Samuel Colin

Arnaud Lanoix

Olga Kouchnarenko

Jeanine Souquières

Towards Validating a Platoon of Cristal Vehicles using CSP B ⋆

The complexity of specification development and verification of large systems has to be mastered. In this paper a specification of a real case study, a platoon of Cristal vehicles is developed using the combination, named CSP B, of two well-known formal methods. This large -both distributed and embedded -system typically corresponds to a multi-level composition of components that have to cooperate. We show how to develop and verify the specification and check some properties in a compositional way. We make use of previous theoretical results on CSP B to validate this complex multi-agent system.

Introduction

This paper is dedicated to the validation of land transportation systems taken as an application domain. These systems, which are both distributed and embedded, require to express functional as well as non functional-properties, for example time constrained response and availability of required services. As with any distributed system, a component assembly may appear obscure behaviours that are hard to understand and difficult to debug. As with any embedded system, components and their composition should satisfy safety/security/confidence requirements. As component-based systems are omnipresent, it is important to ensure their correct assembly.

Our goal is to apply the CSP B combination [START_REF] Schneider | CSP theorems for communicating B machines[END_REF] of well-established formal methods, CSP [START_REF] Hoare | Communicating Sequential Processes[END_REF] and B [START_REF] Abrial | The B Book[END_REF], to a specific distributed and embedded system. This case study is a convoy of so-called Cristal vehicles seen as a multi-agents system. We motivate the use of this CSP B combination by the existence of pure B models describing the agents and vehicles behaviours [START_REF] Simonin | Generic Expression in B of the Influence/Reaction Model: Specifying and Verifying Situated Multi-Agent Systems[END_REF]. By using CSP for composing B machines we aim at giving these B models the architectural, compositional description they lack.

As a comparison point, in [START_REF] Schneider | CSP theorems for communicating B machines[END_REF] Schneider & Treharne illustrate their use of CSP B with a multi-lift system that can be seen as a distributed system using several instances of a lift, minus the fact that the interactions of the lifts are actually centralised in a dedicated dispatcher. Our goal is very similar, but in contrast to [START_REF] Schneider | CSP theorems for communicating B machines[END_REF], we want to avoid relying on a centralised, or orchestrating, controller.

Similar works exist on structured development with the B method using decomposition, hence in a more "top-down" approach, and refinement. For instance, Bontron & Potet [START_REF] Bontron | Automatic construction of validated B components from structured developments[END_REF] propose a methodology for extracting components out of the enrichments brought by refinement. The extracted components can then be handled to reason about them so as to validate new properties or to detail them more. The interesting point is that their approach stays within the B method framework: this means that the modelling of component communication and its properties has to be done by using the B notation, which can quickly get more cumbersome than an ad-hoc formalism like CSP. Abrial [START_REF] Abrial | Discrete system models[END_REF] introduces the notion of decomposition of an event system: components are obtained by splitting the specification in the chain of refinements into several specifications expressing different views or concerns about the model. Attiogbé [START_REF] Attiogbé | Communicating B abstract systems[END_REF] presents an approach dual to the one of Abrial: event systems can be composed with a new asynchronous parallel composition operator, which corresponds to bringing "bottom-up" construction to event systems. In [START_REF] Bellegarde | Synchronized parallel composition of event systems in B[END_REF], Bellegarde & al. [8] propose a "bottom-up" approach based on synchronisation conditions expressed on the guards of the events. The spirit of the resulting formalism is close to that of CSP B. Unfortunately it does not seem to support message passing for communication modelling.

Our approach is rather "bottom-up" oriented: the B machines describe the various components of a Cristal vehicle while CSP is used for expressing their assembly at the level of a single vehicle and at the level of the whole convoy 3 . Our experience, reported here, shows that writing and checking CSP B specifications can help eliminate errors and ambiguities in an assembly and its communication protocols. We also believe that writing formal specifications can aid in the process of designing autonomous vehicles.

This paper is organised as follows. Section 2 introduces the platooning case study with the properties we will focus on. Section 3 briefly introduces the theoretical background on CSP B. Section 4 presents the specification and the verification process of a single Cristal vehicle whereas Section 5 is dedicated to a platoon of vehicles. Section 6 ends with some perspectives of this development.

Case Study Presentation : a Platoon of Vehicles

The CRISTAL project aims at the development of a new type of urban vehicle with new functionalities and services. One of its major cornerstones is the development, certification and validation of a platoon of vehicles.

A platoon is a set of autonomous vehicles which have to move in a convoy, i.e. following the path of the leader (possibly driven by a human being) in a row. Its control concerns both a longitudinal control, i.e. maintaining an ideal distance between each vehicle, and a lateral control, i.e. each vehicle should follow the track of its predecessor. Both controls can be studied independently [START_REF] Daviet | Longitudinal and lateral servoing of vehicles in a platoon[END_REF]. In the sequel, we will only focus on the longitudinal one. Through the projects' collaborations, we have decided to consider each vehicle, named Cristal in the following, as an agent of a Multi-Agent System (MAS). The Cristal driving system perceives information about its environment before producing an instantaneous acceleration passed to its engine. In this context, we consider the platooning problem as a situated MAS which evolves following the Influence/Reaction model (I/R) [START_REF] Ferber | Influences and reaction : a model of situated multiagent systems[END_REF] in which agents are described separately from the environment.

As we only focus on the longitudinal control of the platoon, the considered space is one-dimensional. Hence the position of the i th Cristal is represented by a single variable xpos i , its velocity by speed i . The behaviour of the Cristal controllers can be summarised as follows, see Fig. 1: (i) perception step: each Cristal driving system receives its velocity p_speed i and its position p_xpos i , from the physical part of the Cristal. Furthermore, it receives by network communication the velocity p_pre_speed i and the position p_pre_xpos i of its leading Cristal (ii) decision step: each Cristal driving system can influence its speed and position by computing and sending to its engine an instantaneous acceleration accel i . The acceleration can be negative, corresponding to the braking of the Cristal (iii) reaction step: xpos i and speed i are updated, depending on the current speed speed i of the Cristal and a decided instantaneous acceleration accel i of the engine

Our goal is the expression of the model with a broader range of granularity than the existing B model [START_REF] Simonin | Generic Expression in B of the Influence/Reaction Model: Specifying and Verifying Situated Multi-Agent Systems[END_REF]. Our CSP B model should span more architectural levels (from the component of a vehicle to the whole convoy) and explicitly model communications. It is thus necessary to ensure that communications between components in the resulting architecture do not suffer from design errors, e.g. a scheduling leading to deadlocks.

Theoretical Background on CSP B

The B machines specifying components are open modules which interact by the authorised operation invocations. When developing distributed and concurrent systems, CSP is used to describe an execution order for invoking the B machines operations. CSP describes processes -objects or entities which exist independently, but may communicate with each other. There is a lot of works on CSP B. The reader interested by theoretical results is referred to [START_REF] Schneider | CSP theorems for communicating B machines[END_REF][START_REF] Treharne | Using a process algebra to control B OPERATIONS[END_REF][START_REF] Schneider | Communicating B machines[END_REF]; for case studies, see for example [START_REF] Evans | Investigating a file transfer protocol using CSP and B[END_REF][START_REF] Schneider | A layered behavioural model of platelets[END_REF].

CSP Controllers

In the combined CSP B model, the B part is specified as a standard B machine 4 without any restriction on the language, while a controller for a B machine is a particular kind of CSP process, called a CSP controller.

CSP controllers obey the following (subset of the) CSP grammar:

P ::= c ? x ! v → P | ope ! v ? x → P | b & P | P1 P2 | S(p)
The process c ? x ! v → P can accept input x and output v along a communication channel c. Having accepted x, it behaves as P. To interact with a B machine, a controller makes use of machine channels which provide the means for controllers to synchronise with the B machine. For each operation x ←ope(v) of a controlled machine, there is a channel ope ! v ? x in the controller corresponding to the operation call: the output value v from the CSP description corresponds to input parameter of the B operation, and the input value x corresponds to the output of the operation. A controlled B machine can only communicate on the machine channels of its controller.

The behaviour of a guarded process b & P depends on the evaluation of the boolean condition b: if true, it behaves as P, otherwise it is unable to perform any events. In some works (e.g. [START_REF] Schneider | CSP theorems for communicating B machines[END_REF]), the notion of blocking assertion is defined by using a guarded process on the inputs of a channel to restrict these inputs: c ? x & E(x) → P. The external choice P1 P2 is initially prepared to behave either as P1 or as P2, with the choice made on the occurrence of the first event. The expression S(p) is a recursive process invocation.

In addition to the language for simple processes, CSP provides a number of operators to combine processes. In this paper the operators we are concerned with are P1 E P2, and i (P(i)).

-The sharing operator P1 E P2 executes P1 and P2 concurrently, requiring that P1 and P2 synchronise on the events into the sharing alphabet E and allowing independent executions for other events (not in E) 5 . -The indexed form of the interleaving operator i P(i) executes the processes P(i) in an independent manner without synchronisation. It is used to build up a collection of similar processes independent from each other.

As for other process algebras, the denotational semantics of CSP is based on the observation of process behaviours. In CSP, the three main semantic models use notions of traces, stable failures, and failures/divergences (see [START_REF] Roscoe | The theory and Practice of Concurrency[END_REF]). In the trace semantics, a process P is associated with the set of finite sequences of events that P can perform, denoted traces(P). In the stable failures semantics, a process P is associated with the set failure (P) of pairs of the form (tr , X), where tr is a finite trace in traces(P), and X is the set of events that P cannot perform after the execution of the events of tr . This model allows specifying the deadlocks of P. Finally, in the failures/divergences semantics, a process P is associated with the set of its stable failures, and with the set of its divergences. The process P is said divergent if it is in a divergent state where the only possible events are internal (or invisible) events. The divergences set of P, denoted divergences(P), is the set of traces tr such that P is in a divergent state after performing events of tr .

The three most frequently used CSP refinement notions compute and compare the semantic models of processes. Given two processes P and Q, we say -P ⊑ T Q, Q refines P in the trace semantics if all the possible communication sequences that Q may perform, are also possible sequences for P; -P ⊑ F Q, Q refines P in the stable failure semantics if failure (Q) ⊆ failures (P);

-P ⊑ FD Q, Q refines P in the failures/divergences model if failures (Q) ⊆ failures (P)
and divergences(Q) ⊆ divergences(P).

The FDR2 model checker [START_REF]Failures-Divergence Refinement -FDR2 user manual. Formal systems (europe) ltd[END_REF] provides determining deadlock and divergence freedom of individual CSP processes, and implements verification for each kind of refinement.

Useful Results on CSP B

The main problem with combined specifications is the model consistency, in other words, CSP and B parts should not be contradictory. To ensure the consistency of a controlled machine (P M) in CSP B, a verification technique has been proposed [START_REF] Schneider | Communicating B machines[END_REF] consisting in verifying the following sufficient conditions:

the divergence-freedom of (P M); the deadlock-freedom of P.

This verification technique can be generalised to a set of controlled machines (Pi Mi) evolving in parallel:

the divergence-freedom of each (Pi Mi); the deadlock-freedom of (P1 P2 ... Pn).

The divergence-freedom of (P M) can be deduced by using a technique based on Control Loop Invariants (CLI). This technique involves the verification that each path a controlling process may take, does not end up in a diverging state (a violation of the precondition of a controlled method, for instance). For verifying that we reuse the methodology introduced in [START_REF] Treharne | Using a process algebra to control B OPERATIONS[END_REF]. It involves the translation of the various paths of the controlling process up to recursive calls to itself, into B operations in a machine. This machine is then augmented with a CLI, and this machine consistency checking is performed: it is thus akin to verify that no path in the controlling process ends up in a diverging state.

Let S(p) be a family of processes in a controller P, p helping to identify which process we are referencing to. S(p) is of the following general form:

S(p) = path_1 → S(q)
... path_n → S(r) Let BBODY S(p) be the rewriting of S(p) into B using the translation rules of [START_REF] Treharne | Using a process algebra to control B OPERATIONS[END_REF]. The whole controlling process P is then translated into a B machine, whose methods are the various BBODY S(p) and whose invariant constitutes the chosen CLI.

If the rewriting of P into a B machine is consistent, it means all the operations preserve the invariant. This in turn means that each process of the controller forms a sequence of operation calls that maintain the CLI. This entails that the controller never diverges in calling its controlled B machine, hence that the couple controller/B machine is divergence-free. This is the matter of the following theorem:

Theorem 1 ([12, Theorem 1]). If CLI is a predicate such that CLI ∧ I ⇒ [BBODY S(p)] CLI for each BBODY S(p) in P, then (P M) is divergence-free.
The following result is useful for establishing trace properties of controlled components. It means that the trace refinement established purely for the CSP part (possibly using hidden events) of a controlled component suffices to ensure the trace refinement for the overall controlled component (possibly using hidden events).

Corollary 1 ([1, Corollary 7.2]). For any controller P and any B machine M with the alphabet α(M) of events one has: 1. If S ⊑ T P then S ⊑ T (P M) 2. If S ⊑ T P \ E and E⊆α(M), then S ⊑ T (P M) \ E

The following theorem is a composition result for establishing the whole system divergence-freedom from the divergence-freedom of its components.

Theorem 2 ([1, Theorem 8.1]). If (Pi Mi) is divergence-free for each i , then i (Pi Mi) is divergence-free.
The consistency of a single controlled machine is achieved by the following result stating that the deadlock-freedom of (P M) can be deduced by establishing the deadlock-freedom of the P part.

Theorem 3 ([1, Theorem 5.9]). If P is a CSP controller for M with no blocking assertion on any machine channels of M, and P is deadlock-free in the stable failures model, then (P M) is deadlock-free in the stable failures model.

Finally, the deadlock-freedom of multiple controlled machines i (Pi Mi) follows from deadlock-freedom of the combination of the CSP parts i Pi. It achieves the multiple controlled machines consistency checking.

Theorem 4 ([1, Theorem 8.6]). Given a collection of CSP controllers

Pi and corresponding B machines Mi, such that no controller has any blocking assertions on the control channels: then if i Pi is deadlock-free in the stable failures model, then so too is i (Pi Mi).

Specifying a Single Cristal

We consider a Cristal vehicle composed of two parts: its engine and a driving system, as depicted Fig. 2. Each part is itself built upon a B machine controlled by an associated CSP process. We must ensure steady communications between Cristal components. For instance, communications are broken if two components expect input from each other: in that case the components cause the deadlock of the whole vehicle. We therefore state that the communications between Cristal components should never cause a deadlock.

In an automatic mode, a Cristal must get information about its position and its speed as accurate as possible so that its resulting acceleration is as accurate as possible. Thus we do not want the Cristal to stay in the "perception mode" for too long. To avoid that, a solution is to force the Cristal to alternate between "perception mode" and "reaction mode". This is what we strive for as a safety property.

The engine is built upon a B machine that describes its inner workings, i.e. its knowledge of speed and position as well as how it updates them w.r.t. a given acceleration. The speed and the position are passed on to the controller through the getSpeed and getXpos methods/events. The acceleration is passed on to the engine through the setAccel method/event. The CtrlEngine CSP controller receives acceleration orders through the channel associated with the engineAccel event and sends information about speed and position through the engineInfo event.

In a similar way, the driving system is composed of the DrivingSystem B machine and its CtrlDrivingSystem CSP controller. The machine and its controller share the setPerceptions and getInfluences events. The controller (and thus the compound construction) communicates with the engine through the engineInfo,engineAccel channels. It also communicates with the Human Control Interface (HCI) of the Cristal by way of the hciSpeed, hciAccel events. Finally, it is also able to receive information from or to send information to other Cristals through the comIn and comOut events, respectively.

The models of the engine and the driving system assume a common set of constants. The constants below are replicated in both CSP and B specifications:

-The functioning modes of the Cristals: as a leader (LEADER), as a single vehicle (SOLO) or in a platoon (PLATOON); -Maximal and minimal allowed accelerations (MAX_ACCEL,MIN_ACCEL); -Maximal speed (MAX_SPEED), the minimal allowed speed being 0; -A set of unique identifiers for the Cristals (Ids).

We will now detail each component and the performed verifications. As stated earlier, the engine is a behavioural component reacting to a given acceleration for speeding up or slowing down a Cristal vehicle. This behaviour is described by a Engine(Id) B machine illustrated in Fig. 3. Id 6 is a natural number that uniquely identifies a Cristal. It is used at the CSP level in order to model interactions with other Cristals.

The speed ←-getSpeed() and xpos ←-getXpos() methods capture data from the engine to pass them on to whomever needs it (say, the HCI, for instance). The setAccel(accel) method models how the Cristal behaves when passed a new instantaneous acceleration.

The B machine is made able to communicate by adding a CSP model for controlling it. This model, called CtrlEngine(id) and depicted in Fig. 4, schedules the calls to its various methods. The getSpeed ? speed and getXpos ? xpos event calls the homonymous methods of the B machine to retrieve the speed and the position of the Cristal. Similarly, the controller passes a new instantaneous acceleration on through setAccel ! accel to the B machine. Communications are achieved with the engineInfo and engineAccel events. The former sends the current speed and position to requesting components. The latter sets a new acceleration for the engine. The event engineInfo.id ! xpos ! speed has a Cristal identifier as a synchronisation channel and the Cristal position and speed as output channels. Similarly, the event engineAccel.id ? accel has also a Cristal identifier as a synchronisation channel and an acceleration as an input channel.

The protocol defined by the controller is very simple: either it asks the machine about the speed and the position (in any order) and passes it on the engineInfo event, or sets a new acceleration passed on by the engineAccel event. Information request and acceleration setting alternate: CtrlEngine_perceptions calls CtrlEngine_actions which in turn calls CtrlEngine_perceptions again. The whole engine component is then defined as the composition of the Engine(id) machine and its CtrlEngine(id) controller for a given Cristal identifier id:

REFINEMENT CtrlEngine_ref(Id) VARIABLES xpos_csp, speed_csp, cb INVARIANT xpos_csp ∈ Positions_csp ∧ speed_csp ∈ Speeds_csp ∧ cb ∈ 0..2

OPERATIONS

(CtrlEngine(id) Engine(id))

Verification. The Engine(Id) B machine consistency is successfully checked using the B4Free proof tool. The CtrlEngine(id) controller deadlock-freedom (in the stable failures model) and its divergence-freedom are successfully checked. These verifications have been done with the FDR2 model-checking tool

The composition of the B machine and the controller is verified for divergence-freedom. The verification is specific to CSP B and is not supported by tools and is described in Theorem 1. As the verification involves the translation of the CSP process to B, we illustrate the translation of CtrlEngine(id) in Fig. 5. Its CLI is actually as simple as the ⊤ predicate modulo the mandatory typing predicates.

Once all these properties are established, we can use the theorems of Sect. 3.2 for deducing results about the whole component:

-By way of Theorem 3 and the fact that CtrlEngine(id)

is deadlock-free, we deduce the deadlock-freedom of (Engine(id) CtrlEngine(id)) in the stable failures model. -By way of Theorem 1 and the fact that the B rewriting of CtrlEngine(id) is consistent, we deduce that (CtrlEngine(id) Engine(id)) is divergence-free.

The Driving System

For the driving system whose CSP behaviour is given Fig. 6, there are three modes to function: SOLO, LEADER or PLATOON. In the SOLO mode, it receives an acceleration from the pilot via the HCI passed on through hciAccel.id ? accel and sends this desired Fig. 6. The CtrlDrivingSystem(mode,id) CSP Controller acceleration to the engine through engineAccel.id ! accel. It can also request Cristal information from the engine via engine Info . id ? myXpos ? mySpeed so as to make the HCI display it (hciSpeed.id ! mySpeed).

The LEADER mode is very similar to the SOLO mode. The only difference concerns an additional sending of the Cristal information to another Cristal via comOut.id ! my Speed ! myXpos.

The PLATOON mode is the mode that actually makes use of a DrivingSystem B machine not given here: acceleration is obtained by a call to the getInfluences method and the result is passed on the engine. The data required for the machine to compute an accurate speed are obtained from the engine (engineInfo.id ? myXpos ? mySpeed) and the leading Cristal comIn.id ? preSpeed ? preXpos. Once the data is obtained, it is passed on to the B machine through the setPerceptions method.

The whole component parametrised by the Cristal identifier and its chosen mode is defined as:

(CtrlDrivingSystem(mode,id) DrivingSystem(id))

Verification. For the driving system the properties to check are the same as for the engine component:

-The DrivingSystem(id) B machine is consistent.

-For every possible mode, the CtrlDrivingSystem(mode,id) CSP controller is deadlockfree in the stable failures model, and it is divergence-free. -(CtrlDrivingSystem(mode,id) DrivingSystem(id)) is deadlock-free.

-(CtrlDrivingSystem(mode,id) DrivingSystem(id)) is divergence-free. Note 1. At this point of the models development, verifications become time-consuming for the CSP specifications. The way the processes were modelled (especially for the driving system) made FDR2 take a long time to check deadlock-freedom, for instance. We thus use the FDR2 "compression functions" feature which gives means to speedup the checking. These functions have no influence on the model itself, but on the way FDR2 explores state space: FDR2 attempts to shrink the state space with specific techniques which may be more or less fruitful depending on the nature of the model [START_REF]Failures-Divergence Refinement -FDR2 user manual. Formal systems (europe) ltd[END_REF]. Using compression gives us interesting speedups in verifying the CSP models from there.

The Assembly Cristal(mode,id)

As illustrated in Fig. 2, a Cristal is defined as the composition of the engine and the driving system:

Cristal(mode,id) = (CtrlEngine(id) Engine(id)) {|engineInfo, engineAccel|} (CtrlDrivingSystem(mode,id) DrivingSystem(id))
Verification. Divergence-freedom is obtained by applying Theorem 2 to the divergencefreedom of both components (CtrlEngine(id) Engine(id)) and (CtrlDrivingSystem(mode, id) DrivingSystem(id)).

Deadlock-freedom of the Cristal stems from deadlock-freedom of (CtrlEngine(id) CtrlDrivingSystem(mode,id)) (the controllers alone) and applying Theorem 4 to the controllers accompanied by their B machines. Deadlock-freedom as verified by FDR2 is not guaranteed for Cristal (mode,id). FDR2 gives some trace examples leading to a deadlock. For instance, a deadlock happens when the engine attempts to send information to the driving system engineInfo.id ! xpos ! speed while the driving system attempts to send an acceleration to the engine engineAccel.id ! accel.

More generally, deadlocks are due to differing expectations from the engine and the driving system: the engine was attempting to send information while the driving system was attempting to send an acceleration, or the engine was expecting an acceleration while the driving system was expecting the Cristal information. This suggested the need for a tighter scheduling of the communications between components.

CtrlDrivingSystem Revisited. To establish deadlock-freedom and fix the problem above, the CSP controller of the driving system has been modified. In fact, the new version of the driving system imposes a scheduling of the process. In the same way as the engine alternates between sending information and receiving a new acceleration, the driving system alternates between receiving information, for dispatching it to the HCI or to the automated driving system, and sending new accelerations, obtained from the HCI or from the automated driving system. The new CtrlDrivingSystem2(mode,id) CSP controller is given Fig. 7.

As previously, the divergence-freedom is obtained through Theorem 2 and divergencefreedom of both CSP B compounds. Moreover, the deadlock-freedom checking is successful this time: CtrlEngine(id) CtrlDrivingSystem2(mode,id) is deadlock-free, hence by Theorem 4 Cristal2 (mode,id) is deadlock-free. This verification achieves the requirement expressed at the beginning of Sect. 4 where we specified that the communications between components inside a vehicle should not deadlock. Cristal2 is the same as Cristal but with the corrected driving system. CtrlDrivingSystem2(mode,id) = CtrlDrivingSystem_perceptions(mode,id) Fig. 7. The CSPCtrlDrivingSystem controller revisited Safety Property. The safety property we informally expressed at the beginning of Sect. 4 stated that perception and reaction should alternate while the Cristal functions. We can rephrase it here more precisely as the fact that the data -speed and position -are always updated (engineInfo) before applying an instantaneous acceleration to the engine (engineAccel). This ordering of events should constitute a cycle. This property is captured as a CSP process: Property(id) = engineInfo.id?xpos?speed → engineAccel.id?accel → Property(id)

We need to show that the Cristal meets this specification. For that, we successfully check -using FDR2 -that there is a trace refinement between the CSP part of Cristal2 and Property, i.e. Property(id) ⊑ T CtrlEngine(id) CtrlDrivingSystem2(mode,id). Then by Corollary 1 we obtain Property(id) ⊑ T Cristal2 (mode,id), i.e. the property is satisfied.

Specifying a Platoon of Cristals

Once we dispose of a correct model for a single Cristal, we can focus on the specification of a platoon, as shown Fig. 8. We want the various Cristals to avoid going stale when they are in the PLATOON mode. This might happen because one Cristal waits for information from its leading Cristal, for instance. In other words, we do not want the communications in the convoy to deadlock. This is what we will strive for as a safety property for the platoon.

A Communication Medium

Communications between two successive Cristals are managed at a new layer. Consequently, a new component, called Net(id ,id2), is added to each Cristal for managing Fig. 8. A Platoon of four Cristals communication. This communication medium receives the speed and the position from the Cristal identified by id before sending these data to the next Cristal identified by id2. Net(id ,id2) is defined by the CSP process given Fig. 9. When the Cristal has no successor in the platoon, Net(id ,id2) only consumes the data.

Net(id ,id2) = ((id != id2) & comOut.id ? speed ? xpos → comIn.id2 ! speed ! xpos → Net(id,id2)) ((id == id2) & comOut.id ? speed ? xpos → Net(id,id2)) Fig. 9. CSP model Net(id ,id2)
Using FDR2, we successfully check that Net(id ,id2) is deterministic, deadlock-free in the stable failures model and divergence-free.

A Platoon of Cristals

A platoon of n Cristals is defined as the parallel composition of n Cristals and n communication mediums.

-The first Cristal of the platoon functions in the LEADER mode, while the others function in the PLATOON mode. The Cristals are independent from each other, consequently their composition is specified using the interleaving operator.

Cristals(n) = Cristal2(LEADER,1)   id:{2..n} Cristal2(PLATOON,id)
  -In the platoon, a Net component is associated with each Cristal. Since these components are independent from each other, their composition is specified by interleaving.

Nets(n) =   id:{1..n-1} Net(id,id+1)   Net(n,n)
-Finally, the platoon is defined by the parallel composition of all the Cristals and all the Nets, synchronised on {| comIn, comOut|}.

Platoon(n) = Cristals(n) {|comIn, comOut|} Nets(n)
Verification. As each Cristal and each Net have been proved divergence-free, the platoon is divergence-free by applying Theorem 2. To achieve consistency checking, the parallel composition of the CSP parts of each Cristal and communication medium is shown deadlock-free, thanks to FDR2. Consequently, by Theorem 4 the platoon is deadlock-free too. This verification validates the safety property expressed at the beginning of Sect. 5 saying that the communications (expressed through the Nets components) should not deadlock.

Conclusion

The development of a new type of urban vehicle and the needs for its certification necessitate their formal specification and validation. We propose in this paper a formal CSP B specification development of an autonomous vehicle components, and an architecture for assembling vehicles in a convoy to follow the path of the leader vehicle in a row. Applying known results on the composition and the verification in the CSP B framework and using existing tools, the FDR2 model-checking and the B4Free proof tools, allow us to ensure the consistency of the whole multi-agent system, in a compositional manner.

Having formal CSP B specifications help -by establishing refinement relationsto prevent incompatibility among various implementations. Moreover, writing formal specifications help in designing a way to manage the multi-level assembly.

This work points out the main drawback of the CSP B approach: at the interface between the two models, CLIs and augmented B machines corresponding to CSP controllers are not automatically generated. But this task requires a high expertise level. In our opinion, the user should be able to conduct all the verification steps automatically. Automation of these verification steps could be a direction for future work.

On the case study side, to go further, we are currently studying new properties such as the non-collision, the non-unhooking and the non-oscillation: which ones are expressible with CSP B, which ones are tractable and verifiable? This particular perspective is related to a similar work by the authors of CSP B who dealt with another kind of multi-agent system in [START_REF] Schneider | A layered behavioural model of platelets[END_REF]. So far our use of CSP B for the platooning model reaches similar conclusions. This nonetheless begs the question of which impact the expression of more complex emerging properties does have on the model.

Further model development requires checking other refinement relations. It also includes evolutions in order to study what happens when a Cristal joins or leaves the platoon, and which communication protocols must be obeyed to do so in a safe manner. We also plan to take into account the lateral control and/or perturbations such as pedestrians or other vehicles.

A Specifications of a Single Cristal

A.1 Global definitions

MODEL Constants CONSTANTS MAX_SPEED, MIN_ACCEL, MAX_ACCEL, ALERT_DISTANCE, IDEAL_DISTANCE PROPERTIES MAX_SPEED ∈ NAT1 ∧ MIN_ACCEL ∈ INT ∧ MIN_ACCEL < 0 ∧ MAX_ACCEL ∈ NAT1 ∧ ALERT_DISTANCE ∈ NAT ∧ IDEAL_DISTANCE ∈ NAT ∧ ALERT_DISTANCE < IDEAL_DISTANCE ASSERTIONS ∀(i , j).((i ∈ Z ∧ j ∈ Z ∧ i ≤ j) ⇒ (∀k.((k ∈ Z) ⇒ (min({ j ,max({i,k })}) ∈ i .. j))

Fig. 1 .

 1 Fig. 1. A platoon of Cristals

Fig. 2 .

 2 Fig. 2. Architectural view of a Cristal

4. 1 Fig. 3 .

 13 Fig. 3. The Engine(Id) B model

Fig. 4 .

 4 Fig. 4. The CtrlEngine(id) CSP controller

Fig. 5 .

 5 Fig. 5. B rewriting of CtrlEngine(id)

1 nametypeA. 2 4 = 1 ELSE 6

 12416 Speeds = {0..MAX_SPEED} nametype Accels = {MIN_ACCEL..MAX_ACCEL} nametype Positions = {0..MAX_POS} --Common channels between CtrlEngine∧CtrlDrivingSystem channel engineInfo: Ids. Positions . Speeds channel engineAccel: Ids. Accels --B machine channels between Engine∧CtrlEngine channel getSpeed: Speeds channel getXpos: Positions channel setAccel: Accels --B machine channels between DrivingSystem∧CtrlDrivingSystem channel setPerceptions : Positions . Speeds . Positions . Speeds channel getInfluences : Accels --Channels between an HCI∧CtrlDrivingSystem channel hciAccel : Ids. Accels channel hciSpeed : Ids. Speeds --Channels between other cristals∧CtrlDrivingSystem channel comIn : Ids. Speeds . Positions channel comOut : Ids. Speeds . Positions InternalEngine = {| getSpeed, getXpos,setAccel|} InternalDrivingSystem = {|setPerceptions, getInfluences |} EngineDrivingSystem = {| engineInfo, engineAccel |} Environment = {| hciAccel, hciSpeed, comIn, comOut |} Cristal_NotEngine = union(InternalEngine, union(InternalDrivingSystem, Environment)) All_Channels = union(EngineDrivingSystem, Cristal_NotEngine) CtrlEngine(id) Engine(id) MODEL Engine(Id) CONSTRAINTS Id ∈ NAT1 SEES Constants VARIABLES speed, xpos INVARIANT speed ∈ 0..MAX_SPEED ∧ xpos ∈ N INITIALISATION speed := 0 xpos :∈ N OPERATIONS speed0 ←-getSpeed = / * ... * / BEGIN speed0 := speed END ; xpos0 ←-getXpos = / * ... * / BEGIN xpos0 := xpos END ; setAccel(accel) = PRE accel ∈ MIN_ACCEL..MAX_ACCEL THEN ANY new_speed WHERE new_speed = speed + accel THEN IF (new_speed > MAX_SPEED) THEN xpos := xpos + MAX_SPEED speed := MAX_SPEED ELSE IF (new_speed < 0) THEN xpos := xpos -(speed × speed) / (2 × accel) speed := 0 ELSE xpos := xpos + speed + accel / 2 speed := new_speed END END END END END CtrlEngine_perceptions(id) = getXpos ? xpos → getSpeed ? speed → engineInfo.id ! xpos ! speed → CtrlEngine_actions(id) getSpeed ? speed → getXpos ? xpos → engineInfo.id ! xpos ! speed → CtrlEngine_actions(id)CtrlEngine_actions(id) = engineAccel.id ? accel → setAccel ! accel → CtrlEngine_perceptions(id) CtrlEngine(id) = CtrlEngine_perceptions(id) assert CtrlEngine(1) :[deadlock free [F]] assert CtrlEngine(1) :[divergence free] assert CtrlEngine(1) \ InternalEngine :[divergence free] INVARIANT myXpos ∈ N ∧ mySpeed ∈ 0..MAX_SPEED ∧ preXpos ∈ N ∧ preSpeed ∈ 0..MAX_SPEED INITIALISATION myXpos :∈ N mySpeed := 0 preXpos :∈ N preSpeed := 0 OPERATIONS setPerceptions(myXpos0, mySpeed0, preXpos0, preSpeed0) = PRE myXpos0 ∈ N ∧ mySpeed0 ∈ 0..MAX_SPEED ∧ preXpos0 ∈ N ∧ preSpeed0 ∈ 0..MAX_SPEEDTHEN myXpos := myXpos0 mySpeed := mySpeed0 preXpos := preXpos0 preSpeed := preSpeed0 END ; accel ←-getInfluences = IF (preXpos -myXpos < ALERT_DISTANCE) THEN accel := MIN_ACCEL ELSE ANY new_accel WHERE new_accel = 2 × (preXpos -myXpos) -IDEAL_DISTANCE + preSpeed -mySpeed THEN accel := min({MAX_ACCEL, max({MIN_ACCEL, new_accel}) }) END END END CtrlDrivingSystem(mode,id) = ((mode == SOLO) ∨ (mode == LEADER) & hciAccel.id ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem(mode,id))) ((mode == PLATOON) & getInfluences ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem(mode,id))) ((mode == SOLO) & engineInfo.id ? myXpos ? mySpeed → hciSpeed.id ! mySpeed → please_compress(CtrlDrivingSystem(mode,id))) ((mode == LEADER) & engineInfo.id ? myXpos ? mySpeed → hciSpeed.id ! mySpeed → comOut.id ! mySpeed ! myXpos → please_compress(CtrlDrivingSystem(mode,id))) ((mode == PLATOON) & engineInfo.id ? myXpos ? mySpeed → hciSpeed.id ! mySpeed → comOut.id ! mySpeed ! myXpos → comIn.id ? preSpeed ? preXpos → setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed → please_compress(CtrlDrivingSystem(mode,id))) assert CtrlDrivingSystem(SOLO,1) :[deadlock free [F]] assert CtrlDrivingSystem(LEADER,1) :[deadlock free [F]] assert CtrlDrivingSystem(PLATOON,1) :[deadlock free [F]] assert CtrlDrivingSystem(SOLO,1) :[divergence free] assert CtrlDrivingSystem(LEADER,1) :[divergence free] assert CtrlDrivingSystem(PLATOON,1) :[divergence free] assert CtrlDrivingSystem(SOLO,1) \ InternalDrivingSystem :[divergence free] assert CtrlDrivingSystem(LEADER,1) \ InternalDrivingSystem :[divergence free] assert CtrlDrivingSystem(PLATOON,1) \ InternalDrivingSystem :[divergence free] MACHINE CtrlDrivingSystem_abs(Mode,Id) CONSTRAINTS Id ∈ NAT1 ∧ Mode ∈ 1..3 Modes_csp_of_nat(Mode) = SOLO ∨ Modes_csp_of_nat(Mode) = LEADER THEN ANY ihmAccel_accel WHERE ihmAccel_accel ∈ Accels_csp THEN cb := 0 END ELSE SELECT TRUE = FALSE THEN skip END END OR IF Modes_csp_of_nat(Mode) = PLATOON THEN accel ←-getInfluences; cb := 0 ELSE SELECT TRUE = FALSE THEN skip END END OR IF Modes_csp_of_nat(Mode) = SOLO THEN ANY motorInfo_myXpos, motorInfo_mySpeed WHERE motorInfo_myXpos ∈ Positions_csp ∧ motorInfo_mySpeed ∈ Speeds_csp THEN cb := 0 END ELSE SELECT TRUE = FALSE THEN skip END END OR IF Modes_csp_of_nat(Mode) = LEADER THEN ANY motorInfo_myXpos, motorInfo_mySpeed WHERE motorInfo_myXpos ∈ Positions_csp ∧ motorInfo_mySpeed ∈ Speeds_csp THEN cb := 0 END ELSE SELECT TRUE = FALSE THEN skip END END OR IF Modes_csp_of_nat(Mode) = PLATOON THEN ANY motorInfo_myXpos, motorInfo_mySpeed WHERE motorInfo_myXpos ∈ Positions_csp ∧ motorInfo_mySpeed ∈ Speeds_csp THEN ANY comIn_preSpeed, comIn_preXpos WHERE comIn_preSpeed ∈ Speeds_csp ∧ comIn_preXpos ∈ Positions_csp THEN setPerceptions(motorInfo_myXpos, motorInfo_mySpeed, comIn_preXpos, comIn_preSpeed); Cristal(mode,id) Cristal_verif (mode,id) = (CtrlDrivingSystem(mode,id) [| EngineDrivingSystem |] CtrlEngine(id)) assert Cristal_verif (SOLO,1) :[deadlock free [F]] assert Cristal_verif (LEADER,1) :[deadlock free [F]] assert Cristal_verif (PLATOON,1) :[deadlock free [F]]A.5 CtrlDrivingSystem2(mode,id) DrivingSystem(id) CtrlDrivingSystem_perceptions(mode,id) = ((mode == SOLO) & engineInfo.id ? myXpos ? mySpeed → hciSpeed.id ! mySpeed → please_compress(CtrlDrivingSystem_actions(mode,id))) ((mode == LEADER) & engineInfo.id ? myXpos ? mySpeed → hciSpeed.id ! mySpeed → comOut.id ! mySpeed ! myXpos → please_compress(CtrlDrivingSystem_actions(mode,id))) ((mode == PLATOON) & engineInfo.id ? myXpos ? mySpeed → hciSpeed.id ! mySpeed → comOut.id ! mySpeed ! myXpos → comIn.id ? preSpeed ? preXpos → setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed → please_compress(CtrlDrivingSystem_actions(mode,id))) ANY motorInfo_myXpos, motorInfo_mySpeed WHERE motorInfo_myXpos ∈ Positions_csp ∧ motorInfo_mySpeed ∈ Speeds_csp THEN cb := 2 END ELSE SELECT TRUE = FALSE THEN skip END END OR IF Modes_csp_of_nat(Mode) = LEADER THEN ANY motorInfo_myXpos, motorInfo_mySpeed WHERE motorInfo_myXpos ∈ Positions_csp ∧ motorInfo_mySpeed ∈ Speeds_csp THEN cb := 2 END ELSE SELECT TRUE = FALSE THEN skip END END OR IF Modes_csp_of_nat(Mode) = PLATOON THEN ANY motorInfo_myXpos, motorInfo_mySpeed WHERE motorInfo_myXpos ∈ Positions_csp ∧ motorInfo_mySpeed ∈ Speeds_csp THEN ANY comIn_preSpeed, comIn_preXpos WHERE comIn_preSpeed ∈ Speeds_csp ∧ comIn_preXpos ∈ Positions_cspTHEN setPerceptions(motorInfo_myXpos, motorInfo_mySpeed, comIn_preXpos, Mode) = SOLO ∨ Modes_csp_of_nat(Mode) = LEADER THEN ANY ihmAccel_accel WHERE ihmAccel_accel ∈ Accels_csp THEN cb := 1 END ELSE SELECT TRUE = FALSE THEN skip END END OR IF Modes_csp_of_nat(Mode) = PLATOON THEN accel ←-getInfluences; cb :Cristal2(mode,id) Cristal2_verif (mode,id) = (CtrlDrivingSystem2(mode,id) [| EngineDrivingSystem |] CtrlEngine(id))

 myXpos ? mySpeed → hciSpeed.id ! mySpeed → comOut.id ! mySpeed ! myXpos → comIn.id ? preSpeed ? preXpos → setPerceptions! myXpos ! mySpeed ! preXpos ! preSpeed → please_compress(CtrlDrivingSystem_actions(mode,id)))-new accel from DECISION getInfluences ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem_perceptions(mode,id)))

	CtrlDrivingSystem_perceptions(mode,id) =	
	((mode == SOLO) &	
	engineInfo.id ? myXpos ? mySpeed →	
	hciSpeed.id ! mySpeed → please_compress(CtrlDrivingSystem_actions(mode,id)))
	((mode == LEADER) &	
	engineInfo.id ? myXpos ? mySpeed →	
	hciSpeed.id ! mySpeed → comOut.id ! mySpeed ! myXpos → please_compress(CtrlDrivingSystem_actions(mode,id)))
	((mode == PLATOON) &	
	engineInfo.id ? CtrlDrivingSystem_actions(mode,id) =	
	((mode == SOLO) ∨ (mode == LEADER) &	--new accel from user
	hciAccel.id ? accel → engineAccel.id ! accel → please_compress(CtrlDrivingSystem_perceptions(mode,id)))
	((mode == PLATOON) &	

CSP B specifications discussed in this paper are available at http://www.loria.fr/~lanoix/platoon.zip.

Because of lack of space, we only recall the idea behind consistency checking in the B method. Roughly speaking, given a B machine and its invariant, the machine is said consistent if its initialisation satisfies the invariant, and if, for each operation, assuming its precondition and the invariant hold, the operation body satisfies the invariant.

Note that when combining a CSP controller P and a B machine M associated withP, the sharing alphabet can be dropped: (P α(M) M) ≡ P M.

In the whole model we use id but as it is a reserved keyword in B we have to resort to denoting it Id for the B machines.

Acknowledgement. We would like to thank Olivier Simonin, Alexis Scheuer and François Charpillet from the LORIA/MAIA team for common efforts and fruitful discussions in the context of the TACOS and the CRISTAL projects.

⋆ This work has been partially supported by the French National Research Agency (ANR)/ANR-06-SETI-017 TACOS project, (http://tacos.loria.fr), and by the pôle de compétitivité Alsace/Franche-Comté/CRISTAL project (http://www.projet-cristal.org).