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EQUIVALENCE FOR DIFFERENTIAL EQUATIONS

Odinette Renée Abib

Abstract. We shall study the equivalence problem for ordinary differential
equations with respect to the affine transformation group A(2, R).

1. Introduction

Two differential equations are called equivalent if one can be transformed into
another by a certain change of variables. In particular this change of variables
transforms solutions of one equation into solutions of another. In general, the
problem of equivalence of differential equations consists in determining whether two
equations are equivalent up to a given class of transformations. W. Kryńsky [12]
and B. Dubrov [7] examine differential equations up to contact transformations.
Sophus Lie was the first to use some approach to the problem of equivalence of
differential equations (description of invariants, computation of symetry group).

In [9] Fels consider the problem of equivalence between two systems of second-
order differential equations

d2xi

dt2
= f i(t, xj ,

dxj

dt
) (1 ≤ i, j ≤ n)(1.1)

d2yi

ds2
= gi(s, yj ,

dyj

ds
) (1 ≤ i, j ≤ n)(1.2)

under the pseudo-group of smooth invertible local point transformations

ψ
(

t, xj
)

=
(

s, yi
)

=
(

φ
(

t, xj
)

, ϕi

(

t, xj
))

This notion of two system being equivalent defines an equivalence relation on
the set of differential equations on the form (1.1). Fels was able to cast the question
of equivalence between (1.1) and (1.2) into a question about the equivalence of
exterior differential systems associated on jet space J1 (R,Rn) , at wich point the
Cartan’s method [4, 8, 10, 11, 15, 17] be may applied. The problem of equivalence
for n = 1 was originally solved by Cartan in [4]. Chern in [6] investigated the two
equivalence problems for systems under the restricted pseudo-groups of smooth
invertible local transformations wich preserve the independent variable as given by
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ψ
(

t, xj
)

=
(

t, ϕi

(

xj
))

and ψ
(

t, xj
)

=
(

t, ϕi

(

t, xj
))

In the previous papers [1, 2] the relationship between differential equations,
Pfaffian systems and geometric structures are study. We have seen that every dif-
ferential equation can be expressed as a Pfaffian system satisfying the structure
equation and that the integration of a given equation is deeply related to the struc-
ture equation. We shall show it by means of interesting examples. My contribution
here is the study of equivalence problem for the family of ordinary equations with
respect to the affine transformation group A (2,R) (section 4). There exist 19 dif-
ferent types of first order ordinary differential equations which admit at least 1-
dimensional Lie groups in A (2,R). All the equations which belong to the above
types can be integrated by quadrature.

In the paper, by the word differentiable we mean always differentiable of classe
C∞.

Acknowledgments. Special thanks go to Witold Respondek and Yuri Sachkov
for his encouragement and support.

2. Basic Definition, Examples

2.1. Pfaffian systems. In this subsection we will review some basic concepts
and facts on Pfaffian systems theory [3]. Let M be an differentiable manifold.
F (M) denotes the ring of real-valued differentiable functions on M and Λ1(M) the
F (M)-module of all 1-forms (Pfaffian forms) on M .

A F (M)-submodule Σ of Λ1(M) is called a Pfaffian system of rank n on M if
Σ is generated by n linearly independent Pfaffian forms θ1, . . . , θn. A submanifold
N of M is said an integral manifold of Σ if i∗(θ) = 0 for all θ ∈ Σ, where i denotes
the immersion N →֒ M . A differentiable function is said a first integral of Σ if the
exterior derivate df belongs to Σ. By the symbol Σ = 〈θ1, . . . , θn〉 we mean that
the Pfaffian system Σ is generated by linearly independent Pfaffian forms θ1 . . . , θn

defined on M .
For each Pfaffian systems Σ on M we can construct the dual sytem, that is, the

differentiable subbundle D = D(Σ) of the tangent bundle T (M) on M such that
the fiber dimension of D is equal to dim(M) − n. Let Γ(D) be the sheaf of germs
of local vector fields which belong to D and Γ(D)x, x ∈M, the stalk of Γ(D) at x.
For x ∈M , we defined the subspaces Ch(D)x of Tx(M) by

Ch(D)x = {Xx ∈ Dx; [X ′

x,Γ(D)x] ⊆ Γ(D)x}
where X denotes a vector field and X ′

x the germ at x determined by X . We
suppose that dimCh(D)x is constant on M . Thus, we obtain the subbundle Ch(D)
of T (M) called Cauchy characteristic of D. The distrubution characteristic of D is
the module spanned by all vector fields Y that belongs to D such that [Y,D] ⊆ D.
The dual system Ch(Σ) of Ch(D) is called the Cauchy characteristic system of Σ.
The following theorem is due to E. Cartan.

Theorem 2.1. Let Σ = 〈θ1, . . . , θn〉 be a Pfaffian system.
1. If Σ is completely integrable, i.e. dθi = 0(mod θ1, . . . , θn) , (1 ≤ i ≤ n) ,

then Ch(Σ) = Σ.
2. If Σ is not completely integrable, then there exist linearly independent Pfaf-

fian forms w1, . . . , wm satisfying the following conditions:
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(i) θ1, . . . , θn, w1, . . . , wm are also linearly independent;
(ii) (θ1, . . . , θn, w1, . . . , wm) forms a (local) generator of Ch(Σ);

(iii) dθi =

m
∑

j,k=1

Ci
jkw

i ∧ wk
(

mod θ1, . . . , θn
)

, where Ci
jk denotes a differ-

entiable function (1≤ i ≤ n, 1≤ j, k ≤ m).
3. Ch(Σ) is completely integrable.
4. Let x1, . . . , xn+m be independent first integrals of Ch(Σ). Then there exist

linearly independent Pfaffian forms ηi =
n+m
∑

j=1

Ai
j(x

1, . . . , xn+m)dxj , i = 1, . . . , n,

such that (η1, . . . , ηn) forms a (local) generator of Σ.

By making use of the property 2, we can construct the Cauchy characteristic
system Ch(Σ).

Definition 2.2. A system (w1, . . . , wm) of linearly independent Pfaffian forms
on M will be said a solvable system of Σ = 〈θ1, . . . , θn〉 if it satisfies the following
conditions:

(i) (w1, . . . , wm) forms a generator of Ch(Σ).
(ii) dw1 = 0 and dwp = 0 mod(w1, . . . , wp−1) for all p = 2, . . . ,m.

If we can find a solvable system of Σ, then m independents first integral of
Ch(Σ) are given par quadrature.

2.2. Examples. In the subsection we shall consider by means of examples
[2] the relation between the differential equations, Pfaffian systems and structure
equation.

a) Consider the Pfaffian system Σ = 〈θ〉, θ = dz + pdx + p2dy, on R4 =
{(x, y, z, p)}. We have dθ = dp ∧ (dx+ 2pdy) and

w1 = dp, w2 = dx+ 2pdy, w3 = θ

determine the Cauchy characteristic system of Σ. We can find by quadrature
three independent first integrals as follows:

u1 = z + xp+ yp2, u2 = x+ 2yp, u3 = p

and θ itself is expressed as θ = du1 − u2du3. The system (w1, w2, w3) is a
solvable system of Σ.

b) We consider an absolute parallelism w1, w2, w3, w4, w5, w6 on R6 satisfying
the equations

dw1 = 0, dw2 = 0 mod(w1, w2),

dw3 = w1 ∧ w4 + w2 ∧ w5 mod(w3),(2.1)

dw4 = 0 mod(w3, w4, w5),

dw5 = w2 ∧ w6 mod(w3, w4, w5).

Let x and y be two independent first integrales of the completely Pfaffian
integrable system w1 = w2 = 0; the form w3 is expressed as

w3 = a(dz − pdx− qdy), a 6= 0.
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The functions x, y, z, p and q are independent first integrals of the completely
integrale Pfaffian system w1 = w2 = w3 = w4 = w5 = 0.Therefore w4 and w5 can
be written by means of the exterior derivates dx, dy, dz, dp, dq and the formulas

dp− rdx − sdy = a1w
4 + a2w

5 + a3w
3

dq − s′dx− tdy = a4w
4 + a5w

5 + a6w
3

determine the fonctions r, s, s′, t and a′i s of the variables x, y, z, p, q and another
u. From the equation dw3 = w1 ∧ w4 + w2 ∧ w5(modw3), one can verify that
the function s coincides with s′. Moreover, the equations dw4 = 0, dw5 = w2 ∧
w6 mod(w3, w4, w5) imply

rank
( ∂r

∂u
,
∂s

∂u
,
∂t

∂u

)

= 1.

Therefore the functions

r = r(x, y, z, p, q, u) , s = s(x, y, z, p, q, u) , t = t(x, y, z, p, q, u)

determine a system of second-order partial differential equations. This family
of systems of differential equations determined by an absolute parallelism satisfying
(2.1) is the main subject of Cartan’s researches in his paper [4, 5]. For example,
take the system of differential equations

(2.2)
∂2z

∂x2
= 0 ,

∂2z

∂x∂y
= z − x

∂z

∂x

Putting on R6 = {(x, y, z, p, q, t)} , w1 = dx, w2 = dy, w3 = dz − pdx − qdy,

w4 = dp− (z− xp)dy, w5 = dq− (z− xp)dx− tdy and w6 = dt− (q− x(z− xp))dx
we have the structure equations

dw1 = 0, dw2 = 0,

dw3 = w1 ∧w4 + w2 ∧ w5,

dw4 = w2 ∧w3 − xw2 ∧w4,

dw5 = w2 ∧w6 + w1 ∧ w3 − xw1 ∧ w4,

dw6 = w1 ∧w5 − xw1 ∧w3 − x2w1 ∧ w4 +Kw1 ∧ w2,

where K = t−xq+x2(z−xp). The absolute parallelism satisfies the equations
(2.1). It easy to see that the system

(

w2, w3, w4, w5, w6
)

forms a solvable system of

Σ = 〈w3, w4, w5〉. Five independent first integrals of the solvable system are given
by quadrature as follows:

u1 = y, u2 = z − xp, u3 = p, u4 = q − x(z − xp), u5 = K ,

and we have [5]

w3 − xw4 = du2 − u4du1,

w4 = du3 − u2du1,

w5 − xw3 = du4 − u5du1.

By the expression, the general integral surface of (2.2) is given by the formulas:
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p = f(y), z − xp = f ′(y), q − x(z − xp) = f ′′(y), t− x(q − x(z − xp)) = f ′′′(y)

where f is a differentiable function and f ′, f ′′and f ′′′ denote its derivates.

3. Equivalence

In the paper [2] , we have seen that every differential equation can be expressed
as a Pfaffian system satisfying the structure equation and the integration of a
given equation is deeply related to the structure equation. In this section, we shall
consider the equivalence problem for Pfaffian systems and hence for differential
equations under the action of Lie groups.

Let M be a differentiable manifold, G be a Lie group acting on M on the left.
For a Pfaffian system Σ on M we set

g∗Σ =
{

L∗

gθ ∈ Λ1M ; θ ∈ Σ
}

,

and

G(Σ) = {g ∈ G; g∗Σ = Σ } ,
where Lg denotes the left action of g ∈ G on M ; g∗Σ is a Pfaffian system on

M and G(Σ) is a subgroup of G .
Two Pfaffian systems Σ1 and Σ2 on M are equivalent under the action of G if

there is an element g ∈ G such that g∗Σ1 = Σ2.
Let F be a family of Pfaffian systems on M . The problems (Lie programme)

to be solved are as follows:
1) Determine the condition for the equivalence of the elements of F .
2) Classify the Pfaffian systems in F under the action of G.
3) For each Σ ∈ F , determine the structure of the subgroup G(Σ).
4) Research the relation between the integration of a Pfaffian system Σ and

the structure of the subgroup G(Σ), i.e., reduce the integration of a Pfaffian system
Σ to auxiliary systems obtained via the knowledge of the structure of G(Σ).

In section 4 we consider the problem 2) in the particular case where G =
A(2,R).

For a Lie subgroup G′ of G, we set

(3.1) F (G′) = {Σ ∈ F ; G(Σ) = G′} .
For every Σ ∈ F (G′), G′ is the largest subgroup of G which leaves Σ invariant.

It is possible that F (G′) is an empty set.

Proposition 3.1. Let Σ, Σ1, Σ2 be Pffafian systems ∈ F and let G′ be a
subgroup of G.

1. For any g ∈ G, G(g∗Σ) = g−1G(Σ)g.
2. If gG(Σ2)g

−1 = G(Σ1) = G′ for an element g ∈ G, then Σ1 and g∗Σ2 are
in F (G′).

3. The normalizer N(G′ : G) of G′ in G acts on F (G′).
4. If Σ1, Σ2 ∈ F (G′) and g∗Σ2 = Σ1 for an element g ∈ G, then Σ1and Σ2 lie

in the same orbit determined by the action of N(G′ : G) on F (G′).

Proof. 1) and 2) may be clear. To prove 3), suppose that Σ ∈ F (G′) and
g ∈ N(G′ : G). From (3.1) and 1) of the proposition, we have
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G(g∗Σ) = g−1G(Σ)g = g−1G′g = G′

and hence g∗Σ ∈ F (G′).
4) From (3.1) and 1) of proposition, we have

g−1G′g = g−1G(Σ2)g = G(g∗Σ2) = G(Σ1) = G′

and hence g ∈ N(G′ : G).
By virtue of this proposition, the equivalence probleme and the classification

are reduced to the following problems:
(i) determine all conjugate classes of the subgroups of G.
(ii) For a representative G′ of each conjugate class, determine the set F (G′).
(iii) Observe the action of N(G′ : G) on F (G′).
Since there are, in general, many subgroups G′ of G such that F (G′) is empty

set, this reduction of the problems is not always the best one. Moreover, the Pfaffian
systems to be considered are not always defined globally on M . Therefore, instead
of ordinary Lie groups, we have to consider Lie pseudogroups [4, 13, 14, 16]. Then
the subject of the study is invariants of a Pfaffian system with respect to a given
Lie pseudogroup. At the rate, we can recognize that the subgroup G(Σ) plays an
important role in the problems.

4. Equivalence with respect to the A(2,R)

Let G be a finite dimensional Lie group and let Σ be a left-invariant completely
integrable Pfaffian system on G. We denote by Ig(Σ) the maximal integral manifold
through g ∈ G and we set

Gg(Σ) = {h ∈ G; Lh(Ig(Σ)) = Ig(Σ)} ,

Since Σ is left-invariant, Gg(Σ), g ∈ G, are mutually conjugate in G.

4.1. Invariant forms of A(2,R). Let A(2,R) be the affine transformation
group on R2. By making use of the matrix representaion

A(2,R) =











x3 x4 x1

x5 x6 x2

0 0 1



 ; x3x6 − x4x5 6= 0, xi ∈ R, i = 1, 2, . . . , 6







,

we have a basis of invariant forms of A(2,R)

w1 =
1

D
(x6dx1 − x4dx2) ,

w2 =
1

D
(x3dx2 − x5dx1) ,

w3 =
1

D
(x6dx3 − x4dx5) ,

w4 =
1

D
(x6dx4 − x4dx6) ,

w5 =
1

D
(x3dx5 − x5dx3) ,

w6 =
1

D
(x3dx6 − x5dx4) ,
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where we put D = x3x6 − x4x5. We have then the structure equation

dw1 = w1 ∧ w3 + w2 ∧ w4,

dw2 = w1 ∧ w5 + w2 ∧ w6,

dw3 = −w4 ∧ w5,(4.1)

dw4 = −w3 ∧ w4 − w4 ∧ w6,

dw5 = w3 ∧ w5 + w5 ∧ w6,

dw6 = w4 ∧ w5.

We remark that changing the basis of invariant forms by the formula

w1 = a′w1 + b′w2, w2 = c′w2, w3 = w3 +
b′

a′
w5,

w4 =
a′

c′
w4 − b′

c′
w3 − b′2

a′c′
w5 +

b′

c′
w6, w5 =

c′

a′
w5,(4.2)

w6 = w6 − b′

a′
w5,

where a′, b′ and c′ denote arbitrary constants with a′c′ 6= 0, the structure

equation (4.1) does not alter.
(

A(2,R), C = (w1, . . . , w6)
)

determines a Cartan

system.

4.2. Classification under action of A(2,R). The systems to be considered
are given by Σ = 〈dx2 − f (x1, x2)dx1〉 where f denotes a differentiable function.
In this paper I given some ideas for the classification. Since

dx2 − f(x1, x2)dx1 = (x5 − x3f(x1, x2))w
1 + (x6 − x4f(x1, x2))w

2,

and

(x6−x4f(x1, x2))
−1(dx2−f(x1, x2)dx1 = (x6−x4f(x1,x2))

−1(x5−x3f(x1, x2))w
1+w2,

then (x6 − x4f)−1(x5 − x3f) forms a characteristic invariant system. By using
this invariant, we reduce the Cartan system to be submanifold M0 defined by the
equation x5 − x3f(x1, x2) = 0. The equation to be integrated is now given by
w2 = 0. On the submanilfold M0 , we have

w5 = aw1 + bw2,

da = 2aw3 − aw6 + u1w
1 + u2w

2,(4.3)

db = bw3 + aw4 + (u2 − b2)w1 + u3w
2.

and
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dw1 = w1 ∧w3 + w2 ∧ w4,

dw2 = w2 ∧w6,

dw3 = aw1 ∧ w4 + bw2 ∧w4,(4.4)

dw4 = −w3 ∧ w4 − w4 ∧ w6 + bw1 ∧ w4,

dw6 = −2bw2 ∧ w4 + u3w
1 ∧w2,

where we put w6 = w6 − bw1 and a, b, u1, u2, u3 denote definite functions on
M0. These functions are all invariants of induced Cartan system.

4.2.1 From now on, we shall determine all the equations wich admit at least
2-dimensional Lie subgroup of A(2,R) as an invariant group. Therefore we suppose
always that the forms w1, w2 are linearly independent.

I. The case a = 0. From (4.3) , we have u1 = u2 = 0. Moreover

(4.5) du3 = u3w
6 + u3w

3 − 2bu3w
1 + cw2

where c denotes a definite function on M .
1. b = 0. The manifold M0 is given by the maximal integral manifold of w5 = 0.

Hence we obtain the first type:

Σ : w5 = 0,

dw1 = w1 ∧ w3 + w2 ∧ w4,

dw2 = w2 ∧ w6,

dw3 = 0,

dw4 = −w3 ∧ w4 − w4 ∧ w6,

dw6 = 0.

Integrating the system Σ, we have the result:

Theorem 4.1. The equation y′ = c (constant) admits a 5-dimensional Lie
subgroup in A(2,R) and can be transformed to the equation y′ = 0 by an element
of A(2,R).

2. b 6= 0. We can reduce M0 to the submanifold M1 defined by the equation
b = const.(6= 0). Taking a′ = b, b′ = 0, c′ = b in (4.2) we can assume that the
constant is equal to 1: M1 = {g ∈M0; b(g) = 1} . From (4.3), (4.4) and (4.5) we
have on M1

w3 = w1 − u3w
2, w5 = w2,

du3 = u3w
6 − u3w

1 + (c− u2
3)w

2,

dw1 = −u3w
1 ∧w2 + w2 ∧ w4,(4.6)

dw2 = w2 ∧ w6,

dw4 = u3w
2 ∧ w4 − w4 ∧w6,

dw6 = −2w2 ∧ w4 + u3w
1 ∧ w2.

2.1. u3 = 0. From the second equation of (4.6) we have c = 0. We have thus
obtained the second type:
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Σ : w3 = w1, w5 = w2.

dw1 = w2 ∧ w4,

dw2 = w1 ∧ w2 + w2 ∧ w6,

dw4 = −w1 ∧ w4 − w4 ∧ w6,

dw6 = −w2 ∧ w4.

Integrating the system Σ, we obtain the result:

Theorem 4.2. The equation y′ = (x + a)−1(y + b), a, b constants, admits a
4-dimensional Lie subgroup in A(2,R) and can be transformed to y′ = x−1y by an
element of A(2,R).

2.2. u3 6= 0. We can reduce M1 to be submanifold M2 defined by the equation
u3 = constant (6= 0). Taking a′ = 1, b′ = 0, c′ = u3 in (4.2), we can assume that
the constant is equal to 1. From (4.6) , we have on M2

w3 = w1 − w2, w5 = w2, w6 = w1 − ew2 (e = c− 1),

de = −3w4 + (e− 2)w1 + rw2,

dw1 = −w1 ∧ w2 + w2 ∧ w4,(4.7)

dw2 = −w1 ∧ w2,

dw4 = (1 − e)w2 ∧ w4 + w1 ∧w4,

where r denotes a definite function on M2. The equations (4.7) does not de-
termines a 3-dimensional Lie group. By using the invariant e, we can reduce M2.

Taking a′ = 1, b′ = 1, c′ = (2−e)
3 in (4.2), we can reduce M2 to the manifold

M3 = {g ∈M2 ; e(g) = 2} . From (4.7) we obtain on M3

w5 = w2, w3 = w1 − w2, w6 = w1 − 2w2, w4 =
1

3
rw2,

dr = 2rw1 + r0w
2(4.8)

and

dw1 = −w1 ∧ w2,

dw2 = −w1 ∧ w2.(4.9)

Although the equations (4.9) do not contain any functions, the function r is
an invariant of the group. Therefore (4.8) and (4.9) determine a 2-dimensional Lie
group if and only if r is a constant on M3. In the case, we have r = 0 and

Σ : w3 = w1 − w2, w4 = 0, w5 = w2, w6 = 2w1 − 2w2.

dw1 = −w1 ∧w2, dw2 = −w1 ∧ w2.

Integrating the system Σ, we obtain the result:

Theorem 4.3. Let f be a function satysfying the Clairaut equation

y = xf +
af2 + bf + c

αf + β
with a, b, c, α, β constants.



10 ODINETTE RENÉE ABIB

Then y′ = f(x, y) admits a 2-dimensional Lie group in A(2,R) and can be

transformed to y′ = x− (x2 − 2y)
1

2 by an element A(2,R).
II. The case a 6= 0. We go back to the manifold M0. Suppose that b 6= 0 on

M0 . Consider the submanifold N0 defined by the equation b = const (6= 0). By
setting

w1 = bw1 +
b2

a
w2, w2 =

b

a
w2, w3 = w3 +

b

a
w5,

w4 = aw4 − bw3 − b2

a
w5 + bw6, w5 =

1

a
w5, w6 = w6 − b

a
w5,

we can assume that a = 1, b = 0 on M0. Therefore we have only to examine
the case a 6= 0, b = 0 on M0. We can reduce M0 to the submanifold

N0 = {g ∈M0; a(g) = 1, b(g) = 0}

on which we have

w4 = −u2w
1 − u3w

2, w5 = w1, w6 = 2w3 + u1w
1 + u2w

2,

dw1 = w1 ∧w3 + u2w
1 ∧ w2,(4.10)

dw2 = 2w2 ∧ w3 − u1w
1 ∧ w2,

dw3 = −u3w
1 ∧ w2.

By differentiating (4.9) we obtain

du1 = u1w
3 + v1w

1 + v2w
2,

du2 = 2u2w
3 + v3w

1 + v4w
2,(4.11)

du3 = 3u3w
3 + v5w

1 + v6w
2,

0 = −v5 + v4 + 2(u1u3 − u2
2),

0 = v2 − v3 + 3u3.

1. u1 = u2 = u3 = 0. From (4.10), we have

Σ : w4 = 0, w5 = w1, w6 = 2w3.

dw1 = w1 ∧ w3,

dw2 = 2w2 ∧ w3,

dw3 = 0.

Integrating the system Σ, we obtain the result:

Theorem 4.4. The equations of this type can be transformed to y′ = x by an
element of A(2,R) and admit a 3-dimensional Lie group in A(2,R).

2. u1 6= 0, u2 = 0, u3 = 0. We reduce N0 to the submanifold defined by the
equation u1 = const.(6= 0). From (4.11) we have v2 = v3 = v4 = v5 = v6 = 0 and
hence
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Σ : w3 = − v1

u1
w1, w4 = 0, w5 = w1, w6 = (u1 −

2v1
u1

)w1.

dw1 = 0,

dw2 = −(u1 −
2v1
u1

)w1 ∧ w2,

dv1 = 0(modw1).

If these equations determine a 2-dimensional Lie group, v1 must be a constant.
In this case, integrating the system Σ, we obtain the result:

Theorem 4.5. All the equations in this case are transformed by an element of
A(2,R) to one the following three types

i) y′ = log x, ii) y′ = ex, iii) y′ = xa (a const. 6= 0, 1), which admit 2-
dimensional Lie group in A(2,R).

3. u1 = 0, u2 6= 0, u3 = 0. We reduce N0 to the submanifold defined by the
equation u2 = const.(6= 0). From (4.11), we have v4 = 2u2

2 and otherwise vi = 0
and hence

Σ : w3 = −u2w
2, w4 = −u2w

1, w5 = w1, w6 = −u2w
2.

dw1 = 0, dw2 = 0.

3.1. The case u2 � 0. We can assume always u2 = 1. Integrating the system
Σ, we obtain the result:

Proposition 4.6. All the equations in this type are transformed by an element
of A(2,R) to the equation y′ = −xy−1, which admits a 2-dimensional Lie group in
A(2,R).

3.2. The case u2 � 0. We can assume u2 = −1. Integrating the system Σ we
obtain the result:

Proposition 4.7. All equations in this case are transformed by an element of
A(2,R) to the equation y′ = −x−1y, which admits a 2-dimensional Lie group in
A(2,R).

4. u1 = u2 = 0, u3 6= 0. From (4.11) we have vi = 0, i = 1, 2, 3, 4. Since
v2 − v3 + 3u3 = 0, this contradicts the assumption u3 6= 0.

5. u1 = 0, u2 6= 0, u3 6= 0. We reduce N0 to the submanifold defined by the
equations u2 = const.(6= 0), u3 = const.(6= 0). We can assume u3 = 4. From (4.11),
we have v1 = v2 = 0, v3 = 12, v4 − v5 = 2u2

2 and

0 = 2u2w
3 + 12w1 + v4w

2,(4.12)

0 = 12w3 + v5w
1 + v6w

2.

By this equations, we obtain

v4 =
72

u2
+ 2u2

2, v5 =
72

u2
, v6 =

6

u2
(
72

u2
+ 2u2

2).

Substituting these values to (4.12) we have
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w3 = − 6

u2
w1 − (

36

u2
2

+ u2)w
2.

Substituting this equation to the last equation of (4.10) we have u2 = −3.
Hence we have

Σ : w3 = 2w1 − w2, w4 = 3w1 − 4w2, w5 = w1, w6 = 2w3 − 3w2.

dw1 = −4w1 ∧w2, dw2 = −4w1 ∧ w2.

Integrating the system Σ, we obtain the result:

Theorem 4.8. The equation of this type can be transformed by an element of
A(2,R) to y′ = x−1y + x4, which admits a 2-dimensional Lie group in A(2,R).

6. u1 6= 0, u2 = 0, u3 6= 0. We reduce N0 to the submanifold defined by the
equations u1 = const.(6= 0), u3 = const.(6= 0). We can assume u1 = −3. By the
same argument as in the case 5, we have

Σ : w3 = 2w1 − u3w
2, w4 = −u3w

2, w5 = w1, w6 = w1 − 2u3w
2.

dw1 = −u3w
1 ∧ w2, dw2 = −w1 ∧ w2.

Integrating the system Σ, we obtain the result:

Theorem 4.9. i) If u3 = 1, the equations of this type are transformed by an
element of A(2,R) to y′ = x−1y + x.

ii) If u3 6= 1, the equations of this type are transformed by an element of A(2,R)
to the equation

y′ =
−u3x+ 2

√

2(1 − u3)y + u3x2

1 − u3
.

7. u1 6= 0, u2 6= 0, u3 6= 0. By the same argument as in the case 5, we have

Σ : w3 = −1

2
u1w

1 − u2w
2, w4 = −u2w

1, w5 = w1, w6 = 2w3 + u1w
1 + u2w

2.

dw1 = dw2 = 0.

Integrating the system Σ, we have the result:

Proposition 4.10. The equations of this type are transformed by an element
of A(2,R) to the equation

y′ =
−2x+ u1y

2u2y
.

8. u1 6= 0, u2 6= 0, u3 6= 0. By the same argument as in the case 5 , we can
deternime vi , 1 ≤ i ≤ 6. In particular, we have

v1 =
u1(6u2 − 2u2

1 + u1u
2
2)

2u2
2 − 3u1

, v2 =
u1(18 − 4u1u2 + 2u3

2)

2u2
2 − 3u1

.

If 2u2
2 = 3u1, then u1 = 6, u2 = 3, u3 = 2, v1 = 2 and v2 = 1. We have

w3 = − v1

u1
w1 − v2

u1
w2.
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Substituting this relation to the last equation of (4.10) we have a certain alge-
braic equation with respect to the quantities u1, u2. Hence we obtain

Σ : w3 = − v1

u1
w1 − v2

u1
w2, w4 = −u2w

1 − u3w
2, w5 = w1, w6 = 2w3 + u1w

1 + u2w
2.

dw1 = (u2 −
v2

u1
)w1 ∧ w2, dw2 = −(u1 −

2v1
u1

)w1 ∧ w2.

Intregating the system Σ, we obtain the result:

Theorem 4.11. The equations of this type are transformed by an element of
A(2,R) to y′ = x−1y+xa (a const 6= 4, 1, 0,−1), which admits a 2-dimensional Lie
group in A(2,R).

4.2.2. As for the determination of the equations admitting a 1-dimensional Lie
group in A(2,R), we can use the method developed in section 3. Here is the table
of the standard forms and the invariant groups. We denote by a the parameter of
a 1-dimensional Lie group.

Standard Forms Invariant Groups

y′ = F (x) X = x, Y = y + a

y′ = y
x
F (yr

xs ) X = arx, Y = asy

y′ = yF (ye−x) X = x+ a, Y = eay

y′ = y

x
+F (x) X = x, Y = ax+ y

y′ = y
x

+ F (xer y

x ) X = earx, Y = aearx+ eary

y′ = y−xF (x2+y2)
x+yF (x2+y2) rotation group

y−xy′

x+yy′
= F

(

y−x tan(r log 2
√

x2+y2)

x+y tan(r log 2
√

x2+y2)

)

1-dimensional conformal transformation group
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[12] W. Kryński, On contact equivalence of systems of ordinary differential, ArXiv.12 0712.1455v1

[Math. CA] 10 Dec. 2007.
[13] M. Kuranishi, A.M. Rodrigues, Quotients of pseudo-groups by invariants fiberings, Nagoya

Math. Journal, vol. 21-24, 109-128, 1964.
[14] P.J. Olver, Moving frames for Lie pseudo-groups, preprint 2007.
[15] P.J. Olver, Equivalence, invariants and symmetry, N.Y. , Springer-Verlag, 1995.

[16] P.J. Olver, J. Pohjanpelto, Differential invariants for Lie pseudo-groups, Radon Series Comp.
Appl. Math. 1, 1-28, 2007.
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