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AbstratColletive ommuniation operations are widely used in MPI appliations and playan important role in their performane. However, the network heterogeneity in-herent to grid environments represent a great hallenge to develop e�ient highperformane omputing appliations. In this work we propose a generi frameworkbased on ommuniation models and adaptive tehniques for dealing with olletiveommuniation patterns on grid platforms. Toward this goal, we address the hierar-hial organization of the grid, seleting the most e�ient ommuniation algorithmsat eah network level. Our framework is also adaptive to grid load dynamis sineit onsiders transient network harateristis for dividing the nodes into lusters.Our experiments with the broadast operation on a real-grid setup indiate that anadaptive framework allows signi�ant performane improvements on MPI olletiveommuniations.Key words: Grid omputing; Performane modeling; Adaptive tehniques;Polyalgorithms; Colletive ommuniation; MPIPreprint submitted to Elsevier 25th April 2007



1 IntrodutionIn the last years, there was a huge development in the �eld of parallel and dis-tributed proessing, espeially at the arhitetural level leading to a wide va-riety of exeution supports. The major innovation was the phenomenal spreadof arhitetures like lusters and grids. These platforms represent a reasonablealternative to traditional parallel mahines and have beome the most ost-e�etive omputing supports for solving a large range of high performaneomputing appliations due the good ost/performane ratio that they pro-vide. However, the introdution of suh parallel systems has a major impaton the design of e�ient parallel algorithms. Indeed, new harateristis haveto be taken into aount inluding salability and portability. Moreover, suhparallel systems are often upgraded with new generation of proessors andnetwork tehnologies. For instane, adaptability beomes ruial beause ofthe frequent hanges of the system hardware. These di�erent elements requireto revise the lassial parallel algorithms whih onsider only regular arhite-tures with stati on�gurations and to propose new approahes.Our objetive in this work is to propose a generi framework based on om-muniation models and sheduling tehniques to deal with ommuniationsheduling in heterogeneous environments suh as omputational grids. Morepreisely, this paper proposes a ommuniation shedule methodology withtwo adaptation levels. At the �rst level we proeed at the intra-luster level,by determining the most e�ient ommuniation algorithm from a set of wellknown algorithms from the literature. At a seond level, our framework de-Email address: 1Luiz-Angelo.Steffenel�univ-nany2.fr,
2Gregory.Mounie�imag.fr (Luiz Angelo Ste�enel1, Grégory Mounié2).2



termines an inter-luster ommuniation shedule that minimizes the overallexeution time of a olletive ommuniation. Therefore, our framework dif-fers signi�antly from other works, as existing adaptive approahes presentedin the literature [1,2,3℄ proeed by simply sheduling ommuniations at theinter-luster level, i.e., long-distane links. At the other side, works like [4,5,6℄only try to minimize the exeution time of olletive ommuniation operationsin the ontext of intra-luster environments. To the best of our knowledge, ourframework provides the �rst general methodology to automatially assoiatee�ient intra-luster algorithms with inter-luster ommuniation heuristis,reduing the overall exeution time of a olletive ommuniation.
The remainder of the paper is organized as follows. We begin in Setion 2 bydesribing our assumptions for the ommuniation environment. In Setion3 we �rst de�ne the onept of polyalgorithm, presenting our framework foradaptive ommuniations and detailing its omponents. Setion 4 desribesthe platform partitioning phase, where we organize the grid into homogeneouslogial luster. Hene, in Setion 5 we present a ase study where we apply theseond part of our framework for the development of a grid-aware MPI_BCastommuniation operation. To validate the framework ontributions, we on-dut both pratial experiments on a grid environment (Setion 6) and nu-merial simulations (Setion 7). These results onern both the evaluation ofthe optimization overhead and the salability of the algorithms, proving theinterest of this work. Finally, Setion 8 onludes the paper and disusses someperspetives to extend this work.
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2 Desription of the EnvironmentHeterogeneity Model: We assume a generi platform omposed by hetero-geneous lusters as desribed in [7℄. The platform studied enjoys heterogeneityalong three orthogonal axes: (i) the proessors that populate the lusters maydi�er in omputational powers, even within the same luster; (ii) the lustersare organized hierarhially and are interonneted via a hierarhy of networksof possibly di�ering latenies and bandwidths. At the level of physial lus-ters, the interonnetion networks are assumed to be heterogeneous; (iii) thelusters at eah level of the hierarhy may di�er in sizes.Communiation Model: We assume that the network is fully onneted.The links between pairs of proesses are bidiretional, and eah proess antransmit data on at most one link and reeive data on at most one link at anygiven time. This model is well-known in the literature as 1-port full-duplex.Transmission Model: The literature ontains several parallel ommunia-tion models [8,9,10,11,12,3℄. These models di�er on the omputational andnetwork assumptions, suh as lateny, heterogeneity, network ontention, et.In this work we adopted the parameterized LogP model (pLogP) [3℄. Our hoieon the pLogP model omes from the fat that we an experiene di�erenttransmission rates aording to the message size, as a onsequene of trans-port protools and hardware poliies. Hene, all along this paper we shall useL as the ommuniation lateny between two nodes, P as the number of nodesand g(m) for the gap of a message of size m. The gap of a message m repre-sents the time required to transmit a message through the network (exludingthe lateny), whih is inversely proportional to the bandwidth of the link. Inthe ase of message segmentation, the segment size s of the message m is a4



multiple of the size of the basi datatype to be transmitted, and it splits theinitial message m into k segments.3 An Adaptive Framework for Grid-Aware CommuniationsIn this setion, we desribe our framework for adaptive ommuniation shedul-ing in an exeution environment haraterized by its heterogeneity and itshierarhial organization. We onsider a grid environment omposed by dif-ferent lusters C1 to Cn with respetively n1, n2, . . . , nn nodes. A wide-areanetwork, alled a bakbone, interonnets these lusters. We assume that aluster use the same network ard to ommuniate to one of its node or toa node of another luster, although eah luster may use di�erent networktehnologies (Fast Ethernet, Gigabit Ethernet, Myrinet, et.). Based on thattopology inter-luster ommuniations are never faster than ommuniationwithin a luster.Most MPI libraries (LAM-MPI, OpenMPI, MPICH2, et.) implement olle-tive ommuniations assuming that all the nodes are on the same lusters,whih means that all ommuniations have the same weight. However, in ourase, some messages are transferred within a luster (from a node of C1 to anode of C1, for example, or between the two lusters. In the �rst ase, band-width and lateny are faster than in the seond ase. Therefore, we need toassoiate di�erent tools to model the overall performane. We assume thatommuniation performanes an be predited based on ommuniation ostmodels (for instane, the pLogP model [3℄) and benhmarks on the real system.An overview of the framework is skethed in Figure 1. Sine the target systemmay experiene heterogeneity at di�erent levels (omputing performane, net-5



work apaity, et), it is too di�ult to manage the entire platform towards ahigh performane omputing. One way to irumvent this problem is to subdi-vide the network in homogeneous subnets (or logial lusters), handling eahluster individually to subsequently aggregate them at the grid level. There-fore, the framework is separated in two suessive phases. During the �rstone, we aim to partition the exeution platform into subnets with homoge-neous harateristis. Then, when exeuting the seond phase, we determinefor eah subnet (i.e., for eah luster) the ommuniation algorithm that per-forms better in that luster. Indeed, using pLogP, we are able to predit theommuniation performane on eah di�erent luster, allowing us to omparedi�erent ommuniations algorithms. In the same way, pLogP is used to de�nee�ient wide-area ommuniation shedules adapted to a heterogeneous gridenvironment.
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Figure 1. Coneptual framework of the adaptive mehanismOne the platform is partitioned in separated homogeneous hierarhial lus-ters we determine, for eah luster, an algorithm whih performs better inthat network environment. Atually, we ompare the expeted performane ofdi�erent algorithms from the literature (eah algorithm being previously mod-6



eled with pLogP), in terms of the size of data to be transmitted, the networkharateristis and the number of nodes.Through the analysis of the inter-lusters and intra-luster performane pre-ditions we are able to de�ne a ommuniation shedule that minimizes theoverall exeution time. One again we an ompare di�erent shedule poliies(heuristis), whih are hosen aording to their estimated termination time.The framework allows, indeed, to implement sheduling heuristis that at ondi�erent ommuniation levels, be it at inter-luster level (mostly appropriateto olletive operations like broadast [2℄ and redue [13℄) or at node-to-nodelevel (for operations suh as the all-to-all [4℄).4 Platform PartitionWe propose a method to automatially disover the network topology, allowingthe onstrution of optimized multilevel olletive operations. We prefer auto-mati topology disovery instead of a prede�ned topology beause if there arehidden heterogeneities inside a luster, they may interfere with the ommuni-ation and indue a non negligible impreision in the models. The automatidisovery we propose should be done in two phases: the �rst phase olletsreahability data from di�erent networks. The seond phase, exeuted at theappliation start-up, subdivides the networks in homogeneous logial lustersand �nally aquires pLogP parameters to model olletive ommuniations.Several speialized tools an be used to gather onnetivity information throughnetwork monitoring. These tools may aquire data from diret probing, likeNWS [14℄, from SNMP queries to network equipments, like REMOS [15℄, oreven ombine both approahes, like TopoMon [16℄. NWS seems to be thebest andidate to our needs: as a de fato standard in the grid ommunity,7



NWS an be on�gured to provide information like ommuniation lateny,throughput, CPU load and available memory. For instane, we may identifygroups of mahines with similar ommuniation harateristis using latenyand throughput data obtained from NWS.4.1 ClusteringOne reason to onstrut logial lusters is that even mahines in the samenetwork may behave di�erently, in spite of their physial loation. Indeed,suh di�erenes introdue undesirable heterogeneities that may invalidate theperformane models used to optimize olletive ommuniations. For instane,we are interested in grouping mahines with similar performanes into "logiallusters� to redue the sheduling omplexity.Clustering may be performed aording di�erent approahes. The most knownapproah try to de�ne a spanning tree suh that eah node onnets to thelosest node in the network. This approah an be implemented through ag-glomerative onstrution of the spanning tree from a given parameter, but alsoan be implemented by pruning the full interonnetion graph [17℄. Anotherapproah onsists on de�ning a "loseness" parameter ρ, whih indiates themaximum variane among nodes in the same group. In the spei� ase of ourwork, the last tehnique seems to be the most appropriate, as at this point weare simply interested on the de�nition of homogeneous lusters.Therefore, we may onsider a weighted digraph dG(V,E) of order n with V =

{p0, ..., pn−1} to represent our network. In this digraph, the verties representthe proess nodes and the edges represent the link between two nodes. Aninteger wi,j is assoiated with eah edge Ei,j, representing the distane betweennodes pi and pj (ommuniation lateny, for example), and we de�ne ρ as the8



maximal distane variation between two nodes in the same luster. Hene, thisdigraph orresponds to the distane matrix M de�ned by:
M =































wi,j if there is a local link between {i, j}

0 otherwise

(1)For instane, a trivial algorithm to solve this problem initially sorts the outgo-ing edges from eah node in inreasing order of their weights. By proeedingfrom the smallest weighted edge wx,y, we de�ne an initial group {x, y}. Ateah step we selet a andidate node a and ompare its distane to any nodewithin a group S. If distane does not vary more than ρ, node a an be in-luded in group S. Otherwise, if node a does not �t into any existent group,it beomes the �rst node of a new group S ′. The algorithm terminates afterall outgoing edges have been evaluated. Indeed, this algorithm an be de�nedby the expression:
∀x,∀y ∈ S, x 6= y, a ∈ S ⇒ |w(a, x) − w(x, y)| ≤ ρ (2)Beause we need to ompare node a to eah node from group S, this algorithmexeutes in O(N2) steps. Therefore, Lowekamp [18℄ presented a greedy algo-rithm, whih was implemented within the ECO library and is also adoptedin our work. More spei�ally, Lowekamp's algorithm ompares a andidatenode a with the smallest edge wmin within a group S. This algorithm, whihrequires only O(N) steps, orresponds to the following expression:
∀x,∀y ∈ S, x 6= y, a ∈ S ⇒ |w(a, x) − wmin(S)| ≤ ρ (3)Although the distane between two nodes an be expressed with the help ofdi�erent parameters (lateny, bandwidth, hops, et.), we onsidered lateny as9



the main parameter to be evaluated in our topology disovery implementation.Indeed, lateny has proved to be su�iently aurate to distinguish nodes inonneted to di�erent swithes in a loal network. Further, lateny an beeasily measured in a wide area network without disturbing the ongoing tra�,ontrarily to a bandwidth measurement.In addition, the topology disovery proess may be detahed from the appli-ation, minimizing the overhead in the appliation performane. Indeed, themost expensive part of the proess onsists on ontating eah other node toompose a distane matrix, while the lustering part is quite simple. An of-�ine topology disovery is reommended for suh appliations, following thepriniples used by MagPIe [2℄, whih reads the topology desription from a�le. A daemon proess may ondut regular updates on the desription �le,induing almost no overhead to the appliation.4.2 E�ient Aquisition of pLogP ParametersOne identifying the logial luster organization of our grid, we must othernetwork parameters suh as the bandwidth (or the gap, for the pLogP model).Hopefully, there is no need to exeute n(n− 1) pLogP measures, one for eahpossible interonnetion. Using the topology information we an get pLogPparameters in an e�ient way by onsidering a single proess to representeah luster. As one single measure may represent the entire subnet, the totalnumber of pLogP measures is fairly redued. If we sum up the measures toobtain the parameters for the inter-lusters onnetions, we shall exeute atmost C × (C − 1) + C experiments, where C means the number of luster.Further, if we onsider symmetri links, only half of the probes are need,minimizing the interferene on the network.10



5 Case Study - Broadast Operations5.1 Intra-luster Communiation Strategy SeletionWith Broadast, a single proess, alled root, sends the same message of sizem to all other (P − 1) proesses. Classial implementations of the Broadastoperation rely on d-ary trees haraterized by two parameters, d and h, whered is the maximum number of suessors a node an have, and h is the heightof the tree, the longest path from the root to any of the tree leaves. Therefore,most MPI implementations rely on the Binomial Tree broadast, an algorithmthat is optimal on homogeneous networks if we assume that messages annotbe segmented.Barnett et al. [19℄ demonstrate, however, that better performanes an beobtained if we ompose a pipeline among the proesses. This strategy bene�tsfrom message segmentation, as reent works indiate [3℄[20℄. In a SegmentedChain Broadast, the transmission of a segment k overlaps with the reeptionof segment k+1, reduing the overall time.To fully bene�t from the pipeline e�ort, the segment size must be hosen a-ording to the network environment. Indeed, too small messages pay morefor their headers than for their ontent, while too large messages do notexplore enough the pipeline. Therefore, an e�ient method to identify anadequate segment size s onsists in searhing through all values of s where
s = m/2i, i ∈ [0 . . . log2m] suh that s minimizes the predited performaneof the ommuniation operation. To re�ne the searh, we an also apply someheuristis like loal hill-limbing, as proposed by Kielmann et al. [3℄.11



In our work we developed the ommuniation models for some urrent teh-niques, whih are presented on Table 1. From these models, we are able toeasily determine the broadast algorithm that best performs on eah luster.Indeed, using the pLogP parameters obtained during the topology disoveryphase, we an predit the broadast exeution time with a good auray andselet the fastest algorithm for eah luster, as we presented in [21℄.Table 1Some ommuniation models for the Broadast operationAlgorithm Communiation CostFlat Tree L + (P − 1) × g(m)Segmented Flat Tree L + (P − 1) × (g(s) × k)Chain (P − 1) × (g(m) + L)Segmented Chain (Pipeline) (P − 1) × (g(s) + L) + (g(s) × (k − 1))Binary Tree ≤ ⌈log2P ⌉ × (2 × g(m) + L)Binomial Tree ⌈log2P ⌉ × L + ⌊log2P ⌋ × g(m)Segmented Binomial Tree ⌈log2P ⌉ × L + ⌊log2P ⌋ × g(s) × kk -hain [22℄ with a degree d (d + ⌈P−(2d+1)
(2d+1)

⌉) × (g(s) + L) + (g(s) × (k − 1))Satter/Colletion [23℄ (log2P + P − 1) × L + 2 × (p−1
p

) × g(m)5.2 Grid-aware Communiation ShedulingThe literature presents several works that aim to optimize olletive ommu-niations in heterogeneous environments. While some works just fous on thesearh for the best broadast tree of a network [17℄, most authors suh asBanikazemi [24℄, Bhat [4℄, Liu [5℄, Park [25℄, Mateesu [26℄ and Vorakosit [27℄try to generate optimal broadast trees aording to a given root proess.Unfortunately, most of these works were designed for small-sale systems. Oneof the �rst works on olletive ommuniation for grid systems was the ECOlibrary proposed by Lowekamp [18℄, where mahines are grouped aording to12



their loation. Later, the same priniple was used by the MPI library MagPIe[2℄, where proesses are hierarhially organized in two levels with the objetiveto minimize the exhange of wide-area messages.A ommon harateristi of these two implementations is that only inter-luster ommuniations are optimized. Hene, to improve ommuniation per-formanes, we must also improve inter-luster ommuniations. One of the�rst works to address this problem was presented by Karonis [1℄, who de-�ned a multilevel hierarhy that allows ommuniation overlapping betweendi�erent levels. While this struture on multiple levels allows a performaneimprovement, it relies on �at trees to disseminate messages between two widearea levels, the same strategy as ECO or MagPIe. It is important to note thata �at tree is far from being optimal on heterogeneous systems. Beause theexhaustive searh of the optimal tree is expensive, we deided to employ dif-ferent optimization heuristis. For instane, in this work we explore a di�erentapproah to improve ommuniation e�ieny.We onsider that wide-area lateny is no longer the single parameter thatmay ontribute to the broadast time. Indeed, the ommuniation ost insidea luster may represent an important fator to the overall ompletion time.For example, let us onsider two lusters from Grid'5000, one loated at Or-say and the other at Grenoble (approximately 700km from eah other). Thetransmission of 1MB between these lusters with a private bakbone of 1Gbit/sneeds 350 milliseonds. At the same time, a binomial-tree broadast with 50nodes interonneted by a Gigabit Ethernet network for the same messagesize requires almost 600 milliseonds. Ignoring the intra-luster time may leadto ine�ient ommuniation shedules if the lusters are not well balaned.13



Hene, we propose a smart shedule of wide-area olletive ommuniations,whih onsiders both inter and intra-luster times to minimize makespan.5.2.1 Desription Formalism and Performane ModelTo desribe the heuristis presented in the next setions, we use a formalismsimilar to the one used by Bhat [4℄. We onsider that lusters are divided in twosets, A and B. The set A ontains the lusters that already reeived a message(i.e., the oordinator of the luster reeives it). In set B we found all lustersthat shall reeive the message. At eah ommuniation round, two lustersare hosen from sets A (a sender) and B (a reeiver). After ommuniating,the reeiver luster is transferred to set A. When a oordinator does notpartiipate in any other inter-luster ommuniation, it an �nally broadastthe message inside its luster.5.2.2 Baseline Algorithm - Flat TreeThis strategy uses a �at tree to send messages at the inter-luster level, i.e.,the root proess sends the message to the oordinators of all other lusters, in asequential way. Formally, the root proess, whih belongs to the set A, hoosesa di�erent destination among the lusters in set B at eah ommuniationround (with a omplexityO(n)). One a luster oordinator reeives a message,it broadasts the message inside the luster using a binomial tree tehnique.Although easy to implement, this strategy is far from being optimized as thedi�usion of messages does not take into aount the performane of di�erentlusters or the interonnetion speed.5.2.3 Fastest Edge First - FEFProposed by Bhat et al. [4℄, the Fastest Edge First heuristi onsiders thateah link between two di�erent proesses i and j, orresponds to an edge with14



weight Tij. Usually, this edge weight Tij orresponds to the ommuniationlateny between the proesses. To shedule the broadast ommuniations ina heterogeneous environment, the FEF heuristis order nodes from the setA aording to their smallest outgoing edge weight. One this smallest edgeis seleted, it impliitly designates the sender and reeiver proesses. Whena reeiver is hosen, it is transferred from set B to set A, and the minimaloutgoing edge list is updated. Hene, this tehnique maximizes the number ofavailable senders that an proeed in parallel for a omplexity of O(n2).5.2.4 Early Completion Edge First - ECEFIn the previous heuristis, one the reeiver is assigned, it is immediately trans-ferred to the set A and an take part in the next ommuniation round. Thismodel is not realisti as ommuniation delays may prevent a reeiver pro-ess from having the message immediately. The Early Completion Edge Firstheuristi [4℄ keeps an aount of the moment in whih a message beomes avail-able to the proesses in the set A. This way, a Ready Time (RTi) parameter isevaluated onjointly with the transmission time between the proesses, whihleads to a omplexity of O(n2) (similar to the previous algorithm). The hoieof the sender-reeiver pair depends on the earliest possible moment when thistransmission may e�etively be �nished, minimizing the sum:
T = RTi + gi,j(m) + Li,j (4)5.2.5 Early Completion Edge First with look-ahead - ECEF-LAWhile the preedent heuristi e�iently solves the problem of the e�etivereadiness of a sender proess, it does not verify if these proesses would bee�ient senders on their turn. Bhat [4℄ proposed the use of look-ahead evalu-ation funtions to make a deep analysis on the sheduling hoies.15



In the variant alled Early Completion Edge First with look-ahead - ECEF-LA,the algorithm uses a look-ahead funtion Fj to haraterize eah proess in setB. A possible strategy onsiders that Fj represents the minimal transmissiontime from proess j to any other proess in set B, whih leads to an overallomplexity of O(n3). Indeed, this funtion evaluates the utility of a proess
Pj if it is transferred to set A. This way, the sender-reeiver pair will be theone that minimizes the sum:

T = RTi + gi,j(m) + Li,j + Fj with Fj = min
Pk∈B

(gj,k(m) + Lj,k) (5)5.2.6 ECEF-LA variantsWe also evaluate two di�erent heuristis espeially adapted to grid environ-ments, both with omplexity O(n4). These heuristis expand the ECEF-LAheuristi by onsidering the broadast time inside eah luster i on the look-ahead funtion. More preisely, we all Tk the intra-luster broadast time.Further, we an redue the omplexity of the heuristis to O(n3) if we reusethe broadast time Ti omputed during the intra-luster optimization phase(where we hoose the fastest broadast algorithm).For instane, the �rst heuristi, alled ECEF-LAt, tries to �nd a shedule thatminimizes the overall ommuniation time to a distant luster, inluding thebroadast time inside eah luster i. As a result, the look-ahead funtion forthis heuristi onsiders the following elements:
Fj = min

Pk∈B
(gj,k(m) + Lj,k + Tk) (6)Although similar to the preedent strategy, the ECEF-LAT strategy di�ersin the objetives of the look-ahead funtion. We observed that the previoustehniques tend to selet the fastest lusters (a min-min optimization). In a16



grid environment, however, this behavior penalizes the slower lusters, with apotential impat on the overall termination time. Therefore, the ECEF-LATstrategy gives priority to the lusters that need more time to �nish theirsinternal broadasts. For instane, this heuristi tries to maximize the sum ofthe following parameters:
Fj = max

Pk∈B
(gj,k(m) + Lj,k + Tk) (7)6 Pratial EvaluationTo evaluate the previous heuristis in a real situation, we implemented thesetehniques on top of a modi�ed version of the MagPIe library [2℄. Indeed,we extended MagPIe with the apability to aquire pLogP parameters and topredit the ommuniation performane of homogeneous lusters, as explainedin [28℄. Therefore, we onduted a pratial experiment using 88 mahinesfrom three di�erent lusters on the Grid'5000 network, all interonneted bya 1Gbit/s VLAN bakbone. Figure 2 shows the loation of the lusters, whileTable 2 lists the main harateristis from eah luster.

Figure 2. Grid'5000 sitesThese mahines were split into homogeneous lusters aording to luster mapprovided by Lowekamp's algorithm [18℄ (with a tolerane rate ρ = 30%). As aresult, the network was divided in six homogeneous lusters: C1-1 (29 mahinesat Orsay) and C1-2 (30 mahines at Orsay), C2-1 (8 mahines at Grenoble,17



Table 2Charateristis from the experimental testbedC1 - Orsay C2 - Grenoble C3 - ToulouseNumber of Nodes 60 8 20Proessor Type Opteron 246 Xeon IA-32 2.4GHz Opteron 248Gigabit Network Adapters Broadom Broadom/Intel∗ BroadomMemory 2GB 2GB 2GBLinux 2.6.8 Linux 2.4.26 Linux 2.6.8Software Environment LAM 7.2beta LAM 7.2beta LAM 7.2beta* Intel ards present important performane problems.Table 3Intra and inter-luster latenies (miroseonds).C1-1 C1-2 C2-1 C2-2 C2-3 C331 x Orsay 29 x Orsay 6 x Grenoble 1 x Grenoble 1 x Grenoble 20 x ToulouseC1-1 47.56 62.10 12181.52 12187.24 12197.49 5210.99C1-2 62.10 47.92 12181.52 12198.03 12195.22 5211.47C2-1 12181.52 12181.52 35.52 60.08 60.08 5388.49C2-2 12187.24 12198.03 60.08 0∗ 242.47 5393.98C2-3 12197.49 12195.22 60.08 242.47 0∗ 5394.10C3 5210.99 5211.47 5388.49 5393.98 5394.10 27.53* these "logial lusters" have only one mahine eah.Broadom adapter), C2-2 (1 mahine at Grenoble, Intel adapter) and C2-3 (1mahine at Grenoble, Intel adapter), and C3 (20 mahines at Toulouse) withtwo levels of hierarhy distributed over three sites in Frane. The intra andinter-lusters latenies are presented in Table 3.Indeed, Figure 3 present the broadast time when varying the message sizeand the sheduling heuristis. The times represent the average of 10 individualruns synhronized by barriers, eah one performing both intra and inter-lusteroptimization steps (online optimization) based on a topology desription �le.Further, to better evaluate the performane speed-up obtained with the useof sheduling heuristis and the overhead aused by the optimization steps,18
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Figure 3. MPI_Bast performane on a 88 mahine gridwe ompare the results with the standard MPI_Bast operation provided byLAM-MPI, whih uses a binomial tree.We observe that the sheduling heuristis allow a performane improvement ofat least 50% in omparison with the standard MPI_Bast binomial tree. Oneexeption is the baseline algorithm, whih uses a �at tree sheduling. Beausethis algorithm follows a �xed sheduling that does not take into aount theommuniation performane at the grid level, its performane is limited bythe weight of the network lateny. For instane, the baseline algorithm is ableto minimize the ommuniation time only when the lateny dominates thetransfer time (the gap), leading to a poor network performane when messagesizes are more important. Indeed, in a broadast with a higher inter-lustertransfer time, it is important to multiply the number of data soures, spreadingthe message to all lusters as fast as possible (somehow similar to the behaviorof the binomial tree algorithm on homogeneous network). Another importantpoint is that all other heuristis behave quite similarly. Indeed, these heuristisseem to produe optimal or quasi-optimal shedules, as observed by Bhat inhis work [4℄. To verify these properties and to ompare these heuristis underharder onditions than the experimental testbed allows, we designed a software19



simulator where we are able to hange the number of interonneted lustersand the interonnexion parameters, as presented in the following setion.7 Simulation and Salability ConernsWhile the previous setion demonstrates that the use of sheduling heuristismay help to redue the exeution time of a broadast in a heterogeneousnetwork, we must also be onerned by the salability of these heuristis.Although working in a grid environment suh as Grid'5000, our experimentsare still limited to a few lusters and network arhitetures. In order to evaluatethe salability and the e�ieny of the heuristis presented above, we deidedto ompare these heuristis in a simulated environment.We have developed a software simulator that exeutes the heuristi algorithmsof Setion 5.2, and alulates the ompletion time for eah of them. The in-puts to the simulator are the number of lusters, the size of the message to bebroadast, and the range of latenies and bandwidths (gap) in the inter-lusternetwork. Additionally, we provide a range of Tk values for the algorithms thatonsider the intra-luster broadast time (ECEF-LAt and ECEF-LAT). Thesimulator generates a random ommuniation matrix based on these param-eters. The simulator then exeutes the steps in the heuristi algorithms for10000 random input on�gurations. Finally, the simulator reports the averageompletion time for eah heuristi.Figure 4 ompares the performane of the di�erent ommuniation shedulingheuristis for the broadast problem with a message size of 1 MB: the inter-luster network latenies and bandwidths are hosen in the ranges of 1 ms to15 ms and 1 MB/s to 100 MB/s respetively. Finally, Tk ranges from 200 msto 3000 ms. Comparatively, the average lateny between Grid'5000 lusters is20



(a) (b)Figure 4. Simulation results for a broadast with di�erent number of lustersin the order of 5-8 ms, while the average throughput with LAM-MPI betweentwo lusters is 50MB/s. Similarly, a broadast of 1MB over 50 nodes in aMyrinet network takes 200 ms with the pipeline algorithm, while we need upto 3000 ms to broadast a message in a Fast Ethernet network with the �at treealgorithm. The graph shows the ompletion time for the baseline algorithm,the FEF, ECEF, and look-ahead heuristis.Initially, we evaluate the behavior of the heuristis in a grid with a reduednumber of lusters, whih orresponds to the majority of grid environments inuse today. For instane, Figure 4(a) shows the average ompletion time of theMPI_Bast operation with up to 10 lusters. Later, onerned by the salabilityof the algorithms, we extended our simulations to evaluate the broadast withup to 50 interonneted lusters, as represented in Figure 4(b).In both ases, the Flat Tree shedule presents the worst performane as it doesnot adapts the sheduling to the inter-luster ommuniation. We also observethe limitations from the FEF heuristi, orroborating the problems pointed insetion 5.2. Indeed, FEF onsiders that sender nodes are immediately avail-21



able, while in reality there is a transmission gap that must be respeted (theReady Time parameter).While Flat Tree and FEF heuristis learly show their limitations, all otherheuristis (ECEF, look-ahead, ...) present good results. Beause these teh-niques are able to start ommuniations from di�erent lusters in paralleland therefore minimizing the exeution time, the number of lusters has asmall in�uene on the overall ommuniation time. Another interesting pointis that all these heuristis present similar results, being aware of the intra-luster broadast time (Tk) or not. The fat that the intra-luster broadasttime hardly in�uenes the overall termination time has two main reasons: �rst,inter-luster ommuniations are far more expensive, and optimizing the inter-luster shedule redues onsiderably the exeution time. Seond, intra-lusterommuniations are already optimized in our framework, reduing their im-pat on the overall exeution. Hene, the assoiation of two optimization levels(intra and inter-luster) seems to be fair su�ient to obtain good ommunia-tion performanes. The hoie of the sheduling heuristi reposes therefore onthe omplexity of the sheduling heuristi and the heterogeneity of the envi-ronment, for whih the software simulation environment an help to ompare.
8 Conluding Remarks and Future WorksIn this paper we presented a grid-aware ommuniation framework based adap-tive approahes for prediting and optimizing the performanes of olletiveommuniation algorithms on heterogeneous hierarhial grids. We de�nedthe onept of polyalgorithmi optimization, and proposed a methodologythat proeeds in two adaptation levels to dynamially assoiate the fastest22



algorithm for a give luster and a ommuniation shedule that minimizes thetermination time. In this work we present a ase study on an important olle-tive ommuniation pattern, the broadast operation, proving the interest ofthe proposed multi-level adaptive sheme. Both experimental and simulatedresults are used to illustrate the operation of the framework and the bene�tsto the olletive ommuniations performane. Indeed, this framework is im-plemented in our grid-aware MPI ommuniation library LaPIe, in whih weintend to integrate other ommuniation patterns and sheduling algorithmsbased on the priniples from this framework.AknowledgmentsExperiments presented in this paper were arried out using the Grid'5000 ex-perimental testbed, an initiative from the Frenh Ministry of Researh throughthe ACI GRID inentive ation, INRIA, CNRS and RENATER and other on-tributing partners (see https://www.grid5000.fr). We are also grateful to allanonymous referees for their helpful omments and suggestions that helped usimproving this doument.Referenes[1℄ N. T. Karonis, B. Supinski, I. Foster, W. Gropp, E. Lusk, J. Bresnahan,Exploiting hierarhy in parallel omputer networks to optimize olletiveoperation performane, in: Proeedings of the 14th International Confereneon Parallel and Distributed Proessing Symposium, IEEE Computer Soiety,2000, pp. 377�384.[2℄ T. Kielmann, R. Hofman, H. Bal, A. Plaat, R. Bhoedjang, Magpie: MPI'solletive ommuniation operations for lustered wide area systems, in:Proeedings of the 7th ACM SIGPLAN Symposium on Priniples and Pratieof Parallel Programming, 1999, pp. 131�140.23
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