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Abstra
tColle
tive 
ommuni
ation operations are widely used in MPI appli
ations and playan important role in their performan
e. However, the network heterogeneity in-herent to grid environments represent a great 
hallenge to develop e�
ient highperforman
e 
omputing appli
ations. In this work we propose a generi
 frameworkbased on 
ommuni
ation models and adaptive te
hniques for dealing with 
olle
tive
ommuni
ation patterns on grid platforms. Toward this goal, we address the hierar-
hi
al organization of the grid, sele
ting the most e�
ient 
ommuni
ation algorithmsat ea
h network level. Our framework is also adaptive to grid load dynami
s sin
eit 
onsiders transient network 
hara
teristi
s for dividing the nodes into 
lusters.Our experiments with the broad
ast operation on a real-grid setup indi
ate that anadaptive framework allows signi�
ant performan
e improvements on MPI 
olle
tive
ommuni
ations.Key words: Grid 
omputing; Performan
e modeling; Adaptive te
hniques;Polyalgorithms; Colle
tive 
ommuni
ation; MPIPreprint submitted to Elsevier 25th April 2007



1 Introdu
tionIn the last years, there was a huge development in the �eld of parallel and dis-tributed pro
essing, espe
ially at the ar
hite
tural level leading to a wide va-riety of exe
ution supports. The major innovation was the phenomenal spreadof ar
hite
tures like 
lusters and grids. These platforms represent a reasonablealternative to traditional parallel ma
hines and have be
ome the most 
ost-e�e
tive 
omputing supports for solving a large range of high performan
e
omputing appli
ations due the good 
ost/performan
e ratio that they pro-vide. However, the introdu
tion of su
h parallel systems has a major impa
ton the design of e�
ient parallel algorithms. Indeed, new 
hara
teristi
s haveto be taken into a

ount in
luding s
alability and portability. Moreover, su
hparallel systems are often upgraded with new generation of pro
essors andnetwork te
hnologies. For instan
e, adaptability be
omes 
ru
ial be
ause ofthe frequent 
hanges of the system hardware. These di�erent elements requireto revise the 
lassi
al parallel algorithms whi
h 
onsider only regular ar
hite
-tures with stati
 
on�gurations and to propose new approa
hes.Our obje
tive in this work is to propose a generi
 framework based on 
om-muni
ation models and s
heduling te
hniques to deal with 
ommuni
ations
heduling in heterogeneous environments su
h as 
omputational grids. Morepre
isely, this paper proposes a 
ommuni
ation s
hedule methodology withtwo adaptation levels. At the �rst level we pro
eed at the intra-
luster level,by determining the most e�
ient 
ommuni
ation algorithm from a set of wellknown algorithms from the literature. At a se
ond level, our framework de-Email address: 1Luiz-Angelo.Steffenel�univ-nan
y2.fr,
2Gregory.Mounie�imag.fr (Luiz Angelo Ste�enel1, Grégory Mounié2).2



termines an inter-
luster 
ommuni
ation s
hedule that minimizes the overallexe
ution time of a 
olle
tive 
ommuni
ation. Therefore, our framework dif-fers signi�
antly from other works, as existing adaptive approa
hes presentedin the literature [1,2,3℄ pro
eed by simply s
heduling 
ommuni
ations at theinter-
luster level, i.e., long-distan
e links. At the other side, works like [4,5,6℄only try to minimize the exe
ution time of 
olle
tive 
ommuni
ation operationsin the 
ontext of intra-
luster environments. To the best of our knowledge, ourframework provides the �rst general methodology to automati
ally asso
iatee�
ient intra-
luster algorithms with inter-
luster 
ommuni
ation heuristi
s,redu
ing the overall exe
ution time of a 
olle
tive 
ommuni
ation.
The remainder of the paper is organized as follows. We begin in Se
tion 2 bydes
ribing our assumptions for the 
ommuni
ation environment. In Se
tion3 we �rst de�ne the 
on
ept of polyalgorithm, presenting our framework foradaptive 
ommuni
ations and detailing its 
omponents. Se
tion 4 des
ribesthe platform partitioning phase, where we organize the grid into homogeneouslogi
al 
luster. Hen
e, in Se
tion 5 we present a 
ase study where we apply these
ond part of our framework for the development of a grid-aware MPI_BCast
ommuni
ation operation. To validate the framework 
ontributions, we 
on-du
t both pra
ti
al experiments on a grid environment (Se
tion 6) and nu-meri
al simulations (Se
tion 7). These results 
on
ern both the evaluation ofthe optimization overhead and the s
alability of the algorithms, proving theinterest of this work. Finally, Se
tion 8 
on
ludes the paper and dis
usses someperspe
tives to extend this work.
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2 Des
ription of the EnvironmentHeterogeneity Model: We assume a generi
 platform 
omposed by hetero-geneous 
lusters as des
ribed in [7℄. The platform studied enjoys heterogeneityalong three orthogonal axes: (i) the pro
essors that populate the 
lusters maydi�er in 
omputational powers, even within the same 
luster; (ii) the 
lustersare organized hierar
hi
ally and are inter
onne
ted via a hierar
hy of networksof possibly di�ering laten
ies and bandwidths. At the level of physi
al 
lus-ters, the inter
onne
tion networks are assumed to be heterogeneous; (iii) the
lusters at ea
h level of the hierar
hy may di�er in sizes.Communi
ation Model: We assume that the network is fully 
onne
ted.The links between pairs of pro
esses are bidire
tional, and ea
h pro
ess 
antransmit data on at most one link and re
eive data on at most one link at anygiven time. This model is well-known in the literature as 1-port full-duplex.Transmission Model: The literature 
ontains several parallel 
ommuni
a-tion models [8,9,10,11,12,3℄. These models di�er on the 
omputational andnetwork assumptions, su
h as laten
y, heterogeneity, network 
ontention, et
.In this work we adopted the parameterized LogP model (pLogP) [3℄. Our 
hoi
eon the pLogP model 
omes from the fa
t that we 
an experien
e di�erenttransmission rates a

ording to the message size, as a 
onsequen
e of trans-port proto
ols and hardware poli
ies. Hen
e, all along this paper we shall useL as the 
ommuni
ation laten
y between two nodes, P as the number of nodesand g(m) for the gap of a message of size m. The gap of a message m repre-sents the time required to transmit a message through the network (ex
ludingthe laten
y), whi
h is inversely proportional to the bandwidth of the link. Inthe 
ase of message segmentation, the segment size s of the message m is a4



multiple of the size of the basi
 datatype to be transmitted, and it splits theinitial message m into k segments.3 An Adaptive Framework for Grid-Aware Communi
ationsIn this se
tion, we des
ribe our framework for adaptive 
ommuni
ation s
hedul-ing in an exe
ution environment 
hara
terized by its heterogeneity and itshierar
hi
al organization. We 
onsider a grid environment 
omposed by dif-ferent 
lusters C1 to Cn with respe
tively n1, n2, . . . , nn nodes. A wide-areanetwork, 
alled a ba
kbone, inter
onne
ts these 
lusters. We assume that a
luster use the same network 
ard to 
ommuni
ate to one of its node or toa node of another 
luster, although ea
h 
luster may use di�erent networkte
hnologies (Fast Ethernet, Gigabit Ethernet, Myrinet, et
.). Based on thattopology inter-
luster 
ommuni
ations are never faster than 
ommuni
ationwithin a 
luster.Most MPI libraries (LAM-MPI, OpenMPI, MPICH2, et
.) implement 
olle
-tive 
ommuni
ations assuming that all the nodes are on the same 
lusters,whi
h means that all 
ommuni
ations have the same weight. However, in our
ase, some messages are transferred within a 
luster (from a node of C1 to anode of C1, for example, or between the two 
lusters. In the �rst 
ase, band-width and laten
y are faster than in the se
ond 
ase. Therefore, we need toasso
iate di�erent tools to model the overall performan
e. We assume that
ommuni
ation performan
es 
an be predi
ted based on 
ommuni
ation 
ostmodels (for instan
e, the pLogP model [3℄) and ben
hmarks on the real system.An overview of the framework is sket
hed in Figure 1. Sin
e the target systemmay experien
e heterogeneity at di�erent levels (
omputing performan
e, net-5



work 
apa
ity, et
), it is too di�
ult to manage the entire platform towards ahigh performan
e 
omputing. One way to 
ir
umvent this problem is to subdi-vide the network in homogeneous subnets (or logi
al 
lusters), handling ea
h
luster individually to subsequently aggregate them at the grid level. There-fore, the framework is separated in two su

essive phases. During the �rstone, we aim to partition the exe
ution platform into subnets with homoge-neous 
hara
teristi
s. Then, when exe
uting the se
ond phase, we determinefor ea
h subnet (i.e., for ea
h 
luster) the 
ommuni
ation algorithm that per-forms better in that 
luster. Indeed, using pLogP, we are able to predi
t the
ommuni
ation performan
e on ea
h di�erent 
luster, allowing us to 
omparedi�erent 
ommuni
ations algorithms. In the same way, pLogP is used to de�nee�
ient wide-area 
ommuni
ation s
hedules adapted to a heterogeneous gridenvironment.
Parameters of the target

Performance predictions

Communication Scheduling

Platform
 partitioning

A
daptive approach

Clustering

Communication models

Target execution platform Dynamic monitoring tool

environment

Figure 1. Con
eptual framework of the adaptive me
hanismOn
e the platform is partitioned in separated homogeneous hierar
hi
al 
lus-ters we determine, for ea
h 
luster, an algorithm whi
h performs better inthat network environment. A
tually, we 
ompare the expe
ted performan
e ofdi�erent algorithms from the literature (ea
h algorithm being previously mod-6



eled with pLogP), in terms of the size of data to be transmitted, the network
hara
teristi
s and the number of nodes.Through the analysis of the inter-
lusters and intra-
luster performan
e pre-di
tions we are able to de�ne a 
ommuni
ation s
hedule that minimizes theoverall exe
ution time. On
e again we 
an 
ompare di�erent s
hedule poli
ies(heuristi
s), whi
h are 
hosen a

ording to their estimated termination time.The framework allows, indeed, to implement s
heduling heuristi
s that a
t ondi�erent 
ommuni
ation levels, be it at inter-
luster level (mostly appropriateto 
olle
tive operations like broad
ast [2℄ and redu
e [13℄) or at node-to-nodelevel (for operations su
h as the all-to-all [4℄).4 Platform PartitionWe propose a method to automati
ally dis
over the network topology, allowingthe 
onstru
tion of optimized multilevel 
olle
tive operations. We prefer auto-mati
 topology dis
overy instead of a prede�ned topology be
ause if there arehidden heterogeneities inside a 
luster, they may interfere with the 
ommuni-
ation and indu
e a non negligible impre
ision in the models. The automati
dis
overy we propose should be done in two phases: the �rst phase 
olle
tsrea
hability data from di�erent networks. The se
ond phase, exe
uted at theappli
ation start-up, subdivides the networks in homogeneous logi
al 
lustersand �nally a
quires pLogP parameters to model 
olle
tive 
ommuni
ations.Several spe
ialized tools 
an be used to gather 
onne
tivity information throughnetwork monitoring. These tools may a
quire data from dire
t probing, likeNWS [14℄, from SNMP queries to network equipments, like REMOS [15℄, oreven 
ombine both approa
hes, like TopoMon [16℄. NWS seems to be thebest 
andidate to our needs: as a de fa
to standard in the grid 
ommunity,7



NWS 
an be 
on�gured to provide information like 
ommuni
ation laten
y,throughput, CPU load and available memory. For instan
e, we may identifygroups of ma
hines with similar 
ommuni
ation 
hara
teristi
s using laten
yand throughput data obtained from NWS.4.1 ClusteringOne reason to 
onstru
t logi
al 
lusters is that even ma
hines in the samenetwork may behave di�erently, in spite of their physi
al lo
ation. Indeed,su
h di�eren
es introdu
e undesirable heterogeneities that may invalidate theperforman
e models used to optimize 
olle
tive 
ommuni
ations. For instan
e,we are interested in grouping ma
hines with similar performan
es into "logi
al
lusters� to redu
e the s
heduling 
omplexity.Clustering may be performed a

ording di�erent approa
hes. The most knownapproa
h try to de�ne a spanning tree su
h that ea
h node 
onne
ts to the
losest node in the network. This approa
h 
an be implemented through ag-glomerative 
onstru
tion of the spanning tree from a given parameter, but also
an be implemented by pruning the full inter
onne
tion graph [17℄. Anotherapproa
h 
onsists on de�ning a "
loseness" parameter ρ, whi
h indi
ates themaximum varian
e among nodes in the same group. In the spe
i�
 
ase of ourwork, the last te
hnique seems to be the most appropriate, as at this point weare simply interested on the de�nition of homogeneous 
lusters.Therefore, we may 
onsider a weighted digraph dG(V,E) of order n with V =

{p0, ..., pn−1} to represent our network. In this digraph, the verti
es representthe pro
ess nodes and the edges represent the link between two nodes. Aninteger wi,j is asso
iated with ea
h edge Ei,j, representing the distan
e betweennodes pi and pj (
ommuni
ation laten
y, for example), and we de�ne ρ as the8



maximal distan
e variation between two nodes in the same 
luster. Hen
e, thisdigraph 
orresponds to the distan
e matrix M de�ned by:
M =































wi,j if there is a local link between {i, j}

0 otherwise

(1)For instan
e, a trivial algorithm to solve this problem initially sorts the outgo-ing edges from ea
h node in in
reasing order of their weights. By pro
eedingfrom the smallest weighted edge wx,y, we de�ne an initial group {x, y}. Atea
h step we sele
t a 
andidate node a and 
ompare its distan
e to any nodewithin a group S. If distan
e does not vary more than ρ, node a 
an be in-
luded in group S. Otherwise, if node a does not �t into any existent group,it be
omes the �rst node of a new group S ′. The algorithm terminates afterall outgoing edges have been evaluated. Indeed, this algorithm 
an be de�nedby the expression:
∀x,∀y ∈ S, x 6= y, a ∈ S ⇒ |w(a, x) − w(x, y)| ≤ ρ (2)Be
ause we need to 
ompare node a to ea
h node from group S, this algorithmexe
utes in O(N2) steps. Therefore, Lowekamp [18℄ presented a greedy algo-rithm, whi
h was implemented within the ECO library and is also adoptedin our work. More spe
i�
ally, Lowekamp's algorithm 
ompares a 
andidatenode a with the smallest edge wmin within a group S. This algorithm, whi
hrequires only O(N) steps, 
orresponds to the following expression:
∀x,∀y ∈ S, x 6= y, a ∈ S ⇒ |w(a, x) − wmin(S)| ≤ ρ (3)Although the distan
e between two nodes 
an be expressed with the help ofdi�erent parameters (laten
y, bandwidth, hops, et
.), we 
onsidered laten
y as9



the main parameter to be evaluated in our topology dis
overy implementation.Indeed, laten
y has proved to be su�
iently a

urate to distinguish nodes in
onne
ted to di�erent swit
hes in a lo
al network. Further, laten
y 
an beeasily measured in a wide area network without disturbing the ongoing tra�
,
ontrarily to a bandwidth measurement.In addition, the topology dis
overy pro
ess may be deta
hed from the appli-
ation, minimizing the overhead in the appli
ation performan
e. Indeed, themost expensive part of the pro
ess 
onsists on 
onta
ting ea
h other node to
ompose a distan
e matrix, while the 
lustering part is quite simple. An of-�ine topology dis
overy is re
ommended for su
h appli
ations, following theprin
iples used by MagPIe [2℄, whi
h reads the topology des
ription from a�le. A daemon pro
ess may 
ondu
t regular updates on the des
ription �le,indu
ing almost no overhead to the appli
ation.4.2 E�
ient A
quisition of pLogP ParametersOn
e identifying the logi
al 
luster organization of our grid, we must othernetwork parameters su
h as the bandwidth (or the gap, for the pLogP model).Hopefully, there is no need to exe
ute n(n− 1) pLogP measures, one for ea
hpossible inter
onne
tion. Using the topology information we 
an get pLogPparameters in an e�
ient way by 
onsidering a single pro
ess to representea
h 
luster. As one single measure may represent the entire subnet, the totalnumber of pLogP measures is fairly redu
ed. If we sum up the measures toobtain the parameters for the inter-
lusters 
onne
tions, we shall exe
ute atmost C × (C − 1) + C experiments, where C means the number of 
luster.Further, if we 
onsider symmetri
 links, only half of the probes are need,minimizing the interferen
e on the network.10



5 Case Study - Broad
ast Operations5.1 Intra-
luster Communi
ation Strategy Sele
tionWith Broad
ast, a single pro
ess, 
alled root, sends the same message of sizem to all other (P − 1) pro
esses. Classi
al implementations of the Broad
astoperation rely on d-ary trees 
hara
terized by two parameters, d and h, whered is the maximum number of su

essors a node 
an have, and h is the heightof the tree, the longest path from the root to any of the tree leaves. Therefore,most MPI implementations rely on the Binomial Tree broad
ast, an algorithmthat is optimal on homogeneous networks if we assume that messages 
annotbe segmented.Barnett et al. [19℄ demonstrate, however, that better performan
es 
an beobtained if we 
ompose a pipeline among the pro
esses. This strategy bene�tsfrom message segmentation, as re
ent works indi
ate [3℄[20℄. In a SegmentedChain Broad
ast, the transmission of a segment k overlaps with the re
eptionof segment k+1, redu
ing the overall time.To fully bene�t from the pipeline e�ort, the segment size must be 
hosen a
-
ording to the network environment. Indeed, too small messages pay morefor their headers than for their 
ontent, while too large messages do notexplore enough the pipeline. Therefore, an e�
ient method to identify anadequate segment size s 
onsists in sear
hing through all values of s where
s = m/2i, i ∈ [0 . . . log2m] su
h that s minimizes the predi
ted performan
eof the 
ommuni
ation operation. To re�ne the sear
h, we 
an also apply someheuristi
s like lo
al hill-
limbing, as proposed by Kielmann et al. [3℄.11



In our work we developed the 
ommuni
ation models for some 
urrent te
h-niques, whi
h are presented on Table 1. From these models, we are able toeasily determine the broad
ast algorithm that best performs on ea
h 
luster.Indeed, using the pLogP parameters obtained during the topology dis
overyphase, we 
an predi
t the broad
ast exe
ution time with a good a

ura
y andsele
t the fastest algorithm for ea
h 
luster, as we presented in [21℄.Table 1Some 
ommuni
ation models for the Broad
ast operationAlgorithm Communi
ation CostFlat Tree L + (P − 1) × g(m)Segmented Flat Tree L + (P − 1) × (g(s) × k)Chain (P − 1) × (g(m) + L)Segmented Chain (Pipeline) (P − 1) × (g(s) + L) + (g(s) × (k − 1))Binary Tree ≤ ⌈log2P ⌉ × (2 × g(m) + L)Binomial Tree ⌈log2P ⌉ × L + ⌊log2P ⌋ × g(m)Segmented Binomial Tree ⌈log2P ⌉ × L + ⌊log2P ⌋ × g(s) × kk -
hain [22℄ with a degree d (d + ⌈P−(2d+1)
(2d+1)

⌉) × (g(s) + L) + (g(s) × (k − 1))S
atter/Colle
tion [23℄ (log2P + P − 1) × L + 2 × (p−1
p

) × g(m)5.2 Grid-aware Communi
ation S
hedulingThe literature presents several works that aim to optimize 
olle
tive 
ommu-ni
ations in heterogeneous environments. While some works just fo
us on thesear
h for the best broad
ast tree of a network [17℄, most authors su
h asBanikazemi [24℄, Bhat [4℄, Liu [5℄, Park [25℄, Matees
u [26℄ and Vorakosit [27℄try to generate optimal broad
ast trees a

ording to a given root pro
ess.Unfortunately, most of these works were designed for small-s
ale systems. Oneof the �rst works on 
olle
tive 
ommuni
ation for grid systems was the ECOlibrary proposed by Lowekamp [18℄, where ma
hines are grouped a

ording to12



their lo
ation. Later, the same prin
iple was used by the MPI library MagPIe[2℄, where pro
esses are hierar
hi
ally organized in two levels with the obje
tiveto minimize the ex
hange of wide-area messages.A 
ommon 
hara
teristi
 of these two implementations is that only inter-
luster 
ommuni
ations are optimized. Hen
e, to improve 
ommuni
ation per-forman
es, we must also improve inter-
luster 
ommuni
ations. One of the�rst works to address this problem was presented by Karonis [1℄, who de-�ned a multilevel hierar
hy that allows 
ommuni
ation overlapping betweendi�erent levels. While this stru
ture on multiple levels allows a performan
eimprovement, it relies on �at trees to disseminate messages between two widearea levels, the same strategy as ECO or MagPIe. It is important to note thata �at tree is far from being optimal on heterogeneous systems. Be
ause theexhaustive sear
h of the optimal tree is expensive, we de
ided to employ dif-ferent optimization heuristi
s. For instan
e, in this work we explore a di�erentapproa
h to improve 
ommuni
ation e�
ien
y.We 
onsider that wide-area laten
y is no longer the single parameter thatmay 
ontribute to the broad
ast time. Indeed, the 
ommuni
ation 
ost insidea 
luster may represent an important fa
tor to the overall 
ompletion time.For example, let us 
onsider two 
lusters from Grid'5000, one lo
ated at Or-say and the other at Grenoble (approximately 700km from ea
h other). Thetransmission of 1MB between these 
lusters with a private ba
kbone of 1Gbit/sneeds 350 millise
onds. At the same time, a binomial-tree broad
ast with 50nodes inter
onne
ted by a Gigabit Ethernet network for the same messagesize requires almost 600 millise
onds. Ignoring the intra-
luster time may leadto ine�
ient 
ommuni
ation s
hedules if the 
lusters are not well balan
ed.13



Hen
e, we propose a smart s
hedule of wide-area 
olle
tive 
ommuni
ations,whi
h 
onsiders both inter and intra-
luster times to minimize makespan.5.2.1 Des
ription Formalism and Performan
e ModelTo des
ribe the heuristi
s presented in the next se
tions, we use a formalismsimilar to the one used by Bhat [4℄. We 
onsider that 
lusters are divided in twosets, A and B. The set A 
ontains the 
lusters that already re
eived a message(i.e., the 
oordinator of the 
luster re
eives it). In set B we found all 
lustersthat shall re
eive the message. At ea
h 
ommuni
ation round, two 
lustersare 
hosen from sets A (a sender) and B (a re
eiver). After 
ommuni
ating,the re
eiver 
luster is transferred to set A. When a 
oordinator does notparti
ipate in any other inter-
luster 
ommuni
ation, it 
an �nally broad
astthe message inside its 
luster.5.2.2 Baseline Algorithm - Flat TreeThis strategy uses a �at tree to send messages at the inter-
luster level, i.e.,the root pro
ess sends the message to the 
oordinators of all other 
lusters, in asequential way. Formally, the root pro
ess, whi
h belongs to the set A, 
hoosesa di�erent destination among the 
lusters in set B at ea
h 
ommuni
ationround (with a 
omplexityO(n)). On
e a 
luster 
oordinator re
eives a message,it broad
asts the message inside the 
luster using a binomial tree te
hnique.Although easy to implement, this strategy is far from being optimized as thedi�usion of messages does not take into a

ount the performan
e of di�erent
lusters or the inter
onne
tion speed.5.2.3 Fastest Edge First - FEFProposed by Bhat et al. [4℄, the Fastest Edge First heuristi
 
onsiders thatea
h link between two di�erent pro
esses i and j, 
orresponds to an edge with14



weight Tij. Usually, this edge weight Tij 
orresponds to the 
ommuni
ationlaten
y between the pro
esses. To s
hedule the broad
ast 
ommuni
ations ina heterogeneous environment, the FEF heuristi
s order nodes from the setA a

ording to their smallest outgoing edge weight. On
e this smallest edgeis sele
ted, it impli
itly designates the sender and re
eiver pro
esses. Whena re
eiver is 
hosen, it is transferred from set B to set A, and the minimaloutgoing edge list is updated. Hen
e, this te
hnique maximizes the number ofavailable senders that 
an pro
eed in parallel for a 
omplexity of O(n2).5.2.4 Early Completion Edge First - ECEFIn the previous heuristi
s, on
e the re
eiver is assigned, it is immediately trans-ferred to the set A and 
an take part in the next 
ommuni
ation round. Thismodel is not realisti
 as 
ommuni
ation delays may prevent a re
eiver pro-
ess from having the message immediately. The Early Completion Edge Firstheuristi
 [4℄ keeps an a

ount of the moment in whi
h a message be
omes avail-able to the pro
esses in the set A. This way, a Ready Time (RTi) parameter isevaluated 
onjointly with the transmission time between the pro
esses, whi
hleads to a 
omplexity of O(n2) (similar to the previous algorithm). The 
hoi
eof the sender-re
eiver pair depends on the earliest possible moment when thistransmission may e�e
tively be �nished, minimizing the sum:
T = RTi + gi,j(m) + Li,j (4)5.2.5 Early Completion Edge First with look-ahead - ECEF-LAWhile the pre
edent heuristi
 e�
iently solves the problem of the e�e
tivereadiness of a sender pro
ess, it does not verify if these pro
esses would bee�
ient senders on their turn. Bhat [4℄ proposed the use of look-ahead evalu-ation fun
tions to make a deep analysis on the s
heduling 
hoi
es.15



In the variant 
alled Early Completion Edge First with look-ahead - ECEF-LA,the algorithm uses a look-ahead fun
tion Fj to 
hara
terize ea
h pro
ess in setB. A possible strategy 
onsiders that Fj represents the minimal transmissiontime from pro
ess j to any other pro
ess in set B, whi
h leads to an overall
omplexity of O(n3). Indeed, this fun
tion evaluates the utility of a pro
ess
Pj if it is transferred to set A. This way, the sender-re
eiver pair will be theone that minimizes the sum:

T = RTi + gi,j(m) + Li,j + Fj with Fj = min
Pk∈B

(gj,k(m) + Lj,k) (5)5.2.6 ECEF-LA variantsWe also evaluate two di�erent heuristi
s espe
ially adapted to grid environ-ments, both with 
omplexity O(n4). These heuristi
s expand the ECEF-LAheuristi
 by 
onsidering the broad
ast time inside ea
h 
luster i on the look-ahead fun
tion. More pre
isely, we 
all Tk the intra-
luster broad
ast time.Further, we 
an redu
e the 
omplexity of the heuristi
s to O(n3) if we reusethe broad
ast time Ti 
omputed during the intra-
luster optimization phase(where we 
hoose the fastest broad
ast algorithm).For instan
e, the �rst heuristi
, 
alled ECEF-LAt, tries to �nd a s
hedule thatminimizes the overall 
ommuni
ation time to a distant 
luster, in
luding thebroad
ast time inside ea
h 
luster i. As a result, the look-ahead fun
tion forthis heuristi
 
onsiders the following elements:
Fj = min

Pk∈B
(gj,k(m) + Lj,k + Tk) (6)Although similar to the pre
edent strategy, the ECEF-LAT strategy di�ersin the obje
tives of the look-ahead fun
tion. We observed that the previouste
hniques tend to sele
t the fastest 
lusters (a min-min optimization). In a16



grid environment, however, this behavior penalizes the slower 
lusters, with apotential impa
t on the overall termination time. Therefore, the ECEF-LATstrategy gives priority to the 
lusters that need more time to �nish theirsinternal broad
asts. For instan
e, this heuristi
 tries to maximize the sum ofthe following parameters:
Fj = max

Pk∈B
(gj,k(m) + Lj,k + Tk) (7)6 Pra
ti
al EvaluationTo evaluate the previous heuristi
s in a real situation, we implemented thesete
hniques on top of a modi�ed version of the MagPIe library [2℄. Indeed,we extended MagPIe with the 
apability to a
quire pLogP parameters and topredi
t the 
ommuni
ation performan
e of homogeneous 
lusters, as explainedin [28℄. Therefore, we 
ondu
ted a pra
ti
al experiment using 88 ma
hinesfrom three di�erent 
lusters on the Grid'5000 network, all inter
onne
ted bya 1Gbit/s VLAN ba
kbone. Figure 2 shows the lo
ation of the 
lusters, whileTable 2 lists the main 
hara
teristi
s from ea
h 
luster.

Figure 2. Grid'5000 sitesThese ma
hines were split into homogeneous 
lusters a

ording to 
luster mapprovided by Lowekamp's algorithm [18℄ (with a toleran
e rate ρ = 30%). As aresult, the network was divided in six homogeneous 
lusters: C1-1 (29 ma
hinesat Orsay) and C1-2 (30 ma
hines at Orsay), C2-1 (8 ma
hines at Grenoble,17



Table 2Chara
teristi
s from the experimental testbedC1 - Orsay C2 - Grenoble C3 - ToulouseNumber of Nodes 60 8 20Pro
essor Type Opteron 246 Xeon IA-32 2.4GHz Opteron 248Gigabit Network Adapters Broad
om Broad
om/Intel∗ Broad
omMemory 2GB 2GB 2GBLinux 2.6.8 Linux 2.4.26 Linux 2.6.8Software Environment LAM 7.2beta LAM 7.2beta LAM 7.2beta* Intel 
ards present important performan
e problems.Table 3Intra and inter-
luster laten
ies (mi
rose
onds).C1-1 C1-2 C2-1 C2-2 C2-3 C331 x Orsay 29 x Orsay 6 x Grenoble 1 x Grenoble 1 x Grenoble 20 x ToulouseC1-1 47.56 62.10 12181.52 12187.24 12197.49 5210.99C1-2 62.10 47.92 12181.52 12198.03 12195.22 5211.47C2-1 12181.52 12181.52 35.52 60.08 60.08 5388.49C2-2 12187.24 12198.03 60.08 0∗ 242.47 5393.98C2-3 12197.49 12195.22 60.08 242.47 0∗ 5394.10C3 5210.99 5211.47 5388.49 5393.98 5394.10 27.53* these "logi
al 
lusters" have only one ma
hine ea
h.Broad
om adapter), C2-2 (1 ma
hine at Grenoble, Intel adapter) and C2-3 (1ma
hine at Grenoble, Intel adapter), and C3 (20 ma
hines at Toulouse) withtwo levels of hierar
hy distributed over three sites in Fran
e. The intra andinter-
lusters laten
ies are presented in Table 3.Indeed, Figure 3 present the broad
ast time when varying the message sizeand the s
heduling heuristi
s. The times represent the average of 10 individualruns syn
hronized by barriers, ea
h one performing both intra and inter-
lusteroptimization steps (online optimization) based on a topology des
ription �le.Further, to better evaluate the performan
e speed-up obtained with the useof s
heduling heuristi
s and the overhead 
aused by the optimization steps,18
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Figure 3. MPI_B
ast performan
e on a 88 ma
hine gridwe 
ompare the results with the standard MPI_B
ast operation provided byLAM-MPI, whi
h uses a binomial tree.We observe that the s
heduling heuristi
s allow a performan
e improvement ofat least 50% in 
omparison with the standard MPI_B
ast binomial tree. Oneex
eption is the baseline algorithm, whi
h uses a �at tree s
heduling. Be
ausethis algorithm follows a �xed s
heduling that does not take into a

ount the
ommuni
ation performan
e at the grid level, its performan
e is limited bythe weight of the network laten
y. For instan
e, the baseline algorithm is ableto minimize the 
ommuni
ation time only when the laten
y dominates thetransfer time (the gap), leading to a poor network performan
e when messagesizes are more important. Indeed, in a broad
ast with a higher inter-
lustertransfer time, it is important to multiply the number of data sour
es, spreadingthe message to all 
lusters as fast as possible (somehow similar to the behaviorof the binomial tree algorithm on homogeneous network). Another importantpoint is that all other heuristi
s behave quite similarly. Indeed, these heuristi
sseem to produ
e optimal or quasi-optimal s
hedules, as observed by Bhat inhis work [4℄. To verify these properties and to 
ompare these heuristi
s underharder 
onditions than the experimental testbed allows, we designed a software19



simulator where we are able to 
hange the number of inter
onne
ted 
lustersand the inter
onnexion parameters, as presented in the following se
tion.7 Simulation and S
alability Con
ernsWhile the previous se
tion demonstrates that the use of s
heduling heuristi
smay help to redu
e the exe
ution time of a broad
ast in a heterogeneousnetwork, we must also be 
on
erned by the s
alability of these heuristi
s.Although working in a grid environment su
h as Grid'5000, our experimentsare still limited to a few 
lusters and network ar
hite
tures. In order to evaluatethe s
alability and the e�
ien
y of the heuristi
s presented above, we de
idedto 
ompare these heuristi
s in a simulated environment.We have developed a software simulator that exe
utes the heuristi
 algorithmsof Se
tion 5.2, and 
al
ulates the 
ompletion time for ea
h of them. The in-puts to the simulator are the number of 
lusters, the size of the message to bebroad
ast, and the range of laten
ies and bandwidths (gap) in the inter-
lusternetwork. Additionally, we provide a range of Tk values for the algorithms that
onsider the intra-
luster broad
ast time (ECEF-LAt and ECEF-LAT). Thesimulator generates a random 
ommuni
ation matrix based on these param-eters. The simulator then exe
utes the steps in the heuristi
 algorithms for10000 random input 
on�gurations. Finally, the simulator reports the average
ompletion time for ea
h heuristi
.Figure 4 
ompares the performan
e of the di�erent 
ommuni
ation s
hedulingheuristi
s for the broad
ast problem with a message size of 1 MB: the inter-
luster network laten
ies and bandwidths are 
hosen in the ranges of 1 ms to15 ms and 1 MB/s to 100 MB/s respe
tively. Finally, Tk ranges from 200 msto 3000 ms. Comparatively, the average laten
y between Grid'5000 
lusters is20



(a) (b)Figure 4. Simulation results for a broad
ast with di�erent number of 
lustersin the order of 5-8 ms, while the average throughput with LAM-MPI betweentwo 
lusters is 50MB/s. Similarly, a broad
ast of 1MB over 50 nodes in aMyrinet network takes 200 ms with the pipeline algorithm, while we need upto 3000 ms to broad
ast a message in a Fast Ethernet network with the �at treealgorithm. The graph shows the 
ompletion time for the baseline algorithm,the FEF, ECEF, and look-ahead heuristi
s.Initially, we evaluate the behavior of the heuristi
s in a grid with a redu
ednumber of 
lusters, whi
h 
orresponds to the majority of grid environments inuse today. For instan
e, Figure 4(a) shows the average 
ompletion time of theMPI_B
ast operation with up to 10 
lusters. Later, 
on
erned by the s
alabilityof the algorithms, we extended our simulations to evaluate the broad
ast withup to 50 inter
onne
ted 
lusters, as represented in Figure 4(b).In both 
ases, the Flat Tree s
hedule presents the worst performan
e as it doesnot adapts the s
heduling to the inter-
luster 
ommuni
ation. We also observethe limitations from the FEF heuristi
, 
orroborating the problems pointed inse
tion 5.2. Indeed, FEF 
onsiders that sender nodes are immediately avail-21



able, while in reality there is a transmission gap that must be respe
ted (theReady Time parameter).While Flat Tree and FEF heuristi
s 
learly show their limitations, all otherheuristi
s (ECEF, look-ahead, ...) present good results. Be
ause these te
h-niques are able to start 
ommuni
ations from di�erent 
lusters in paralleland therefore minimizing the exe
ution time, the number of 
lusters has asmall in�uen
e on the overall 
ommuni
ation time. Another interesting pointis that all these heuristi
s present similar results, being aware of the intra-
luster broad
ast time (Tk) or not. The fa
t that the intra-
luster broad
asttime hardly in�uen
es the overall termination time has two main reasons: �rst,inter-
luster 
ommuni
ations are far more expensive, and optimizing the inter-
luster s
hedule redu
es 
onsiderably the exe
ution time. Se
ond, intra-
luster
ommuni
ations are already optimized in our framework, redu
ing their im-pa
t on the overall exe
ution. Hen
e, the asso
iation of two optimization levels(intra and inter-
luster) seems to be fair su�
ient to obtain good 
ommuni
a-tion performan
es. The 
hoi
e of the s
heduling heuristi
 reposes therefore onthe 
omplexity of the s
heduling heuristi
 and the heterogeneity of the envi-ronment, for whi
h the software simulation environment 
an help to 
ompare.
8 Con
luding Remarks and Future WorksIn this paper we presented a grid-aware 
ommuni
ation framework based adap-tive approa
hes for predi
ting and optimizing the performan
es of 
olle
tive
ommuni
ation algorithms on heterogeneous hierar
hi
al grids. We de�nedthe 
on
ept of polyalgorithmi
 optimization, and proposed a methodologythat pro
eeds in two adaptation levels to dynami
ally asso
iate the fastest22



algorithm for a give 
luster and a 
ommuni
ation s
hedule that minimizes thetermination time. In this work we present a 
ase study on an important 
olle
-tive 
ommuni
ation pattern, the broad
ast operation, proving the interest ofthe proposed multi-level adaptive s
heme. Both experimental and simulatedresults are used to illustrate the operation of the framework and the bene�tsto the 
olle
tive 
ommuni
ations performan
e. Indeed, this framework is im-plemented in our grid-aware MPI 
ommuni
ation library LaPIe, in whi
h weintend to integrate other 
ommuni
ation patterns and s
heduling algorithmsbased on the prin
iples from this framework.A
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