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TURBULENCE AND LARGE-EDDY

SIMULATIONS

Marcel R. Lesieur
Geophysical and Industrial Flows Lab. (LEGI)

BP 53, 38041 Grenoble-Cedex 9. France

marcel.lesieur@inpg.fr

After having discussed the limits of turbulence direct-numerical simula-tions, one
presents large-eddy simulations methods, where small scales are filtered out and
modelled by appropriate eddy coefficients in the evolution of large scales. We
concentrate on models developed origi-nally in Fourier space, then adapted to physical
space. One presents coherent-vortex dynamics and statistical data obtained thanks to
these models for incompressible isotropic turbulence, channel flow and con-trolled
round jet. Then large-eddy simulations are considered in the compressible case, where
we study first the free jet at Mach 0.7 and 1.4, then the controlled supersonic jet.
Finally LES of compressible flows above riblets in subsonic and supersonic cases are
considered.

Keywords: Turbulence, large-eddy simulations, coherent vortices, jets, compressible
flows, control, riblets.

Introduction

Direct-numerical simulations (DNS) of turbulence are based on deter-
ministic solutions of Navier-Stokes equation, obtained through a proper
discretization on a spatio-temporal grid of partial-differential operators
involved, and where one advances in time starting from a given initial
state. This implies that the typical grid mesh ∆x in space should be
inferior to the Kolmogorov scale lD = k−1

D , under which velocity fluctua-
tions are damped out by molecular viscosity. Another important point is
that numerical schemes should be sufficiently precise, and hence of high
order, if possible. In fact the number of spatial grid points necessary
for a well-resolved DNS in developed three-dimensional turbulence is
≈ (L/lD)3, where L is the typical size of large structures. One can show

that this is of the order of ∼ R
9/2
λ , where Rλ = u′λ/ν is defined thanks

to the rms longitudinal velocity and the Taylor microscale. Rλ may
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be determined experimentally, for instance on a commercial-plane wing
where it is equal to 3000 (Jimenez, 2000). This yields ≈ 1015 grid points
to handle on the computer, which permits to envisage a DNS of such
a flow within 30 to 50 years. For the atmospheric boundary layer it is
worse, since we have Rλ = 10000, and hence 1018 grid points. To be
able to perform a simulation in such cases, one is thus obliged to reduce
drastically the number of degrees of freedom of the system. Large-eddy
simulations (LES) are a powerful tool for this purpose. More details
concerning the rest of this talk may be found in Lesieur (1997), Lesieur
& Metais (1996), and Lesieur et al. (2004).´

1. Incompressible LES

Physical Space

Density ρ = ρ0 is uniform. Let ∆x be a given spatial grid mesh
comprised between L and lD, and G∆x a low-pass spatial filter of width
∆x, chosen in order to eliminate properly subgridscale motions of wave-
length < ∆x. One associates to any quantity f(�x, t� ) its locally-filtered
counterpart

f̄(�x, t� ) = f ∗ G∆x =

∫
f(�y, t� )G∆x(�x − �y)�� d�y. (1)

The filter commutes with spatial and temporal derivatives (if ∆x is uni-
form). Let us write Navier-Stokes equation as

∂ui

∂t
+

∂

∂xj
(uiuj) = −

1

ρ0

∂p

∂xi
+

∂

∂xj
(2νSijSS ), (2)

where

SijSS =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(3)

is the deformation tensor, symmetric part of the velocity gradient, and
ν is assumed constant. When applying the filter, it is obtained

∂ūi

∂t
+

∂

∂xj
(ūiūj) = −

1

ρ0

∂p̄∂

∂xi
+

∂

∂xj
(2νS̄ijSS + ūiūj − uiuj). (4)

I call TijTT = ūiūj − uiuj the subgrid-stresses tensor. This is in fact
Navier-Stokes equation for ūi, provided TijTT is added to the filtered vis-
cous stress 2νS̄ijSS . Continuity ∂ūj/∂xj = 0 holds for the filtered Navier-
Stokes equation if ∆x is uniform. The simplest way chosen to close the
problem is to make an eddy-viscosity assumption

TijTT = 2νtνν (�x, t� ) S̄ijSS +
1

3
TllTT δij , (5)
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where νtνν has to be determined (see later). With such an hypothesis, the
filtered Navier-Stokes equation writes

∂ūi

∂t
+

∂

∂xj
(ūiūj) = −

1

ρ0

∂P̄

∂xi
+

∂

∂xj
[2(ν + νtνν )S̄ijSS ], (6)

where one has introduced a modified pressure (macro-pressure)

P̄ = p̄ −
1

3
ρ0TllTT . (7)

Let us now consider the mixing of a scalar T (�x, t� ) transported by the
flow (with a molecular diffusivity κ), which obeys heat Fourier equation
following the fluid motion:

∂T

dt
+

∂

∂xj
(T uj) =

∂

∂xj

{
κ

∂T

∂xj

}
. (8)

Filtering this equation and making the assumption of an eddy diffusivity
κt(�x, t� ) yields for the filtered scalar:

∂T̄

dt
+

∂

∂xj
(T̄ ūj) =

∂

∂xj

{
(κ + κt)

∂T̄

∂xj

}
. (9)

κt(�x, t� ) is determined from νtνν thanks to a “turbulent Prandtl num-

ber” P
(t)
rPP = νtνν /κt. These eddy coefficients need to be determined. In

Smagorinsky’s model (1963), the eddy viscosity is based on velocity gra-

dients and taken proportional to (∆x)2
√

S̄ijSS S̄ijSS . There are interesting

improvements of this model made by Germano et al. (1991) where the
constant is calculated dynamically by a double filtering. In fact, the
major drawback of an eddy-viscosity assumption in physical space is
that it assumes a scale-separation between filtered and subgridscales, as
the molecular-viscosity concept in a continuous medium is based upon
the existence of a scale separation between macroscopic and molecular
scales. This explains the poor correlation between TijTT and S̄ijSS found
in a-priori tests based on DNS. This is a serious motivation to work in
Fourier space if the geometry of the problem permits it.

Grenoble Models in Fourier Space

Turbulence is first assumed statistically homogeneous. Let f̂(�k, t) be
the spatial Fourier transform of any quantity f(�x, t� ):

f̂(�k, t) =

(
1

2π

)3 ∫
e−i�k.�f(�x, t� ) d�. (10)
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The optimal filter to eliminate small scales considered as waves with
a given spatial wavelength is a sharp filter, such that

f̂ = f̂ for k = |�k| < kC =
π

∆x
; f̂ = 0 for k > kC , (11)

the factor π/∆x coming when one works using pseudo-spectral methods
in a spatially-periodic flow. If turbulence is statistically isotropic, one
can define the kinetic-energy spectrum E(k, t), such that E(k, t)δk is
the mean (in the sense of a statistical average upon an ensemble of
realizations) kinetic energy per unit mass in a spatial-frequency band
[k, k + δk].

In Fourier space, nonlinear interactions go through “resonant” triads
of wavevectors such that �k = �p+�q. Indeed, due to incompressibility, the�
nonlinear term of Navier-Stokes turns out to be the projection in a plane
perpendicular to �k of the Fourier transform of (∂/∂xj)uiuj , equal to kj

times the Fourier transform of uiuj , which is a convolution product in
Fourier space (Remark that the so-called “projection methods” in the
numerical analysis of Navier-Stokes equation are based on that). The
subgrid modelling consists here in evaluting the momentum transfers
due to triads where k < kC and one at least of wavenumbers p and q is
larger than kC . In analogy with the fact that the Fourier transform of
Navier-Stokes dissipative term is −νk2ûi(�k, t), the subgrid momentum

transfer will be modelled as −νtνν (k|kC)k2ûi(�k, t), the eddy viscosity in
spectral space being calculated at the level of subgrid kinetic-energy
transfers through an advanced theory of turbulence, the EDQNM. One
gets

νtνν (k|kC) = 0.441CKC −3/2

[
E(kC)

kC

]1/2

X

(
k

kC

)
, (12)

assuming that kC lies in a Kolmogorov spectrum E(k) = CKC ǫ2/3k−5/3.
Here, X(k/kC) is a “plateau-peak function” equal to 1 for k/kC <≈ 1/3,
and rising above. In fact, ν+

tνν on Fig. 1 is the spectral eddy viscos-

ity renormalized by
√

E(kC)/kC . Notice that the same kind of eddy-
viscosity had been found by Kraichnan (1976) with another turbulence
stochastic model, the Test-Field model, but he did not consider the scal-
ing in

√
E(kC)/kC , nor used this spectral eddy-viscosity for LES pur-

poses. Figure 1 shows also the renormalized eddy-diffusivity, which has
the same scaling and plateau-peak behaviour, and the turbulent Prandtl
number, approximately constant and equal to 0.6. This plateau-peak
model has been used by Chollet & Lesieur (1981) to perform the first
LES of three-dimensional isotropic turbulence. In fact, it was shown nu-
merically by Domaradzki et al. (1987) on the basis of direct-numerical
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Figure 1. Spectral eddy viscosity, diffusivity and turbulent Prandtl number calcu-
lated using the EDQNM theory (from Chollet & Lesieur, 1981)

simulations that the plateau part of the eddy viscosity goes to 0 at low
Reynolds number. In the spectral-dynamic model (Lamballais, Métais´
and Lesieur, 1998), one accounts (still thanks to the EDQNM theory)
in the plateau elevation for a spectral slope at kC different from 5/3.

We give two applications of this model: the first one concerns the
decay of isotropic turbulence at zero molecular viscosity in a periodic
box, starting from a Gaussian velocity profile. Pseudo-spectral nume-
rical methods are used. The initial peak is ki = 4. One presents an
animation taken from Lesieur et al. (2003, 2004) showing the formation
and evolution of the spaghetti-type vortices. They are identified thanks
to isosurfaces at a positive fixed threshold of Q = (1/2)(ΩijΩij −SijSS SijSS ),
the second invariant of the velocity gradient. This criterion, due to Hunt
et al. (1988), characterizes regions where local rotation dominates de-
formation, and where pressure has a local minimum. This criterion is
very efficient to visualize coherent vortices, and simpler to implement
than its very close cousin the λ2 criterion of Jeong & Hussain (1995).

The spectral-dynamic model has also been applied to a plane channel
of width 2h at h+ = 204 and 395. The symbol + means that length is
normalized by the viscous length ν/v∗, which is equivalent for a boun-
dary layer to Kolmogorov dissipative scale. Numerical methods are here
pseudo-spectral in directions parallel to the walls, and finite differences
of sixth order in the normal direction. A calculation with the first grid
point at a distance of one viscous length from the wall (and a stretched
grid away) yields very good statistical results compared with Kim’s DNS
published in Antonia et al. (1992). At h+ = 395, the LES is 70 times
faster than the DNS.
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It is clear that the use of stretched grids invalidates the assumption
of regular grid done above. However, LES carried out in this improper
manner give valuable results concerning statistics and coherent-vortex
dynamics, as far as comparisons with experiments and DNS are done.

Grenoble Models in Physical Space:
Structure-function Models

For complicated geometries, numerical methods impose to work in
physical space. The spectral eddy viscosity is thus set to a constant
calculated assuming the subgrid kinetic-energy dissipation equals ǫ in
a Kolmogorov cascade. Then we lose the advantage of not assuming
a spectral gap. But results of the model are however good, as it will be

seen. We have νtνν (�x,∆x) = (2/3)C
−3/2
KC [E�xE (kC)/kC)]1/2 , where E�xE (kC)

is a local kinetic-energy spectrum, determined with the aid of the local
second-order velocity structure function. This model, due to Métais´
& Lesieur (1992), improves classical Smagorinsky model for non-sheared
turbulence. For sheared turbulence (without or with walls), two excellent
versions of the model exist to eliminate the damping effects of large-
scale shears: the selective structure-function model (David, 1993), and
the filtered structure-function model (Ducros et al., 1996). They work
very well for free-shear flows and boundary layers and can be utilized on
unstructured grids.

An example is provided with the control by upstream perturbations
(superposed to a close to top hat profile) of a round jet, presented in Silva
& Metais (2003). The calculation involves the combination of “harmonic´
varicose” and “sub-harmonic flapping” modes (harmonic is defined with
respect to the preferred frequency of vortices shed in the free jet and
passing at the level of the potential core). In such a flow, the jet collapses
in the so-called bisecting plane, and widens in the bifurcating plane.
It is possible to see on an animation (enclosed on the CD-ROM) of
positive Q isosurfaces in a LES at molecular Reynolds number 5000.
The numerical code is the same as for the channel presented above, with
a Cartesian orthogonal system of coordinates. Resolution is 201× 128×
128. In the animation, the jet is artificially rotating from the bisecting
to the bifurcating planes. One can see in particular alternate-pairing
interaction between vortex rings, which is a sub-harmonic reconnection
of vortices, analogous to helical pairing of Kelvin-Helmholtz vortices
found in DNS and LES of temporal mixing layers (see eg Comte et al.,
1992). With other types of forcings, one can generate Reynolds blooming
jet.
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2. Compressible LES Formalism

We work with an ideal gas. The LES formalism is much more com-
plicated in the compressible case. Equations expressing conservation of
mass, total momentum ρ� and total energy ρe are still filtered by the
“bar-filter”. Gravity is neglected. One can make important simplifica-
tions by using Favre filtering f̃ and introducing a “macro-temperature”

ϑ = T̃ −
TllTT

2CvCC ρ
, (13)

where TllTT is the trace of the subgridscale tensor TijTT = ρũiũj −ρuiuj . The
latter is related to the macro-pressure ̟ by the relation

̟ = ρRϑ +
3γ − 5

6
TllTT . (14)

In this relation, the last term is small even at high Mach, so that we
neglect it and use the law of ideal gases between ̟, ρ and ϑ. After some
other approximations, one obtains a system equivalent to compressible
Navier-Stokes equation for ũi, ρ, ̟, ϑ,¯ ẽ, most of the molecular-diffusion
coefficients being complemented by an eddy counterpart which is the
same as in the incompressible case. We work with the filtered structure-
function model.

Round Jet

Then one studies a compressible round jet at Mach (defined at the up-
stream jet centreline) 0.7 and 1.4 forced upstream by a close to top-hat
velocity to which a weak isotropic random perturbation is superposed.
The associated temperature profile is given by Crocco-Busemann rela-
tion for a boundary-layer without pressure-gradient.

Numerical methods are now for nonlinear terms fourth-order Mac-
Cormack’s predictor-corrector scheme modified by Gottlieb & Turkel
(1976). Boundary conditions are based upon Poinsot & Lele (1992)
characteristics-based method, with a sponge zone downstream, following
the procedure developed by Sandhu and Sandham (1994). The Reynolds
number is 36000. We show on Fig. 2 a picture of the jet (top, Mach 0.7;
bottom Mach 1.4) in the case of a white-noise forcing: the supersonic jet
is much more focussed in space than the subsonic one, with an increase of
the potential core. This is related to the delay of Kelvin-Helmholtz insta-
bility due to convective Mach number effects, as shown by Papamoschou
& and Roshko (1988) in an experimental spatially-growing mixing layer,
and by Sandham & Reynolds (1991) for temporal mixing layers. Further
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Figure 2. LES of a compressible round jet forced by a weak isotropic random
perturbation. Positive Q isosurfaces coloured by longitudinal vorticity. Top, Mach
0.7; bottom, Mach 1.4 (courtesy M. Maidi).

Figure 3. LES of a the forced jet at Mach 1.4. Positive Q isosurfaces coloured
by longitudinal vorticity. Top, bifurcating plane; bottom, bisecting plane (courtesy
M. Maidi).
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downstream, the supersonic jet has reduced its convective Mach number,
and starts spreading out as the subsonic one. Notice that the supersonic
jet we have simulated does not exit from a real nozzle, and no shocks
or Mach waves can be produced. We have estimated the noise radiated
away from the jets on the basis of an approximate Lighthill equation
due to Witkowska and Juve (1994), and found that the supersonic jet
is much more noisy than the subsonic one. This agrees with laws pre-
dicting that the acoustic energy is proportional to the jet exit velocity
raised to a high power.

Let us now consider the LES of a jet at Mach 1.4 and Reynolds 36000
controlled by the same mixed harmonic varicose/sub-harmonic flapping
upstream perturbation as in the incompressible case. Figure 3 presents
Q coloured by longitudinal vorticity in the bifurcating and bisecting
planes.

Drag Reduction by Riblets

We briefly recall the numerous studies associated to passive turbu-
lence control by longitudinal riblets put on some parts of planes, boats,
and more recently on competition swimming costumes made of so-called
shark skin. The optimal spanwise wavelength of triangular riblets was
empirically found to be λ+

z = 10 ≈ 20. In fact, the DNS of Choi et al.
(1993) using equilateral triangles have shed a new light on the role of
quasi-longitudinal vortices in drag reduction by riblets. Indeed, the dia-
meter of quasi-longitudinal vortices travelling in a turbulent boundary
layer on a flat plate is d+ ≈ 25. Choi et al’s DNS show that for λ+

z larger
than 25 (they took 40), the quasi-longitudinal vortices are trapped in
the valleys of the riblets, which increases the drag. On the other hand,
in the simulation with λ+

z = 20, the longitudinal vortices sit above the
riblets peak, and the drag is decreased.

A very important question for aeronautic applications concerns the
influence of compressibility in a perfect gas for riblets efficiency. For
this purpose, we consider a compressible channel of ideal gas, one wall
being flat and the other equipped of longitudinal triangular riblets. Our
LES are the continuation of compressible-channel DNS (with two flat
walls) of Coleman et al. (1995) and Lechner et al. (2001). One defines
the bulk density ρb and velocity UbUU as

2hρb =

∫ +h

−

∫∫

h
〈ρ〉dy, 2hρbUbUU =

∫ +h

−

∫∫

h
〈ρu〉dy. (15)

Simulations are carried out at fixed bulk density and wall temperature
TwTT , whatever the Mach number. The latter is defined as UbUU /cw, cw being
the sound speed at the wall. The Reynolds number is ρbUbUU h/µw, in which
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µw is the dynamic viscosity at the wall. For each UbUU , the simulation
is thus done at constant mass flux, which generates a turbulent state
rapidly. The velocity gradients within the channel produce a heating by
molecular-viscous effects, and the channel interior becomes warmer than
the walls. Coleman et al. (1995) and Lechner et al. (2001) show that,
when turbulence has developed, the average temperature (resp. density)
remain approximately uniform in the major part of the channel, while
decreasing (resp. rising) close to the walls. The inner plateau-part of
the density is very slightly inferior to ρb.

LES of the same problem using the selective-structure function model
and well-validated immersed-boundary methods have been carried out
in Grenoble by Hauet (2003). Hau¨¨ et has also developed LES at Reynolds¨
6000 of the compressible channel, one side of which is equipped of lon-
gitudinal triangular riblets. Two riblets were studied: the “high” one,
of height and width (at Mach 0.33) 11 and 22 wall units; the “great”
one, of height and width (at Mach 0.33) 22 and 44 wall units. Hauët¨
has first validated satisfactorily at low Mach the numerical code used
against Choi et al.’s DNS. The physical size of each system of riblets
was unchanged when going from Mach 0.33 to Mach 1.5. In these sim-
ulations, the “high” riblet turns out to reduce the drag (≈ 5% for the
mean friction coefficient at Mach 1.5, against ≈ 3% at Mach 0.33). The

Figure 4. Cross section of the velocity in a channel above riblets at Mach 0.33; top,
“high” riblet; bottom, “great” riblet (courtesy G. Hauët).¨
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“great” one increases it. Hauët recovers the same vortex phenomeno-¨
logy as Choi et al. (1993), with longitudinal vortices above the riblets
tips in the “high”-riblet case, and inside the valleys in the “great”-riblet
case. This is confirmed by two animations which present longitudinal
vorticity in Hauet’s high- and great-riblet study at Mach 0.33. Figure 4¨
shows an instantaneous projection of the velocity vector in a cross sec-
tion for the two riblets. It is clear from these animations and plots that
alternate vortices lie within the valleys for the great riblet, while thinner
longitudinal vortices stay above the peaks for the high riblet.

If, in a free compressible boundary layer, the optimal physical size of
riblets does not vary from subsonic to supersonic regimes, then a plane
will be able with the same riblets system to reduce drag at all speeds.
Similar conclusions have been drawn from experiments carried out by
Coustols and Cousteix (1994). This is quite satisfactory from the point
of view of plane designers.

3. Some Concluding Remarks

It is now obvious from comparisons with experiments and DNS that
LES are a unique tool to study both coherent-vortex dynamics and sta-
tistics in a wide class of turbulent flows. LES are faster than DNS by
a factor going from approximately 10 at low Reynolds number to 100 at
high Reynolds.

LES models we have used are universal in the sense that they are
fixed once for all, and need no further adjustment when various external
forcings or actions such as rotation, separation, thermal stratification
or compressibility are considered. This makes a great difference with
respect to Reynolds Averaged Navier-Stokes (RANS) models. Another
interesting point is that our models are “intelligent” and adapt auto-
matically to the flow conditions: they are inactive for laminar or transi-
tional flows, which permits thus to study the whole transition to fully-
developed turbulence. Contrary to RANS, LES give deterministic infor-
mations on high-amplitude kinematic or thermal fluctuations, which are
crucial for systems safety. LES are very well adapted to simulate control
systems in combustion or aeroacoustics, and see in details the effect of
vortex manipulation. For more complex industrial applications, I think
the next few years will see a great advance with the merging of LES and
unstationary RANS which, to me, are just loosely-resolved large-eddy
simulations.
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