators, 

which can move from one inverse kinematic solution to another without meeting a singularity [12-14]. The non-singular 

                                                           
1 R and P stand for Revolute and Prismatic, respectively. The underlined letter refers to the actuated joint 
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change of posture in serial manipulators was shown to be associated with the existence of points in the workspace where 

three inverse kinematic solutions meet, called cusp points [19]. On the other hand, McAree and Daniel [13] pointed out 

that a 3-RPR planar parallel manipulator can execute a non-singular change of assembly-mode if a point with triple 

direct kinematic solutions exists in the joint space. The authors established a condition for three direct kinematic 

solutions to coincide and showed that a non-singular assembly-mode changing trajectory in the joint space should 

encircle a cusp point. Wenger and Chablat [20] investigated the question of whether a change of assembly-mode must 

occur or not when moving between two prescribed poses in the workspace. They defined the uniqueness domains in the 

workspace as the maximal regions associated with a unique assembly-mode and proposed a calculation scheme for 3-

RPR planar parallel manipulators using octrees. They showed that up to three uniqueness domains exist in each 

singularity-free region. When the starting and goal poses are in the same singularity-free region but in two distinct 

uniqueness domains, a non-singular change of assembly-mode is necessary. However they did not investigate the kind 

of motion that arises when executing a non-singular change of assembly-mode. For the particular case of a planar 3-RPR 

parallel manipulator with similar base and platform, Kong and Gosselin [4] showed that there is no need to investigate 

non-singular assembly changing motion because each singularity-free region corresponds to one uniqueness domain. 

But 3-RPR manipulators with similar base and platform have a major flaw: the manipulator is singular at all positions  

when the moving platform assumes a zero orientation . On the other hand, planar 3-RRR manipulators and spatial 

octahedral manipulators with similar base and platform may change their assembly-mode without encountering a 

singularity [13, 21]. If, when moving from one arbitrary pose to another, the manipulator changes its assembly-mode 

without crossing a singularity, the actual assembly-mode during motion is difficult to track even if the initial assembly-

mode is known, as there is no ways to detect the change of assembly-mode. Therefore, there is a need to understand the 

non-singular change of assembly-mode. The main goal of this paper is to investigate the non-singular change of 

assembly-mode in planar 3-RPR parallel manipulators, and to propose an explanatory approach to plan non-singular 

assembly-mode changing trajectories. The approach consists in fixing one of the actuated joints and analyzing the 

configuration-space as a surface in a 3-dimensional space. Such a global description makes it possible to display all 

possible non-singular assembly-mode changing trajectories. 

2. Preliminaries 

2.1 Manipulators Under Study  
Figure1 shows a planar parallel manipulator with three extensible leg rods. The geometric parameters are the three sides 

of the moving platform d1, d2, d3 and the position of the base revolute joint centers defined by A1, A2 and A3. The 

reference frame is centered at A1 and the x-axis passes through A2. Thus, A1 = (0, 0), A2 = (A2x, 0) and A3 = (A3x, A3y). The 

joint space Q is defined by the joint vectors q defined by the lengths of the three actuated extensible links: 

[ ]T1 2 3= ρ ρ ρq . The task space is usually defined by the set of vectors [ ]Tx y α=x  where ( , )x y  are the 

Cartesian coordinates of one point of the platform in the plane, chosen as B1 in this paper, and α is the orientation of the 

platform in the plane with respect to the x-axis. In this paper, the task space will be more conveniently defined by 

[ ]T1 1ρ θ α=x  where (ρ1, θ1) are the cylindrical coordinates of B1. With these parameters, indeed, it is possible to 

consider 2-dimensional slices of the joint space and of the workspace by fixing the joint parameter ρ1. 
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Figure 1: The 3-RPR parallel manipulator under study 

To illustrate our work, we refer to the same 3-RPR manipulator as the one used in [12, 13,15], which has the following 

geometric parameters: A1= (0, 0), A2= (15.91,0), A3 = (0, 10), d1= 17.04, d2= 16.54 and d3 = 20.84 in an arbitrary length 

unit. 

2.2 Kinematic relations 
The relation between the joint space Q and the output space can be expressed as a system of non-linear algebraic 

equations, which can be written as: 
 (  , ) 0F =x q  (1) 

Differentiating equation (1) with respect to time leads to the velocity model: 
 =At + Bq 0&  

where [ ], Tω=t c& , ω is the scalar angular velocity and c&  is the two-dimensional velocity vector of the operational point 

B1 of the platform. A and B are 3×3 Jacobian matrices which are configuration dependent, and [ ]T1 2 3ρ ρ ρ=q& & & &  is the 

joint velocity vector.  

2.3 Singular configurations 
The singularities of the 3-RPR planar parallel manipulators have been extensively studied [13, 16, 22, 24, 25]. On a 

singular configuration of the manipulator, matrix A or matrix B or both of them are singular. In this study, only the 

singularities of A are of interest. 

To derive the singularity equations, it is usual to expand the determinant of A. We use rather a geometric approach that 

does not involve complicated algebraic calculus. The 3-RPR parallel manipulator is on a singular configuration 

whenever the axes of its three legs are concurrent or parallel [24] (Fig. 2). 
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Figure 2: A 3-RPR parallel manipulator in a singular configuration 

The equations of the three leg axes can be written as: 

 
1 1

2 2 2

3 3 3 3 3

(Axis 1) : cos( ) sin( )
(Axis 2) : cos( ) ( ) tan( )
(Axis 3) : cos( ) ( )sin( ) cos( )

x

x y

y x
y x A
y x A A

θ θ
θ θ
θ θ θ

⎧ =
⎪ = −⎨
⎪ = − +⎩

 (2) 

The condition of these three axes to intersect (possibly at infinity) is: 

 ( )2 2 3 1 3 3 3 3 1 2sin( ) sin( ) sin( ) cos( ) sin( ) 0x x yA A Aθ θ θ θ θ θ θ− + − − =  (3) 

which is the singularity equation of the manipulator. This expression along with the constraint equations of the 

manipulator (i.e. writing the fixed distances between the three vertices of the mobile platform B1, B2, B3) allow us to plot 

the singular curves in 2-dimensional slices of the joint space (ρ2, ρ3) and of the workspace (α, θ1) for a fixed value of ρ1 

[13, 26]. 

2.3.1 Workspace singularities 

Figure 3a shows the singular curves in the workspace slice (α, θ1) defined by ρ1=17 for the manipulator introduced in 

Section 2.1. Note that because the space (α, θ1) is a torus (the revolute joints are assumed unlimited) the opposite sides 

of the square representation in Fig. 3a are actually coincident. Thus, the singularity curves divide the workspace into 

two connected components called aspects [7]. The notion of aspects was first introduced for serial manipulators by [27] 

to cope with the existence of multiple inverse kinematic solutions. The aspects were defined as the maximal singularity-

free domains in the joint space. The aspects were extended in [7] to parallel manipulators with only one inverse 

kinematic solution such as 3-RPR manipulators. For such manipulators, the aspects are the maximal singularity-free 

connected regions in the workspace. An equivalent definition was used in [28] for a special case of parallel 

manipulators. 

For the 3-RPR parallel manipulator at hand, the first (resp. second)  aspect is defined by det(A)>0 (resp. det(A)<0), 

where A is the Jacobian matrix introduced in Section 2.2. 
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Figure 3: Singular curves in (α, θ1) for ρ1=17 (Fig. 3a). Singular curves in (ρ2, ρ3) for ρ1=17 (Fig. 3b). 

2.3.2  Joint space singularities 

Figure 3b shows the singular curves in the joint space slice (ρ2, ρ3) defined by ρ1=17. These curves split the joint space 

slice into several regions with 2, 4 or 6 direct kinematic solutions [26, 29]. The slice of the joint space is the image by 

the inverse kinematics of each of aspect 1 and also of aspect 2. That is, plotting either aspect 1 or aspect 2 onto (ρ2, ρ3) 

will define the pattern depicted in Fig. 3b. In each region, the number of direct solutions is equally distributed in the two 

aspects. In the central 6-solution region, for example, there are 3 solutions in aspect 1 and 3 solutions in aspect 2. 

The six points pinpointed with circles are cusp points, where three direct kinematic solutions coincide. As shown in 

[26], there may be 0, 2, 4, 6 or 8 cusp points depending on the slice chosen. 

3. Examination of a loop trajectory encircling a cusp point in the joint space  

We want to understand how a non-singular change of assembly-mode arises. We consider that no external influence 

enabling the determination of the assembly mode is possible. We only know that to execute a non-singular assembly-

mode changing motion, a cusp point must be encircled in the joint space of the manipulator [13]. We show in this 

section that this information is insufficient to determine the actual motion of the manipulator when a cusp point is 

encircled in its joint space. Let us define a triangular loop trajectory T in a slice of the joint space for 1 17ρ = , which 

encircles a cusp point (Fig. 4a). The starting (and final) joint vector [ ]T1 2 3= ρ ρ ρq  is chosen as [ ]T17 19 17=q , 

where the direct kinematics at q admits 6 real solutions Pi, i=1, 2, …6. Keeping in mind that the opposite sides of the 

square representation in Fig. 4b are actually coincident, 1P , 2P and 3P  are in aspect 1 and the remaining three solutions 

are in aspect 2. The loop trajectory T crosses the singular curves at four distinct joint configurations, referred to as qa, 

qb, qc and qd. Along T, the direct kinematics is solved and the solutions are plotted in (α, θ1) (Fig. 4b). According to 

whether T is executed clockwise or counter-clockwise and according to the initial assembly-mode, a total of 12 motions 

will result in the workspace. These 12 motions can be classified into the following three types: 

• Motions that make the manipulator stop at one of the singular points aS , bS , cS  or dS , which are associated with 

qa, qb, qc and qd, respectively. There are 8 such motions, 4 for each direction of execution of T. When T is executed 

clockwise the 4 motions are from 2P  to aS , from 1P  to dS , from 5P  to aS  and from 6P  to dS . When T is 
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executed counter-clockwise the 4 motions are from 3P  to bS , from 1P  to cS , from 5P  to bS and from 6P  to cS . In 

each case, the direct kinematic solution associated with the starting assembly-mode is lost at the singular point and 

this is the reason why the motion stops and T cannot be fully executed. Thus, no assembly-mode changing is 

feasible with these motions. 

• Two loop motions in the workspace starting and ending at 4P (Fig. 4b). These two loops differ in their direction of 

execution (clockwise or counter-clockwise), which depends on the direction of execution of T. These motions do 

not enable the manipulator to change its assembly-mode because the moving platform goes back to its starting pose 

in the workspace. Unlike the 8 motions described above, for these two loop motions, T is fully executed. These loop 

motions feature three segments that are associated with the three linear segments of the triangular trajectory T. 

• Two non-singular motions that differ only in their direction of motion (from 2P  to 3P or from 3P  to 2P , depending 

on the starting assembly-mode). The path associated with these motions is drawn in dark grey in Fig. 4b. Again, the 

path is composed of three segments, each associated with a segment of the triangular trajectory T. But in this case, 

the arrival assembly-mode is different from the starting one. Thus, these two motions are non-singular assembly-

mode changing motions. 
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Figure 4: A loop trajectory encircling a cusp point in the joint space section ρ1=17 (Fig. 4a)  
and the associated motions in the workspace (Fig. 4b). 

Finally, this analysis raises the following questions or comments:  

• Only two assembly-modes, namely 2P  and 3P , were found to be linkable by a non-singular assembly-mode 

changing motion. Yet, other non-singular motions should be found in aspect 1 (e.g. between 2P  and 1P or 

between 3P  and 1P ) and even in aspect 2.  

• What would have been the resulting motions in the workspace if T had encircled another cusp point? 

• If one wants to connect two assembly-modes in the workspace associated with the same joint vector q, without 

crossing a singularity, which cusp point should be encircled? 

Clearly, these questions cannot be answered with the sole information provided by the singularity locus in the joint 

space and in the workspace.  
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4. A model for the configuration-space structure 

4.1 The configuration-space as a surface in a 3-dimensional space  
In the singularity loci shown in Fig. 4, we lose information as these loci result, in fact, from the projection into either 

(ρ1, ρ2, ρ3) or (ρ1, α, θ1) of the configuration-space CS of the manipulator, which is a 3-dimensional space embedded in 

the product space of (ρ1, ρ2, ρ3) and (ρ1, α, θ1). When the first leg rod length is fixed, we consider a 2-dimensional slice 

of the configuration-space, which is thus a surface in a 4-dimensional space (the product space of (ρ2, ρ3) and (α, θ1)). 

Figure 4 represents its projection onto the planes (ρ2, ρ3) and (α, θ1). But we cannot depict a surface in a 4-dimensional 

space.  

Because non-singular assembly-mode motions occur only inside an aspect, a configuration-space should be built for 

each aspect: it is necessary to build CS1 and CS2, the configuration-space in aspects 1 and 2, respectively. In order to 

show CS1 and CS2, they should be displayed in (ρ2, ρ3, α) or in (ρ2, ρ3, θ1) rather than in the product space of (ρ2, ρ3) 

and (α, θ1). But by doing so one should verify that the third parameter is sufficient to describe fully the configuration of 

the manipulator in an aspect when arbitrary values of the three actuated joints are given. It has been shown recently that 

for some 3-RPR manipulators, called degenerate manipulators, two distinct assembly-modes are always associated with 

the same α and these two assembly-modes may lie in the same aspect [31]. On the other hand, no manipulators exist that 

have always two distinct assembly-modes per aspect for the same value of θ1 [3232]. Thus, it is possible to build CS1 

and CS2 in (ρ2, ρ3, θ1) but not in (ρ2, ρ3, α). 

4.2 Construction of the configuration-space in each aspect  
Let us fix ρ1 to the value corresponding to the current configuration of the manipulator. To build CS1 and CS2, the slice 

(ρ2, ρ3) of the joint space is scanned and the parameter θ1 is determined by solving the characteristic polynomial in θ1 

[31]. The sign of the determinant of the Jacobian matrix is determined. If this sign is positive, the resulting point (ρ2, ρ3, 

θ1) is plotted in CS1 otherwise it is plotted in CS2. Figure 5 shows CS1 and CS2 when ρ1=17. We have used a CAD 

interface to build a 3D mesh surface-plot and to enable rotating the viewing perspective. The singular curves, which 

define the boundaries of CS1 and CS2, have been displayed in bold lines. Their projections onto (ρ2, ρ3) are shown in the 

figure. Assume the manipulator is in the configuration q shown in Fig. 4. The points associated with the six assembly-

modes P1, P2,…, P6 are shown (these points have been labeled as P1, P2,…, P6 in Fig. 5 like in Fig. 4b for more 

simplicity). The first three are in aspect 1 while the last three are in aspect 2. This representation shows all feasible 

singularity-free motions between P1, P2 and P3 as well as those between P4, P5 and P6.  
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Figure 5: The configuration-space CS1 (Fig. 5a) and CS2 (Fig. 5b) associated with aspects 1 and 2, respectively, 
along with the six assembly-modes calculated at [ ]T17 19 17=q ( P1, P2 and P3 in aspect 1 and P4, P5 and P6 in 

aspect 2). The singularities (shown in bold lines) define the boundaries of CS1 and CS2. 

4.3 Examples of non-singular assembly-mode changing trajectories 
The following three figures display non-singular assembly-mode changing trajectories in aspect 1. The paths are 

constructed in (ρ2, ρ3, θ1). We have used a CAD-interface to define the paths from a set of intermediate points and linear 

segments. In the three examples shown in Figs 6, 7 and 8, we have defined the path with three intermediate points. The 

projection of the paths onto (ρ2, ρ3) are displayed in each figure to show which cusp is encircled in the joint space. The 

viewpoints have been chosen to show as clearly as possible the paths in CS1.  

Figure 6 shows a non singular assembly-mode changing trajectory connecting the two assembly-modes P1 and P2. We 

notice that the encircled cusp point is different from the one encircled by the trajectory T shown in Fig. 4a. 
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Figure 6: Non-singular assembly-mode changing trajectory connecting the two assembly-modes P1 and P2 in the 
first aspect in (ρ2, ρ3, θ1) (Fig. 6a), in (ρ2, ρ3) (Fig. 6b). 

Figure 7 shows a non-singular assembly-mode changing trajectory connecting the two assembly-modes P2 and P3. The 
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trajectory encircles two cusp points but, in fact, only one needs to be encircled (namely, the one encircled by the 

trajectory T shown in Fig. 4, left).  
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Figure 7: Non-singular trajectory connecting the two assembly-modes P2 and P3 in the first aspect in (ρ2, ρ3, θ1) 
(Fig. 6a), in (ρ2, ρ3) (Fig. 7b). 

Finally, Fig. 8 shows a non-singular assembly-mode changing trajectory connecting the two assembly-modes P1 and P3.  
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Figure 8: Non-singular trajectory connecting the two assembly-modes P1 and P3 in the first aspect in (ρ2, ρ3, θ1) 
(Fig. 8a), in (ρ2, ρ3) (Fig. 8b). 

We notice that to connect the assembly-modes P1 and P3, the trajectory in the joint space encircles two cusp points as 

shown in Fig. 8b. In fact, we have verified that any path from P1 and P3 must encircle these two cusp points. This fact 

can be explained by the “layered” structure of the configuration-space surfaces (see comments below). This is a new 

result, since it was thought that only one cusp point should be encircled when executing a non-singular assembly-mode 

changing maneuver [13]. Clearly, this result could not have been discovered with the sole joint space and workspace 

representations shown in Fig. 4.  
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4.4 Comments 
Using the configuration-space surface model, the problem of which cusp point should be encircled to plan a non-

singular assembly-mode changing motion needs not be solved. However, it is possible to know the response to this 

question by projecting onto (ρ2, ρ3) the path built on CS1 or CS2. 

The two configuration-space surfaces CS1 and CS2 may be regarded as being composed of three adjacent “layers” L1, L2 

and L3 with respect to the θ1-coordinate. These three layers are associated with the three assembly-modes P1, P2 and P3. 

The first two layers and the last two layers are adjacent and it is possible to move between them with a smooth path. The 

presence of a cusp point in (ρ2, ρ3) accounts for the existence of a continuous link between two layers of CS1 or of CS2. 

This is why moving from one layer to another (that is, moving from one assembly-mode to another without meeting a 

singularity) is equivalent to encircling a cusp point. This is because to move from L1 to L3, one has to go on the 

intermediate layer L2 that two cusp points must be encircled in (ρ2, ρ3) when connecting the two assembly-modes P1 and 

P3. 

5. Conclusions 

A global explanatory approach was proposed in this paper to help better understand non-singular assembly-mode 

changing motions for 3-RPR planar parallel manipulators. It has been shown that the joint space and the workspace are 

not sufficient to describe the non-singular motions between assembly-modes. The proposed approach consists in fixing 

one of the actuated joint. Then the configuration-space is reduced to two surfaces in a 3-dimensional space, one for each 

aspect. Such a global description provides sufficient information as to the configuration space topology and makes it 

possible to display all possible non-singular assembly-mode changing trajectories that operate with one locked actuator.  

This approach will be extended to the analysis of non-singular assembly-mode changing trajectories in 6-DOF 

octahedral parallel manipulators. These manipulators are particular Gough-Stewart platforms that feature a triangular 

base and a triangular moving platform, connected by six double-spherical-joint-ended rods. This manipulator has eight 

triangular faces (the base-triangle, the platform-triangle and 6 leg-triangles). The idea is to fix all but two joint 

coordinates and to build the configuration-space surfaces in (ρ5, ρ6, θ1), where ρ5 and ρ6 are the two free joint 

coordinates and θ1 is the dihedral angle between the base and one of the leg-triangles.  

We think that the work provided in this paper constitutes a first step to the difficult problem of how to identify the 

different assembly-modes of a parallel manipulator and how to track the assembly-mode during motion. 
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