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SUMMARY

We have studied the partition of shear, compressional and kinetic energies in the

coda of ten earthquakes recorded on a dense array, located at Pinyon Flats Obser-

vatory (PFO), California. Deformation energies are estimated by measuring finite

differences of the wavefield components. We have thoroughly studied the validity and

stability of this technique for the PFO data and obtained reliable measurements in

the 5-7 Hz frequency band. We observe a clear stabilization of the shear to compres-

sional (W s/W p) energy ratio in the coda, with an average value of about 2.8, which
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is smaller by a factor 2.5 than the expected ratio at the surface of a homogeneous

Poisson half-space. The ratio between the vertical and horizontal kinetic energies

(V 2/H2) can be measured from 5 to 25Hz and shows an abrupt transition from 0.1

in the 5-10Hz band, to about 0.8 in the 15-25Hz band. These measured values are

in sharp contrast with the theoretical prediction, around 0.56, for equipartitioned

elastic waves in a homogeneous half-space. To explain these observations, we have

developed a theory of equipartition in a layered elastic half-space. Using a rigorous

spectral decomposition of the elastic wave equation, we define equipartition as a

white noise distributed over the complete set of eigenfunctions. This definition is

shown to agree with the standard physical concepts in canonical cases. The theory

predicts that close to the resonance frequency of a low-velocity layer, the ratio be-

tween shear and compressional energies strongly decreases. Using a detailed model of

the subsurface at PFO, this counterintuitive result is found to be in good qualitative

and quantitative agreement with the observations. Near the resonance frequency of

the low-velocity structure, the drop of the energy ratios W s/W p and V 2/H2 is con-

trolled by the change of ellipticity of the Rayleigh wave and the large contribution of

the fundamental Love mode. At higher frequencies, the interplay between Rayleigh

and Love modes trapped in shallow low-velocity layers is responsible for the abrupt

increase of the kinetic energy ratio. Our study demonstrates that the partition of

energy in the seismic coda contains information on the local geological structure.

Key words: Coda waves, equipartition, layered media, site effect, eigenfunction

expansion

1 INTRODUCTION

Almost forty years ago, Aki (1969) gave the first explanation of the long tail of seismograms.

The basic idea is that the diffraction of seismic waves by the heterogeneous crust is at the

origin of the late arrivals also known as coda waves. Six years later, Aki & Chouet (1975)

proposed the first quantitative explanation for the algebro-exponential decay of the coda with

⋆ formerly at L.G.I.T
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time. Two models were proposed: (1) The single scattering approximation in which seismic

waves are deflected at a single scattering site during their propagation between source and

receiver; (2) The diffusion approximation which basically describes the random walk of the

seismic energy in the scattering medium. Although conceptually important, these two models

were not sufficiently accurate to model successfully the space time distribution of the energy

in the coda. This difficulty was partly overcome when Wu (1985) introduced the acoustic

Radiative Transfer Equation (RTE). Mode conversions between P and S waves were later

introduced on a phenomenological basis by Zeng (1993) and Sato (1994). The RTE takes into

account arbitrary orders of scattering in a rigorous manner, and describes the behavior of

intensity in a complex medium beyond the models of single scattering and diffusion. Recently

the accuracy of the RTE has been demonstrated by comparisons with full-wave simulations

in both acoustic (Wegler et al. 2006) and elastic (Przybilla et al. 2006) media. While the

introduction of the RTE in seismology was an important progress, it did not resolve the

debate initiated by Aki & Chouet (1975) on the origin of the coda: is it dominated by single

or multiple scattering? This question is of both fundamental and practical interest: it is only

when the propagation regime is known that it becomes possible to separate scattering from

absorption.

In the nineties, the RTE for polarized elastic waves in an inhomogeneous medium has been

derived independently by Weaver (1990) and Ryzhik et al. (1996). A particularly interesting

outcome of the RTE is the predicted stabilization of the shear (W s) to compressional (W p)

energy ratio (W s/W p) at large lapse time in the coda, independent of the properties of the

scatterers. This property is known as equipartition (Weaver 1990; Ryzhik et al. 1996) and was

originally proposed by Weaver (1982) to describe diffuse waves, based on statistical physics

arguments. Equipartition implies that while the compressional and shear energy decrease

exponentially with time, their ratio W s/W p tends to a constant. This result was numerically

confirmed by Margerin et al. (2000) who found that this behavior can occur after a few

scattering events only. A stabilization of the energy ratio W s/W p was observed in Mexico

by Shapiro et al. (2000) and was found to be in excellent quantitative agreement with an

equipartition theory for Rayleigh, Love and body waves by Hennino et al. (2001). The very

rapid stabilization of energy ratios observed in Mexico is a clear proof that the propagation of

short period elastic waves in tectonically active regions is dominated by multiple scattering.

In this paper, we report the stabilization of the ratio W s/W p, and the ratio between

vertical and horizontal kinetic energies (V 2/H2), in the coda of short period seismic waves. The

data were collected during a temporary experiment conducted at the Pinyon Flats Observatory



4 L. Margerin et al.

(PFO) in California (Fletcher et al. 1990; Vernon et al. 1998), where a small aperture array

was installed during six months in 1990. The observed stabilization ratio is around 2.8 which is

about 2.5 times smaller than the value expected at the surface of an elastic Poisson half-space

(Hennino et al. 2001). To explain this observation we have developed an equipartition theory

for elastic waves in a stratified medium. Our approach is based on a spectral decomposition

of the elastic operator developed in section 2, which involves generalized eigenfunctions. This

technique circumvents the artificial “locked-mode” approximation used by Hennino et al.

(2001) and is in much closer agreement with the situation in the Earth. Equipartition can then

be defined mathematically as a white noise in the modal space. Using this formal definition, the

theoretical results of Weaver (1990) and Hennino et al. (2001) are recovered and generalized

to stratified media (section 3). The method avoids mode counting arguments and treats on the

same footing surface and body waves. The data analysis and the measurements are presented in

section 4. Particular attention has been paid to the stable measurements of partial derivatives

of the wavefield. In section 5, we show that equipartition theory in a stratified model of the

crust at PFO as proposed by Fletcher et al. (1990) is in good agreement with the observations.

In section 6 we conclude and give directions for future research.

2 MATHEMATICAL PRELIMINARIES

In this part we develop formally the spectral decomposition of the elastic wave operator in

a stratified half-space. We explain how a complete family of generalized eigenvectors of the

elastic wave equation can be constructed, based on scattering theory. The term “generalized”

emphasizes the fact that the eigenfunctions are not square integrable, like plane waves. A key

result is that any square integrable vector field can be expanded over the set of eigenvectors

of the elastic wave equation, which is an important generalization of the Fourier theorem.

Detailed calculations and validation of the theory are presented in Margerin (2008).

2.1 General properties of the elastic wave operator

In this part, we summarize results of Dermenjian & Guillot (1985) and Sécher (1998). We

consider the following elastic wave equation in R
3
−, which denotes the semi-infinite medium

z < 0. The Lamé parameters λ, µ, and the density ρ are sufficiently well-behaved functions

of the position vector x. For instance, we allow these functions to be discontinuous across

smooth boundaries, but we assume that they are bounded away from zero. The elastodynamic
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equation reads:

∂ttu(t) + Au(t) = 0, (1)

where the operator of elasticity acts on the vector wavefunctions as follows:

Aui(x) = − 1

ρ(x)
∂j (λ(x)∂kuk(x)δji + 2µ(x)ǫij(u)(x)) , (2)

where ǫij is the usual strain tensor:

ǫij(u)(x) =
1

2
(∂iuj(x) + ∂jui(x)) . (3)

According to Dermenjian and Guillot (1988), the operator A is positive and self-adjoint in

the Hilbert space with scalar product:

〈u,v〉 =

∫

R
3

−

ρ(x)u⋆ · vd3x. (4)

We will not dwell on the precise definition of the domain of A. Physically speaking, the choice

of the domain ensures that the wavefunctions have finite energy. The spectrum of A, i.e. the

set of generalized eigenvalues of the operator, is the positive real axis and we assume that

the Lamé parameters and the density are sufficiently well-behaved so that the spectrum is

absolutely continuous (Reed & Simon 1980). In what follows, we briefly explain how to build

a complete set of eigenvectors in stratified media using general results from scattering theory

in 3-D (Reed & Simon 1979; Ramm 1986). To carry out this task, we first need a basis of

eigenvectors for the elastic operator in infinite homogeneous space.

2.2 Eigenvectors of the elastic operator in homogeneous space

In a homogeneous infinite space the elastic operator takes the well-known form:

A0u = −λ0 + 2µ0

ρ0
∇(∇ · u) +

µ0

ρ0
∇×∇× u. (5)

One can verify that plane P waves:

ep
p(r) =

p̂p

ρ
1/2
0 (2π)3/2

eip·r (6)

are eigenvectors of A0 with generalized eigenvalue p2α2
0, where α0 denotes the P wavespeed, p̂p

is a unit vector in the direction of p = (px, py, pz). The term generalized is used to emphasize
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the fact that the eigenfunctions are not square integrable. The notational convention used in

Equation (6) is as follows: the superscript refers to the wave type and the subscript serves

as a label for the eigenfunction. In the case of a continuous spectrum, the label will usually

be continuous or sometimes mixed, i.e. discrete+continuous. Similarly, one can introduce two

independent S-wave eigenvectors:

esh,sv
s (r) =

p̂sh,sv

ρ
1/2
0 (2π)3/2

eis·r, (7)

where p̂sh is a unit vector perpendicular to ŝ and the vertical direction ẑ, and p̂sv is a unit

vector perpendicular to s and contained in the (z, s) plane. The corresponding eigenvalue is

β2
0s

2 where β0 denotes the shear wave speed. Note that the direction z is for the moment

arbitrary but will be later taken perpendicular to the stratification. The eigenvectors (6)-(7)

are orthogonal and have the correct continuum normalisation in the sense of the scalar product

(4) defined over R
3. Let us verify formally the orthogonality of say esh

s and e
p
p:

〈esh
s |ep

p〉 =

∫

R3

ρ0
p̂sh · p̂p

ρ0(2π)3
eir·(p−s)d3r

= p̂sh · p̂pδ (p− s) .

(8)

The delta function requires that p = s in which case the scalar product of the polarization

vectors vanishes. Thus the scalar product 〈esh
s |eP

p 〉 is identically zero. Let us now show formally

that our set of eigenvectors is complete, i.e.:

Iδ(r − r′)

ρ0
=

∫

R3

ep
p(r)ep

p(r′)†d3p+

∫

R3

esh
s (r)esh

s (r′)†d3s+

∫

R3

esv
s′ (r)e

sv
s′ (r

′)†d3s′, (9)

where I is the identity operator in polarization space: Iij = δij and the symbol † means

hermitian conjugation (conjugate transpose). In equation (9), the normalization prefactor

ρ−1
0 is a consequence of the definition of the scalar product (4). The sums in the right-hand
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side of equation (9) can be written as a single integral:

∫

R3

ep
p(r)ep

p(r′)†d3p+

∫

R3

esh
s (r)esh

s (r′)†d3s+

∫

R3

esv
s′ (r)e

sv
s′ (r

′)†d3s′ =

1

(2π)3ρ0

∫

R3

(

p̂pp̂p† + p̂shp̂sh†
+ p̂svp̂sv†

)

eip·(r−r′)d3p =

I

2π3ρ0

∫

R3

eip·(r−r′)d3p =
Iδ(r − r′)

ρ0
, (10)

because the set (p̂p, p̂sh, p̂sv) forms an orthonormal basis in polarization space. We have

therefore verified the formal completeness relation.

2.3 Eigenvectors of the elastic wave equation in a stratified half-space

To construct a complete set of eigenvectors in a stratified Earth, we will apply scattering

theory. One key idea which can be found e.g. in Reed & Simon (1979) is the following. Let

us assume that a complete set of eigenfunctions e0
k of the wave operator A0 in a reference

medium is known. Now, perturb the reference medium by introducing a localized scattering

body to obtain a new operator A. Then it is possible to show that the eigenvectors ek of

the perturbed operator are obtained by considering the scattering of e0
k by the heterogeneous

body. More precisely, ek is the solution of the Lippman-Schwinger equation:

ek = e0
k + G0A′ek, (11)

where G0 is the retarded Green function associated with the operator A0. The second term

on the right-hand side of equation (11) represents the scattered wave which results from

the interaction between an unperturbed incoming wave and the scatterer represented by A′, a

perturbation of A0. The set of eigenvectors constructed in this way is orthogonal and properly

normalized (but not necessarily complete). Similar results have been proved for wave scattering

by infinite boundaries by Ramm (1986). The construction of a complete basis of eigenvectors

for fluids with arbitrary stratification has been conducted by Wilcox (1984). This author

demonstrates how the complete set of eigenfunctions can be constructed from the scattering

of plane waves incoming from infinity. The method of Wilcox has been used by Dermenjian

& Guillot (1985) and Sécher (1998) to construct rigorously a complete basis of eigenfunctions

of the elastic operator in a homogeneous half-space with a traction free boundary. Applying

the same technique, we can exhibit a complete set of eigenvectors for a stratified half-space.
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Complete justification of the formulas below are presented in a separate paper (Margerin

2008). For an alternative approach the reader is referred to Maupin (1996). We assume that

as z → −∞, the density and Lamé parameters tend to ρ∞, λ∞ and µ∞, respectively. The

decoupling between SH and (P, SV ) motions defines two families of solutions. The case of

SH waves is completely similar to the acoustic case described by Wilcox (1984) and will

not be discussed. For the P − SV case we take advantage of the translational invariance of

the problem and look for solutions of the wave equation which have the following form as

z → −∞:

ψp
p(r) → 1

(2π)3/2ρ
1/2
∞

(

p̂eip·r + rppp̂reip
r ·r + rpsp̂sveis·r

)

, (12)

where the wavevectors p, pr, and s have the following properties:

p = (px, py, pz), (px, py) ∈ R
2, pz ∈ R

+, (13)

pr = (px, py,−pz), (14)

s =
(

px, py,−
√

p2
‖ (α2

∞/β
2
∞ − 1) + p2

zα
2
∞/β

2
∞

)

, p2
‖ = p2

x + p2
y. (15)

As before, p̂r is a unit vector in the direction of pr and p̂sv is a unit vector orthogonal to

s, contained in the (ẑ, s) plane. The P and S wavespeeds at infinity are denoted by α∞ and

β∞, respectively. In equation (12), the dependence of the eigenvector on the wavenumber of

the incident wave is emphasized. This equation can be understood as follows: a generalized

eigenvector of the operator A is the sum of an eigenvector of A0, plus the wave back-scattered

by the layered structure. The reflection coefficients are determined by the continuity of traction

and displacements across interfaces, and by the vanishing of tractions at the free surface.

Methods to calculate the reflection matrix R of the layer stack are described in e.g. Kennett

(1983) and Aki & Richards (2002). Equation (12) defines eigenvectors of A with eigenvalue

ω2 = α2
∞p

2. Another family of solution corresponds to incident SV waves from infinity (z →
−∞):

ψs
s(r) →

1

(2π)3/2ρ
1/2
∞

(

p̂sveis·r + rspp̂eip·r + rsvsvp̂svreis
r ·r

)

, (16)

where the wavevector p must be carefully defined, depending on s = (sx, sy, sz), sz > 0:

p =











(

sx, sy,
√

s2‖ (β2
∞/α

2
∞ − 1) + s2zβ

2
∞/α

2
∞

)

sz > s‖

√

α2
∞

β2
∞

− 1
(

sx, sy,−i
√

s2‖ (1 − β2
∞/α

2
∞) − s2zβ

2
∞/α

2
∞

)

0 < sz < s‖

√

α2
∞

β2
∞

− 1
, (17)
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where s2‖ = s2x + s2y. The eigenvectors (16) have eigenvalues ω2 = β2
∞s

2. Note that beyond the

critical angle for SV − P mode conversion – 0 < sz < s‖

√

α2
∞

β2
∞

− 1–, the reflection coefficients

as well as the polarization vector p̂ become complex. The reflected P wave is evanescent in the

lower half-space, and decays exponentially with depth. The complex polarization vector carries

information on the particle motion of P waves in the half-space. Since the vertical component

has a −π/2 phase shift with respect to the horizontal component, the evanescent P wave is

in prograde elliptical motion. Equations (12)-(16) define the generalized eigenfunctions that

have oscillatory behavior at infinity. However, they do not form a complete set. Similar to

bound states that decay rapidly away from a scattering body, the set of eigenvectors must

be complemented with surface waves, that have their energy localized near the traction-

free surface. In the case of surface waves, the set of eigenvalues is continuous but organized

along discrete dispersion branches. The dispersion relation of the surface wave modes can

be determined by finding the poles of the reflection coefficients located on the positive real

axis. Numerical procedures are described in the books of Kennett (1983) and Aki & Richards

(2002). The Rayleigh wave eigenfunctions have the form:

ψRl
p‖,n(r) =

1

2π





pxφ
x
(p‖,n)(z)

√

p2
x + p2

y

,
pyφ

x
(p‖,n)(z)

√

p2
x + p2

y

, φz
(p‖ ,n)(z)





t

ei(pxx+pyy), n ∈ N (18)

where φx
(p‖,n) and φz

(p‖,n) denote the horizontal and vertical components of the nth Rayleigh

eigenfunction, and obey the following normalization relation:

∫

R−

dzρ(z)

(

∣

∣

∣φx
(p‖,n)(z)

∣

∣

∣

2
+

∣

∣

∣φz
(p‖,n)(z)

∣

∣

∣

2
)

= 1. (19)

These eigenvectors have eigenvalues ω2
n = cn(p‖)

2p2
‖, where cn denotes the phase speed of mode

n. Note that in equation (18), the surface wave eigenvector is labeled simultaneously with the

continuous indices p‖ = (px, py) and the discrete mode branch index n. This means that if

we fix the horizontal wavevector p‖ and look for solutions of the wave equation that verify

simultaneously the traction-free condition and the vanishing of traction and displacements at

depth, this can only occur at a discrete set of eigenfrequencies denoted by ω1, · · · , ωn, · · · . Note

that in applications, we will work the other way around: the central frequency of the signal is

fixed and one looks for poles of the reflection coefficients related to plane waves with apparent

velocities smaller than the shear wave velocity in the lower half-space. When a candidate

mode has been identified, the Rayleigh quotient is used to calculate its group velocity and as
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an accuracy check. In this formulation, it is implicit that the nth mode appears beyond the

cut-off frequency ωc
n.

3 EQUIPARTITION THEORY

3.1 Formal definition of equipartition

Following Shapiro et al. (2000), we introduce the compression and shear deformation energies:

W p =
1

2
ρ0α

2
0(∇ · u)2 (20)

W s =
1

2
ρ0β

2
0(∇× u)2 (21)

where α0, β0 and ρ0 denote the compressional, shear velocity and the density at the receiver,

and u is the displacement vector. Weaver (1982, 1990) and Ryzhik et al. (1996) showed that

in a heterogeneous infinite elastic medium, the P to S energy ratio stabilizes at large lapse

time:

lim
t→+∞

〈W s〉
〈W p〉 =

2α3
0

β3
0

, (22)

where 〈.〉 is a statistical averaging over the configuration of scatterers in the medium. This

result means that in a heterogeneous medium, multiple scattering creates a partition of com-

pressional and shear energies, which is reached after the waves have encountered a sufficiently

large number of scatterers. This is the physical interpretation of the limit t→ +∞. Remark-

ably, the equilibration ratio is completely independent of the nature of the scatterer and of

the source type.

The result (22) gives no information about the time needed to reach equilibrium. The

significance of the limit t → +∞ was addressed theoretically by Margerin et al. (2000) and

experimentally by Malcolm et al. (2004) and Paul et al. (2005). By solving numerically the

elastic radiative transfer equation, Margerin et al. (2000) showed that the asymptotic behavior

occurs after a few mean free times only, where the mean free time denotes the average time

between two scattering events. These authors also showed that the equilibration time depends

on the type of scatterers and the type of source. Therefore, the dynamics of the stabilization

process contains information on the medium heterogeneities. It is also important to realize

that equilibration is different from equipartition. Equipartition demands that all the modes

be represented with equal energies which in turn implies that the flow of energy is isotropic,

at least away from medium boundaries (Malcolm et al. 2004). In a recent study, Paul et al.

(2005) have shown that equipartition implies equilibration but that the converse statement



Energy partition in the seismic coda 11

is wrong. In particular, Equation (22) applies even when the energy flux distribution is still

strongly anisotropic.

It is mathematically convenient to define equipartition as a white noise distributed over

all the modes of the system (Weaver 1982; Hennino et al. 2001). In order to illustrate this

definition, let us derive the W s/W p ratio at equipartition in an infinite homogeneous 3-D

medium using the eigenvectors (6)-(7). Completeness implies that the complex vector field u

can be expanded as follows:

u (t, r) =

∫

R3

ep
p(r)e−iωptd3p+

∫

R3

[

ash
s esh

s (r) + asv
s esv

s (r)
]

e−iωstd3s (23)

where ωp = α0

√

p2
x + p2

y + p2
z, ωs = β0

√

s2x + s2y + s2z. Equation (23) defines the analytic

signal associated with the measured displacements. At equipartition, the amplitudes ap
p, ...

are uncorrelated random variables with zero mean and equal variance. In practice, they are

slowly varying functions of time in the frequency band of interest. In order to investigate the

energy content at time t in the coda, it is convenient to introduce the Wigner distribution of

the wavefield:

Es(t, τ, r) =
1

2
ρ0β

2
0 〈∇ × u(t+ τ/2, r) · ∇ × u(t− τ/2, r)∗〉 , (24)

where ∗ denotes complex conjugation. In equation (24), the brackets denote an ensemble

average. Assuming that the coefficients as, ap are governed by a quasi-stationary white-noise

process:

〈as(t− τ/2)a∗s′(t+ τ/2)〉 = σ2(t)δ(s − s′), (25)

one obtains:

Es(t, τ, r) =
1

2
ρ0β

2
0σ

2(t)
∑

m=sh,sv

∫

R3

|∇ × em
s (r)|2 e−iωsτd3s. (26)

In seismological applications, the function σ models the slow decay of the energy envelope in

the coda. The Fourier transform of the Wigner distribution gives the power spectral density

at frequency ω0:

Es(t, ω0, r) =
1

2π

+∞
∫

−∞

Es(t, τ, r)e
iω0τdτ (27)

=
1

2
ρ0β

2
0σ

2(t)
∑

m=sh,sv

∫

R3

|∇ × em
s (r)|2 δ(ω0 − ωs)d

3s. (28)
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The assumption of quasi-stationarity demands that the function σ does not vary significantly

during one cycle 2π/ω0, where ω0 is the central frequency of the analyzed signal. Using equa-

tion (7), one can show that the squared modulus of the rotational part of the eigenvectors of

a homogeneous full-space is independent of position:

∣

∣

∣
∇× esh

s (r)
∣

∣

∣

2
=

ω2
0

ρ0β2
0(2π)3

. (29)

Introducing spherical polar coordinates to perform the wave number integral in equation (28),

one finds the total shear energy spectral density:

Es(t, ω0) =
2σ2(t)ω4

0

(2π)2β3
0

. (30)

Using the definition of the compressional energy (20) and following similar lines, one obtains

the total compressional energy spectral density:

Ep(t, ω0) =
σ2(t)ω4

0

(2π)2α3
0

, (31)

from which the result (22) follows.

3.2 Equipartition in a stratified half-space

In the case of a stratified half-space, calculations have to be performed numerically and in

general, the energy ratios depend on depth. Near the boundaries the coupling between P and

S waves complicates the physical interpretation of the decomposition of the field energy into

shear and compressional components. For instance, Shapiro et al. (2000) have shown that,

depending on the incidence angle at the free surface of a homogeneous half-space, a shear

wave can generate a large amount of compressional energy and vice-versa. In addition, the

sum of compressional and shear energies does not equal the total elastic deformation energy.

However, the ratio of shear to compressional energy, as defined above, constitutes a marker of

the wave content of the seismic coda. We will also consider the vertical to horizontal kinetic

energy ratio. This quantity can be measured without major difficulties on a rather broad

frequency range and offers additional information. To illustrate the computational approach,

let us for instance consider the contribution of the nth Rayleigh mode to the vertical kinetic

energy ERl
z . Using equation (18) and the property (25), one finds:

ERl
z (t, ω0, z) =

ρ(z)ω2
0σ

2(t)

8π2

∫

R2

∣

∣

∣φz
(p‖,n)(z)

∣

∣

∣

2
δ
(

ω0 − ωp‖

)

d2p‖, (32)
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where ωp‖
= cn(p‖)p‖, and the vector p‖ has components (px, py, 0). Introducing cylindrical

coordinates, the wavenumber integral can be performed to obtain:

ERl
z (t, ω0, z) =

ρ(z)ω3
0σ

2(t)

cnun4π

∣

∣

∣
φz

(p‖=ω0/cn,n)(z)
∣

∣

∣

2
, (33)

where un denotes the group velocity of mode n at frequency ω0. The transition from equation

(32) to (33) uses the following decomposition of the delta function:

δ
(

ω0 − ωp‖

)

=
1

|un|
δ

(

p‖ −
ω0

cn

)

. (34)

Equation (33) agrees with results of Trégourès & van Tiggelen (2002) who developed a trans-

port theory for elastic waves in a plate. The interpretation of equation (33) is as follows: in

the seismic coda, the contribution of the nth Rayleigh mode to the vertical kinetic energy is

proportional to the global density of states of the mode and the local value of the wavefunc-

tion squared. This product is often referred to as the “local density of states” in the literature

(Economou 2005).

It is also instructive to consider the expression of the kinetic energy for the generalized

eigenfunctions representing body waves in the lower half-space. For simplicity, we consider the

kinetic energy of vertical vibrations Ep
z for the generalized eigenfunctions (12) corresponding

to P waves incident from below the sub-surface structure, together with their reflections. To

facilitate the comparison with the case of Rayleigh waves, we can rewrite the generalized P

wave eigenvector as follows:

ψp
(p‖,pz)(r) =

eipxx+ipyy

2π
φp

(p‖,pz)(z), (35)

i.e. we split the horizontally and vertically propagating parts. The decomposition (35) high-

lights the similar roles played by the surface wave mode index n and the vertical wavenumber

pz. Using equations (12) and (25), we obtain the following expression:

Ep
z (t, ω0, z) =

ρ(z)ω2
0σ

2(t)

8π2

+∞
∫

0

dpz

∫

R2

∣

∣

∣φz
(p‖,pz)(z)

∣

∣

∣

2
δ
(

ω0 − ω(p‖,pz)

)

dp‖, (36)

where ω(p‖,pz) = α∞

√

p2
x + p2

y + p2
z, and φz

(p‖,pz) denotes the vertical component of the gen-

eralized P -wave eigenfunction, which depends explicitly on the wavenumbers p‖ and pz. The

main difference between equations (36) and (32) is the substitution of the discrete mode

branch n with the continuous vertical wavenumber pz. After introducing cylindrical coordi-
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nates, integrating over the vertical wavenumber and the azimuthal angle, one obtains:

EP
z (t, ω0, z) =

ρ(z)ω3
0σ

2(t)

4πα2
∞

ω0/α∞
∫

0

dp‖
p‖

√

ω2

0

α2
∞

− p2
‖

∣

∣

∣
φz

(p‖,pz)(z)
∣

∣

∣

2
∣

∣

∣

∣

pz=

√

ω2
0

α2
∞

−p2

‖

, (37)

where α∞ is the P wave speed in the underlying half-space. Upon making the change of

variable p‖ = ω0

α∞
sin θ, the last equation simplifies to:

EP
z (t, ω0, z) =

ρ(z)ω4
0σ

2(t)

4πα3
∞

π/2
∫

0

dθ sin θ
∣

∣

∣
φz

(p‖,pz)(z)
∣

∣

∣

2
∣

∣

∣

∣

(

p‖=
ω0

α∞
sin θ,pz=

ω0

α∞
cos θ

)

. (38)

Evaluated at z = 0 in the case of a homogeneous half-space, equation (38) reduces to similar

expressions obtained by Weaver (1985), based on physical reasoning. Note that away from the

free surface, the eigenmodes of the system do not reduce to pure P or S waves but consist

of a superposition of incident and reflected body waves. The result (38) can be interpreted

as follows: the contribution of generalized P eigenfunctions to the kinetic energy of vertical

vibrations is proportional to the density of states of P waves in the lower half-space and to the

squared P -wavefunction, averaged over all possible directions of P -waves incident from below

the structure. Note that the last integral (38) also depends on depth and, in general, presents

complicated oscillations. This is illustrated in Figure 1 where kinetic and deformation energy

ratios are plotted as a function of depth in a homogeneous 3-D Poisson half-space. The largest

fluctuations of the deformation and kinetic energy ratios occur in the vicinity of the free surface

and are mostly caused by the depth dependence of the Rayleigh wave eigenfunction. When

averaged over one shear wavelength λs at a depth greater than 3 λs, the energy ratios reduce

to the expected values for a homogeneous infinite medium. Our calculations are in perfect

agreement with previous work by Hennino et al. (2001); Trégourès & van Tiggelen (2002),

based on a locked-mode method. The present approach is generally valid for an arbitrarily

stratified half-space. Experimentally, the V 2/H2 kinetic energy ratio is fairly easy to measure

over a broad frequency range but can be strongly affected by the local topography. The ratio

of deformation energies W s/W p is more difficult to evaluate but is independent of the choice

of local coordinate system. It is therefore expected to be less sensitive to geometrical effects.

In the next section, we discuss the measurement of the deformation energy ratio on a dense

array.
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4 STABILIZATION OF DEFORMATION ENERGY RATIOS IN THE

SEISMIC CODA

4.1 Data set and pre-processing

The data we use were collected by a temporary array that was deployed at the Pinyon Flats

Observatory (PFO) in 1990. This array operated as part of the Incorporated Research Institu-

tions for Seismology (IRIS), and was located in Southern California between the San Jacinto

and the San Andreas fault, as shown on the location maps in Figure 2

The array was composed of 58 sensors arranged in a six-sensor by six-sensor grid with

200m long arms. The sensors were 2Hz L22-D geophones with an acquisition sampling fre-

quency of 250Hz. They were triggered by two borehole sensors located at 275m and 150m

depth, respectively. A total of 300 events was recorded, among which 140 were located with

good accuracy. In our study, we have used 10 events whose source parameters are described

in Table 1. These earthquakes have epicentral distances smaller than 50km and magnitudes

higher than 2. We chose these events because they exhibit a pronounced coda with a high

signal to noise ratio. We took care of filtering out the frequency components above 40Hz be-

cause the signal exhibits significant instrumental noise around 60Hz. Because the estimate of

the divergence and curl of the wavefield requires the application of the traction-free boundary

condition (Shapiro et al. 2000), we must first define geometrically the free surface. For this

purpose we chose the plane which best approximates the location of stations in a least-squares

sense. The data were rotated in a new reference system whose vertical axis is directed per-

pendicular to the optimal plane. The signal components were detrended and normalized to

equal root mean square amplitude at each station i:

∀i ∈ {1, · · · , n} ,



























∫

uz(ri, t)
2dt = u2

z
∫

uew(ri, t)
2dt = u2

ew
∫

uns(ri, t)
2dt = u2

ns

, (39)

where the bar denotes the root mean square. This normalisation procedure corrects for possible

instrumental response differences and yields more reliable estimates for the field derivative.

4.2 Method of estimation for P and S energies

To estimate the deformation energies W p and W s, the displacement gradients ∂iuj of the

wavefield need to be measured. We will first examine the problem of estimating the horizontal
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derivatives. These will be subsequently used to obtain the vertical derivatives. Using three or

four stations as shown in Figure 3, the derivative of the wavefield in two linearly independent

horizontal directions can be estimated, which suffices to recover the horizontal components of

the gradient vector by application of the Taylor expansion formula:

u(r2) ≈ u(r1) + (r2 − r1).∇u+O
(

|r2 − r1|2
)

. (40)

In practice, the estimate of the spatial derivative requires a great coherence of the displace-

ments at two near-by stations. Applying a finite difference approximation to equation (40) ,

one finds

∂ui

∂xj
≈ ui(r1 + d.j) − ui(r1)

d
, (41)

where d is the inter-station distance. ui(r1 + d.j) and ui(r1) correspond to the measured

displacements at positions r2 = r1 + dj and r1, respectively. The approximation (41) will

be correct provided d/λ ≪ 1 and its application to the data set will be critically examined.

Following Shapiro et al. (2000), we use the free surface boundary condition to express the

derivative in the z direction in terms of horizontal derivatives:



















∂zux = −∂xuz

∂zuy = −∂yuz

∂zuz = −(1 − 2β2/α2)
(

∂xux + ∂yuy

)

.

It follows that the divergence and curl of the wavefield can be expressed in terms of derivatives

along horizontal coordinates exclusively

∇ · u =2
β2

α2
(∂xux + ∂yuy) , (42)

∇× u = (2∂yuz,−2∂xuz, ∂xuy − ∂yux) . (43)

We now study the validity of our estimates of spatial derivatives in the data. Practically,

we approximate ∂xux with the finite-difference formula (41). The estimate is based on the

assumption that the two signals are very similar, i.e., the change of waveform between two

stations is infinitesimal. Using the converse assumption we propose a method to determine the

limit of validity of the finite difference approximation. When two signals are poorly correlated

the following result applies: 〈ui(1)ui(2)〉 ≪ u2
i . Therefore we can obtain the following estimate
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of the derivative for incoherent signals

√

〈(ui(2) − ui(1))2〉
d2

=

√

〈u2
i (2)〉 + 〈u2

i (1)〉 − 2〈ui(1)ui(2)〉
d

≈
√

2 ui

d

(44)

Therefore we expect to find a 1/d behavior when the signals at 2 stations are poorly correlated,

i.e. sufficiently far apart. Figure 4 shows the finite difference ui(r1+dj)−ui(r1)
d as a function of

inter-station distance d. In the 5 − 7Hz frequency band, and for distances shorter than 50m,

the evaluation is unstable because the time shifts between the two waveforms becomes nearly

equal to the sampling period. For distances greater than 150m, we roughly find the predicted

1/d behavior (see equation (44)). For inter-station distances ranging from 50m to 150m, the

finite difference curve shows a plateau, indicating that the measurement is stable and reliable.

In order to avoid possible biasing by extreme values that sometimes appear, we define the

experimental derivative as the median of all available finite difference values.

4.3 Stabilization of shear to compressional energy ratios

Compressional (W p) and shear (W s) energies have been measured for each event and for

different frequency bands. Figure 5 shows a typical example of the band-pass filtered signal

between 5 and 7 Hz, the decay of energies with time, and the dynamics of the ratio between

shear and compressional energies. For this event a stabilization of the energy ratio is clearly

visible in the coda. While the total energy itself decreases by two orders of magnitude, the

ratio shows remarkably weak fluctuations. In addition, we infer that the stabilization occurs

very rapidly, only a few cycles after the arrival of the direct S wave. When the compressional

energy W p reaches the background noise level, the energy ratio again fluctuates randomly

and stabilization disappears. This observation indicates that the wave contents of noise and

coda are rather different. In a sense, the coda is easier to interpret because it is likely to

contain an equipartition mixture of all the modes of the system. Because fluctuations are

weak, we define the stabilization ratio as the average of W s/W p over a time window starting

one second after the direct S arrival and ending when W p is of the order of the noise level.

The equilibration has been observed for the ten earthquakes provided that frequencies lower

than 3 Hz and greater than 9 Hz have been removed. The low frequency coda is difficult to

measure because of the poor sensitivity of the sensors. At too high frequencies the diffuse

field is not sufficiently coherent to obtain reliable estimates of the derivatives. The results are

shown in Figure 6, where we illustrate the fact that the equipartition ratio is independent
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of the source parameters. This favors an interpretation of the observed stabilization as a

consequence of multiple scattering. However, the equilibration ratio equals 2.8 +/- 0.4, which

is much lower than the ratio 7.2 predicted at the surface of a homogeneous Poisson half-space

(Figure 1). A likely explanation is the non-uniformity of velocities in the upper crust. The

seismic properties under the PFO array have been studied by Fletcher et al. (1990) and Vernon

et al. (1998). These authors have shown that the first 50 to 70 meters at Pinyon Flats are

composed of weathered granite with low seismic velocities. At greater depth, intact granite

with high wavespeeds is found. Therefore, we speculate that the anomalously low energy ratio

at PFO is caused by the presence of low-velocity layers. We further explore this hypothesis

by applying equipartition theory in stratified media.

5 MODELING ENERGY RATIOS IN THE CODA

The structure under the PFO array was explored by Fletcher et al. (1990) and Vernon et al.

(1998). We first study a simplified model of the velocity and density profiles, composed of

a thin layer (65 m thickness) with relatively low velocities (2.77 km/s for P -wave and 1.6

km/s for S-wave) overlying a half-space with typical crustal velocities (5.2 km/s for P -wave

and 3 km/s for S-wave). The elastic medium is poissonian everywhere and the density is

uniform. The properties of the different seismic models studied in this paper are summarized

in Table 2. In Figure 7, the frequency dependent theoretical ratio between shear (W s) and

compressional (W p) energies at equipartition is represented. At low frequency, the waves are

insensitive to the thin low-velocity layer and the 7.2 ratio of a homogeneous Poisson half-space

is recovered. At low frequency, the fundamental Love wave can be completely neglected, and

the largest contribution to the S and P deformation energies is made first by the Rayleigh

waves, and second by the generalized eigenfunctions representing body waves in the lower

half-space. At very high frequency the W s/W p ratio again converges to the half-space value.

This is not so surprising, since we may expect the diffuse wavefield to be rather insensitive to

the deep velocity contrast. The pronounced drop of the energy ratio to values smaller than

4 around the fundamental resonance frequency of the layer is largely due to the change of

the Rayleigh wave ellipticity and the increasing importance of the fundamental Love mode

near the resonance frequency of the layer. At high frequencies, the generalized eigenfunctions

corresponding to body waves in the underlying half-space play little role in the equipartition

ratio. The high-frequency oscillations are mostly due to the interplay between Rayleigh and

Love waves.

Because the deformation energies are accessible in a narrow frequency band only, we have
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also evaluated the ratio of vertical (V 2) to horizontal (H2) kinetic energies in the 5-25 Hz

band. The measurement of this ratio is straightforward and offers additional information

on the local structure. The experimental results are plotted in Figure 8 and show a clear

frequency dependence. The ratio decreases from 0.5 at frequencies around 4 Hz to about 0.1-

0.2 in the 6-12Hz frequency band, then rapidly increases to 0.8, and oscillates around this

value in the 15-25Hz frequency band. While a simplified 1-layer model (model 1 in Table

2) gives a clear qualitative explanation of the observations at PFO, it is not quantitatively

satisfactory. By a process of trial and error and using a-priori information provided by previous

studies, we tried to find 2-layer models that better match the observation. The velocity and

density profile of a typical 2-layer model is given in Table 2. The velocities in the bedrock

and in the deepest part of the weathered zone are identical to those given by Fletcher et al.

(1990). According to these authors the near-surface seismic properties are more variable and

less well constrained. Therefore we explored various thicknesses and velocities for the top

layer. Regarding the density, little information could be found in the literature. We adopted

a typical value of 2.7 for the intact bedrock and allowed the density to decrease to 2.2 in the

weathered, less consolidated layers. Observed and theoretical energy ratios for a 2-layer model

that fits reasonably well the W s/W p and V 2/H2 ratios up to 15 Hz are shown in Figure 8.

In the simple 2-layer model, the small V 2/H2 ratio at low frequency is due simultaneously to

the nearly horizontal polarization of the fundamental mode Rayleigh wave and the increasing

role played by the fundamental Love wave. For a thorough study of the frequency-dependent

ellipticity of the Rayleigh wave in layered structures, the reader is referred to Malischewsky

& Scherbaum (2004). In model 2 (see Table 2), at frequencies higher than 5 Hz, the surface

waves trapped in the low-velocity layers largely dominate over body waves coming from below

the structure. The sharp increase of the V 2/H2 ratio at high-frequencies is again explained

by an interplay between Love and Rayleigh waves. Around 15 Hz, the fundamental mode

Rayleigh wave becomes strongly vertically polarized and the weight of Love waves in the

equipartition ratio suddenly drops. The two effects combined explain the peak value observed

in the data. Calculations based on Rayleigh waves only, predict fluctuations of the V 2/H2

ratio much bigger than observed. This demonstrates that the contribution of Love waves is of

fundamental importance. At frequencies higher than 15Hz, the measured kinetic energy ratio

oscillates and departs significantly from the model calculations. This may indicate a departure

from the simple layered structure.

By exploring a large number of models, we found that the position of the steep rise from

the low to high frequency behavior is extremely sensitive to the the thickness and velocity
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of the upper layer. This is illustrated in Figure 9 where the frequency dependent vertical to

horizontal kinetic ratio has been measured at one station located at the end of one of the

two orthogonal arms (see Figure 2). Figure 9 also shows the calculations of the frequency

dependent ratio between the vertical and horizontal kinetic energies for model 3, Table 2.

This model is completely similar to model 2, except in the first 15 meters where the velocities

are slightly different from those proposed by Fletcher et al. (1990). This model fits reasonably

well the observations over the whole frequency band. The comparison of Figures 8 and 9

demonstrates that the frequency dependence of the ratio between vertical and horizontal

kinetic energies measured in the coda contains information on the local velocity structure. In

the case of PFO, our study supports the idea that the velocity profile presents simultaneously

velocity gradients at depth and thin very low-velocity layers at the surface.

6 CONCLUSION AND OUTLOOK

We have observed the stabilization of ratios of deformation and kinetic energies in the coda of

small earthquakes, at PFO. The stabilization phenomenon is interpreted as a sign of multiple

scattering of waves in the crust at high frequencies. The ratio between the shear and compres-

sional energies can be accurately estimated in the 5-7 Hz frequency band and was observed

to be much lower than the one found in Mexico by Shapiro et al. (2000). To understand this

observation, we have developed a theory of equipartition in arbitrary layered elastic media

based on the spectral decomposition of the elastodynamic operator. We have shown that the

decrease of the S to P deformation energy ratio may be explained by the low-velocity sub-

surface layers. Like in Mexico (Shapiro et al. 2000; Hennino et al. 2001), the stabilization of

various energy ratios occurs shortly after the S wave arrival. Such a rapid stabilization has

also been found in numerical simulations (Margerin et al. 2000), typically after a moderate

number (3-4) of scattering events. This suggests that the mean free time -the typical time

between two scattering events- is very small, of the order of a few seconds only, and supports

the idea of a highly heterogeneous crust in California. Our results on the frequency depen-

dence of the ratio of vertical to horizontal kinetic energies sound reminiscent of the so-called

Nakamura’s technique which relies on the frequency dependence of the H/V spectral ratio of

ambient noise vibrations (see Bard 1998, for a review). This technique usually makes use of

the low-frequency H/V peak to retrieve the resonance frequency of sedimentary deposits. The

physical bases and limitations of theH/V method are still actively debated. Bonnefoy-Claudet

et al. (2006) present a detailed study of a simple 1-layer configuration which illustrates the

complex interpretation of H/V measurements depending on the spatial distribution of the
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noise sources. Because coda waves are composed of an equipartitioned mixture of all modes,

they are in a sense easier to model than noise signals. We have shown that it is possible to

model reasonably well the frequency dependent ratio of vertical to horizontal kinetic energies

in the coda at PFO. In addition to a low-frequency global resonance of the 1-D structure, we

find that some information on the uppermost layers can also be obtained. Another interesting

aspect of the coda is the possibility to check the wave content of the signal through the mea-

surements of several energy ratios that can be compared to theoretical predictions. Further

investigations of site effect assessments with coda waves are required before reaching more

definitive conclusions.
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linéaire, Annales de la faculté des sciences de Toulouse, 7, 699–726.

Shapiro, N. M., Campillo, M., Margerin, L., Singh, S. K., Kostoglodov, V., & Pacheco, J., 2000.

The energy partitioning and the diffusive character of the seismic coda, Bull. Seism. Soc. Am., 90,

655–665.

Trégourès, N. P. & van Tiggelen, B. A., 2002. Quasi-two-dimensional transfer of elastic waves, Phys.

Rev. E , 66(3), 036601.

Vernon, F. L., Pavlis, G. L., Owens, T. J., Macnamara, D. E., & Anderson, P. N., 1998. Near-surface

scattering effects observed with a high-frequency phased array at Pinyon Flats, California, Bull.

Seism. Soc. Am., 88, 1548–1560.

Weaver, R. L., 1982. On diffuse waves in solid media, J. Acoust. Soc. Am., 71, 1608–1609.

Weaver, R. L., 1985. Diffuse elastic waves at a free surface, J. Acoust. Soc. Am., 78, 131–136.

Weaver, R. L., 1990. Diffusivity of ultrasound in polycrystals, J. Mech. Phys. Solids, 38, 55–86.

Wegler, U., Korn, M., & Przybilla, J., 2006. Modeling Full Seismogram Envelopes Using Radiative

Transfer Theory with Born Scattering Coefficients, Pure and Applied Geophysics , 163, 503–531.

Wilcox, C., 1984. Sound propagation in stratified fluids , vol. 50 of Applied Mathematical Sciences,

Springer-Verlag, Berlin and New York.

Wu, R. L., 1985. Multiple scattering and energy transfer of seismic waves - separation of scattering

effect from intrinsic attenuation - I. Theoretical modeling, Geophys. J. R. Astron. Soc., 82, 57–80.

Zeng, Y., 1993. Theory of scattered P- and S-wave energy in a random isotropic scattering medium,

Bull. Seism. Soc. Am., 83, 1264–1276.



24 L. Margerin et al.

Origin time Latitude Longitude Magnitude Depth Source-array distance(km)

117.12.52.42.392 34.0487 -116.3908 2.3 -2.2 48.89

118.08.32.38.165 33.8647 -116.1659 2.4 5.1 39.04

122.11.35.03.691 33.4927 -116.4624 2.1 7.0 13.20

125.08.10.15.667 33.5074 -116.4672 2.0 8.3 11.64

127.12.40.57.581 33.8693 -116.1555 2.0 3.7 40.08

130.07.23.35.987 33.6496 -116.7291 2.1 15.7 25.46

130.14.25.10.270 33.1944 -116.3622 2.8 14.5 47.13

132.23.54.49.190 33.9839 -116.3103 2.5 4.8 43.50

134.05.05.27.123 33.5384 -116.6073 2.6 11.8 16.01

136.01.14.21.003 33.4376 -116.4491 2.4 11.1 19.30

Table 1. Location and magnitude of the 10 events used in this study.
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Model 1 Model 2 Model 3

h1 = 4m
α1 = 300m/s
β1 = 150m/s

h1 = 11 m ρ1 = 2200kg/m3

α1 = 720m/s
h1 = 65m β1 = 400m/s h2 = 11m

α1 = 2770m/s ρ1 = 2200kg/m3 α2 = 900m/s
β1 = 1600m/s β2 = 500m/s
ρ1 = 2700kg/m3 h2 = 41 m ρ2 = 2200kg/m3

α2 = 3100m/s
β2 = 1600m/s h3 = 50m
ρ2 = 2500kg/m3 α3 = 3100m/s

β3 = 1600 m/s
ρ3 = 2700kg/m3

α∞ = 5200m/s α∞ = 5400m/s α∞ = 5400m/s
β∞ = 3000m/s β∞ = 3000m/s β∞ = 3000m/s

ρ∞ = 2700 kg/m3 ρ∞ = 2700kg/m3 ρ∞ = 2700kg/m3

Table 2. Seismological models of the sub-surface at Pinyon Flats Observatory used in this study. The
different depths and velocities are inspired by the results of Fletcher et al. (1990).
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Figure 1. Depth dependence of energy ratios at equipartition in a homogeneous elastic half-space
(Poisson solid). The depth unit is the shear wavelength λs. Top: vertical to horizontal kinetic energy
ratio. Bottom: shear to compressional deformation energy ratio. Note the persistent oscillations at
depth, which originate from the interference between incident and reflected waves at the free surface.
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Figure 2. Location map of the 1990 Pinyon Flats High Frequency Array Experiment. 58 3-components
sensors were deployed during 3 months. The upper-left inset shows the location of the largest magni-
tude local events recorded by the array. The lower-left inset shows the acquisition geometry: a dense
square of 6× 6 seismometers separated by 7 meters, and two perpendicular long arms composed of 11
seismometers separated by 21 meters. Reproduced from Vernon et al. (1998)
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Figure 3. Estimation of the divergence and curl of the wavefield requires the measurement of the
derivative along two linearly independent directions. This figure presents two valid configurations with
3 or 4 stations
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Figure 4. Measurement of the spatial derivative of the wavefield on a dense array of seismometers.
Dots: estimates of the derivative ∂uz/∂x for one event at lapse time t = 32.4s. The mean value of the
field derivative is indicated by a solid line. The horizontal dotted lines indicate the plus or minus one
standard deviation range. The + symbols show the estimate of the derivative for incoherent fields. The
plot illustrates the stability of the estimate of the derivative for stations located at least 50m and at
most 150m apart. Beyond this distance the field at the two stations become uncorrelated as shown by
the coincidence between the incoherent and coherent estimates of the wavefield derivative.
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Figure 5. Observation of the stabilization of deformation energies in the seismic coda. Top : example
of vertical displacement for a shallow magnitude 2.0 local event. Middle : compressional and shear
deformation energies as a function of time. Note the logarithmic scale on the vertical axis. Bottom :
time dependence of the shear to compressional energy ratio. The ratio shows small random fluctuations
while the total energy decays by two orders of magnitude. Note the large fluctuations of energy ratios
in the noise following the coda. The horizontal line indicates the time window used to estimate the
stabilization value.
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Figure 6. Estimate of shear to compressional energy ratios for 10 local events in the 5−7Hz frequency
band. The stabilization ratio varies little from one event to the other. The shaded region indicates plus
or minus one standard deviation around the mean value. This feature agrees with the theoretical
prediction that the energy ratio in the coda is independent from the source parameters.
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Figure 7. Frequency dependence of the equipartition ratio between shear (Ws) and compressional
(Wp) energies in a one-layer model of Pinyon Flats Observatory. At a depth of 65m, the shear velocity
increases by a factor almost 2 (model 1 in Table 2). At low and high-frequencies, the equipartition
ratio of a Poisson half-space is recovered. Close to the resonance frequency of the low-velocity layer, a
significant drop of the ratio Ws/Wp is observed.
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Figure 8. Modeling of the measured stabilization ratios with a simple 2-layer model of PFO as
described in Table 2 (model 2). Top: Observed (shaded region) and modeled (dashed line) shear to
compressional energy ratio. Bottom: Observed (shaded region) and modeled (dashed line) vertical to
horizontal kinetic energy ratio. The black solid lines delimit the ±1 standard deviation region around
the mean value. Agreement is reasonable up to 15 Hz.
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Figure 9. Modeling of the measured stabilization ratio between vertical and horizontal kinetic energies
with a 3-layer model of PFO as described in Table 2 (model 3). The shaded area delimits the ±1
standard deviation region for the data. The dashed line shows the model calculations.


