
HAL Id: hal-00261435
https://hal.science/hal-00261435v1

Submitted on 7 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Approaches for Efficient Parallel Algorithms
on Cluster-based Systems

Wahid Nasri, Luiz Angelo Steffenel, Denis Trystram

To cite this version:
Wahid Nasri, Luiz Angelo Steffenel, Denis Trystram. Adaptive Approaches for Efficient Parallel
Algorithms on Cluster-based Systems. International Journal of Grid and Utility Computing, 2008, 1
(2), pp.98-108. �10.1504/IJGUC.2009.022026�. �hal-00261435�

https://hal.science/hal-00261435v1
https://hal.archives-ouvertes.fr


Adaptive Approaches for
Efficient Parallel Algorithms
on Cluster-based Systems

Wahid Nasri*
Département d’Informatique,
École Supérieure de Sciences et Techniques de Tunis - ESSTT, Tunis, Tunisia
E-mail: Wahid.Nasri@ensi.rnu.tn
*Corresponding author

Luiz Angelo Steffenel
CReSTIC - SYSCOM,
Université de Reims Champagne-Ardenne, Reims, France
E-mail: Luiz-Angelo.Steffenel@univ-reims.fr

Denis Trystram
Laboratoire ID-LIG,
Institut National Polytechnique de Grenoble - INPG, Grenoble, France
E-mail: Denis.Trystram@imag.fr

Abstract: Few years ago, there was a huge development of new parallel and dis-
tributed systems. Due to many reasons, such as the inherent heterogeneity, the diver-
sity, and the continuous evolution of such computational supports, it is very hard to
solve efficiently a target problem by using a single algorithm or to write portable pro-
grams that perform well on any architecture. Toward this goal, we propose a generic
framework combining communication models and adaptive approaches to deal with
the performance modeling problem associated to the design of efficient parallel algo-
rithms on grid computing environments, and we apply this methodology on collective
communication operations. Experiments performed on a grid platform prove that the
framework provides significant performances while determining the best combination
model-algorithm depending on the problem and architecture parameters.

Keywords: Cluster computing, Performance modeling, Adaptive approaches, Poly-
models of communications

Reference to this paper should be made as follows: Nasri, W., Steffenel, L.A. and
Trystram D. (2008) ‘Adaptive Approaches for Efficient Parallel Algorithms on Cluster-
based Systems’, Int. J. Grid and Utility Computing, Vol. X, No. Y, pp. Z–ZZ.

Biographical notes: Wahid Nasri is an Assistant-Professor at the Higher School of
Sciences and Techniques of Tunis. He obtained a PhD in Computer Science in 2002
at the Faculty of Sciences of Tunis, with the collaboration of the ID-IMAG labora-
tory. His research interests are in high performance computing, including performance
modeling, the design of efficient parallel algorithms, scheduling and load balancing for
cluster computing. Currently, he is looking for models and adaptive techniques for
modeling performances and adapting parallel poly-algorithms on grid environments.
Luiz Angelo Steffenel is an Assistant-Professor at the Université de Reims
Champagne-Ardenne, France. He obtained a Ph.D. in Computer Science in 2005 at the
Institut National Polytechnique de Grenoble, France, and a MSc. in Communication

Systems in 2002 from the École Polytechnique Fédérale de Lausanne, Switzerland. His
research interests include parallel and distributed systems, grid computing, scheduling
algorithms, fault tolerance and pervasive computing. Dr. Steffenel actively contributes
with french Grid’5000 and european CoreGRID projects.
Denis Trystram is Professor at INP Grenoble since 1991. He obtained a first PhD in
Applied Mathematics at INPG in 1984 and a second one in Computer Science in 1988
from the same university. He is currently Regional Editor for Europe for the Parallel
Computing Journal, belongs to the board of IEEE Transactions on Parallel and Dis-
tributed Systems and participates regularly to the Program Committee of the major
conferences of the field. His research activities concern all aspects of the study on the
design of efficient parallel algorithms. Today, his major interest is approximation al-
gorithms for scheduling, multi-objective analysis and Game theoretic approaches with
a special emphasis on grid computing.



1 INTRODUCTION

1.1 Recent Challenges of Efficient Parallel

Algorithms

Over recent years, high performance computing has un-
dergone impressive change. New architectures, like clus-
ters and grids, and applications have rapidly become the
central focus of the field. They have gained this promi-
nence by providing reliable, robust and cost-effective plat-
forms for solving many complex computational problems,
accessing and visualizing data, and providing information
service. Nevertheless, the ability to use efficiently both
small and large systems is an ongoing effort in the areas
of networking, management, interconnects and application
optimization.

Today, with the spreading of complex architectures, we
face a great challenge to model and optimize communi-
cations for high performance computing applications. In-
deed, unlike dedicated parallel systems, new architectures
are inherently heterogeneous and many of them are char-
acterized by a hierarchical organization. They consist of
a great diversity of resources of different performances in-
terconnected via heterogeneous networks providing com-
munication links with different latencies and bandwidths.
Moreover, these systems are often upgraded with new gen-
eration of processors and network technologies. Due to the
increasing diversity of existing parallel systems consisting
on collections of heterogeneous machines, it is very difficult
- and mostly impossible - for a user to choose an adequate
algorithm because the execution supports are continuously
evolving. One version will be well-suited for a parallel
configuration and not for another one. This problem of
portability becomes crucial with present architectures and
applications.

These different elements require to revise the classi-
cal parallel algorithms and to develop more powerful ap-
proaches to efficiently use this type of platforms.

1.2 Contributions of this Work

Our objective within this work is to propose a generic
framework based on communication models and adaptive
techniques for dealing with performance modeling towards
the design of efficient parallel algorithms, and integrating
scalability and portability issues. The idea is to use several
models for different parts of a large heterogeneous parallel
computing platform and to associate them to some power-
ful adaptive approaches. More precisely, the contribution
of this paper is to propose a two-level adaptive methodol-
ogy. Indeed, at the first level, after a preprocessing phase
required to reduce the impact of heterogeneity of a given
architecture, we proceed by determining the more appro-
priate model from a set of selected ones to better predicting
performances, as described later in section 3.2. Next, we
will have to determine the best algorithm among multiple
algorithmic options for resolving a given problem. Fig-

Copyright c© 200x Inderscience Enterprises Ltd.

A two−level adaptation methodology

Models Algorithms

Adaptive processing

Poly−algorithmPoly−model

model−algorithmBest combination

Figure 1: Adaptive computing and communications.

ure 1 illustrates this combination of performance modeling
and adaptive computing which will lead to performance
improvements of implemented parallel algorithms.

1.3 Related Works

There exist in the literature many works dealing with the
use of adaptive techniques in order to ensure efficiency
and portability. The target problems are various and the
techniques are applied differently. For instance, works re-
lated to the parallel matrix multiplication are presented
in Hong and Prasanna (2002); Nasri et al. (2007); Wha-
ley et al. (2001) and those related to communication al-
gorithms in Bhat et al. (1998); Hartmann et al. (2006);
Pjesivac-Grbovic et al. (2004); Vadhiyar et al. (2004).

However, only few developed parallel adaptive algo-
rithms are implemented as frameworks. We may partic-
ularly refer to works presented in Thomas et al. (2005);
Cuenca et al. (2003). In Thomas et al. (2005), the authors
have developed a general framework for adaptive algorithm
selection using machine learning techniques to analyze data
and to determine tests that will select among algorithmic
options at run-time. Another methodology is described in
Cuenca et al. (2003) where the authors presented the ar-
chitecture of an automatically tuned linear algebra library
on platforms where both the CPU load and the network
traffic vary. During the installation process in a system,
the linear algebra routines will be tuned automatically to
the system conditions. At run-time, the parameters that
define the system characteristics are adjusted to the actual
load of the platform.

2



Our framework differs from the other works in a sig-
nificant aspect. Indeed, existing adaptive approaches pre-
sented in the literature proceed by selecting one algorithm
or eventually combining multiple algorithms from a library
containing multiple algorithmic choices. Therefore, to the
best of our knowledge, our framework provides the first
general methodology for automatically associate the more
appropriate model to the best algorithm among multiple
model and algorithmic options. It determines the best
combination model-algorithm and computes an efficient
execution scheme that minimizes the overall execution time
of a parallel application.

1.4 Organization of the Paper

The remainder of the paper is organized as follows. We
begin, in section 2, by presenting the architectural model
of the target parallel and distributed system and the per-
formance evaluation models of a parallel algorithm. In sec-
tion 3, we first define the concept of poly-model, present
our adaptive framework for poly-models of communication,
and detail its components. Section 4 is devoted to a case
study where we apply our adaptive framework on collec-
tive communication operations. We present indeed numer-
ical simulations and practical experiments performed on an
heterogeneous hierarchical grid proving the interest of this
work. Finally, we conclude the paper and discussing some
perspectives to extend this work.

2 BACKGROUND AND MOTIVATION

2.1 Description of the Architectural Model

We assume in this work a generic model of a platform com-
posed by heterogeneous hierarchical clusters. The platform
studied enjoys heterogeneity along three orthogonal axes:

1. Computational Power: the processors that populate
the clusters may differ in computational powers, even
within the same cluster.

2. Interconnection Networks: the clusters comprising the
platform are organized hierarchically and are intercon-
nected via a hierarchy of networks of possibly different
latencies, bandwidths and speeds.

3. Topology Heterogeneity: the clusters at each level of
the hierarchy may differ in sizes.

2.2 Adaptive Approaches

It is well-known that no single algorithm can always
achieve the best performance of a sequential or parallel
application for different problem sizes and number of pro-
cessors on a target parallel system. We can obtain good
performances by mixing multiple algorithms for solving the
same problem, where each algorithm can dominate the oth-
ers in specific contexts. Thus, we should determine the

more appropriate algorithm (which provides the best per-
formance) in terms of a set of parameters (size of the prob-
lem, number of available processors, performances of the
interconnection network, etc.), or to combine multiple ones
for improving performances to fit well the characteristics
of the target computational system.

The software mechanism responsible for determining the
best available choices at run-time is known as a switching
function. The optimal choice of algorithm can be deter-
mined at run-time, typically by using data obtained by
monitoring tools, such as the NWS (Network Weather Ser-
vice, Wolski et al. (1997)) which permits to measure many
useful information, such as the hardware characteristics,
the communication bandwidth, the system load, or any
input-data that may influence the performance of the ap-
plication. The result of this mechanism is called adaptive
algorithm which encapsulate a number of algorithms for
solving the same problem. This algorithm may use dif-
ferent techniques to adaptively determine the best algo-
rithm. For instance, the algorithms presented in Thomas
et al. (2005), Frigo and Johnson (1998) and Nasri et al.
(2007) use respectively machine learning, cascading and
poly-algorithmic techniques. In this work, we are inter-
ested in the adaptivity at the algorithmic level, which can
be developed in the middleware (MPI collective communi-
cations, for example) or at the application level.

There exist other techniques for adapting software to ex-
ecution contexts. In ATLAS library (Whaley et al. (2001)),
all computations are decomposed into blocks whose size is
automatically optimized specifically for the target proces-
sor. A more sophisticated technique of adaptive algorithms
is cascading. Here, the computations are decomposed re-
cursively up to a certain threshold is reached. For instance,
in FFTW (Frigo and Johnson (1998)), a dynamic program-
ming algorithm is run to determine the size for stopping
the recursion. Such examples show that adaptive algo-
rithms can frequently do as well as or even better than
hand-tuned vendor code (McCracken et al. (2003)). An-
other available package related to adaptive algorithms is
LAPACK for Clusters (Chen et al. (2003)). Other aspects
on which algorithms may be adapted are data storage and
communication patterns. Let us note that it is possible to
include mechanisms for the adaptive processing into mid-
dleware or resource manager. Such approaches have been
investigated for instance in McCracken et al. (2003).

2.3 Communication Models

There are many parallel communication models in the liter-
ature that analyze performances based on system param-
eters (see Alexandrov et al. (1995); Culler et al. (1996);
Faik et al. (2005); Frank et al. (1997); Hockney (1994);
Kielmann et al. (2001); Lastovetsky et al. (2006); Moritz
and Frank (2001); Teresco et al. (2005)). More sophisti-
cated models have been proposed for complex architectures
(Cappello et al. (2005); Steffenel (2006)). All these models
differ on the assumptions about the computational support
parameters, such as latency, heterogeneity, network con-

3



tention, etc., and therefore are able to cover a great variety
of architectures and modeling aspects. For instance, the
selection between these models will depend on the data size
to communicate, the accuracy of the models and their rel-
ative cost (parameters acquisition and complexity of mod-
els). We summarize in Table 1 a comparison between some
of these models where we present the targeted platform of
each model and the modeled parameters.

3 DESCRIPTION OF THE FRAMEWORK

3.1 Concept of Poly-Model

Generally, in order to predict and model the overhead due
to communications in a parallel application, we use a single
communication model, like, for instance, Hockney (Hock-
ney (1994)), LogP (Culler et al. (1996)), pLogP (Kielmann
et al. (2001)), etc. Due to the wide variety of existing paral-
lel machines, which requires determining multiple param-
eters to get more precise results, a sophisticated model
is necessary. On the other hand, using such a model on
”simple” architectures is not useful due to the cost of de-
termining their parameters. For that reasons, we introduce
the concept of Poly-model which determines adaptively the
more appropriate model for a target platform according
to the problem and architecture parameters. In fact, the
poly-model that we propose is equivalent to a combina-
tion of multiple models, to be used on different clusters.
It chooses an adequate model in terms of several informa-
tion, including the size of data to communicate, the type
of interconnection network (with contention or not), the
number of nodes, etc. Let us remark that the generated
poly-model which uses adaptive techniques will:

1. Better model the communications in terms of the char-
acteristics of the hardware resources of the target par-
allel system.

2. Reduces the cost of modeling parallel applications on
complex architectures.

3. Provides precise prediction results.

We finish this description by mentioning that the com-
plexity of the overall process of the scheme adaptation does
not affect the global cost of the application to be modeled.

3.2 Overview of the Methodology

In this section, we describe our framework for adaptively
modeling communications in an execution environment
characterized by its heterogeneity and its hierarchical or-
ganization. An overview of the methodology is sketched in
Figure 2. The processing is separated into two successive
phases. During the first one, we aim to partition the target
execution platform to form subnets of similar characteris-
tics by automatically discover the network topology. Then,

when executing the second phase, we have to determine for
each subnet (i.e. cluster) the more appropriate communi-
cation model to better predicting performances. We will
finally obtain a Poly-model of communication. This pro-
cessing can be described by Algorithm 1.

Algorithm 1 General scheme of the methodology
Call NWS

Call a clustering algorithm

Do for each obtained logical cluster

Determine the model (according to data size and network

performances)

Obtain the parameters of the model (call logp mpi routine of

MagPIe library - Kielmann et al. (2001))

End do

Obtain the parameters of the model used inter-clusters (according to

techniques in Steffenel (2006))

Poly−algorithmic
techniques

Parameters of the
target problem

Poly−model

Determining parameters

Automatic association
models to clusters

Target execution platform Dynamic monitoring tool

Performance prediction
and analysis

Distance matrix Clustering algorithm

Identifying logical
homogeneous clusters

Communication models

P
latform

 partitioning
A

daptive m
odeling

Figure 2: Adaptive framework.

In the sequel, we give more details on the major compo-
nents of the framework.

3.3 Platform Partitioning

Since the target parallel system may be heterogeneous at
many levels (computing powers, interconnection network

4



Table 1: Communication models for performance prediction
Heterogeneous

environment
Hierarchical Latency Gap

Sender

overhead

Receiver

overhead

Contention

modeling

Hockney No No α 1/β No

LogP No No L g o o No

LogGP No No L g + G o o No

LoPC No No L g o o Yes

LoGPC No No L g + G o o Yes

pLogP Yes Yes L g os or No

Model of Cappello et al. (2005) Yes Yes λ Included π π No

Model of Steffenel (2006) Yes Yes L g os or No

Model of Lastovetsky et al. (2006) Yes No Tnet Included Li Lj No

performances, etc.), it is very difficult to manage such plat-
form towards a high performance computing. One way to
answer this problem and to minimize the inherent hetero-
geneity is to subdivide the network in homogeneous sub-
nets (or logical clusters), as described below. At the end of
this phase, we will get a set of logical clusters of homoge-
neous nodes and accurate interconnection network, which
will be used to adaptively modeling communications inside
each cluster during the second phase of the framework.

3.3.1 Network Performance Measurements

The framework starts by collecting available information
from the target execution environment to be used in the
step of clustering (see next section). There exist many
tools for network monitoring, such as NWS. These tools
permit to determine many useful parameters of the target
parallel system like the current network status, the com-
munication latency, the speeds of the processors, the CPU
load, the available memory, etc. For instance, the commu-
nication latency and throughput permit to identify groups
of machines with similar communication parameters.

3.3.2 Clustering

One reason to construct logical clusters is that machines
may behave differently, and the easiest way to optimize
communications is to group machines with similar perfor-
mances (Steffenel and Mounié (2004)). In order to classify
nodes in logical clusters we can use a clustering algorithm.
Several strategies can be used to group machines, from sim-
ple metrics such as presented by Lowekamp and Beguelin
(1996) or using more elaborate techniques (Dubois et al.
(2007), for example). In this paper we consider a distance
matrix constructed with the help of NWS, which further
is evaluated according to the latencies between links in or-
der to group nodes for which their incident edges respect
a latency bound (by default 20%) inside that subnet.

3.4 Adaptive Modeling

Because each network in a grid environment presents dif-
ferent performance behaviors, we follow an adaptive strat-
egy that first organizes the platform in separated homoge-

neous hierarchical clusters, finding the best approach for
each cluster and then composing the inter-cluster commu-
nication schedule. Indeed, we modeled and implemented
several models from the literature, which perform differ-
ently according to the network environment. By selecting
the best adapted communication to each different cluster in
our grid, we contribute to a poly-model modeling of com-
munications in a grid environment. Any necessary charac-
teristics are measured during the first phase corresponding
to the network partitioning. We recall that the model se-
lection is made in terms of information which is interesting
to the problem, such as the size of data to communicate,
the type of interconnection network, the number of nodes,
the communication algorithms, etc.

It is also important to take into account the cost in-
volved on the acquisition of model parameters. For in-
stance, both LogP and LogGP models rely on a reduced
number of measurements (they extrapolate the cost per
byte from a few measurements), while pLogP requires sev-
eral measurements to cover a large range of message sizes.
Hence, while the later model is most expensive, it can be
more precise when the communication cost does not varies
linearly with the message size (a typical case with MPI,
whose transmission policies depend on the message size).

For instance, Figures 3 and 4 present the performance
predictions from LogP, LogGP and pLogP on two different
networks, namely Gigabit Ethernet and Myrinet. From
these figures, it is clear that the most accurate predic-
tions are provided by pLogP performance model, as al-
ready observed by Pjesivac-Grbovic et al. (2005). Never-
theless, the other models are good candidates for specific
networks/message sizes. LogP is quite interesting when
modeling the performance in a Gigabit Ethernet network
with small messages. LogGP model is also a good candi-
date in the case of large messages, with both Gigabit Eth-
ernet and Myrinet networks. Because LogP and LogGP
parameters can be obtained with a relatively reduced cost
(when comparing with pLogP), they represent an inter-
esting alternative when the application messages sizes are
known in advance.

5



 0.00012207

 0.000244141

 0.000488281

 0.000976562

 0.00195312

 0.00390625

 0.0078125

 0.015625

 0.03125

1 32 1024 32768 1.04858e+06            

C
om

pl
et

io
n 

tim
e 

(s
)

Message size (bytes)

MPI_Bcast predicted and measured performance - 24 machines - Giga Ethernet

Binomial
LogP prediction

LogGP prediction
pLogP prediction

Figure 3: Performance predictions on a Gigabit Ethernet
network.

 1.52588e-05

 6.10352e-05

 0.000244141

 0.000976562

 0.00390625

 0.015625

 1  32  1024  32768 1.04858e+06              

C
om

pl
et

io
n 

tim
e 

(s
)

Message size (bytes)

MPI_Bcast predicted and measured performance - 24 machines - Myrinet

Binomial Broadcast
LogP prediction

LogGP prediction
pLogP prediction

Figure 4: Performance predictions on a Myrinet network.

4 CASE STUDY: COLLECTIVE COMMUNICATIONS

In order to ensure a high-performance computing on actual
execution supports, we should not neglect the impact of
communications during the initial and final data redistri-
bution phases of parallel applications. Similarly, problems
that require intermediate data exchange among processes
must take into account also the communication overhead
that may eventually impact performances of algorithms.

Therefore, in this section we focus on communications in
heterogeneous networks. We examine the case of collective
communications, an important class of communication op-
erations that are essential for data redistribution. Because
collective communications are strongly influenced by the
network heterogeneity, we rely on adaptive performance
models to select the fastest communication algorithms in
a given environment. Additionally, we inspect different
performance modeling alternatives in order to find the
model that best fits the effective communication behavior
(Pjesivac-Grbovic et al. (2005)).

Collective communication operations encompass a wide
range of possible algorithms. The optimal implementation
of such operations for a given parallel system depends on
many factors, including for example, physical topology of
the system, number of involved processes, message sizes,
and the location of the root node (Steffenel and Mounié
(2006); Pjesivac-Grbovic et al. (2005)). Figure 5 shows

how to implement a collective communication operation
using our framework. Indeed, the adaptive algorithm se-
lection is based on two types of models: the analytical
and experimental ones. Experimental techniques use in-
formation derived from previous operation executions to
optimize processing for future problem instances, a service
similar to an optimization cache. The analytical models
will be useful to validate actual versus predicted perfor-
mances.

Through the analysis of the inter-cluster communica-
tion performances and the intra-cluster performance pre-
diction we are able to define a communication schedule
that minimizes the overall execution time. Once again, we
implement different schedule policies, which are selected
according to their estimated completion time. The frame-
work allows, indeed, to implement scheduling heuristics
that act on different communication levels, be it at inter-
cluster level (mostly appropriate to collective operations
like broadcast and reduce) or at node-to-node level (for
operations such as the all-to-all).

Therefore, we apply our adaptive framework on collec-
tive communication operations by determining the best
combination model-algorithm depending on the problem
and architecture parameters. We refer here by algorithm
a possible method to resolve the operation, as for example
Pipeline, Binomial, Binary and Linear for Broadcast. At
this level, our framework automatically associates the more
appropriate model to the best algorithm among multiple
model and algorithmic options.

4.1 Description of the Execution Platform

We have considered a Grid platform belonging to the
project Grid’5000 to achieve our experiments. The archi-
tecture is initially composed of four clusters, distributed
over sites in France: C1 (20 machines ORSAY), C2
(19 machines GRENOBLE), C3 (19 machines SOPHIA-
ANTIPOLIS) and C4 (20 machines TOULOUSE) with two
levels of hierarchy. Figure 6(a) shows the initial organiza-
tion of the clusters.

4.2 Network Partitioning

The first phase of the framework leads to a new organi-
zation of the machines (see Figure 6(b)). The cluster C2
will be partitioned into three sub-clusters, C21 (11 ma-
chines), C22 (1 machine) and C23 (7 machines), according
to the latencies presented in Table 2 of the links between
machines. Once the clustering phase is done, we have six
logical clusters with homogeneous resources.

4.3 Model Selection

We have considered the Broadcast operation. With Broad-
cast, a single process, called root, sends the same message
of size m to all other (P − 1) processes. Classical imple-
mentations of the Broadcast operation rely on fixed shapes
such as Linear (Flat Tree) for small number of nodes, and
Binomial Trees for P > 3.

6



Communication pattern Communication algorithms Platform after clustering Poly−model

Best adaptive combination

Automatic algorithm selection

model−algorithm

Figure 5: Execution of a collective communication operation using the framework.

Table 2: Latency (microsec) intra and inter-clusters.
C1 C21 C22 C23 C3 C4

20 x Orsay 11 x Grenoble 1 x Grenoble 7 x Grenoble 20 x Toulouse 19 x Sophia

C1 48.39 6577.49 6592.51 6586.49 5211.94 8602.73

C21 6577.49 35.52 59.96 59.96 5387.48 2736.56

C22 6592.51 59.96 0∗ 79.51 5405.78 2745.98

C23 6586.49 59.96 79.51 60.08 5393.98 2740.26

C3 5211.94 5387.48 5405.78 5393.98 26.94 3630.51

C4 8602.73 2736.56 2745.98 2740.26 3630.51 35.04

* this ”logical cluster” has only one machine.

C2

C3

C4

C1

(a)

(b)

Figure 6: (a) Grid’5000 sites and (b) Platform after parti-
tioning

In our work we developed the communication models
for some current techniques and their ”flavors”, which are

presented in Table 3 in terms of pLogP parameters (which
can be easily adapted to other models such as LogP and
LogGP). Hence, we choose to compare in this paper four
of the most known techniques, namely the Linear, the Bi-
nary, the Binomial and the Pipeline Broadcasts. Indeed,
we proceed the MPI Bcast optimization in two hierarchical
levels, as described below.

4.3.1 First hierarchical level

First, we deal with local-area communications, where a
cluster ”coordinator” will be charged to broadcast locally
the message to all processes composing the cluster. Later,
we integrate these clusters through the generation of ef-
ficient inter-cluster communication schedules. Therefore,
at the first hierarchical level, we proceed by selecting the
most appropriate performance model and broadcast algo-
rithm for each cluster according to two steps:

Poly-adapt-1. For a given problem (message size and
number of processes) and for each implementation
algorithm, we select the most accurate performance
model such that its predictions correspond to our base
of experiments. As discussed in Section 3, the selec-
tion of the most accurate performance model can also
consider other factors such as parameters measure-
ment cost and network intrusiveness;

Poly-adapt-2. From the performance models selected in
the previous step, we select the most efficient imple-
mentation algorithm (i.e., the algorithm that termi-
nates earlier).

7



Table 3: Communication models for the Broadcast operation
Strategy Communication Model

Linear (Flat Tree) L + (P − 1) × g(m)

Pipeline (Segmented Chain) (P − 1) × (g(s) + L) + (g(s) × (k − 1))

Binary Tree ≤ ⌈log2P ⌉ × (2 × g(m) + L)

Binomial Tree ⌈log2P ⌉ × L + ⌊log2P ⌋ × g(m)

As a result, we select the algorithm that minimizes the
completion time of the operation using the most accurate
performance model for each problem instance (as we can
observe in Figure 7). Table 4 summarizes these choices
when considering two different message sizes, 8kB and
512kB.

4.3.2 Second hierarchical level

Once Poly-adapt-2 selected the best algorithm for each
cluster, we must determine an efficient inter-cluster com-
munication scheduling. Using inter-cluster communication
parameters, we can construct an optimized broadcast tree
between clusters using scheduling heuristics, an approach
that provides better performances on grid environments
than traditional grid-unaware algorithms found on most
MPI distributions (Steffenel and Mounié (2006)). Differ-
ent heuristics can be compared at this step, as different
optimization parameters or objectives can lead to differ-
ent inter-cluster communication strategies. Traditional
scheduling heuristics such as First Edge First - FEF or
Early Completion Edge First - ECEF heuristic, proposed
by Bhat et al. (1998) can be used, as well as heuristics
that consider special parameters such as the communica-
tion time inside each cluster (the ECEF-LAt heuristic Stef-
fenel and Mounié (2006)).

In the case of this run, the adaptation mechanism se-
lected the Early Completion Edge First - ECEF heuristic,
proposed by Bhat et al. (1998). This heuristic proceeds by
selecting a pair sender-receiver where the sender is avail-
able and the choice of the sender-receiver pair depends on
the earliest possible moment when this transmission may
effectively be finished. Therefore, we use a Ready Time
(RTi) parameter, evaluated conjointly with the transmis-
sion time between the processes, such that the pair i, j

minimizes the expression:

t = RTi + gi,j(m) + Li,j

4.4 Results Analysis

In this section we detail the execution steps of the Broad-
cast operation on the Grid’5000 platform when using our
adaptation approach. As stated in the previous sections,
our policy of performance evaluation consists in a multi-
layered analysis of the different algorithms and elements
of the network. Indeed, the first step - Poly-adapt-1 -
consists on choosing, for each network component (in this
case, each cluster that composes the grid platform), the
most accurate performance model for a fixed algorithm.

This helps choosing a performance model that is able to
predict the communication cost inside each cluster, which
will be used in the second step of adaptation.

The second adaptation level (Poly-adapt-2 ) compares
different algorithms for a given operation. With the help of
the performance model chosen in the first step, we are able
to predict the performance of the different algorithms and
select the most adapted to our needs (in this case, the algo-
rithm that performs faster inside a cluster). Once selected
the best algorithm for each cluster, the second hierarchi-
cal adaptation level defines a communication schedule that
minimizes the overall communication time.

To better understand the multi-levels adaptation mech-
anism, we present in Figure 7 an extract of the adaptation
steps representing the ORSAY cluster. Please note that
the same mechanism is applied simultaneously on all clus-
ters, as the result of these steps will be used on the sec-
ond hierarchical adaptation level. Indeed, Figure 7 shows
both Poly-adapt-1 and Poly-adapt-2 steps applied on dif-
ferent algorithms and message sizes. Let’s take for exam-
ple Figure 7(a), which represents the Flat Tree broadcast
algorithm. Predictions from different performance mod-
els (LogP, LogGP, pLogP) are compared with a measured
sample; Poly-adapt-1 retains the model that better fits the
sample measures. As the same procedure is applied on
other algorithms, Poly-adapt-2 is able to select the fastest
algorithm (that’s why Poly2 in Figure 7(a) is so different
from Poly1, as it corresponds to the performance of the
Pipeline algorithm).

When Poly-adapt-1 and Poly-adapt-2 were applied to
the ensemble of the clusters, we can proceed with the sec-
ond hierarchical adaption level. Here, we compare differ-
ent scheduling heuristics aiming the optimization of inter-
cluster communications. From the network connectivity
data and predictions from Poly-adapt-2 we are able to de-
termine the heuristic that allows the broadcast to finish
earlier, the ECEF heuristic in the case of our example. To
illustrate the performance improvement we can obtain with
this multi-level adaptation approach, we depict in Figure
8 the measured completion time of a broadcast among 88
machines over four clusters from Grid’5000. In this figure,
we compare the performance of the standard algorithm
used on MPI (a binomial tree) against different grid-aware
broadcast schedules used on the second hierarchical adap-
tation level.

Through our adaptation approach, we strongly improve
the performance of broadcast communications in this grid
platform, going two to four times faster than the standard
MPI implementation. Additionnally, the dynamic adapta-

8



Table 4: Summary of the adaptive execution scheme for m=8kB and m=512kB.
Cluster C1 C2* C3 C4 inter-clusters

m=8k
Selected model LogP LogP LogP LogP Hierarchical (Steffenel and Mounié (2006))

Selected algorithm binomial binomial binomial binomial ECEF

m=512k
Selected model LogGP pLogP pLogP pLogP Hierarchical (Steffenel and Mounié (2006))

Selected algorithm pipeline pipeline pipeline pipeline ECEF

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

8 16 32 128
256

512
1024

co
m

pl
et

io
n 

tim
e 

(s
ec

)

message size (KBytes)

Linear - Flat Tree

LogP
LogGP
pLogP

Measured
Poly1
Poly2

(a) Linear

 0

 0.005

 0.01

 0.015

 0.02

 0.025

8 16 32 128
256

512
1024

co
m

pl
et

io
n 

tim
e 

(s
ec

)

message size (KBytes)

Pipeline (Segmented Chain with 16kB segments)

LogP
LogGP
pLogP

Measured
Poly1
Poly2

(b) Pipeline

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

8 16 32 128
256

512
1024

co
m

pl
et

io
n 

tim
e 

(s
ec

)

message size (KBytes)

Binary Tree

LogP
LogGP
pLogP

Measured
Poly1
Poly2

(c) Binary

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

8 16 32 128
256

512
1024

co
m

pl
et

io
n 

tim
e 

(s
ec

)

message size (KBytes)

Binomial Tree

LogP
LogGP
pLogP

Measured
Poly1
Poly2

(d) Binomial

Figure 7: Completion time of Broadcast in the cluster ORSAY: (a) Linear, (b) Pipeline, (c) Binary and (d) Binomial

tion mechanism identifies which communication schedule
effectively perform well on a given platform. We observe
indeed that the mechanism prevents the use of the Flat-
tree heuristic (used on MagPIe - Kielmann et al. (2001)),
as it does not performs well for messages large than 64Kb
in our grid platform.

Although in this example we explore only two commu-
nication levels (inter and intra-cluster), additional adapta-
tion levels could be considered if need. Indeed, it becomes
interesting today to extend the optimization to a commu-
nication granularity at the level of applications running on
SMP or multicore processors.

5 CONCLUSIONS AND FUTURE WORKS

We have presented in this paper a new adaptive framework
for dealing with performance modeling and the design of
efficient parallel algorithms on grid computing platforms.
The developed methodology, mixing communication mod-
els and powerful adaptive approaches in a self adapting
fashion, proceeds in two-level adaptation to automatically
associate the more appropriate model to the best algo-
rithm among several models and algorithmic options for
each part of a large heterogeneous parallel computing plat-
form being used. The best identified combination model-

9



 0.015625

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 1024  4096  16384  65536  262144  1.04858e+06  4.1943e+06

C
om

pl
et

io
n 

tim
e 

(s
)

Message size (bytes)

Broadcast over 88 machines in a grid

MPI Default
Flat
FEF

ECEF
ECEFLA
ECEFLAt

ECEFLAT

Figure 8: Completion time of the overall execution of a Broadcast on the global hierarchy platform.

algorithm and the determined execution scheme permit
to minimize the overall execution time of a target prob-
lem. To illustrate the interest of this approach, we demon-
strate how an important collective communication pattern,
namely the broadcast operation, can be improved to bet-
ter adapt to a grid environment, reaching significant per-
formance improvements through a multilevel adaptive ap-
proach. Although a simple example, the case of the broad-
cast operation demonstrates the advantages of associating
the accuracy of different performance models and the flex-
ibility of a multi-algorithm adaptive technique.

Currently we are working on the extension of our adap-
tive methodology, applying the same principles on a well-
known numerical problem, namely computing the product
of two (large) dense square matrices. The parallelization
of the matrix multiplication problem was widely studied
in the literature. Various optimized versions of this prob-
lem have been implemented in libraries on all existing (ho-
mogeneous or heterogeneous) parallel systems. We may
particularly refer to works presented in Beaumont et al.
(2001); Desprez and Suter (2004); Hunold et al. (2004);
Ohtaki et al. (2004), where various methods have been ap-
plied, such as standard, fast, mixed, etc. Nevertheless,
only few parallel adaptive implementations have been de-
veloped (Hong and Prasanna (2002); Nasri et al. (2007);
Thomas et al. (2005)). To the best of our knowledge, no
original work has been devoted to implement adaptive al-
gorithms for matrix multiplication on heterogeneous hi-
erarchical clusters where both computing resources and
interconnection links are heterogeneous. It is our aim,
therefore, to show the importance of adaptive algorithms
in order to efficiently perform such operations in arbitrary
environments.

As future prospects, we intend to perform experiments
on other numerical problems whose performances depend
on both the distributions of the processes and their related
communications. We also plan to integrate other existing
adaptive approaches to our framework to benefit well from
the powerful of these techniques.

ACKNOWLEDGEMENTS

Experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, an initiative from
the French Ministry of Research through the ACI GRID
incentive action, INRIA, CNRS and RENATER and other
contributing partners (see https://www.grid5000.fr).

REFERENCES

Alexandrov, A., Ionescu, M., Schauser, K. and Scheiman,
C. (1995) ‘LogGP: Incorporating long messages into
the LogP model - one step closer towards a realistic
model for parallel computation’, Proc. of the 7th An-
nual Symposium on Parallel Algorithms and Architec-
ture (SPAA’95).

Beaumont, O., Boudet, V., Rastello, F. and Robert, Y.
(2001) ‘Matrix multiplication on heterogeneous plat-
forms’, IEEE Trans. Parallel Distributed Systems, Vol.
12 No. 10, pp. 1033–1051.

Bhat, P., Prasanna, V.K. and Raghavendra, C. (1998)
‘Adaptive communication algorithms for distributed
heterogeneous systems’, Proceedings of the IEEE Inter-
national Symposium on High Performance Distributed
Computing (HPDC 1998).

Cappello, F., Fraigniaud, P., Mans, B. and Rosenberg, A.
(2005) ‘An algorithmic model for heterogeneous hyper-
clusters: Rationale and experience’, International Jour-
nal of Foundations of Computer Science, Vol. 16 No. 2,
pp. 195–215.

Chen, Z., Dongarra, J., Luszczek, P. and Roche, K. (2003)
‘Self-adapting software for numerical linear algebra and
LAPACK for clusters’, Parallel Computing, Vol. 29 No.
11-12, pp. 1723–1743.

10



Cuenca, J., Giménez, D.,González, J.,Dongarra, J. and
Roche, K. (2003) ‘Automatic optimisation of parallel
linear algebra routines in systems with variable load’,
11th Euromicro Workshop on Parallel, Distributed and
Network-Based Processing (PDP 2003), Genova, Italy.

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser,
K.E., Santos, E., Subramonian, R. and von Eicken, T.
(1996) ‘LogP - a practical model of parallel computing’,
Communication of the ACM, Vol. 39 No. 11, pp. 78–85.

Desprez, F. and Suter, F. (2004) ‘Impact of Mixed-
Parallelism on Parallel Implementations of Strassen and
Winograd Matrix Multiplication Algorithms’, Concur-
rency and Computation: practice and experience, Vol.
16, No. 8, pp. 771–797.

Dubois, L.E., Legrand, A., Quinson, M. and Vivien, F.
(2007) ‘A first step towards automatically building net-
work representations‘, Euro-Par 2007, Rennes, France,
pp. 160–169.

Faik, J., Teresco, J.D., Devine, K.D., Flaherty, J.E. and
Gervasio, L.G. (2005) ‘A model for resource-aware load
balancing on heterogeneous clusters’, Tech. Rep. CS-05-
01, Williams College Department of Computer Science.

Frank, M.I., Agarwal, M. and Vernon, M.K. (1997) ‘LoPC:
Modeling contention in parallel algorithms’, Proc. of 6th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), Las Vegas, Nevada.

Frigo, M. and Johnson, S.G. (1998) ‘FFTW: an adaptive
software architecture for the fast fourier transform’, Pro-
ceedings of ICASSP, Vol. 3.

Hartmann, O., Kuhnemann, M., Rauber, T. and Runger,
G. (2006) ‘Adaptive selection of communication meth-
ods to optimize collective MPI operations’, Proc. of the
12th Workshop on Compilers for Parallel Computers
(CPC’06), La Coruna, Spain.

Hockney, R. (1994), ‘The communication challenge for
MPP: Intel Paragon and Meiko CS-2’, Parallel Com-
puting, Vol. 20, pp. 389–398.

Hong, B. and Prasanna, V.K. (2002) ‘Adaptive matrix
multiplication in heterogeneous environments’, Proc. of
ICPADS.

Hunold, S., Rauber, T. and Runger, G. (2004) ‘Multilevel
hierarchical matrix multiplication on clusters’, ICS ’04:
Proceedings of the 18th Annual International Conference
on Supercomputing, ACM Press, New York, NY, USA.

Kielmann, T., Bal, H., Gorlatch, S., Verstoep, K. and Hof-
man, R. (2001) ‘Network performance-aware collective
communication for clustered wide area systems’, Paral-
lel Computing, Vol. 27, No. 11, pp. 1431–1456.

Lastovetsky, A.L., Mkwawa, I.-H. and O’Flynn, M. (2006)
‘An accurate communication model of a heterogeneous
cluster based on a switch-enabled ethernet network’,
12th International Conference on Parallel and Dis-
tributed Systems (ICPADS 2006).

Lowekamp B. and Beguelin, A. (1996) ‘ECO: Efficient col-
lective operations for communication on heterogeneous
networks’, Proc. of the 10th International Parallel Pro-
cessing Symposium.

McCracken, M.O., Snavely, A. and Malony, A. (2003)
‘Performance modeling for dynamic algorithm selection’,
Intl. Conference on Computational Science, LNCS vol.
2660, Springer.

Moritz, C.A. and Frank, M.I. (2001) ‘LoGPC: Modeling
network contention in message-passing programs’, IEEE
Transactions on Parallel and Distributed Systems, Vol.
12, No. 4, pp. 404–415.

Nasri, W., Trystram, D. and Achour, S. (2007) ‘Adap-
tive algorithms for the parallelization of the dense ma-
trix multiplication on clusters’, Internat. J. of Compu-
tational Science and Engineering, Special Issue on best
selected papers of PDSEC’04, to appear.

Ohtaki, Y., Takahashi, D., Boku, T. and Sato, M. (2004)
‘Parallel implementation of strassen’s matrix multiplica-
tion algorithm for heterogeneous clusters’, IPDPS.

Pjesivac-Grbovic, J., Angskun, T., Bosilca, G., Fagg, G.E.,
Gabriel, E. and Dongarra, J.J. (2005) ‘Performance
analysis of MPI collective operations’ Proc. of the Wok-
shop on Performance Modeling, Evaluation and Optimi-
sation for Parallel and Distributed Systems (PMEO), in
IPDPS 2005.

Pjesivac-Grbovic, J., Bosilca, G., Fagg, G.E., Angskun,
T. and Dongarra, J.J. (2007) ‘Decision trees and MPI
collective algorithm selection problem’, Proceedings of
Euro-Par 2007, LNCS Vol. 4641, pp. 107–117, Rennes,
France.

Steffenel, L.A. and Mounié, G. (2004) ‘Identifying logical
homogeneous clusters for efficient wide-area communi-
cation’. Proc. of the Euro PVM/MPI 2004, LNCS Vol.
3241, pp. 319–326, Budapest, Hungary.

Steffenel, L.A. and Mounié, G. (2006) ‘Scheduling heuris-
tics for efficient broadcast operations on grid environ-
ments’.,Proc. of the Performance Modeling, Evaluation
and Optimization of Parallel and Distributed Systems
Workshop - PMEO’06 (associated to IPDPS’06), IEEE
Computer Society, Rhodes Island, Greece.

Steffenel, L.A. (2006) ‘Modeling network contention effects
on alltoall operations’, Proc. of the IEEE Conference
on Cluster Computing (CLUSTER 2006), Barcelona,
Spain.

11



Teresco, J.D., Faik, J. and Flaherty, J.E. (2005) ‘Resource-
aware scientific computation on a heterogeneous cluster’,
Computing in Science and Engineering, Vol. 7, No. 2, pp.
40–50.

Thomas, N., Tanase, G., Tkachyshyn, O., Perdue, J., Am-
ato, N.M. and Rauchwerger, L. (2005) ‘A framework
for adaptive algorithm selection in STAPL’, Proc. ACM
SIGPLAN Symp. Prin. Prac. Par. Prog. (PPOPP).

Vadhiyar, S., Fagg, G. and Dongarra, J. (2004) ‘Towards
an accurate model for collective communications’, Inter-
national Journal of High Performance Computing Appli-
cations, Vol. 8, No. 1, pp. 159–167.

Whaley, R.C., Petitet, A. and Dongarra, J.J. (2001) ‘Au-
tomated empirical optimization of software and the AT-
LAS project’, Parallel Computing, Vol. 27, No. 1-2, pp.
3–35.

Wolski, R., Spring, N. and Peterson, C. (1997) ‘Implement-
ing a performance forecasting system for metacomput-
ing: The network weather service’, Proc. of the Super-
computing.

12


