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ABSTRACT

Total Order Broadcast protocols are important tools to en-
sure coherence across distributed systems. Contrarily to
classical distributed systems, pervasive systems bring im-
portant constraints related to the performance and reliabil-
ity of the network and the availability of the devices (lap-
tops, PDAs and cellular telephones). We propose in this
paper a self-stabilizing group membership service that helps
a token-based Total Order Broadcast protocol to progress in
a volatile environment. This group membership service is or-
ganized in two hierarchical levels so that unstable nodes are
kept in the group without interfering with the Total Order
Broadcast protocol. As a result, we avoid expensive mem-
bership view changes while keeping the coherence among the
nodes.

Categories and Subject Descriptors

D.4.5 [Operating Systems]: Reliability; C.2.4 [Computer-
Communication Networks]: Distributed Systems—dis-
tributed applications; H.4.3 [Information Systems Ap-
plications]: Communications Applications

General Terms

Algorithms, Reliability

Keywords

Total Order Broadcast, Group Membership, Self-stabilization

1. INTRODUCTION
Total Order Broadcast, also known as Atomic Broadcast

[12] is one of the essential building blocks of fault tolerant
distributed systems. Thanks to Total Order Broadcast al-
gorithms, a global coherent view of a data set (a document,
for example) can be provided, as messages that modify this
data set are received by all correct processes and executed
in the same order.
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When working on pervasive systems, however, the tol-
erance to frequent disconnections becomes one of the key
performance aspects. Indeed, pervasive systems are con-
fronted to constraints such as limited battery lifetime of
mobile devices (laptops, PDAs, cellular phones) and fre-
quent disconnections of wireless networks (WiFi, GPRS...).
Consequently, these systems suffer from nodes volatility and
network coverage problems.

In this paper, we address the problem of delivering mes-
sages in a global total order for a distributed application
running in a pervasive environment. We propose a self-
stabilizing membership strategy that helps a token-based
Total Order Broadcast algorithm to circumvent blocking sit-
uations due to the frequent disconnections of the nodes.

This paper is organized as follows: In Section 2 we de-
scribe the distributed environment we are dealing with. Sec-
tion 3 introduces the Total Order Broadcast problem and
its implementation issues. In Section 4 we study both mem-
bership and failure detection requirements for operating in a
dynamic pervasive system, presenting our membership strat-
egy as well as some experimental results obtained on a clus-
ter environment. Finally, Section 5 reviews works related to
the Total Order Broadcast problem and Section 6 presents
the conclusions of this work.

2. ENVIRONMENT DESCRIPTION
We consider the problem of a distributed agreement (the

Total Order Broadcast) in the context of a pervasive system
composed of mobile devices interconnected by a mix of stan-
dard infrastructures (fixed networks) and wireless networks
(Fig. 1). These mobile nodes are equipped with standard
and/or wireless communication interfaces that allow them
to move at will, as well as allowing them to connect over a
fixed structure (as in the case of laptop computers). In such
an environment, nodes that are located at the boundaries of
the wireless coverage zone may be out of reach from time to
time. Also, mobile devices that have low power capacities
may disconnect themselves to save battery power.

The combination of node mobility and a wireless environ-
ment can result in topologies subject to rapid and unpre-
dictable changes. As a result, traditional agreement tech-
niques cannot fulfill the requirements of this environment,
thus requiring new solutions that integrate fault-tolerance
and self-stabilization in order to prevent the protocol from
blocking indefinitely. We assume that while nodes in a per-
vasive environment may disconnect regularly, eventually the
network will stabilize so that a number of nodes remain con-



Figure 1: Topology with mobile devices

nected long enough to allow a Total Order Broadcast pro-
tocol to progress.

Applications built on the top of such pervasive environ-
ments often need to ensure reliable communication among
the nodes involved in order to prevent the loss of important
data. For example, let us consider a synchronous collabora-
tive editor [16], a CAD project, for example. In this kind of
application, several users work on the same document and
actions performed in one node have to be transmitted to all
nodes and performed in the same order. For instance, if an
insert action, performed in a given node, is followed by a re-
move action, performed in a second node, this order must be
respected in all collaborating nodes and no messages should
be lost so that the same resulting document will be obtained
everywhere.

We propose in this paper the composition of an efficient
Total Order Broadcast algorithm and a Group Membership
management system specifically tailored for a volatile net-
work. We consider a set of n processes Π = p0, ..., pn−1 in a
pervasive environment. The processes interact through mes-
sage exchange over unreliable channels where processes may
fail by crashing (i.e., we do not consider Byzantine faults).
In an asynchronous distributed system, however, it is hard
to distinguish between a wrongly suspected process and a
crashed one (also known as the FLP Impossibility [9]). To
circumvent this limitation, the system is augmented with
unreliable failure detectors [2], which can be used to reach
an agreement in spite of wrong suspicions.

3. PROBLEM DEFINITION
In this paper we focus on the Total Order Broadcast prob-

lem. A Total Order Broadcast ensures that processes in a
distributed system deliver messages in the same order, which
is essential for implementing services that require coherence
between processes such as distributed databases or collabo-
rative edition. This problem can be defined by four proper-
ties [6], as presented below:

VALIDITY - If a correct process (a process is called
correct only if it does not crash during the entire execution,
although even a correct process can be incorrectly suspected
of crashing) broadcasts a message m to a list of processes
Π, then some correct process in Π eventually delivers m to
the application.

AGREEMENT - If a correct process delivers a message
m, then all correct processes in Π eventually deliver m.

INTEGRITY - For any message m, every correct pro-
cess p delivers m at most once and only if (1) m was previ-

ously broadcast by sender(m) and (2) p is a process in the
set Π.

TOTAL ORDER - If correct processes p and q both
deliver messages m and m’, then p delivers m before m’ if
and only if q delivers m before m’.

To ensure these properties, Total Order Broadcast usu-
ally relies on a globally agreed sequence of messages (for
example, by assigning sequence numbers to the messages)
and delivering them to the application according to that or-
der. Hence, a simple solution to provide Total Order would
be to centralize the distribution of sequence numbers in a
fixed process (the sequencer). This approach, however, is
prone to failures, as the sequencer may fail or be discon-
nected. Indeed, most implementations in the literature rely
on distributed agreement operations such as Consensus [2,
13], which make the processes agree on every message before
delivering it to the application. Unfortunately, the Total Or-
der Broadcast based on Consensus is an expensive operation
in the context of pervasive systems. Indeed, a pervasive sys-
tem subjected to frequent disconnections may require several
Consensus rounds before a majority of processes agreed on
a message order. In such a scenario, message delivery will
be blocked until the gathering of a stable quorum.

An alternative to both techniques is the use of a mov-
ing sequencer strategy [3, 6, 8], which presents the perfor-
mance of a sequencer-based implementation while prevent-
ing a single point of failure by rotating the role of sequencer
among the nodes. Indeed, as the moving sequencer strat-
egy does not rely on consensus to order messages, it can
perform faster in a pervasive environment than consensus-
based techniques. Furthermore, this strategy can be easily
implemented using a token-passing algorithm (see Fig. 2):
the process that holds the token (p1) is the only one that can
assign sequence numbers to the messages. Sequence num-
bers are sent together with the token, in the same message.
To become the next sequencer, a process must acquire all k
previous messages, thus reinforcing the coherence between
the processes (sometimes called k-resiliency, where k denotes
the minimum number of coherent processes).

Figure 2: The token-passing mechanism

4. FAILURE HANDLING
Although fault-tolerant algorithms are designed to tol-

erate a certain number of process failures, sooner or later
the accumulated number of failed or brutally disconnected
processes (i.e., disconnected without notifying the group)
may prevent the progress of the algorithm. In the case of
consensus-based algorithms, this threshold depends on the
majority quorum. In the case of token-based algorithms
such as the moving sequencer algorithm, this threshold de-
pends on the token passing mechanism. Indeed, as the to-
ken is passed in a logical ring, we must reconstruct the ring



whenever a failed node blocks the token passing or when
the token is lost (the token holder has failed). In order to
reconstruct the ring, also known as token list, we can use
some techniques to manage the processes membership, such
as the View Synchronous Communication model [5, 11].

The View Synchronous Communication (VSC, for short)
protocol manages the creation and the maintenance of a set
of processes during the execution. It is a distributed algo-
rithm without a central coordinator, triggered when a failure
detector [2] suspects a process. The successive memberships
of a group are called views and the event by which a new
view is provided to a process is called the install event. In
VSC, broadcasts to members of the current view are de-
livered with some guarantees, the most notable being the
Same View Delivery property [5]: if a process p delivers a
message m in a view v, then every correct process ought to
deliver the message m in the same view v.

Basically, a VSC membership view change gathers all cor-
rect processes in a new view vi+1. To ensure that all pro-
cesses in the new view are coherent, these processes deliver
all queued messages before installing the view vi+1. For the
same reason, processes excluded from the view are forced to
suicide (or to reconnect as a new process) to avoid incoher-
ent copies of the data.

However, traditional membership algorithms are not de-
signed to support group management in pervasive environ-
ments [1], as they usually assume that devices are connected
by reliable networks and that disconnections are rare. To
minimize the impact of program-controlled crash on a per-
vasive environment that is prone to frequent disconnections,
we advocate the use a membership in two levels: suspected
nodes are initially put into "quarantine", removing them
from the token list but not from the group. Therefore, mes-
sage sequencing is not blocked by suspected nodes and we
still allow suspected nodes to recover and to keep updated.

The "two views" technique was initially proposed for the
Primary-Backup replication algorithm [4]. This technique
considers that each level of membership defines different
types of views. Ordinary views (or simply views) are identi-
cal to the views of View Synchronous Communication, while
intermediate views (or i-views) are installed between ordi-
nary views.

If ordinary views are denoted by v0, v1, ..., vi, the i-views
between vi and vi+1 are denoted as v0

i , v
1
i , . . . , v

j
i , . . . , v

last
i .

The intermediate view v0
i is equal to vi and the last interme-

diate view vlasti is equal to vi+1. One important point is that
the membership of all intermediate views v0

i , v
1
i , . . . , v

last−1

i

is the same as the membership of vi, that is, they only differ
in the order that processes are listed in the view. For ex-
ample, vi = v0

i = {p, q, r}, v1
i = {q, r, p}, etc. This allows a

Primary-Backup replication algorithm to delay Membership
Views as long as the first process in an intermediate view is
able to act as Primary server. During the existence of the
i-views v0

i , . . . , v
last−1

i the ordinary view remains vi.
This model allows us to minimize the program-controlled

crash problem. Indeed, ordinary views are generated by
suspicions resulting from failure detectors with conservative
timeouts, while i-views are generated by suspicions resulting
from aggressive timeouts. As all i-views from v0

i , . . . , v
last−1

i

are composed by the same set of processes, they do not force
the crash of processes. This way, i-views avoid blocking situ-
ations while ordinary views ensure time-bounded buffering.

In the case of our problem, a simple shift in the member-
ship order is not enough to ensure the liveness as the token
is passed regularly, eventually blocking the algorithm. In-
stead, we move suspected processes into an "external set of
processes", redefining i-views as a composed group {"core
members","external"}. This way, messages are sent to
the whole group while the token is passed only among core
members. As a suspected process does not participate in
the message sequencing (it is not in the core group), we min-
imize the probability of blocking the token passing (Fig. 3).
As it still belongs to the view, it receives all broadcasts and
can send messages to the group.

Figure 3: I-views and external members

Because external processes do not receive the token we
cannot use the token passing to ensure message stability.
Actually, as we don’t know if an external process is correct
or not, no assumptions can be made about it. For this rea-
son, while Total Order properties (see section 3) must be
ensured for the "core" processes, external processes are kept
updated by requesting lost messages directly to the token
holder. Consequently, the processes can cope with short
disconnections, commonly found in wireless networks.

The efficiency of this technique relies on the network self-
stabilization. Indeed, while a substantial part of the nodes
may connect/disconnect regularly, a small group of "stable"
nodes will eventually compose the "core group" of our view.
As the token is passed only among stable nodes we drasti-
cally reduce the events that trigger a new Membership View.

However, messages cannot be stored forever. As stated
by the time-bounded buffering problem [4], every message
is eventually discarded from all output buffers. The time-
bounded buffering is related to message stability: if process
p knows that all processes in Π have either received m or
crashed, then the message m becomes stable and p can re-
move it safely. However, Charron-Bost et al. [4] claim that
the time-bounded buffering problem cannot be solved with
realistic failure detectors. Instead, program-controlled crash
is used to discard any inconsistent process q. Indeed, as q
eventually crashes, there is no obligation for q to deliver m
and thus p can safely discard m.

In the case of the Total Order Broadcast, a message can
be discarded from the buffers as soon as it is delivered by a
sufficiently large number of processes (the k-resiliency). As
processes in the external group that reconnect after a long
absence may be unable to acquire missing messages, they
must commit "suicide" and reconnect with a different ID.
When a new process join the group it triggers a Membership
View change, becoming from that moment coherent with the
other processes in the group.



Even reducing the probability of Membership View changes,
several i-view changes may occur before reaching stability.
In the next section (section 4.1) we present a light-weight
algorithm for the i-view changes, reducing their cost. Later,
in section 4.2, we evaluate the impact of different k-resiliency
levels on the performance of the protocol.

4.1 Optimizing i-view changes
From the previous sections, we can define an algorithm for

the Membership View Change, as presented in Algorithm 1.

Algorithm 1 Membership View Change algorithm
Upon suspicion of some process in Πi

RBroadcast (reformation, i)
Upon R-Deliver (reformation, i) by pk for the first time

1. send seqQk to all /* sends the "unstable" list of messages */
2. ∀pi, wait until receive seqQi from pi or pi suspected
3. let initialk be the tuple (Πk, Msgsk) s.t.

- Πk is the new token list with all processes that sent their seqQ
- Msgsk is the union of the seqQ sets received

4. execute consensus among Πi processes, with initialk as the
initial value

5. let (Π, Msg) be the consensus decision
6. stableQ←Msg, seqQ← {} /* as all processes get Msg, these

messages are stable */
7. if pk ∈ Π, then "install" Π as the next view Πi+1

else suicide

Here, sequenced messages are kept in the sequenced queue
seqQ until they become stable. Once a process receives the
sequenced queue from all processes that are not suspected, it
can compute Msgsk, the union of all received seqQ. It also
can suggest a new token list based in the set of processes
that answered the reformation message.

As processes agree both on the new token list and on the
set of all unstable messages, all processes that acknowledge
this decision have the same set of messages. This "uniform"
knowledge can be considered on indicator of message stabil-
ity and therefore these messages are ready to be delivered.
Finally, as all processes share the same sequenced queue,
any process can be the new sequencer and we can select,
for example, the first process in the token list. Please note
that suspected nodes excluded from the view are forced to
commit suicide (Algorithm 1, line 7).

Although this algorithm is adapted to Membership View
Changes, it is quite expensive when considering only i-view
changes. By definition, i-views aim to avoid blocking the
protocol, not to solve the time-bounded buffering problem.
Indeed, message stabilization does not need to be imple-
mented during an i-view change and we can optimize the i-
view algorithm by skipping the exchange of sequenced queues.
As a result, we have a new algorithm for i-view changes, as
presented in Algorithm 2.

Algorithm 2 Optimized i-view changes
Upon suspicion of some process in Πi

RBroadcast (i-view, i)
Upon R-Deliver (i-view, i) by pk for the first time

1. send ack to all
2. ∀pi, wait until receive ack from pi or pi suspected
3. let initialk contains Πk s.t.

- Πk is the new token list with all processes that sent ack

4. execute consensus among Πi processes, with initialk as the initial
value

5. let Π be the consensus decision

6. if pk ∈ Π, then "install" Π as the next view Πi+1

Using this optimized algorithm, processes are no longer
forced to manipulate lists of messages each time there is
an i-view change, which makes the i-views a "light-weight"
version of regular views. By reducing the overhead on the
i-view changes, we reduce the impact of wrong suspicions
due to aggressive failure detectors. Similarly, the fact that
i-views do not force a process to suicide reduces the overhead
induced by the membership service.

4.2 k-resiliency and the delivery latency
When evaluating the performance of a Total Order Broad-

cast, two important metrics are the throughput and the deliv-
ery latency. The throughput represents the rate at which the
protocol can handle messages. Because moving sequencer al-
gorithms are well known for their throughput performance
[3, 6], we will not develop this aspect further.

On the other hand, the delivery latency may represent a
problem on large networks [7]. The delivery latency repre-
sents the time elapsed between the broadcast of a message m
by the source process and the first time it is delivered to the
application. On fault-tolerant protocols, latency depends on
the k-resiliency level, where k represents the number of pro-
cesses that hold a copy of the message. Token-based protocol
ensure resiliency by forcing process to acquire all previous
messages before "accepting" the token. Indeed, when the
sequence number s is sent by sequencer r, this implies:

• receiver r has all messages up to and including the sth

sequenced message,
• receiver (r-1) mod n has all messages up to and in-

cluding the (s-1)th sequenced message,
• ...

Since total-resiliency may induce a high delivery latency on
a large network, we may define a sufficient resiliency level
that allows fault tolerance while providing a reduced latency.
To better evaluate the impact of a k-resiliency over the de-
livery latency, we conducted preliminary experiments on a
homogeneous cluster with 64 machines interconnected by a
Fast Ethernet network. We measured the average delivery
latency of 1kB messages using different k-resiliency levels.
Fig. 4 presents the protocol performance when messages
arrive at the rate of 10 messages per second in accordance
with a Poisson process.
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Figure 4: Delivery latency and k-resiliency

As expected, by limiting the k-resiliency we can bound
the delivery latency. Similarly, the overhead observed when
augmenting the number of processes gives some hints con-
cerning the workload share. As there is a clear trade-off
between k-resiliency and workload, distributed systems de-
signers must be aware of its implications when developing
fault tolerant applications.



5. RELATED WORK
In the literature there are some examples of protocols that

rely on the moving sequencer strategy. RBP [3] first intro-
duced the concept of moving sequencer total order broad-
cast. It was followed by RMP [15], which uses IP multicast
to reduce the cost of a communication step. Furthermore,
RMP includes some other features such as the acknowledg-
ment of multiple messages in a single ack and the selection of
the resiliency level. Both RBP and RMP use a Three-Phase
Commit (3PC) membership.

TRMP [14] is a time driven version of the RMP pro-
tocol, presented as an Internet multicast protocol for the
stock market. Due to the complexity of a world-wide dis-
tributed stock market system, TRMP has to deal with other
problems like scalability, fairness and communication au-
thentication, in addition to time constraints. To deal with
scalability, TRMP proposes the use of a hierarchy of rings.
This strategy minimizes the stabilization time, reduces the
probability of failures in a World-wide Reformation, and al-
lows the assignment of different levels of trustworthiness to
the processes. These hierarchical rings are organized such
that processes of the higher ring are also members of lower
rings, relaying the messages. However, TRMP implements a
centralized reformation server, with redundant reformation
servers available in case of failures.

Ekwall and Schiper [8] proposed a different token-based
total order broadcast relying exclusively on failure detectors
instead of group membership. While this algorithm seems
simpler and light-weight for homogeneous networks, it may
lack accuracy in the case of complex dynamic environments.
In [7] these authors compare different total order broadcast
algorithms on wide-area networks, but the experimental sce-
narios give no further insight concerning pervasive systems.

Finally, Guerraoui [10] proposed FSR, an algorithm that
is intended to optimize the throughput of a Total Order
Broadcast algorithm. FSR is a hybrid approach based on
the fixed-sequencer strategy that uses a token ring to ensure
fairness among the nodes. Unfortunately, FSR uses a one-
level membership, which forces the delivery latency to be
linear function of the number of processes. We strongly
believe that FSR can benefit from the two-level membership
we propose to improve its latency and scalability.

6. CONCLUSIONS
In this paper we addressed the problem of Total Order

Broadcast in the context of pervasive distributed systems.
Traditional algorithms are not fit for these environments
as they cannot handle the nodes volatility efficiently. We
propose a self-stabilizing distributed solution that can op-
erate in environments subjected to frequent disconnections
while providing good performance rates. In order to ensure
a smooth operation in spite of the volatility of the resources,
we employed a new membership technique to minimize the
problems generated by wrong failure suspicions, thus reduc-
ing the membership overhead and the need for view changes.
To the best of our knowledge, this technique has not yet
been used in any other implementation. Our efforts now
concentrate on conducting experiments with more realistic
environments, evaluating the impact of both nodes hetero-
geneity and volatility on the algorithm behavior.
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