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ON (TWISTED) LAWRENCE-KRAMMER REPRESENTATIONS

ANATOLE CASTELLA

Abstract. LK-representations (LK for Lawrence-Krammer) are linear rep-
resentations of Artin-Tits monoids and groups of small type, which are of
particular interest since they are known to be faithful for the monoids, and for
the groups when the type is spherical, under some (strong) conditions on the
defining ring R.

For a fixed small type, they are parametrized by an R-module F for the
monoid, and by a subset Fgr of F \ {0} for the group. It is known that
Fgr is non-empty if the type has no triangle, i.e. no subgraph of affine type

Ã2, and more precisely that F = R and Fgr = R
× if the type is spherical.

Moreover, faithful “twisted” LK-representations for the non-small (spherical)
crystallographic types have been constructed in [Digne, On the linearity of

Artin Braid groups. J. Algebra 268, (2003) 39-57].
The first aim of this paper is to explicit F and Fgr for any affine and

small type : we establish that F = RN and Fgr = R× ×R
N>1 , and since this

holds in particular for Ã2, this shows that Fgr can be non-empty for a graph
with triangles. The second aim is to generalize the construction of op.cit. in
order to provide faithful twisted LK-representations for any Artin-Tits monoid
that appears as the submonoid of fixed elements of an Artin-Tits monoid of
small type under a group of graph automorphisms ; in particular, we thus
get three twisted LK-representations for the Coxeter type Bn (among which
the one constructed in op.cit.) and we finally show that they are pairwise
non-equivalent, at least for the main choice of R.

Introduction

In the early 2000’s, Krammer defined by explicit formulas a linear representation
of the braid group on a free Z[x±1, y±1]-module of dimension the number of positive
roots in the associated root system, and proved its faithfulness [16, 17] (see also [1]).
This construction and the proof of faithfulness have been generalized by Cohen and
Wales, and independently by Digne, to the Artin-Tits groups of spherical and small
type [8, 12], and then to all the Artin-Tits monoids of small type by Paris [21] (see
also [14] for a short proof of the faithfulness). Since an homological version of this
representation first appears in the work of Lawrence [18], those representations are
commonly called Lawrence-Krammer (LK for short).

In fact, LK-representations can be defined over an arbitrary unitary commutative
ring R, as far as we do not require their faithfulness (see subsection 2.2 below for
a faithfulness criterion on R). This slight generalization will give us some more
insight on what is really needed in the construction, and will at least simplify some
computations. Let us be more specific by considering a Coxeter graph of small type
Γ with vertex set I, and its associated Artin-Tits group B, Artin-Tits monoid B+,
and set of positive roots Φ+ (see section 1).
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2 ANATOLE CASTELLA

Let V be a free R-module with basis (eα)α∈Φ+ . The LK-representations of B+

on V are linear representations ψ : B+ → L (V ) parametrized by three elements
b, c, d of the unitary group R× of R, and by a family (fi)i∈I of linear forms on
V submitted to some extra conditions (see definition 12). For a fixed choice of
(b, c, d) ∈ (R×)3, the suitable families (fi)i∈I — that we call LK-families — form
a submodule F of the R-module (V ⋆)I . When the images of ψ are all invertible,
then ψ induces a linear representation (also called LK) ψgr : B → GL(V ) of the
Artin-Tits group B ; this is precisely the case when the elements fi(eαi

), i ∈ I,
all belong to R×, and we denote by Fgr ⊆ F \ {0} the subset of LK-families that
satisfy this additional condition.

Hence the classification of the LK-representations of B+ reduces to the descrip-
tion of the R-module F , and the question of the existence of LK-representations
of B reduces to the question of the non-emptiness of Fgr. Note moreover that,
when Γ is connected, the elements fi(eαi

), i ∈ I, are necessarily all equal for an
LK-family (fi)i∈I . The studies of [8, 12] essentially show that, in the connected and
spherical cases, an LK-family is entirely determined by the common value f ∈ R of
the fi(eαi

), i ∈ I, and that this common value can be chosen arbitrarily ; hence in
these cases, F is isomorphic to R, via (fi)i∈I 7→ fi0(eαi0

) for some i0 ∈ I, and Fgr

corresponds to R× via this isomorphism (see subsection 3.2 below). This situation
is partially generalized in [21] where it is shown that Fgr is non-empty when Γ has

no triangle, i.e. no subgraph of affine type Ã2 (see subsection 3.3 below). As far
as I know, the structure of F is not understood in general, and the question the
non-emptiness of Fgr is still open when Γ has a triangle.

Another topic on this subject is the question of the existence of similar faithful
representations in the non-small cases. A first answer is provided by [12], where is
constructed a faithful “twisted” LK-representation for an Artin-Tits group of type
Bn, F4 or G2, using the fact that it appears as the subgroup of fixed elements under
a graph automorphism, of an Artin-Tits group of type A2n−1, E6 orD4 respectively.

The aim of this paper is to go further on those two questions.
We first investigate the structures of F and Fgr when Γ is of affine and small

type. We show that in these cases, an LK-family (fi)i∈I is not determined by
the common value f of the fi(eαi

), i ∈ I, but by an infinite family (fn)n∈N ∈ RN

with f0 = f, which can be chosen arbitrarily ; hence F is isomorphic to RN, via
(fi)i∈I 7→ (fn)n∈N, and Fgr corresponds to R× × RN>1 via this isomorphism. In

particular, this holds for Ã2 and we thus get that Fgr can be non-empty when Γ
has triangles.

We then generalize the construction of (faithful) twisted LK-representations of
[12] to any Artin-Tits monoid that appears as the submonoid of fixed elements,
under a group of graph automorphisms, of an Artin-Tits monoid of small type.
Note that our proof of faithfulness is different from the one of [12] as it does not use
any case-by-case consideration : we show in general that the faithfulness criterion
used in the small type cases also works in the twisted cases. In particular, starting
with types A2n and Dn+1, we get two new (faithful) LK-representations of the
Artin-tits group of type Bn. By computing the formulas obtained for a twisted LK-
representation when the considered group of graph automorphisms is of order two,
we show that the three twisted LK-representations for the type Bn are pairwise non-
equivalent, at least when R = Z[x±1, y±1] and for the main choices of parameters.
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The paper is organized as follows.
We recall the basic results needed on Coxeter groups, root systems and Artin-Tits

monoids and groups in the first section.
In the second section, we define the LK-representations over an arbitrary commu-

tative ring R of Artin-Tits monoids and groups of small type following [17, 8, 12, 21]
(in subsection 2.1). We then generalize to our settings the faithfulness criterion on
R used in those articles and its short proof given in [14] (in subsection 2.2), and
apply it in subsection 2.3.

In the third section, we investigate the module of LK-families F and its sub-
set Fgr for a fixed Coxeter graph of small type and a fixed choice of parameters
(b, c, d) ∈ (R×)3. The elements of F are characterized in subsection 3.1, and we
recall the results of [8, 12] and [21] on F and its subset Fgr in subsections 3.2 and
3.3 respectively. Subsection 3.4 is devoted to our study of the affine case.

Finally in section 4, we investigate the “twisted” LK-representations. We gener-
alize the construction of [12] in subsection 4.1, and prove our “twisted” faithfulness
criterion in subsection 4.2. We explicit the formulas of a twisted LK-representations
when the considered group of graph automorphisms is of order two in subsection 4.3
and apply this in subsection 4.4 to compare the twisted LK-representations of type
Bn. As a conclusion, we give in subsection 4.5 some limitations of our approach in
the non-spherical cases compared with the spherical cases of [12].

1. Preliminaries

1.1. General notations and definitions.

In all this paper, the rings we consider will be unitary, with identity element
denoted by 1 or Id. Let R be a commutative ring. We denote by R× the group of
units of R. If V and V ′ are two R-modules, we denote by L (V, V ′) the R-module
of linear maps from V to V ′. If V = V ′, we simply denote by L (V ) = L (V, V ) the
R-module of endomorphisms of V , by GL(V ) the group of linear automorphisms
of V and by V ⋆ = L (V,R) the dual of V .

A monoid is a non-empty set endowed with an associative binary operation with
an identity element. A monoidM is said to be left cancellative if for any a, b, c ∈M ,
ab = ac implies b = c. The notion of right cancellativity is defined symmetrically,
and M is simply said to be cancellative when it is left and right cancellative. We
denote by 4 the (left) divisibility in a monoid M , i.e. for a, b ∈M , we write b 4 a
if there exists c ∈ M such that a = bc ; this leads to the natural notions of (left)
gcd’s and (right) lcm’s in M .

By a linear representation of a monoid M on an R-module V , we mean a monoid
homomorphism ϕ : M → L (V ) ; for sake of brevity in this paper, we will often
denote by ϕb the image ϕ(b) of a given b ∈ M by a linear representation ϕ. Two
linear representationsϕ and ϕ′ of a monoidM , on R-modules V and V ′ respectively,
are said to be equivalent if there exists a linear isomorphism ν : V → V ′ such that,
for every b ∈M , ϕ′

b = ν(ϕb)ν
−1.

1.2. Coxeter groups and Artin-Tits monoids and groups.

Let Γ = (mi,j)i,j∈I be a Coxeter matrix, i.e. with mi,j = mj,i ∈ N>1 ∪ {∞}
and mi,j = 1 ⇔ i = j. We will always assume in this paper that I is finite ; this
condition could be removed at a cost of some refinements in certain statements
below (see [6, Ch. 11] for some of them), which are left to the reader.
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As usual, we encode the data of Γ by its Coxeter graph, i.e. the graph with
vertex set I, an edge between the vertices i and j if mi,j > 3, and a label mi,j on
that edge when mi,j > 4. In the remainder of the paper, we will identify a Coxeter
matrix with its Coxeter graph.

We denote by W = WΓ (resp. B = BΓ, resp. B+ = B+
Γ ) the Coxeter group

(resp. Artin-Tits group, resp. Artin-Tits monoid) associated with Γ :

W = 〈 si, i ∈ I | sisjsi · · ·
︸ ︷︷ ︸

mi,j terms

= sjsisj · · ·
︸ ︷︷ ︸

mi,j terms

if mi,j 6= ∞, and s2i = 1 〉,

B = 〈 si, i ∈ I | sisjsi · · ·
︸ ︷︷ ︸

mi,j terms

= sjsisj · · ·
︸ ︷︷ ︸

mi,j terms

if mi,j 6= ∞ 〉,

B+ = 〈 si, i ∈ I | sisjsi · · ·
︸ ︷︷ ︸

mi,j terms

= sjsisj · · ·
︸ ︷︷ ︸

mi,j terms

if mi,j 6= ∞ 〉+.

Note that there is no ambiguity in writing with the same symbols the generators
of B and of B+ since the canonical morphism ι : B+ → B, given by the universal
properties of the presentations, is injective [21], so B+ can be identified with the
submonoid of B generated by the si, i ∈ I. We denote by ℓ the length function on
B+ relatively to its generating set {si | i ∈ I}.

Let J be a subset of I. We denote by

• ΓJ = (mi,j)i,j∈J the submatrix of Γ of index set J ,
• WJ = 〈sj , j ∈ J〉 the subgroup of W generated by the sj , j ∈ J ,
• BJ = 〈sj , j ∈ J〉 the subgroup of B generated by the sj , j ∈ J ,
• B+

J = 〈sj , j ∈ J〉 the submonoid of B+ generated by the sj , j ∈ J .

It is known that WJ , (resp. BJ , resp. B+
J ) is the Coxeter group (resp. Artin-

Tits group, resp. Artin-Tits monoid) associated with ΓJ (see [2, Ch. IV, n◦ 1.8,
Thm. 2] for the Coxeter case, [22, Ch. II, Thm. 4.13] for the Artin-Tits group case,
the Artin-Tits monoid case being obvious).

We say that J and ΓJ are spherical if WJ is finite, or, equivalently, if the elements
sj , j ∈ J , have a common (right) multiple in B+. In that case, the elements sj ,
j ∈ J , have a unique (right) lcm in B+, denoted by ∆J and called the Garside
element of B+

J . Moreover, the group BJ is then the group of (left) fractions of B+
J ,

i.e. every b ∈ BJ can be written b = b′−1b′′ with b′, b′′ ∈ B+
J (see [3, Props. 4.1,

5.5 and Thm. 5.6]).

For b ∈ B+, we set I(b) = {i ∈ I | si 4 b}. In view of what has just been said,
I(b) is a spherical subset of I.

Let us conclude this subsection by the following easy, but fundamental, lemma :

Lemma 1. Consider a monoid homomorphism ψ : B+ → G, where G is a group.
Then ψ extends to a group homomorphism ψgr : B → G such that ψ = ψgr ◦ ι.

Moreover if Γ is spherical and if ψ is injective, then ψgr is injective.

Proof. The universal property of B gives the first part. For the second, take b ∈
ker(ψgr) and consider a decomposition b = b′−1b′′ with b′, b′′ ∈ B+. Then ψgr(b) = 1
means ψ(b′) = ψgr(b

′) = ψgr(b
′′) = ψ(b′′), whence b′ = b′′ by injectivity of ψ and

hence b = 1. �
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Note that if one is able to construct an injective morphism ψ : B+ → G where
G is a group, then one gets that the canonical morphism ι is injective ; this is the
idea of [21]. In this paper, we will be interested in representations ψ of B+ in some
linear group GL(V ), hence proving their faithfulness will prove at the same time
the faithfulness of the corresponding linear representation ψgr : B → GL(V ) when
Γ is spherical.

1.3. Standard root systems.

Let Γ = (mi,j)i,j∈I be a Coxeter matrix. Details on the notions introduced here
can be found in [11].

Let E = ⊕i∈IRαi be a R-vector space with basis (αi)i∈I indexed by I. We
endow E with a symmetric bilinear form ( . | . ) = ( . | . )Γ given on the basis (αi)i∈I
by (αi|αj) = −2 cos

(
π

mi,j

)
. The Coxeter group W = WΓ acts on E via si(β) =

β − (β|αi)αi.
The (standard) root system associated with Γ is by definition the set Φ = ΦΓ =

{w(αi) | w ∈ W, i ∈ I}. It is well-known that Φ = Φ+ ⊔ Φ−, where Φ+ =
Φ

⋂
(⊕i∈IR+αi) and Φ− = −Φ+. For α =

∑

i∈I λiαi ∈ Φ we call support of α the
set Supp(α) = {i ∈ I | λi 6= 0}.

We will always represent a subset Ψ of Φ+ by a graph with vertex set Ψ and
an edge labeled i between two vertices α and β if α = si(β). For example, the
situation where β is fixed by si will be drawn by a loop siiβ .

Such a graph is naturally N-graded via the depth function on Φ+, where the
depth of a root α ∈ Φ+ is by definition dp(α) = min{l(w) | w ∈ W, w(α) ∈ Φ−}.
Contrary to what suggests this terminology, in all the graphs that we will draw, we
chose to place a root of great depth above a root of small depth ; so drawings like
the following ones (with β above α), will all mean that β = si(α) (or equivalently
α = si(β)) and dp(β) > dp(α) :

sα

sβ




i

, sα

sβ
i

, s α

sβ

J
J i

. . .

Lemma 2 ([4, Lem 1.7]). Let i ∈ I and α ∈ Φ+ \ {αi}. Then

dp(si(α)) =







dp(α) − 1 if (α|αi) > 0,

dp(α) if (α|αi) = 0,

dp(α) + 1 if (α|αi) < 0,

In the remainder of the paper, we will often consider subsets of Φ+ of the form
{w(α) | w ∈ W{i,j}}

⋂
Φ+, for α ∈ Φ+ and i, j ∈ I with mi,j = 2 or 3, so the

following definition and remark will be useful :

Definition 3. Let α ∈ Φ+ and J ⊆ I. We call J-mesh of α, or simply mesh,
the set [α]J := {w(α) | w ∈ WJ}

⋂
Φ+. This terminology is inspired by personal

communications with Hée.

Remark 4. Let α ∈ Φ+ and i, j ∈ I with mi,j = 2 or 3. Then, up to exchanging
i and j, the graph of the mesh [α]{i,j} is one of the following :

• if mi,j = 2 :
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• if mi,j = 3 :
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Let J be a subset of I. We denote by ΦJ the subset {w(αj) | w ∈WJ , j ∈ J} of
Φ. It is clear that ΦJ is the root system associated with ΓJ in ⊕j∈JRαj .

1.4. Graph automorphisms.

We call automorphism of a Coxeter matrix Γ = (mi,j)i,j∈I every permutation g
of I such that mg(i),g(j) = mi,j for all i, j ∈ I, and we denote by Aut(Γ) the group
the constitute.

Any automorphism of Γ clearly acts by automorphisms on W , B and B+ by
permuting the corresponding generating set. If G is a subgroup of Aut(Γ), we
denote by WG, BG and (B+)G the corresponding subset of fixed points under the
action of the elements of G. It is known that WG (resp. (B+)G) is a Coxeter group
(resp. Artin-Tits monoid) associated with a certain Coxeter graph Γ′ easily deduced
from Γ, and the analogue holds for BG when Γ is spherical, or more generally of
FC-type (see [13, 20] for the Coxeter case, [19, 9, 10, 7] for the Artin-Tits case).
Note that the standard generator of (B+)G are the Garside elements ∆J of B+

J , for
J running through the spherical orbits of I under G.

Similarly, any automorphism g of Γ acts by a linear automorphism on E =
⊕i∈IRαi by permuting the basis (αi)i∈I . This action stabilizes Φ and Φ+, and the
induced action on those sets is given by w(αi) 7→ (g(w))(αg(i)).

2. LK-representations

In subsection 2.1 below, we define the Lawrence-Krammer representations, over
an arbitrary (unitary) commutative ring R, of the Artin-Tits monoids an groups
of small type. The definition is inspired by the ones of [17, 8, 12, 21], where R is
chosen to be Z[x±1, y±1] (cf. section 2.3 below).

In subsection 2.2, we extend to our settings the faithfulness criterion of [17, 8,
12, 21] and prove it following [14]. We apply that criterion in subsection 2.3.

From now on, we assume that Γ = (mi,j)i,j∈I is a Coxeter matrix of small type,
i.e. with mi,j ∈ {1, 2, 3} for all i, j ∈ I.
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2.1. Definition.

Let R be a commutative ring and V be a free R-module with basis (eα)α∈Φ+

indexed by Φ+.

Notation 5. For f ∈ V ⋆ and e ∈ V , we denote by f⊠e the element of L (V ) given
by (f⊠e)(v) = f(v)e for every v ∈ V .

Remark 6. Consider ϕ ∈ L (V ), f, f ′ ∈ V ⋆ and e, e′ ∈ V . Then :

(i) ϕ(f⊠e) = f⊠ϕ(e),
(ii) (f⊠e)ϕ = (fϕ)⊠e,
(iii) (f⊠e)(f ′

⊠e′) = f(e′)(f ′
⊠e).

Definition 7. Fix (a, b, c, d) ∈ R
4 and a family of linear forms (fi)i∈I ∈ (V ⋆)I .

For i ∈ I, we denote by fi,α the element fi(eα), for α ∈ Φ+, and by

• ϕi the endomorphism of V given on the basis (eα)α∈Φ+ by






ϕi(eα) = 0 if α = αi,

ϕi(eα) = deα if sii
α ,

{

ϕi(eβ) = beα

ϕi(eα) = aeα + ceβ
if

s

s
i

α

β
in Φ+.

• ψi the endomorphism of V given by ψi = ϕi + fi⊠eαi
.

Remark 8. If one fixes an arrangement of the basis (eα)α∈Φ+ so that eαi
is the

leftmost element and eβ is the right successor of eα whenever β = si(α) with
dp(β) > dp(α), then the matrix of ϕi in this basis is block diagonal, with blocks







eα(
0
)

if α = αi,

eα(
d
)

if sii
α ,

eα eβ(
a b

c 0

)

if
s

s
i

α

β
.

And the matrix of ψi is the same except that the first row (the one of index αi),
which is zero in ϕi, if replaced by the row (fi,α)α∈Φ+ = (fi(eα))α∈Φ+ .

Let us now exhibit conditions on a, b, c, d and (fi)i∈I so that the map si 7→ ψi
extends to a linear representation ψ of B+ into L (V ) or GL(V ).

Lemma 9. The map ψi is invertible if and only if b, c, d and fi,αi
belong to R×,

in which case the inverse of ψi is given by






ψ−1
i (eα) =

1

fi,αi

eαi
if α = αi,

ψ−1
i (eα) =

1

d

(

eα −
fi,α

fi,αi

eαi

)

if sii
α ,







ψ−1
i (eβ) =

1

c

(

eα −
a

b
eβ +

afi,β − bfi,α

bfi,αi

eαi

)

ψ−1
i (eα) =

1

b

(

eβ −
fi,β

fi,αi

eαi

) if
s

s
i

α

β
in Φ+.
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Proof. Straightforward computations. �

Lemma 10. Consider i, j ∈ I with i 6= j.

(i) If mi,j = 2, then ϕiϕj = ϕjϕi.
(ii) If mi,j = 3 and if a

(
d(a − d) + bc

)
= 0, then ϕiϕjϕi = ϕjϕiϕj.

Proof. For every α ∈ Φ+, the linear maps ϕi and ϕj stabilize the submodule of V
generated by the elements eβ for β running through the {i, j}-mesh [α]i,j of α. The
results then follow from the direct computations of the matrices of the restrictions
of ϕiϕj and ϕiϕjϕi to those submodules (of dimension 1, 2, 3, 4 or 6 in view of
remark 4). Note that the only case where the condition a

(
d(a − d) + bc

)
= 0 is

needed is the case of a mesh of type 7 in the nomenclature of remark 4. �

Lemma 11. Consider i, j ∈ I with i 6= j, and assume that d(a − d) + bc = 0 and
fi(αj) = fj(αi) = 0.

(i) If mi,j = 2, then ψiψj = ψjψi if and only if fiϕj = dfi and fjϕi = dfj.
(ii) If mi,j = 3, then fiϕj = fjϕi implies ψiψjψi = ψjψiψj, and the converse

is true if c ∈ R×.

Proof. Note that, since fi(αj) = 0, we get, by using the formulas of remark 6 :
(fi⊠v)(f⊠eαj

) = 0 for every (v, f) ∈ V ×V ⋆ (and similarly if we exchange i and j),
and hence

• ψiψj = ϕiϕj + fj⊠ϕi(eαj
) + (fiϕj)⊠eαi

, and
• ψiψjψi = ϕiϕjϕi + fi⊠ϕiϕj(eαi

) + (fjϕi)⊠ϕi(eαj
)

+
(
fiϕjϕi + (fiϕj)(eαi

)fi
)
⊠eαi

.

If mi,j = 2, then ϕi(eαj
) = deαj

, thus we get, by symmetry in i and j and by case
(i) of the previous lemma :

ψiψj − ψjψi = (fiϕj − dfi)⊠eαi
− (fjϕi − dfj)⊠eαj

.

This establishes (i). If mi,j = 3, then ϕi(eαj
) = aeαj

+ ceαi+αj
, ϕiϕj(eαi

) = bceαj
,

thus we get, by symmetry in i and j and by case (ii) of the previous lemma :

ψiψjψi − ψjψiψj = c(fjϕi − fiϕj)⊠eαi+αj

+
(
fjϕi(ϕj − a Id) + (fjϕi)(eαj

)fj − bcfi
)
⊠eαj

−
(
fiϕj(ϕi − a Id) + (fiϕj)(eαi

)fi − bcfj
)

︸ ︷︷ ︸

Fi,j

⊠eαi
.

The second part of (ii) is now clear, and to show the direct implication, we have to
show that fiϕj = fjϕi implies Fi,j = 0 (this will give Fj,i = 0 by symmetry and
hence ψiψjψi = ψjψiψj). But since ϕi(eαi

) = 0, we have

Fi,j = (fiϕj − fjϕi)(ϕi − a Id) + (fiϕj − fjϕi)(eαi
)fi + fj

(
ϕ2
i − aϕi − bc Id

)
,

and the linear form fj
(
ϕ2
i − aϕi − bc Id

)
is the zero form, since it is zero on

• eαi
since ϕi(eαi

) = 0 and fj(eαi
) = 0,

• eα if sii
α since then ϕi(eα) = deα and d2 − ad − bc = 0,

• eα and eβ if
s

s
i

α

β
in Φ+, since X2 − aX − bc is the characteristic

polynomial of the restriction of ϕi on Reα ⊕ Reβ (see remark 8).

Whence the result. �
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Definition 12. Fix (b, c, d) ∈ (R×)3, set a = d−
bc

d
, and consider the linear maps

ϕi ∈ L (V ), i ∈ I, as in definition 7. We say that a family (fi)i∈I ∈ (V ⋆)I is an
LK-family (relatively to (b, c, d)) if it satisfies the following properties :

(i) for i, j ∈ I with i 6= j, fi(eαj
) = 0,

(ii) for i, j ∈ I with mi,j = 2, fiϕj = dfi,
(iii) for i, j ∈ I with mi,j = 3, fiϕj = fjϕi.

We denote by F = F(b,c,d) the set of LK-families relatively to (b, c, d). This is

clearly a submodule of the R-module (V ⋆)I . We denote by Fgr the subset of F

composed of the LK-families for which fi(eαi
) ∈ R× for every i ∈ I.

In view of lemma 11 above, for every LK-family (fi)i∈I , the map si 7→ ψi =
ϕi + fi⊠eαi

extends to a linear representation ψ = ψ(b,c,d),(fi)i∈I
: B+ → L (V ).

Moreover, if (fi)i∈I ∈ Fgr, then in view of lemma 9, the images of ψ are invertible,
and hence ψ : B+ → GL(V ) induces a linear representation ψgr : B → GL(V ).

We call Lawrence-Krammer representation — LK-representation for short — the
representation ψ of B+ and, when appropriate, the representation ψgr of B.

Remark 13. The assumption on b, c, d to be units of R is not needed to define
the LK-representations of B+ and for the faithfulness criterion of the following
subsection. We included it in the definition since we are mainly interested in LK-
representations of B+ that extends to LK-representations of B, and since it will be
of importance in our general study of LK-families in section 3 below.

2.2. Faithfulness criterion.

The key argument in [16, 17, 8, 12, 21] is that the LK-representation ψ they
consider is faithful. The faithfulness criterion used each time can be summarized
as follows (where a, b, c, d, (fi)i∈I and ψ are as in definition 12) :

Theorem 14. Assume that the following two conditions are satisfied :

(i) Im(ψ) is a left cancellative submonoid of L (V ),
(ii) there exists a totally ordered commutative ring R0 and a ring homomor-

phism R → R0, x 7→ x, such that a, b, c, d are positive and fi,α = 0 for
every (i, α) ∈ I × Φ+.

Then the LK-representation ψ is faithful.

In the remainder of this subsection, we sketch the (much easier) proof of this
criterion obtained by Hée in [14]. It does not involve any consideration on closed
sets of positive roots, nor on the maximal simple (left) divisor of an element of B+,
and rely only on the two following (elementary) lemmas and a look at the defining
formulas of ψ.

Lemma 15 ([14, Prop. 1]). Let ρ : B+ → M be a monoid homomorphism where
M is left cancellative. If ρ satisfies ρ(b) = ρ(b′) ⇒ I(b) = I(b′) for all b, b′ ∈ B+,
then it is injective.

Proof. Under those assumptions, one can show, by induction on ℓ(b), that ρ(b) =
ρ(b′) implies b = b′. (See lemma 49 below for a twisted version of that result.) �

Notation 16. We denote by Bin(Ω) the monoid of binary relations on a set
Ω, where the product RR′ of two binary relations R and R′ is defined on Ω by
βRR′α⇔ ∃ γ ∈ Ω such that βRγ and γR′α.

For R ∈ Bin(Ω) and Ψ ⊆ Ω, we denote by R(Ψ) the set {β ∈ Ω | ∃α ∈ Ψ, βRα}.
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We will use again the following lemma in the proof of our faithfulness criterion
in subsection 4.2 below. So, for completeness, we detail its proof here.

Lemma 17 ([14, Prop. 2]). Let B+ → Bin(Ω), b 7→ Rb, be a monoid homomor-
phism, and let (αi)i∈I be a family of elements of Ω such that

(i) αi 6∈ Rsi
(Ω),

(ii) if i 6= j, then αiRsj
αi,

(iii) if mi,j = 3, then αiRsj
Rsi

αj.

Then for every b ∈ B+, we have si 4 b ⇔ αi 6∈ Rb(Ω). In particular, for
b, b′ ∈ B+, we get Rb(Ω) = Rb′(Ω) ⇒ I(b) = I(b′).

Proof. Since the map b → Rb is a monoid homomorphism, we get that b′ 4 b
implies Rb(Ω) ⊆ Rb′(Ω) for every b, b′ ∈ B+. Thanks to property (i), this shows
that si 4 b ⇒ αi 6∈ Rb(Ω). For the converse, assume that si 64 b and let us prove
by induction on ℓ(b) that αi ∈ Rb(Ω). If b = 1, then Rb is the equality relation and
hence αi ∈ Rb(Ω). If ℓ(b) > 0, fix j ∈ I such that sj 4 b (hence j 6= i) and denote by
b1 the element of B+ such that b = sjb1 ; if si 64 b1, then αi ∈ Rb1(Ω) by induction
and hence αi ∈ Rb(Ω) thanks to property (ii) ; if si 4 b1, then b = sjsib2 for some
b2 ∈ B+, and since si 64 b, we necessarily have mi,j 6= 2 (hence mi,j = 3) and
sj 64 b2, so αj ∈ Rb2(Ω) by induction and αi ∈ Rb(Ω) thanks to property (iii). �

Remark 18. Let R0 be a totally ordered commutative ring and let V0 be a free
R0-module with basis (eα)α∈Ω. We denote by R+

0 the set (semiring) of non-negative
elements of R0 and by L +(V0) the submonoid of L (V0) composed of the linear
maps ϕ : V0 → V0 such that ϕ(eα) ∈ ⊕β∈ΩR+

0 eβ for all α ∈ Ω.
Then there is a monoid homomorphism L +(V0) → Bin(Ω), ϕ 7→ Rϕ, where Rϕ

is given by βRϕα⇔ the coefficient of eβ in ϕ(eα) is positive.

Now assume that we are in the situation of condition (ii) of theorem 14.

Definition 19 ([14, 4.3]). If we denote by V0 the free R0-module with basis
(eα)α∈Φ+ , then the ring homomorphism R → R0, x 7→ x, naturally induces a
monoid homomorphism L (V ) → L (V0), ϕ 7→ ϕ, which sends Im(ψ) into L +(V0)
by assumption on the parameters a, b, c, d and fi,α, (i, α) ∈ I ×Φ+. If we compose
again by the monoid homomorphism L +(V0) → Bin(Φ+), ϕ 7→ Rϕ, of remark 18,
we thus get a monoid homomorphism

B+ → Bin(Φ+), b 7→ Rb = Rψb

A quick look at the formulas of definition 7 then easily gives the following :

Lemma 20 ([14, 4.3 and 4.4]). Under condition (ii) of theorem 14 and with the
notations introduced in definition 19 above, the morphism B+ → Bin(Φ+), b 7→ Rb,
satisfies the following properties :

(i) αi 6∈ Rsi
(Φ+),

(ii) if i 6= j, then αiRsj
αi,

(iii) if mi,j = 3, then αiRsj
Rsi

αj.

And a combination of the three previous lemmas easily gives theorem 14.

2.3. Application of the faithfulness criterion.

The typical situation where theorem 14 applies is, for any totally ordered com-
mutative ring R0 (for example any subring of R) :
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• R = R0[x] where x is an indeterminate, and the evaluation at x = 0 for
the morphism R → R0,

• b, c, d positive units of R0 with bc < d2,
• an LK-family (fi)i∈I with Im(fi) ⊆ xR and fi(eαi

) 6= 0 for all i ∈ I.

Indeed, in that situation, condition (ii) of theorem 14 is clearly satisfied. To
see condition (i), note that, since the elements fi(eαi

), i ∈ I, are non-zero, they
become units of some appropriate overring R′ of R (for example its field of fractions
K(x), where K is the field of fractions of R0). So if we denote by V ′ the free R′-
module with basis (eα)α∈Φ+ , then Im(ψ) is included in L (V ) ∩ GL(V ′) and hence
is cancellative.

Moreover, the faithful LK-representation ψ then induces an LK-representation
ψgr : B → GL(V ′), which is faithful when Γ is spherical (in view of lemma 1).

Hence to construct faithful LK-representations of B+ — and of B when Γ is
spherical — it suffices to construct LK-families over xR0[x] with non-zero elements
fi(eαi

) for i ∈ I. This will be done, for any Coxeter graph of small type with no

triangle, and for the triangle graph Ã2, in subsection 3.5 below.

Example 21. Following [17, 8, 12, 21], one can choose R0 = Z[y±1] for some
y ∈ R

⋆
+ \ {1}, and (b, c, d) = (yp, yq, yr) with p, q, r ∈ Z such that 2r < p+ q (resp.

2r > p+ q) if 0 < y < 1 (resp. y > 1).

In [17, 8, 12, 21], the authors choose 0 < y < 1, d = 1 and (b, c) = (y, y) (in [8]),
(1, y) (in [12]) or (y, 1) (in [21]). Note that the situation in [17] is slightly out of our
settings since the value of (b, c) varies for ϕi (between (y, 1) and (1, y)), depending
on the considered {i}-mesh of cardinality two. The authors construct LK-families
(fi)i∈I over xZ[y] with elements fi(eαi

), i ∈ I, all equal to xy4 (in [8]) or xy2 (in
[17, 12, 21]), hence the overring R′ = Z[x±1, y±1] is appropriate in the discussion
above.

3. On LK-families

We study in this section the module of LK-families F and its subset Fgr for a
given choice of parameters (b, c, d) ∈ (R×)3, as defined in definition 12.

In subsection 3.1, we characterize the LK-families in terms of relations between
the elements fi,α = fi(eα) ∈ R, for every (i, α) ∈ I × Φ+. This characterization
generalizes some computations of [8, 12, 21], and we recall in subsections 3.2 and
3.3 below their results on those families : in our settings, it is shown in [8, 12] that,
when Γ is spherical, there exists an isomorphism from F onto R which sends Fgr

onto R×, an it is shown in [21] that Fgr is not trivial when Γ has no triangle.
The aim of subsection 3.4 is to explicit the structure of F and Fgr when Γ is

affine : we show that there exists an isomorphism from F onto RN which sends
Fgr onto R××RN>1 (see theorem 35). In particular, this result holds for the affine

type Ã2 and hence gives the firsts examples of LK-representations of an Artin-Tits
group whose type has triangles.

In all this section, we fix a Coxeter matrix of small type Γ = (mi,j)i,j∈I , a

commutative ring R, a triple (b, c, d) ∈ (R×)3 and we set a = d− bc

d
. We denote by

V the free R-module with basis (eα)α∈Φ+ and define the linear maps ϕi ∈ L (V ),
i ∈ I, as in definition 7.
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3.1. Characterization of LK-families.

The following proposition gives a characterization of an LK-family (fi)i∈I in
terms of relations between the fi,α = fi(eα)’s. This generalizes [8, Prop. 3.2] and
the computations of [12, proof of Thm. 3.8] and [21, proofs of lemmas 3.6 and 3.7].

Proposition 22. An element (fi)i∈I ∈ (V ⋆)I is an LK-family if and only if the
relations listed in Table 1 below hold among the elements fi,α, (i, α) ∈ I × Φ+.
(Note that the relations of cases (6) and (8) must hold whether (αi|α) is positive,
zero or negative.)

n◦ Relations among the fi,α’s Configuration of roots

(1) fi,αj
= 0 if i 6= j

(2) fi,αi
= fj,αj

if mi,j = 3

(3)
(4)

fi,β′ = fj,β
cfi,γ′ + afi,δ = cfj,γ + afj,δ

if mi,j = 3 and

s

s

s

s

s

s

�
�

@
@

@
@

�
�

j

j

i

i

j i

β β′

γ γ′

δ

(5) fi,α = fj,α if mi,j = 3 and sijii

α

(6) dfi,α = bfi,β if mi,j = 2 and
s

s
j

β

α

(7) cfi,αi+αj
= −afi,αi

if mi,j = 3

(8) cfi,α = bfj,γ − afi,β if mi,j = 3 and

s

s

s
i

j

α

β

γ

(9)
(10)

cfi,β = dfj,γ − afi,γ
dfi,α = bfj,β

if mi,j = 3 and

s

s

s
j

i

α

β

γ ii

ij

Table 1. Relations for an LK-family.

Proof. This is simply the transcription on the basis elements eα, α ∈ Φ+, of V , of
conditions (i), (ii) and (iii) of definition 12 on the linear forms fi, i ∈ I. Indeed,
relation (1) is condition (i), and for every i, j ∈ I, we get by definition :







fiϕj(eα) = 0 if α = αj ,

fiϕj(eα) = dfi,α if sij
α ,

{

fiϕj(eα) = bfi,β

fiϕj(eβ) = afi,β + cfi,α
if

s

s
j

β

α
in Φ+.
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Assume that mi,j = 2. We thus have fiϕj(eα) = dfi(eα) if α = αj or if α is fixed
by sj . And for the {j}-mesh {α, β} displayed above,

then

{

fiϕj(eα) = dfi(eα)

fiϕj(eβ) = dfi(eβ)
⇐⇒

{

bfi,β = dfi,α

afi,β + cfi,α = dfi,β
,

and both equations give relation (6) since
b

d
=

d − a

c
in R.

Now assume that mi,j = 3, and consider the system of equations fiϕj(eα) =
fjϕi(eα), for α running through the vertices of a given {i, j}-mesh M , and for the
four possible types of M (see remark 4).

Type 5 : M = {αi, αj , αi + αj} (the situations for αi and αj are symmetrical),

then

{

fiϕj(eαi
) = fjϕi(eαi

)

fiϕj(eαi+αj
) = fjϕi(eαi+αj

)
⇐⇒

{

afi,αi
+ cfi,αi+αj

= 0

bfi,αi
= bfj,αj

,

this gives relations (7) and (2) (since b ∈ R×).
Type 6 : M = {α}, fiϕj(eα) = fjϕi(eα) ⇐⇒ dfi,α = dfj,α, this is relation (5).
Type 7 : M = {α, β, γ} as displayed above,

s

s

s
j

i

α

β

γ ii

ij

then







fiϕj(eα) = fjϕi(eα)

fiϕj(eβ) = fjϕi(eβ)

fiϕj(eγ) = fjϕi(eγ)

⇐⇒







dfi,α = bfj,β

bfi,γ = afj,β + cfj,α

afi,γ + cfi,β = dfj,γ

,

this gives relations (10), one case of (8) (by exchanging i and j) and (9).
Type 8 : M = {α, β, β′, γ, γ′, δ} as displayed above (the situations for β and β′,

and for γ and γ′, are symmetrical),

s

s

s

s

s

s

�
�

@
@

@
@

�
�

j

j

i

i

j i

β β′

γ γ′

δ

α

then







fiϕj(eα) = fjϕi(eα)

fiϕj(eβ) = fjϕi(eβ)

fiϕj(eγ) = fjϕi(eγ)

fiϕj(eδ) = fjϕi(eδ)

⇐⇒







bfi,β′ = bfj,β

bfi,γ = afj,β + cfj,α

afi,γ + cfi,β = bfj,δ

afi,δ + cfi,γ′ = afj,δ + cfj,γ

,

this gives relations (3) (since b ∈ R×), the two last cases of (8), and (4). �

Note that these relations are of two kinds : relations (1) to (5) give equalities
between elements associated with roots of the same depth, whereas relations (6)
to (10) express an element fi,α in terms of a linear combination of some fj,β ’s with
dp(β) < dp(α). In fact, relation (5) can be deleted from Table 1 (this generalizes
the analogous observation of [8, proof of Prop. 3.2], [12, proof of Thm. 3.8], and
[21, Lem. 3.5]), this is proved in lemma 24 below.

Lemma 23. Let i, j, k ∈ I be such that mi,j = mj,k = mk,i = 3. Then for every
α ∈ Φ+, we have (αi|α) + (αj |α) + (αk|α) 6 0.

Proof. The map v 7→ (αi|v) + (αj |v) + (αk|v) is a linear form on E = ⊕l∈IRαl
which is clearly non-positive on the basis elements αl, l ∈ I. This gives the result
since every α ∈ Φ+ is a linear combination, with non-negative coefficients, of those
elements αl, l ∈ I. �

Lemma 24. Relation (5) of Table 1 is implied by relations (1), (6), (8) and (10).



14 ANATOLE CASTELLA

Proof. Fix i, j ∈ I with mi,j = 3 and α ∈ Φ+ such that (αi|α) = (αj |α) = 0. Let
us show by induction on dp(α) that fi,α = fj,α, using only relations (1), (6), (8)
and (10). If dp(α) = 1, i.e. if α = αk for some k ∈ I, then k 6= i, j and the result
is given by (1). So assume that dp(α) > 2 and fix k ∈ I such that (αk|α) > 0 ; we
set β = sk(α) ∈ Φ+.

If mi,k = mj,k = 2, then we get (αi|β) = (αj |β) = 0, whence fi,β = fj,β by
induction and hence fi,α = fj,α by (6) since d ∈ R×.

If mi,k = 2 and mj,k = 3, then the graph of [α]{i,j,k} is the following :

s

s

s

sii

i

i

ii

i j

k
i

j

k

i
j k

α

β

γ

δ

, whence

fi,α =
b

d
fi,β by (6)

=
b

cd
(bfj,δ − afi,γ) by (8)

fj,α =
1

c
(bfk,γ − afj,β) by (8)

=
b

cd
(bfk,δ − afi,γ) by (6) and (10)

fj,δ = fk,δ by induction

, and hence fi,α = fj,α.

Thanks to lemma 23, we cannot have mi,k = mj,k = 3 in that situation, so we
are done (up to exchanging i and j). �

Remark 25. LK-families and reducibility.
If Γ1, . . . ,Γp are the connected components of Γ, with vertex set I1, . . . , Ip respec-

tively, then Φ = ΦI1⊔· · ·⊔ΦIp
and relations (1) and (6) imply that fi,α = 0 for every

(i, α) ∈ Im × Φ+
In

whenever m 6= n. As a consequence, any LK-representation ψ of

B+
Γ is the direct sum of the induced LK-representations ψn of B+

Γn
for 1 6 n 6 p.

Hence when considering LK-representations (or LK-families), there is no loss of
generality in assuming that Γ is connected, in which case the elements fi,αi

, i ∈ I,
are all equal by relation (2).

3.2. The spherical case.

We assume here that Γ = An (n > 1), Dn (n > 4), or En (n = 6, 7 or 8). In
the following theorem, we rephrase the unicity statements of [8, Prop. 3.5] and [12,
Thm. 3.8]. Recall that F ⊆ (V ⋆)I is the R-module of LK-families.

Definition 26. Fix i0 ∈ I. Let µ be the linear map F → R, (fi)i∈I 7→ fi0,αi0
. In

view of relation (2) (and of the fact that Γ is connected), µ does not depend on the
choice of i0 ∈ I.

Theorem 27. The linear map µ : F → R, is an isomorphism (or R-modules).

Proof. Since Γ is spherical, there is no mesh of type 8 (see remark 4) in Φ+.
Hence for a given LK-family (fi)i∈I , every fi,α with dp(α) > 2 can be expressed

as a linear combination of some fj,β’s with dp(β) < dp(α), via at least one of the
relations (6) to (10). As a consequence, (fi)i∈I is entirely determined by the values
of the fi,αj

, for i, j ∈ I. And since fi,αj
= 0 if i 6= j by (1), and fi,αi

= fi0,αi0
for

every i ∈ I by (2) (since Γ is connected), (fi)i∈I is in fact entirely determined by
the value fi0,αi0

, whence the injectivity of µ.
In order to show its surjectivity, the idea is to define an LK-family inductively,

with basis step fi,αi
= f ∈ R (one could chose f = 1 by linearity) and fi,αj

= 0 if
i 6= j, and inductive step one of the suitable relations (6) to (10) to define fi,α (with
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dp(α) > 2) in terms of a linear combination of some fj,β ’s with dp(β) < dp(α).
Proving that the obtained family is indeed an LK-family amounts to proving that
the definition of fi,α does not depend on the choice of the suitable relation chosen in
the inductive step. This is essentially done in [8, Prop. 3.5] and [12, Thm. 3.8]. �

When Γ is connected and spherical (and of small type), LK-representations of
B+ are then parametrized by R and LK-representations of B (those corresponding
to LK-families with fi0,αi0

∈ R×) are parametrized by R×.

Let us end this subsection with some consequences of that construction.

Note that since Γ is spherical, the free R-module V is finite-dimensional and
hence the notion of determinant of an element of L (V ) is defined.

Corollary 28. Tow LK-representations ψ and ψ′, associated with to distinct LK-
families (fi)i∈I and (f ′

i)i∈I respectively, are non-equivalent.

Proof. It suffices to see that for a given i ∈ I, the maps ψi and ψ′
i have distinct

determinant. But in view of remark 8, we get det(ψi) = ufi,αi
and det(ψ′

i) = uf′i,αi

for a certain u ∈ R×, whence the result since the previous theorem shows that
(fi)i∈I 6= (f ′

i)i∈I implies fi,αi
6= f′i,αi

. �

Finally, an easy induction on dp(α) gives the following remark, which generalizes
[8, Cor. 3.3] :

Remark 29. Let (fi)i∈I be an LK-family and set fi0,αi0
= f.

Then for every α 6= αi, we have fi,α ∈ −
af

c
R, and more precisely :

(i) fi,α = 0 if i 6∈ Supp(α), and

(ii) fi,α = −
af

c

(b

d

)dp(α)−2

if dp(α) > 2 and (αi|α) > 0.

This construction can be generalized to an arbitrary Coxeter matrix of small
type with no triangle, following [21]. This is done in the following subsection.

3.3. The LK-family of Paris.

The main construction of [21] is a uniform construction of an LK-family with
fi,αi

∈ R× for every i ∈ I, for any Coxeter matrix of small type Γ = (mi,j)i,j∈I
with no triangle, i.e. no subset {i, j, k} ⊆ I with mi,j = mj,k = mk,i = 3.

This construction is made over R = Z[x±1, y±1], with fi,αi
= xy2 for every i ∈ I.

The aim of this subsection is to generalize it to our settings.

Definition 30 ([21]). For every α ∈ Φ+ with dp(α) > 2, fix an element jα ∈ I such
that (α|αjα) > 0. Let us define a family (fi,α)(i,α)∈I×Φ+ by induction on dp(α) as
follows :

• Basis step : fix f ∈ R (one can choose f = 1 by linearity) and set

Case Value of fi,α Condition

(C1) f if α = αi

(C2) 0 if α = αj for j 6= i

(C3) −
af

c

(b

d

)dp(α)−2

if dp(α) > 2 and (α|αi) > 0
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• Inductive step : if dp(α) > 2 and (α|αi) 6 0 — hence i 6= jα — then set

Case Value of fi,α Condition

(C4)
b

d
fi,β if mi,jα = 2

(C5)
1

c
(bfjα,γ − afi,β) if mi,jα = 3 and

ss

s

s
i

jα

α

β

γ

(C6)
1

c
(dfjα,β − afi,β) if mi,jα = 3 and

s

s

s
jα

iα

β ii

ijα

(C7)
b

d
fi,β +

d

c
fjα,β +

adf

c2

(b

d

)dp(α)−3

if mi,j = 3 and

s

s

s

s

s

s

�
�

@
@

@
@

�
�

jα

jα

i

i

jα i

α

β

And we define the family (fi)i∈I ∈ (V ⋆)I via fi(eα) = fi,α for (i, α) ∈ I × Φ+.

Note that cases (C4) and (C5) occur whether (αi|α) is zero or negative. Case
(C3) is a generalization of what happens when Γ is spherical, but is no longer a
consequence of the relations of Table 1 in general, and neither is case (C7) (see
subsection 3.4).

Proposition 31. Assume that the family (fi)i∈I of definition 30 does not depend
on the choice of the jα’s. Then it is an LK-family.

Proof. We have to show that the family (fi,α)(i,α)∈I×Φ+ satisfies the relations (1) to
(4) and (6) to (10) of proposition 22 (thanks to lemma 24). Relations (1), (2), (3),
(7) and (10) are clearly satisfied by construction. In the same way, (C3) implies
relations (6) and (8) when (αi|α) > 0 (use d(a − d) + bc = 0 to establish (8)).

Now consider a relation (4), (6) with (αi|α) 6 0, (8) with (αi|α) 6 0, or (9).
Then the elements fi,α, for α of highest depth among the roots involved in this
relation, are defined by induction. Under the assumption of the proposition, we are
free to use the suitable case among (C7), (C4), (C5) or (C6) respectively, to define
them ; this clearly shows that the considered relation is satisfied (use the fact that
d(a − d) + bc = 0 to establish relation (4) via (C7)). �

The previous proposition generalizes the computations of [21, lemmas 3.5, 3.6
and 3.7]. It is not clear whether the independance assumption is true in general,
but this is at least the case when Γ has no triangle :

Proposition 32. Assume that Γ has no triangle. Then the family (fi)i∈I of defi-
nition 30 does not depend on the choice of the jα’s.



ON (TWISTED) LK-REPRESENTATIONS 17

Proof. This is [21, lemmas 3.3 and 3.4] : our settings are slightly more general, but
the (long) computations of the proofs are essentially the same. �

Hence if Γ has no triangle, then the module of LK-families F is not trivial
(contains a free submodule of dimension 1), and, by choosing f ∈ R× in definition
30 above, one obtains an element of Fgr.

It can also be shown that the family of definition 30 does not depend on the
choice of the jα’s when Γ = Ã2 (following the same steps as in the proof of lemma
37 below), hence the same holds for this triangle graph. We will more generally
explicit all the LK-families for any affine Coxeter graph in the following section.

3.4. The affine case.

We assume here that Γ = (mi,j)06i,j6n is a Coxeter matrix of type Ãn (n > 2),

D̃n (n > 4) or Ẽn (n = 6, 7, 8). We set I = [[0, n]].

We denote by Γ0 = (mi,j)16i,j6n the corresponding spherical Coxeter matrix.
Let Φ (resp. Φ0) be the root system associated with Γ (resp. Γ0) in E = ⊕ni=0Rαi
(resp. E0 = ⊕ni=1Rαi) and let δ be the first positive imaginary root of Φ, then we
have the following decomposition (see [15]) :

Φ =
⊔

p∈Z

(
Φ0 + pδ

)
and Φ+ = Φ+

0

⊔( ⊔

p∈N>1

(
Φ0 + pδ

))

.

As a consequence, we get the following remark :

Remark 33. The only meshes of type 8 in Φ+ (see remark 4) are the following
ones, for p > 1 and mi,j = 3 :

s

s s

s s

s

�
�

@
@

@
@

�
�

i

i

ji

j

j

pδ − αi − αj

pδ − αj

pδ + αj

pδ − αi

pδ + αi

pδ + αi + αj

In particular, for a given (i, α) ∈ I × Φ+ with dp(α) > 2, then either α = pδ ± αi
for some p > 1, or the pair (i, α) appears at the left-hand side of (at least) one of
the relations (6) to (10) of Table 1, and for every such relation and every pair
(j, β) involved in its right-hand side, then β 6= qδ − αj for every q > 1.

Definition 34. Let i0, j0 ∈ I be such that mi0,j0 = 3. We denote by µ the linear
map F → RN, (fi)i∈I 7→ (fn)n∈N, where

(i) f2p = fi0,pδ+αi0
for every p ∈ N,

(ii) f2p−1 = cdfi0,pδ−αi0
−bcfi0,pδ−αi0−αj0

−d2fj0,pδ−αi0−αj0
for every p ∈ N>1.

We will show in proposition 39 below that µ does not depend on the choice of
i0, j0 ∈ I such that mi0,j0 = 3. The aim of this subsection is then to prove the
following :

Theorem 35. The linear map µ : F → RN is an isomorphism (of R-modules).
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Hence in those cases, LK-representations of B+ are parametrized by RN and
LK-representations of B (those corresponding to LK-families with fi0,αi0

∈ R×)

are parametrized by R× × RN>1 . The injectivity and surjectivity of µ are proved
respectively in propositions 40 and 41 below.

Notation 36. For every k ∈ N>1, let us denote by Φ+
k the subset of Φ+ composed

of the positive roots of depth smaller than (or equal to) k.

In the two following lemmas, we assume that we are given a family Fk =

(fi,α)(i,α)∈I×Φ+
k
∈ RI×Φ+

k whose elements satisfy the relations of Table 1 whenever

the roots involved are of depth smaller than (or equal to) k, and it is understood
that we work with the elements of Fk.

Lemma 37. Fix (i, p) ∈ I × N>1 and assume that k = dp(pδ − αi) − 1. Then the
element bcfi,pδ−αi−αj

+ d2fj,pδ−αi−αj
does not depend on j ∈ I such that mi,j = 3.

Proof. Assume that j, k ∈ I are such that mi,j = mi,k = 3.
If mj,k = 2, then the result follows from relations (6) and (9) : indeed, we get

cfi,pδ−αi−αj
= dfk,pδ−αi−αj−αk

− afi,pδ−αi−αj−αk
by (9),

cfi,pδ−αi−αk
= dfj,pδ−αi−αj−αk

− afi,pδ−αi−αj−αk
by (9),

dfj,pδ−αi−αj
= bfj,pδ−αi−αj−αk

by (6),

dfk,pδ−αi−αk
= bfk,pδ−αi−αj−αk

by (6).

If mj,k = 3, then Γ = Ã2, {i, j, k} = {0, 1, 2} and pδ−αi−αj = (p−1)δ+αk. In
that case we can prove more, namely that the value of fl,(p−1)δ+αm

does not depend

on the pair (l,m) ∈ {0, 1, 2}2 such that l 6= m. To do this, one can first prove the
similar statement for the elements fl,qδ−αm

with 1 6 q 6 p − 1 by induction on q,
thanks to relations (3) and (8) (the case q = 1 is given by relations (7) and (2)),
and then prove the desired statement for the elements fl,qδ+αm

with 0 6 q 6 p− 1
by induction on q, thanks to relation (8) and the intermediate result (the case q = 0
is given by relation (1)). �

Lemma 38. Fix (i, α) ∈ I × Φ+, with α 6= pδ ± αi for every p ∈ N, and assume
that k = dp(α) − 1. If we define fi,α ∈ R by one of the relations (6) to (10) where
(i, α) appears at the left-hand side, then the value of fi,α does not depend on the
chosen relation.

Proof. Let us assume that (i, α) appears at the left-hand side of two of the relations
(6) to (10) and let us denote by j (resp. k) the index distinct from i involved in
the first (resp. the second) of those two relations. Note that, in that situation,

then Γ 6= Ã2 and there are only ten possibilities up to exchanging j and k (use
remark 33) : two relations (6) with mj,k = 2 or mj,k = 3, relations (6) and (8) with
mj,k = 2, relations (6) and (9) with mj,k = 2 or mj,k = 3, relations (6) and (10)
with mj,k = 2 or mj,k = 3, two relations (8) with mj,k = 2, two relations (9) with
mj,k = 2, two relations (10) with mj,k = 2.

For example in the case (6) and (9) with mj,k = 2, the graph of [α]{i,j,k} is

r

r

r

r

r

r

@
@

@ @
@

@

��
��

��g

g

g

g

i

j

j

i

k j

k
k

k

i

i

α

β

γ
β′
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whence







b

d
fi,β =

b

c
fk,γ −

ab

cd
fi,γ by (9), and

d

c
fk,β′ −

a

c
fi,β′ =

b

c
fk,γ −

ab

cd
fi,γ by (6) (two times).

And in the case (6) and (9) with mj,k = 3, the graph of [α]{i,j,k} is

r

r

r

r

r

r

r

r

r

r

r

r

@
@

@

�
�

�

�
�

�

@
@

@

@@��

��@@

g

g

g

g

g

g
i k j

j

j

i

i

k

k

ij

k kji

jik
k

ij

α

β β′

γ γ′

δ δ′

ε

whence







b

d
fi,β =

b2

cd
fk,δ −

ab

cd
fi,γ by (8),

=
b2

c2
fj,ε −

ab2

c2d
fk,ε −

ab2

cd2 fi,δ′ by (9) and (6),

d

c
fk,β′ −

a

c
fi,β′

=
bd

c2
fj,δ′ −

ad

c2
fk,γ′ −

ab

cd
fi,γ′ by (8) and (6),

=
b2

c2
fj,ε −

ab

c2
fi,δ′ −

ab2

c2d
fk,ε +

a2b

c2d
fi,δ′ by (6), (10) and (8),

=
b2

c2
fj,ε −

ab2

c2d
fk,ε +

ab(a − d)

c2d
fi,δ′ ,

and the result since ab(a−d)
c2d

+ ab
2

cd2 = ab

(cd)2
(d(a − d) + bc) = 0.

The eight remaining cases are similar and left to the reader. �

We are now able to prove the announced results on the linear map µ : F → RN

of definition 34.

Proposition 39. The definition of µ does not depend on the choice of i0, j0 ∈ I
such that mi0,j0 = 3.

Proof. Let (fi)i∈I be an LK-family. Relations (2) and the fact Γ is connected show
that the elements fi,αi

, i ∈ I, are all equal to f0. Now fix p ∈ N>1. In the same
vein, relation (3) and the fact Γ is connected show that the elements fi,pδ+αi

, i ∈ I,
are all equal to f2p.

Now if we set fi,j = cdfi,pδ−αi
− bcfi,pδ−αi−αj

− d2fj,pδ−αi−αj
for i, j ∈ I with

mi,j = 3, we are left to show that fi,j = fi0,j0 = f2p−1 for every i, j ∈ I with

mi,j = 3. But lemma 37 gives fi,j = fi,k if mi,j = mj,k = 3, and since a = d − bc

d
,

relation (4) can be written 1
d
fi,j = 1

d
fj,i, whence fi,j = fj,i, when mi,j = 3. The

connectedness of Γ then gives the result. �

Proposition 40. The linear map µ is injective.

Proof. Let (fi)i∈I be an LK-family. Thanks to remark 33, an easy induction on
dp(α) shows that, for every (i, α) ∈ [[0, n]]×Φ+, either α = pδ−αi for some p ∈ N>1,
or fi,α is a linear combination of some fj,pδ+αj

’s for j ∈ I and p ∈ N. Hence (fi)i∈I
is entirely determined by the elements fi,pδ±αi

, for i ∈ I and p ∈ N.
But by proposition 39, the elements fi,pδ+αi

, i ∈ I, are all equal to f2p and we

get fi,pδ−αi
= b

d
fi,pδ−αi−αj

+ d

c
fj,pδ−αi−αj

+ 1
cd

f2p−1 for any j ∈ I with mi,j = 3,
hence fi,pδ−αi

is entirely determined by some f2q, q ∈ N, and f2p−1. �
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Proposition 41. The linear map µ is surjective.

Proof. Fix (fn)n∈N ∈ RN, and let us construct a family (fi)i∈I ∈ (V ⋆)I by induction
as follows (recall that we set fi(eα) = fi,α for every (i, α) ∈ I × Φ+) :

• Basis step : we set fi,αj
= 0 for i 6= j, and fi,pδ+αi

= f2p for every i ∈ I
and p ∈ N.

• Inductive step : if (i, α) ∈ I × Φ+ is not handled by the basis step (hence
dp(α) > 2) and is such that all the fj,β, for j ∈ I and dp(β) < dp(α), are
constructed. Then

(i) if α = pδ−αi, we set fi,α =
b

d
fi,pδ−αi−αj

+
d

c
fj,pδ−αi−αj

+
1

cd
f2p−1 for

some j such that mi,j = 3,
(ii) if not, then (i, α) appears at the left-hand side of (at least) one of

the relations (6) to (10) (see remark 33) ; we define fi,α via the cor-
responding right-hand side.

We are left to show that (fi)i∈I ∈ (V ⋆)I is an LK-family, since it will then be,
by construction, an antecedent of (fn)n∈N ∈ RN by µ. We proceed by induction on
m ∈ N in order to show that the relations of Table 1 that involve only roots of
depth smaller than (or equal to) m are satisfied by the elements fi,α, for i ∈ I and
α ∈ Φ+ with dp(α) 6 m.

If m = 0, the only relations to consider are relations (1) and (2), which are
satisfied by construction of the basis step. Relation (3) is also satisfied for arbitrary
depths by construction of the basis step. Now assume that we know the result for
some m ∈ N and consider a relation that involves a root of depth m + 1 and no
root of higher depth.

Assume first that it is a relation of type (4), involving the indices i and j (and
hence the roots pδ − αi, pδ − αj and pδ − αi − αj). Lemma 37 shows that the
definition of fi,pδ−αi

(resp. fj,pδ−αj
) at inductive step (i) does not depend on the

choice of k (resp. k′) such that mi,k = 3 (resp. mj,k′ = 3). So we are free to chose
k = j (resp. k′ = i), and we obtain that both sides of relation (4) are equal to
d
(
fi,pδ−αi−αj

+ fj,pδ−αi−αj

)
+ 1

d
f2p−1 since a + bc

d
= d.

Assume finally that it is a relation of type (6)–(10). Lemma 38 shows that the
definition at inductive step (ii) does not depend on the choice of the relation, hence
we are free to use the considered relation at this step and this gives the result. �

Example 42. The LK-family of Paris (see definition 30) is the one corresponding

to the family (fn)n∈N with f0 = f and, for p > 1, f2p = −
af

c

(b

d

)dp(pδ+αi)−2

and

f2p−1 =
ad2f

c

(b

d

)dp(pδ−αi)−3

.

Example 43. Let us assume that Γ = Ãn. Then each α ∈ Φ+ has a unique

decomposition as α = pδ +
∑j+ℓ

k=j αk, with p ∈ N, j ∈ [[0, n]], ℓ ∈ [[0, n − 1]], and k

the rest of k modulo n + 1. We then call domain (resp. interior, resp. boundary)
of α the set α = {k | j 6 k 6 j + ℓ} (resp. α◦ = {k | j + 1 6 k 6 j + ℓ − 1},
resp. ∂α = α \ α◦ = {j, j + ℓ}). If (fi)i∈I is an LK-family, then one can check, by
induction on dp(α), that the element fi,α = fi(eα) is equal to :

• f2p if α = pδ + αi (i.e. i ∈ ∂α and ℓ = 0),

• −
a

c

(b

d

)ℓ−1
p

∑

q=0

( bn−1

cdn−2

)p−q

f2q if i ∈ ∂α and ℓ > 1,
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•
(a

c

)2(b

d

)ℓ−2
p

∑

q=0

(p− q + 1)
( bn−1

cdn−2

)p−q

f2q if i ∈ α◦,

•
a2

c

(b

d

)ℓ
p−1
∑

q=0

(p− q)
( bn−1

cdn−2

)p−q

f2q if i 6∈ α and ℓ 6 n− 2,

•
a2

c

(b

d
+

d

c

)(b

d

)n−2
p−1
∑

q=0

(p− q)
( bn−1

cdn−2

)p−q

f2q +
1

cd
f2p−1 if α = pδ − αi

(i.e. i 6∈ α and ℓ = n− 1).

3.5. Comments.

Assume that we are in the situation of subsection 2.3, that is, in particular, with
R = R0[x] for some totally ordered commutative ring R0.

Then by choosing for f an element of xR for the basis step of the inductive
construction of LK-families in subsections 3.2 and 3.3, it is clear that the obtained
LK-family (fi)i∈i is such that Im(fi) ⊆ xR for all i ∈ I. We get the same result in
the affine case by choosing for (fn)n∈N a family of elements of xR in the inductive
construction of subsection 3.4.

If moreover f (resp. f0) is chosen to be non-zero, hence is a unit of some overring
R′ of R, then the obtained LK-family will be suitable to apply the faithfulness
criterion (theorem 14) to the associated LK-representation ψ of B+ in order to
show that it is faithful.

4. Twisted LK-representations

In [12], Digne defines “twisted” LK-representations for an Artin-Tits group of
non-small crystallographic and spherical type (i.e. of type Bn, F4 or G2), using the
fact that this group is the subgroup of fixed elements of an Artin-Tits group of small
and spherical type (A2n−1, E6 or D4 respectively) under a graph automorphism,
and shows that those representations are faithful.

The aim of this section is to generalize this construction and the faithfulness
result to any Artin-Tits monoid that appears as the submonoid of fixed elements of
an Artin-Tits monoid of small type under a group of graph automorphisms. Note
that our proof of faithfulness (cf. subsection 4.2) is different from the one of [12]
as it is general and avoid any case-by-case analysis.

Let Γ = (mi,j)i,j∈I be a Coxeter matrix of small type and let G be a subgroup

of Aut(Γ). We fix (b, c, d) ∈ (R×)3 and set a = d − bc

d
. Let us consider an

LK-family (fi)i∈I ∈ F . Then we get an LK-representation ψ : B+ → L (V ),
si 7→ ψi = ϕi + fi⊠eαi

, which induces an LK-representation of B (i.e. which has
invertible images) whenever (fi)i∈I ∈ Fgr, i.e. fi(eαi

) ∈ R× for every i ∈ I.

4.1. Definition.

Recall that the group G naturally acts on B+ and on Φ+ (see section 1.4).
The action of G on Φ+ induces an action of G on V by permutation of the basis
(eα)α∈Φ+ . We denote by (B+)G (resp. V G) the submonoid (resp. submodule) of
fixed points of B+ (resp. of V ) under the action of G. Recall that (B+)G = B+

Γ′

for a certain Coxeter graph Γ′.

We denote by ϕ : B+ → L (V ), b 7→ ϕb, the LK-representation of B+ associated
with the trivial LK-family (i.e. with ψi = ϕi for all i ∈ I).
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Lemma 44. For all (b, v, g) ∈ B+ × V × Aut(Γ), we get g (ϕb(v)) = ϕg(b)(g(v)).

In particular, for all b ∈ (B+)G, ϕb stabilizes V G and hence ϕ induces a linear
representation ϕG : (B+)G → L (V G), b 7→ ϕGb = ϕb|V G .

Proof. The action of Aut(Γ) on E = ⊕i∈IRαi respects the bilinear form ( . | . )Γ,
and this clearly implies that g(ϕi(eα)) = ϕg(i)(eg(α)) in view of the formulas of
definition 7. The result follows by linearity and induction on ℓ(b). �

Lemma 45. Assume that fi,α = fg(i),g(α) for every (i, α, g) ∈ I×Φ+×G. Then for
every i, j ∈ I, v ∈ V and g ∈ G, we get fg(i)(g(v)) = fi(v) and fg(i)ϕg(j)(g(v)) =
fiϕj(v). In particular, the linear forms fi and fg(i) (resp. fiϕj and fg(i)ϕg(j))

coincide on V G.

Proof. The assumption means that fg(i)(g(eα)) = fi(eα) for every (i, α, g) ∈ I ×
Φ+ ×G, whence the first point by linearity. The second point follows from the first
one and the previous lemma. �

Proposition 46. Assume that fi,α = fg(i),g(α) for every (i, α, g) ∈ I × Φ+ × G.

Then for every (b, v, g) ∈ B+ × V × Aut(Γ), we get g (ψb(v)) = ψg(b)(g(v)). In

particular, for every b ∈ (B+)G, ψb stabilizes V G and hence ψ induces a linear
representation

ψG : (B+)G → L (V G), b 7→ ψGb = ψb|V G .

Moreover if the images of ψ are invertible, then so are the images of ψG.

Proof. By definition 7, we get

{

g(ψi(eα)) = g(ϕi(eα)) + fi,αeαg(i)
, and

ψg(i)(eg(α)) = ϕg(i)(eg(α)) + fg(i),g(α)eαg(i)
.

Whence g(ψi(eα)) = ψg(i)(eg(α)) by assumption and lemma 44, and the first
point by linearity and induction on ℓ(b). Moreover if the images of ψ are invertible,
that is, if fi,αi

= fi(eαi
) ∈ R× for every i ∈ I, then the formulas of lemma 9 show

that we also get g(ψ−1
i (eα)) = ψ−1

g(i)(eg(α)), and hence, similarly to what as just

been done, ψ−1
b stabilizes V G for every b ∈ (B+)G. This gives the result. �

Definition 47. Under the assumption of the previous proposition, we call twisted
LK-representation the linear representation ψG : (B+)G → L (V G) of the Artin-
Tits monoid (B+)G = B+

Γ′ , and, when appropriate, the induced linear representa-
tion ψGgr : BΓ′ → GL(V G) of the Artin-Tits group BΓ′ .

The assumption fi,α = fg(i),g(α) for every (i, α, g) ∈ I × Φ+ × G is not always
satisfied : for example if i and g(i) are not in the same connected component of Γ,
then fi,αi

and fg(i),αg(i)
can be chosen to be distinct (see remark 25 above). I do

not know if this assumption is always satisfied when Γ is connected, but we have
the following partial result :

Proposition 48. Let (fi)i∈I be an LK-family, and assume that we are in one of
the following cases :

(i) Γ is spherical and irreducible (i.e. of type ADE), or

(ii) Γ is affine (i.e. of type ÃD̃Ẽ), or
(iii) (fi)i∈I is the family constructed in definition 30 and does not depend on

the choice of the jα’s (for example if Γ has no triangle).

Then fi,α = fg(i),g(α) for every (i, α, g) ∈ I × Φ+ × Aut(Γ).
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Proof. The result for the three situations (note that the first one is a consequence of
the third one) are easy to see by induction on dp(α), using the inductive construc-
tion of (fi)i∈I , and the independence results at the inductive steps, of subsection
3.2, 3.4, or 3.3 respectively, and the fact that the action of Aut(Γ) on E = ⊕i∈IRαi
respects the bilinear form ( . | . )Γ. �

We denote by Φ+/G the set of orbits of Φ+ under G and, for every Θ ∈ Φ+/G,
we set eΘ =

∑

α∈Θ eα. The family (eΘ)Θ∈Φ+/G is a basis of V G.

4.2. Twisted faithfulness criterion.

The aim of this subsection is to prove that the faithfulness criterion of subsection
2.2 also works for a twisted LK-representation ψG.

Lemma 49. Let ρ : (B+)G → M be a monoid homomorphism where M is left
cancellative. If ρ satisfies ρ(b) = ρ(b′) ⇒ I(b) = I(b′) for all b, b′ ∈ (B+)G, then it
is injective.

Proof. Let b, b′ ∈ (B+)G be such that ρ(b) = ρ(b′). We prove by induction on ℓ(b)
that b = b′. If ℓ(b) = 0, i.e. if b = 1, then I(b) = I(b′) = ∅, hence b′ = 1 and we are
done.

If ℓ(b) > 0, fix i ∈ I(b) = I(b′). Since the action of G on B+ respects the
divisibility and since b is fixed by G, the orbit J of i under G is included in I(b) =
I(b′), but then J is spherical and there exist b1, b

′
1 ∈ B+ such that b = ∆Jb1 and

b′ = ∆Jb
′
1. Since J is an orbit of I under G, the element ∆J is fixed by G and hence

so are b1 and b′1, so we get ρ(∆J )ρ(b1) = ρ(∆J )ρ(b′1) in M , whence ρ(b1) = ρ(b′1)
by cancellation, therefore b1 = b′1 by induction and finally b = b′. �

Let us assume that the condition of proposition 46 is satisfied, so that the twisted
LK-representation ψG : (B+)G → L (V G) is defined. Then :

Theorem 50. Assume that the following two conditions are satisfied :

(i) Im(ψG) is a left cancellative submonoid of L (V G),
(ii) there exists a totally ordered commutative ring R0 and a ring homomor-

phism R → R0, x 7→ x, such that a, b, c, d are positive and fi,α = 0 for
every (i, α) ∈ I × Φ+.

Then the twisted LK-representation ψG is faithful.

Proof. Note first that, with notations 16, if R ∈ Bin(Ω) and if (Ψλ)λ∈Λ is a family
of subsets of Ω, we get R(

⋃

λ∈Λ Ψλ) =
⋃

λ∈ΛR(Ψλ).

In order to prove the theorem, it suffices to show that ψG satisfies the assumption
of lemma 49. So let b, b′ ∈ (B+)G be such that ψGb = ψGb′ and let us show that
I(b) = I(b′). Since ψb and ψb′ coincide on V G, we get in particular ψb(eΘ) = ψb′(eΘ)
for every Θ ∈ Φ+/G.

With the notations of definition 19, let us consider the set Rb(Θ). Since the
coefficients of the matrix of ψb in the basis (eα)α∈Φ+ of V0 are non-negative, the
set Rb(Θ) is precisely the set of those indices β ∈ Φ+ for which the coefficient of eβ
in the decomposition of ψb(eΘ) in the basis (eα)α∈Φ+ is positive.

The same occurs for b′, and hence ψb(eΘ) = ψb′(eΘ) implies Rb(Θ) = Rb′(Θ).
Since we have Φ+ =

⋃

Θ∈Φ+/G Θ, we thus get Rb(Φ
+) =

⋃

Θ∈Φ+/GRb(Θ) =
⋃

Θ∈Φ+/GRb′(Θ) = Rb′(Φ
+), and hence I(b) = I(b′) by lemmas 17 and 20. �
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Remark 51. Assume that we are in the typical situation of subsections 2.3 and
3.5, so that condition (ii) of theorem 50 is satisfied. Then proposition 46 shows that
Im(ψG) is included in L (V G) ∩ GL((V ′)G) and hence condition (i) of theorem 50
is also satisfied. Hence that twisted LK-representation ψG is faithful and so is the
induced twisted LK-representation ψGgr : BΓ′ → GL((V ′)G) when Γ′ is spherical.

4.3. Formulas when |G| = 2.

Recall that (B+)G = B+
Γ′ is generated by the elements ∆J , for J running through

the spherical orbits of I under G (see section 1.4). In this subsection, we assume
that fi,α = fg(i),g(α) for every (i, α, g) ∈ I×Φ+ ×G, and we compute the maps ψG∆J

for those orbits J , at least when |G| = 2.

Notation 52. Let J be an orbit of I under G. Then in view of lemma 45 :

(i) the linear forms fj , for j ∈ J , coincide on V G, and we set

fJ = fj|V G ∈ (V G)⋆, for j ∈ J,

(ii) if J = {i, j}, then the forms fiϕj and fjϕi coincide on V G, and we set

f ′
J = fiϕj |V G = fjϕi|V G ∈ (V G)⋆.

Note that if J is an orbit of I under G, then ΘJ := {αi | i ∈ J} is an orbit of
Φ+ under G ; moreover if J = {i, j} with mi,j = 3, then Θ′

J = {αi + αj} is also an
orbit of Φ+ under G.

Proposition 53. Let J be an orbit of I under G. Then

(i) if J = {i}, ψG∆J
= ϕG∆J

+ fJ⊠eΘJ
,

(ii) if J = {i, j} with mi,j = 2, ψG∆J
= ϕG∆J

+ dfJ⊠eΘJ
,

(iii) if J = {i, j} with mi,j = 3, ψG∆J
= ϕG∆J

+ (bcfJ + af ′
J)⊠eΘJ

+ cf ′
J⊠eΘ′

J
.

Proof. If J = {i}, then ∆J = si and (i) is clear. If J = {i, j} with mi,j = 2,
then ∆J = sisj and we get ψiψj = ϕiϕj + fiϕj⊠eαi

+ dfj⊠eαj
(see the proof of

lemma 11), whence (ii) since fiϕj = dfi. Finally if J = {i, j} with mi,j = 3, then
∆J = sisjsi and we get, following the computations of the proof of lemma 11,
ψiψjψi = ϕiϕjϕi+ fiϕjϕi⊠eαi

+(bcfi+ afjϕi)⊠eαj
+ cfjϕi⊠eαi+αj

(using the fact

that fiϕj(eαi
) = fjϕi(eαi

) = 0), whence (iii) since fiϕjϕi|V G = fjϕ
2
i |V G and since

we have seen, again in the proof of lemma 11, that fjϕ
2
i = bcfj + afjϕi. �

Hence when |G| = 2, the previous proposition gives a complete description of
the possible maps ψG∆J

when J runs through the (spherical) orbits of I under G.

We detail below the matrix of ϕG∆J
in the basis (eΘ)Θ∈Φ+/G and the values on

this basis of the linear forms involved in the expression of ψG∆J
. Note that since the

maps ϕi, i ∈ J , stabilize the submodule of V generated by the elements eβ for β
running through a given J-mesh M , the map ϕGJ stabilizes the submodule of V G

generated by the elements eΘ for Θ running through the orbits included in G(M).
The matrix of ϕGJ in the basis (eΘ)Θ∈Φ+/G of V G is then block diagonal, for the
corresponding block decomposition.

4.3.1. Case J = {i}.

• fJ(eΘ) = fi(eΘ) =

{

fi,α if Θ = {α}

fi,α + fi,α′ = 2fi,α if Θ = {α, α′}, α 6= α′
,

• the blocks of ϕG∆J
= ϕi|V G are the following ones :
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





eΘ(
0
)

if Θ = ΘJ
eΘ(
d
)

if siiΘ or sii siiΘ

eΘ1 eΘ2(
a b

c 0

)

if s

s
i

Θ1

Θ2

or s

s
i

Θ1

Θ2

s

s
i

4.3.2. Case J = {i, j} with mi,j = 2.

• fJ(eΘ) = dfi(eΘ) =

{

dfi,α if Θ = {α}

d(fi,α + fi,α′) = d(fi,α + fj,α) if Θ = {α, α′}, α 6= α′
,

• the blocks of ϕG∆J
= (ϕiϕj)|V G are the following ones :







eΘ(
0
)

if Θ = ΘJ

eΘ(
d2

)
if siiijΘ or siiij siiijΘ

eΘ1 eΘ2(
ad bd

cd 0

)

if s

s
i

ij

ij

Θ1

Θ2

s

s
j

ii

ii

eΘ1 eΘ2 eΘ3



a2 2ab b2

ac bc 0
c2 0 0



 if

s

s s

s

�
�

@
@

@
@

�
�

i

j

j

i

Θ1

Θ2

Θ3

eΘ1 eΘ2 eΘ3 eΘ4





a2 ab ab b2

ac 0 bc 0
ac bc 0 0
c2 0 0 0







if

s

s s

s

�
�

@
@

@
@

�
�

i

j

j

i

Θ1

Θ2

Θ4

s

s s

s

�
�

@
@

@
@

�
�

j

i

Θ3

4.3.3. Case J = {i, j} with mi,j = 3.

We detail below the values of the linear forms bcfJ +af ′
J and cf ′

J , and the blocks
of ϕG∆J

= (ϕiϕjϕi)|V G for the different possible configurations of orbits.
• Orbits ΘJ = {αi, αj} and Θ′

J = {αi + αj}.

Orbits Values of bcfJ + af ′
J Values of cf ′

J Block in ϕG∆J

ΘJ

Θ′
J

bcfi,αi

0
0

bcfi,αi

(
0 0
0 0

)

• Configuration s
α

iiijΘ or s
α

iiij s
α′

iiijΘ

Value of bcfJ + af ′
J Value of cf ′

J Block in ϕG∆J

|Θ|d2fi,α |Θ|cdfi,α
eΘ(
d3

)

• Configuration

s

s

s

i

j

ij

ii

Θ1

Θ2

Θ3

γ

β

α

s

s

s

j
ii

i

ij
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Orbits Values of bcfJ + af ′
J Values of cf ′

J Block in ϕG∆J

Θ1

Θ2

Θ3

bcfi,γ + d(d + a)fj,γ
b

(
cfj,β + afi,γ + dfj,γ

)

b
(
dfj,β + bfi,γ

)

2cdfj,γ
2bcfi,γ
2bcfj,β

eΘ1 eΘ2 eΘ3



ad2 abd b2d

acd bcd 0
c2d 0 0





• Configuration

s

s s

s s

s

�
�

@
@

@
@

�
�

i

i

ji

j

j

Θ1

Θ2

Θ3

Θ4

δ

γ

β

α

Orbits Values of bcfJ + af ′
J Values of cf ′

J

Θ1

Θ2

Θ3

Θ4

acfj,γ + (a2 + bc)fi,δ
b

(
c(fi,γ + fj,γ) + 2afi,δ

)

b
(
cfj,β + afi,γ + bfi,δ

)

b2fi,γ

c2fj,γ + acfj,δ
2bcfi,δ
2bcfi,γ
bcfj,β

Block in ϕG∆J

eΘ1 eΘ2 eΘ3 eΘ4





a(a2 + bc) 2a2b 2ab2 b3

a2c 2abc b2c 0

ac2 bc2 0 0
c3 0 0 0







• Configuration

s

s s

s s

s

�
�

@
@

@
@

�
�

j

j

ii

i

i

j

Θ1

Θ2

Θ4

Θ6

α α′

β β′

γ γ′

δ δ′
s

s s

s s

s

�
�

@
@

@
@

�
�

i

i

j

Θ3

Θ5

Orbits Values of bcfJ + af ′
J Values of cf ′

J

Θ1

Θ2

Θ3

Θ4

Θ5

Θ6

bc (fi,δ + fj,δ) + 2a
(
afj,δ + cfj,γ

)

b
(
c(fi,γ + fj,γ) + 2afi,δ′

)

b
(
c(fi,γ′ + fj,γ′) + 2afi,δ

)

b
(
cfj,β + afi,γ + bfj,δ

)

b
(
cfj,β′ + afi,γ′ + bfj,δ′

)

b2(fi,γ + fi,γ′)

2c(afj,δ + cfj,γ)
2bcfi,δ′

2bcfi,δ
2bcfi,γ
2bcfi,γ′

2bcfj,β

Block in ϕG∆J

eΘ1 eΘ2 eΘ3 eΘ4 eΘ5 eΘ6









a(a2 + bc) a2b a2b ab2 ab2 b3

a2c abc abc 0 b2c 0
a2c abc abc b2c 0 0

ac2 0 bc2 0 0 0

ac2 bc2 0 0 0 0
c3 0 0 0 0 0










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4.4. Twisted LK-representations of type B.

Fix n ∈ N>3. Then the Artin-Tits group B of Coxeter type Bn appears as the
subgroup of fixed elements of three Artin-Tits groups of type Γ1 = A2n−1, Γ2 = A2n

and Γ3 = Dn+1 respectively, under a group of graph automorphisms G1, G2 and
G3 respectively, where Gk = Aut(Γk) for 1 6 k 6 3, except for n = k = 3 where
G3 is a subgroup of order two of Aut(D4) (see [9, 7]). We denote by Ik the vertex
set of Γk for 1 6 k 6 3.

Now fix a commutative ring R and (b, c, d) ∈ (R×)3, and consider three LK-
representations ψ1 : BΓ1 → GL(V1), ψ2 : BΓ2 → GL(V2) and ψ3 : BΓ3 → GL(V3).
Recall that ψk, 1 6 k 6 3, is determined by the common value fk ∈ R× of the
fi,αi

= fi(eαi
) for i ∈ Ik (see subsection 3.2). In view of propositions 46 and 48

above, we get three twisted LK-representations ψG1

1 : B → GL(V G1

1 ), ψG2

2 : B →

GL(V G2
2 ) and ψG3

3 : B → GL(V G3
3 ) of the Artin-Tits group B. Note that ψG1

1 is
essentially the representation of B considered in [12].

The representation ψG2
2 is trivially non-equivalent to the two others since it is

of degree |Φ+
Γ2
/G2| = n(n + 1) whereas the two others are of degree |Φ+

Γ1
/G1| =

|Φ+
Γ3
/G3| = n2. The aim of this section is to show that ψG1

1 and ψG3
3 are non-

equivalent, when R = Z[x±1, y±1] and (b, c, d) = (yp, yq, yr) with p, q, r ∈ Z such
that 2r 6= p+ q (as in subsection 2.3), and at least for all n > 3 but two.

Notation 54. Following [2], we label by 1, 2, . . . , n, the vertices of the Coxeter
graph Bn, in such a way that the vertex n is the terminal vertex of the edge labeled
4, and we denote by ∆1, . . . , ∆n the corresponding standard generators of B.

Note that we will keep the same symbols for the standard generators of B when
considering this group as an abstract Artin-Tits group, or as the subgroup of fixed
elements (BΓk

)Gk of BΓk
for 1 6 k 6 3. The meaning of ∆i, 1 6 i 6 n, in terms

of a product of the standard generators of BΓk
, 1 6 k 6 3, is given in the following

table (where the vertices of Γk are labeled as in [2]) :

1 6 i < n i = n

k = 1 sis2n−i sn

k = 2 sis2n+1−i snsn+1sn

k = 3 si snsn+1

Lemma 55. The determinant of the map (ψGk

k )∆i
, for 1 6 i 6 n and 1 6 k 6 3,

is given in the following table :

1 6 i < n i = n

k = 1 −(bc)2n−1d2n(n−2)f1 (−1)n−1(bc)n−1d(n−1)2 f1

k = 2 (bc)2nd2(n2−n−1)f2 (−1)n−1(bc)3n−1d3n(n−1)f22

k = 3 −(bc)2n−3d(n−1)2 f3 (−1)n−1(bc)3(n−1)d2(n−1)(n−2)f3

Proof. In view of the formulas of subsection 4.3, the determinant of (ψGk

k )∆i
is of

the form det(M)fk (resp. det(M)(bcf2)
2) if (i, k) 6= (n, 2) (resp. (i, k) = (n, 2)),

where M is a block diagonal matrix, with blocks of determinant d, −bc, d2, −bcd2,
−(bc)3 or (bc)4 (resp. d3, −(bcd)3, (bc)6 or −(bc)9) depending on the configuration
of the corresponding orbit in Φ+

Γk
. The result then follows from a direct computation

of the number of occurrences of each configuration in Φ+
Γk

for 1 6 k 6 3. �
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Proposition 56. Assume that R = Z[x±1, y±1] and that (b, c, d) = (yp, yq, yr),

with p, q, r ∈ Z such that 2r 6= p + q. Then the twisted LK-representations ψG1
1

and ψG3
3 are non-equivalent, except possibly for two values of n when r < 0 < p+ q

or p+ q < 0 < r.

Proof. If ψG1
1 and ψG3

3 were equivalent, then the determinants of (ψG1
1 )∆i

and

(ψG3
3 )∆i

for 1 6 i < n (resp. of (ψG1
1 )∆n

and (ψG3
3 )∆n

) should be equal. This
would imply, in view of the previous lemma,

{

(bc)2dn
2−2n−1f1 = f3, and

f1 = (bc)2(n−1)d(n−1)(n−3)f3
, whence (bc)2nd2(n2−3n+1) = 1,

and by choice of (b, c, d), this is equivalent to 2n(p+ q) + 2(n2 − 3n+ 1)r = 0.
It is clear that there is at most two values of n satisfying this equality, and

that in such a case, r and p + q cannot be zero or of the same sign (note that
n2 − 3n+ 1 = (n− 1)(n− 2) − 1 > 1 since n > 3). �

4.5. Final remark on Φ+/G.

Recall that we denote by Γ′ the type of WG and (B+)G.

When Γ is spherical, it is possible to index the basis (eΘ)Θ∈Φ+/G of V G with
the set of positive roots of a finite crystallographic root system (i.e. a root system
in the sense of [2, Ch. VI]) of Weyl group WΓ′ , via the bijection Θ 7→ αΘ, where

αΘ =
1

Card(Θ)

∑

α∈Θ α (see [5, Ch. 13] for justifications).

For example if Γ = A2n−1, A2n or Dn+1 and G = Aut(Γ) (or a subgroup of order
2 of Aut(Γ) for D4), we get a finite crystallographic root system of Dynkin type
Cn, BCn or Bn respectively.

This change of index set increases the resemblance between the twisted and non-
twisted cases, and has been used by Digne in [12] for his proof of faithfulness of
ψG, in the particular cases Γ = A2n−1, E6 or D4 and G = Aut(Γ).

But this change of index set is not possible in general. Indeed, the map Θ 7→ αΘ

is not necessarily injective if Γ is not spherical : for example when |G| = 2, then
for the following configurations of orbits

s

s s

s

�
�
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@

@
@

�
�

i

j

j

i

Θ1

s

s s

s

�
�

@
@

@
@

�
�

j

i

Θ2 or

α α′
s

s s

s s

s

�
�

@
@

@
@

�
�

j

j

ii

i

i

j

Θ1

Θ3

α α′s

s s

s s

s

�
�

@
@

@
@

�
�

i

i

j

Θ2

Θ4

we get αΘ1 = αΘ2 and αΘ3 = αΘ4 as soon as (αi|α) = (αj |α).
Note that the first of those counterexamples occurs for example in a root system

of type Ã2n−1 (n > 2) with G generated by the “half turn”, and the second (which
does not occur in the affine cases in view of remark 33 above) occurs for example
in the root system associated with the Coxeter graph q q

q q
�1

4

2

3
with G = 〈(1 3)(2 4)〉,

{i, j} = {1, 3} and {α, α′} = {α2, α4}.
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37 (1991), 65–102.
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