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Vortex control in large-eddy simulations of compressible
round jets

MOHAMED MAIDI, MARCEL LESIEUR∗ and OLIVIER MÉTAIS

Equipe MoST/LEGI, B.P. 53, 38041 Grenoble Cedex 09, France

We investigate through large-eddy simulations the effects of different types of upstream forcing in
subsonic (Mach 0.7) and supersonic (Mach 1.4) round jets. We have reproduced and tested the different
methods of forcing developed in incompressible round jets by Urbin and Métais In Direct and Large-
Eddy Simulations II, 1997, P. R. Chollet, J. P. Voke, and L. Kleiser, Kluwer: Dordrecht, pp. 539–542,
Danaila and Boersma, Physics of Fluids A, 12, 1255–1257, da Silva and Métais Physics of Fluids,
14, 3798–3819, (see also Lee and Reynolds Bifurcating and blooming jets at high Reynolds number
5th Symposium on Turbulent Shear Flows, New York). Our strategy is to search the optimal excitation
that maximizes the jet spreading at Reynolds number Re = 36 000. Four different forcings based
on information obtained both instantaneously and statistically. In the subsonic case, and as in the
incompressible one, we aimed to favour the flow spreading along one particular plane (bifurcating
plane), while maintaining a standard or reduced spreading rate along the bisecting plane, perpendicular
to the bifurcating one. The flow response to the excitations is analysed both instantaneously and
statistically. In the subsonic case, and as in the incompressible one, the maximum jet spreading is
obtained with inlet varicose–flapping perturbations at preferred and first subharmonic frequencies,
respectively. The potential core length is reduced by 27% with respect to the natural jet. These results
are in good agreement with several laboratory experiments and numerical simulations carried out in
incompressible round jets. Indeed, the subsonic jet has a convective Mach number of 0.35, and is
weakly affected by compressibility. In the supersonic jet case, on the other hand, the highest spreading
rate is found with a flapping excitation at the second subharmonic. The potential core length is now
reduced by 28% with respect to the unforced jet.

1. Introduction

Turbulent jets control represents an important industrial issue today. In aeronautics, the prob-
lem due to noise emission at the plane-reactor outlet has led researchers to try to understand
its origin, in the hope of reducing the jet acoustic emission. Several previous studies showed
that the initial development of the jet has a great influence on noise generation [5–7]. These
authors have linked the noise generation mechanism to the shape and dynamics of coherent
vortices present in the jet transitional region. In this context, it is of crucial interest to improve
the mixing of the jet with the surrounding flow by exciting the large-scale vortices in the
upstream region. This can play an important role for jet-noise reduction. Let us mention, for
instance, a control method consisting in minimizing acoustic emission by flow characteristics
optimization, such as, for example, the mixing rate or the jet transitional zone length.

There are two approaches to jet flow control: active control and passive control. Passive
control consists of introducing modifications on the geometry of the nozzle (see [8]). In active
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control, the flow is manipulated with the aid of actuators to influence the vortex development,
especially in the upstream jet region. In the present study, we are interested in the second type
of control.

Various experiments have been carried out to study the reaction of jets to different types of
upstream acoustic excitations [4, 9–13]. Using loudspeakers to create several inlet determinis-
tic perturbations, Crow and Champagne [9] found that for a forcing frequency f corresponding
to the Strouhal number StD = f D/U1 = 0.3, the upstream amplitude perturbation reaches
its maximum amplitude at the end of the jet potential core x/D = 4 (D and U1 are the jet
diameter and the maximum streamwise velocity at the inlet, respectively). This frequency,
called the jet ‘preferred mode’, corresponds to the passage of approximately toroidal vertical
structures at the end of the potential core of free round jets (4 ≤ x/D ≤ 6).

In order to consider various potential industrial applications, the response of the jet to
upstream excitation was studied in detail by Lee and Reynolds [4] with particular interest in
the so-called bifurcating jets for the Reynolds number in the range 2.8 × 103 − 1.0 × 104.
The bifurcating jet displays a spectacular spreading increase along one particular plane (called
bifurcating plane), while keeping a normal or reduced spreading along the plane perpendicular
to the bifurcating one (called bisecting plane). With an appropriate forcing combining an axial
(varicose) and alternative helical excitation, Lee and Reynolds [4] showed that the jet spreading
depends strongly on the ratio of the axial to alternative helical excitation frequencies r f =
fa/ fh . The helical forcing was produced by the orbital motion of the tip of the nozzle. They
found that the bifurcating jet is obtained for r f = 2. The shear-layer in the bifurcating plane
takes a Y -shaped form. For Reynolds numbers up to 1300, Suzuki et al. [14] experimentally
studied the bifurcating jet using flap actuators placed on the side wall of the inlet nozzle. They
found that the maximum spreading in the bifurcating plane is obtained when the jet is excited
with a frequency corresponding to a Strouhal number StD = 0.25. This value represents about
half of that measured at the end of potential core of the free jet (StD = 0.52) for this low
Reynolds number. Similar behaviour was noted at high Reynolds numbers (1.0×104 ≤ Re ≤
1.0 × 105) in the experiments of Parekh et al. [13], using combined axial (varicose) and
alternate (flapping) excitation.

The contribution of numerical simulations to this domain is recent. With the aid of large-
eddy simulations, Urbin and Métais [1] analysed the response of incompressible round jets
to several upstream forcings. They succeeded in numerically reproducing the three types of
excitation (varicose, helical and alternate) used in previous experimental studies. By using an
alternate excitation, they noted a spectacular spreading of the jet in the bifurcating plane, in a
way similar to that observed by Lee and Reynolds [4] and Parekh et al. [13]. Urbin and Métais’
alternate forcing consists of imposing a deterministic inlet perturbation causing a speed excess
for one half of the jet nozzle and a speed deficit on the other half, and vice versa. The result-
ing coherent structures exhibit an alternate arrangement as a result of local pairing and also
display the Y -shaped form. Danaila and Boersma [2] carried out direct numerical simulations
at a low Reynolds number (Re = 1.5 × 102), and compared the coherent vortices resulting
from flapping and bifurcating jets. The flapping jet was obtained with a flapping excitation
(alternate excitation) similar to that used by Urbin and Métais [1] for their ‘alternate-pairing’
excitation. The bifurcating jet resulted from combined varicose (axial) and flapping excita-
tions. The coherent vortices for the flapping excitation are similar to those observed by Urbin
and Métais [1]. The jet has a Y -shaped form. On the other hand, the bifurcating jet takes
a �-shaped form. Hilgers [15] also carried out several large-eddy simulations at different
Reynolds numbers (1.5×103 ≤ Re ≤ 1.0×105) in order to optimize jet control by favouring
the highest possible mixing rate. Like Danaila and Boersma [2], they imposed a combined
varicose and flapping inlet excitation. The optimal performances for jet control are obtained
when superposing the varicose excitation at the most amplified unstable frequency (preferred
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mode frequency) to the flapping excitation with the same amplitude, but at a subharmonic
frequency. More recently, da Silva and Métais [3] studied in detail the role of different inlet
perturbations in the vortex dynamics using direct and large-eddy simulations. Their Reynolds
number ranges from Re = 1.5 × 103 to Re = 5.0 × 104. In agreement with results of Danaila
and Boersma [2], they conclude that the most efficient strategy for jet control is the one
combining a varicose excitation at the preferred frequency and a flapping excitation at the
subharmonic frequency. Remark that the numerical code they employed was of high order
(pseudo-spectral in the transverse directions and sixth-order finite differences in the longitu-
dinal direction), whereas Urbin and Métais’ [1] code, developed for industrial applications in
complex domains, is of a finite-volume type and much more diffusive numerically. Therefore,
it is possible that the latter LES have a lower effective Reynolds number and correspond more to
DNS.

It is of crucial interest to assess the capability of these forcings, studied in the incompressible
case, to control the subsonic and supersonic round jets, and this is the objective of the present
paper. We will rely on information provided by a previous LES of the compressible unforced
jet done by Maidi and Lesieur [18].

2. Numerical details

In the present numerical investigation, the compressible time-dependent three-dimensional
Navier–Stokes and energy equations for air flow are solved in Cartesian cordinates (x , y, z)
in the so-called fast-conservation form (details of governing equations can be found in [18]).
The molecular Prandtl number is Pr = 0.72 and a perfect gas law is assumed. The functional
dependence of viscosity upon temperature is specified through Sutherland’s law taking the
apropriate constants for air at atmospheric conditions.

The code used is a multi-domain compressible code whose accuracy is a fourth order in
space and second order in time. The spatial scheme is Mac Cormack’s [19] predictor–corrector
scheme, modified by Gottlieb and Turkel [20]. This code was originally developed by Normand
and Lesieur [21] and was intensively validated in round jet configurations (see [18], [22]).
At each time step, a given velocity profile is prescribed at the inlet, the details of which will
be given in the next section. Since we are dealing with spatially evolving compressible flows
in which non-physical reflections can be produced at the boundaries, a special treatment of
boundary conditions is required. Here, we use a non-reflecting boundary condition proposed
by Poinsot and Lele [23]. To absorb outgoing acoustic disturbances and turbulent structures,
a sponge zone is placed downstream ([24]) of length 17% of the computational domain
length.

The LES model chosen is the structure function model, originally proposed by Métais and
Lesieur [27], in its filtered version [28], where the effects of large-scale inhomogeneities
upon the eddy-viscosity are removed by the application of a discretized Laplacien filter to
the velocity field. All the simulations presented in this paper are performed with the same
computational grid, which has 100×74×74 points in the streamwise and transverse directions,
respectively. The computational domain is a parallelepipedic box of size 35 × 20 × 20 nozzle
radii respectively in the longitudinal and transverse directions. In order to correctly simulate
the upstream jet shear-layers, the mesh is compressed in the y and z directions with a hyperbolic
tangent stretching. Such a discretization (≈550 000 points) is able to cover the streamwise
spreading of the jet and allows a well-balanced resolution of the flow field with a reasonable
number of grid points. It should be noted that the simulations have been carried out on a regular
UNIX workstation. The typical time for the calculation of a fully developed jet is 40 h, which
is not excessive.
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Table 1. Large-eddy simulation details presented in this paper.

Simulation Mach Reynolds Forcing

LESnat1 0.7 36 000 Natural
LESnat2 1.4 36 000 Natural
LESfor1 0.7 36 000 Flap-1
LESfor2 0.7 36 000 Flap-2
LESfor3 0.7 36 000 A-Flap
LESfor4 1.4 36 000 Flap-2
LESfor5 1.4 36 000 A-Flap
LESfor6 1.4 36 000 Flap-3

Several LES were carried out (see table 1). Besides the imposed Mach number, the principal
differences between the various simulations come from the inlet velocity profile, which is used
as an inflow boundary condition. In general, the shape of the inlet velocity profile is

−→
U (−→x0 , t) = −→

U m(−→x0 ) + −→
U forc(−→x0 , t). (1)

It is prescribed at each time step. In equation (1)
−→
U = (U, V, W ), where U is the streamwise

velocity component and V and W are the two transverse components. −→x0 = (x = 0, y, z)
represents the inlet plane.

−→
Um(−→x0 ) = (Um, 0, 0) is the mean velocity vector which is given by

a hyperbolic tangent profile [25]:

−→
Um(−→x0 ) = U1 + U2

2
− U1 − U2

2
tanh

[
1

4

R

θ0

(
r

R
− R

r

)]
, (2)

where U1 is the jet centreline velocity, U2 a small coflow and θ0 the momentum thickness of the
upstream shear-layer. This profile matches very well with profiles measured in experiments
of round jets [26]. Note that the inlet mean transverse velocity components are set to zero:

Vm(−→x0 ) = Wm(−→x0 ) = 0. (3)

In order to initiate the turbulence, an additional white noise is imposed on the three upstream
velocity components in the shear-layer gradient zone. The maximum intensity of the random
noise in our simulations is set to 1.0% of the inlet maximum velocity. This low intensity allows
the jet to evolve naturally. In the excited (forced) jet cases, we impose an upstream aditional
forcings

−→
U forc(−→x0 , t) whose detailed formulation will be given in section 4. Note that in the

so-called natural (free) jet,
−→
U forc(−→x0 , t) = 0.

We take R/θ = 20, and the initial centreline and coflow jet velocities are U1 = 1.02 and
U2 = 0.02, respectively. The coflow is then very small (U2/U1 = 0.0196 < 2%) and does not
influence the jet dynamics. The flow is characterized by the jet Mach number M , which is
defined by means of the upstream jet centre velocity U1 and temperature T1:

M = U1√
γ RT1

. (4)

The Reynolds number is defined with U1 and the upstream jet diameter with D:

Re = U1ρ1 D

μ1
, (5)

μ1 and ρ1 being the viscosity and density of the fluid at the jet inflow.
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3. Natural jet

In this section, we are interested by vortex dynamics and statistics in a turbulent subsonic
and supersonic round jet with only a white noise inlet perturbation. Our goal here is to give
reference cases for comparison with the excited jet cases. We stress that a more complete
study of natural subsonic and supersonic round jets can be found in detail in [18].

3.1 Subsonic natural jet

The first simulation called LESnat1 concerns a free jet at Mach 0.7 and Re = 36 000. The jet
structures are identified using the Q-criterion isosurface technique which is based on the second
invariant of the velocity-gradient tensor, Q = 1/2(�ij�ij−SijSij), �ij and Sij respectively being
the antisymmetrical and symmetrical parts of this tensor.

Figure 1 shows instantaneous fields of positive Q coloured by the streamwise vorticity, �x :

�x =
(

∂u3

∂x2
− ∂u2

∂x3

)
. (6)

Red or blue corresponds to positive or negative values of �x , respectively. One may easily
identify upstream the shedding of axisymmetric vortex rings, which is the characteristic of
saturation of the Kelvin–Helmholtz instability. These axisymmetric coherent vortices represent
the emergence of the so-called varicose mode. As these vortex rings move downstream,
they coalesce with neighbouring rings, so that the scale of the vortex rings increases with
downstream distance.

We have observed that the axisymmetric vortex rings persist up to x/D = 6. Further down-
stream, they grow through an alternate pairing process. This pairing mode corresponds to
the growth of a subharmonic perturbation developed after the formation of the primary vor-
tices. This vortex arrangement was also experimentally observed by Broze and Hussain [31]
and numerically by Silva and Métais, called varicose–flapping. From x/D > 10 the coherent
structures show a high level of small-scale turbulence, which accelerates the transition towards
a three-dimensional turbulence close to isotropy.

The present simulation is compared with incompressible jet measurements carried
out within the fully developed region. In this region, round jets obey the following

Figure 1. Isosurfaces of positive Q (in green) coloured by the streamwise vorticity �x (positive, red; negative, blue)
for the subsonic jet at M = 0.7 and Re = 36 000. The threshold is 0.20(U1/D)2.
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Figure 2. (a) Streamwise evolution of the centerline velocity decay, (b) streamwise evolution of the jet half-width.
Ucof is the local coflow velocity and xo is the virtual origin.

relations [16]:

U1 − U2

〈ux (x, r = 0) − Ucof〉 = 1

Bu

[
x − x0

D

]
, (7)

δ0.5(x)

D
= Cd

[
x − x0

D

]
, (8)

δ0.5(x) is the jet half-width,which is defined as the distance from the jet centreline at which
the mean velocity excess equals the mean centreline velocity excess,

〈ux (x, r = δ0.5(x))〉 − Ucof = 0.5(〈ux (x, r = 0)〉 − U2). (9)

Ucof = 〈ux (x, r = ∞)〉 is the local coflow and U2 is the inlet coflow. The brackets 〈〉 denote
a time average and x0 the virtual origin of the jet (see figure 2(a)).

The convective Mach number considered here is about 0.35, which is well below the value
of 0.6 from which the compressibility effects start being important [32], [33]). Figures 2(a) and
(b) show the downstream evolution of streamwise velocity and jet half-width, respectively.
Both curves show a linear evolution typical of the fully developed turbulent regime. The
decay of the centerline mean velocity that occurs at x/R = 11 corresponds to the end of the
potential core. Further downstream, the slope of the centerline velocity decay agrees well
with the experimental data of Hussein et al. [16]. To confirm this point, we have computed the
centerline velocity decay rate 1/Bu , in the far field region ( between x/R = 14 and x/R = 28).
We obtain Bu = 5.62, which is very close to the value of Bu = 5.8, obtained by Hussein et al.
[16].

Finally, temporal spectra of the longitudinal velocity at Mach 0.7 taken on the centerline at
the end of the potential core exhibit a peak frequency at f0 D/U1 = 0.39 (figure 3). This peak
corresponds to the passage frequency of vortices at the end of the potential core. The present
value is in good agreement with the typical values found experimentally for the natural round
jets (0.3 ≤ f0 D/U1 ≤ 0.5, [34]). This is the preferred mode Strouhal number (St0D) which
will be used in the following section to simulate the forced jets.
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Figure 3. Temporal spectra of the streamwise velocity for the natural jet at M = 0.7 and Re = 36 000.

3.2 Supersonic natural jet

We study now the supersonic jet at Mach 1.4 and Reynolds 36 000. Figure 4 shows that
the vortex rings shed from the nozzle at Mach 0.7 disappear. Instead, we have shown that
the primary vortices undergoing alternate pairing form immediately. This phenomenon is
associated with a dramatic initial reduction of the jet spreading rate, yielding a 27% increase
of the jet potential core length with respect to the subsonic case (figures 5(a) and (b)). Further
downstream, the jet has become subsonic and spreads out as in the Mach 0.7 case.

In this case, the preferred mode Strouhal number which will be used after in-forced jet
simulations is St0D = 0.44 (figure 6). This value corresponds to the preferred mode frequency
( f0) of the natural supersonic jet.

4. Forced jets

4.1 Forcing types

Previous large-eddy simulations of the subsonic natural jet highlighted upstream shedding of
axisymmetric vortex rings, which result from a primary instability of the upstream shear-layer
and correspond to a jet preferred mode. From the end of the potential core, these axisymmetric

Figure 4. Isosurfaces of positive Q (green) and longitudinal vorticity (red and blue) for the supersonic jet at M = 1.4
and Re = 36 000. The threshold is 0.20(U1/D)2.
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Figure 5. (a) Streamwise evolution of the centerline velocity decay, (b) streamwise evolution of the shear-layer
thickness. Ucof is the local coflow velocity.

vortices develop alternate pairing, resulting from the growth of a subharmonic mode. We have
used these two instability modes to carry out a specific strategy of forcing by destabilizing the
upstream large-scale vortices along a certain bifurcating plane in order to obtain an important
increase of the spreading rate in this plane. Two types of forcing are considered here. The first
excitation, named flapping excitation, is similar to that employed by Urbin and Métais [1],
Danaila and Boersma [2] and Hilgers [15]. The second excitation, called varicose–flapping,
is a superposition of varicose and alternate excitation. This method of forcing has been used
by Danaila and Boersma [2], and Silva and Métais [3], and Hilgers [15].

Remark that in some of the previous experimental and numerical studies (for example, [2,
4, 10]), the relative amplitude of the perturbation with respect to the inlet velocity is of the

Figure 6. Temporal spectra of the streamwise velocity for the natural jet at M = 1.4 and Re = 36 000.
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Figure 7. (a) Sketch of the flapping excitation, (b) sketch of the varicose excitation.

order of 15–20%. In the present study, this relative amplitude is ε = 5%. This is more realistic
in terms of potential industrial applications.

4.1.1 Flapping excitation. The flapping excitation is aimed at triggering tilted coherent
vortex rings since we have seen that this arrangement corresponds to a jet widening. The
corresponding perturbation is

Uforc(−→x0 , t) = εU1 sin

(
2π

St0D
α

U1t

D

)
sin

(
2πy

D

)
. (10)

This forcing consists of a combination of a time periodic perturbation at the frequency fo/α

and a sinusoidal perturbation along the y direction. Indeed, each half of the jet (y > 0 or y < 0)
presents a streamwise velocity excess or deficit, compared to the other part (see figure 7(a)).
As mentioned in previous works of Danaila and Boersma [2] and Silva and Métais [3], the
plane containing the jet axis and the y direction will be called the bifurcating plane. The
plane perpendicular to the bifurcation plane and containing the jet axis will also be called the
bisecting plane.

4.1.2 Varicose–flapping excitation. The next excitation is similar to Danaila and
Boersma’s [2] so-called bifurcating excitation. It is a combination of varicose and flapping
excitations. The varicose excitation is obtained by imposing a periodic perturbation to the
streamwise velocity at the inlet nozzle through the Um(−→x0 ) profile. This is equivalent to the
excitation produced by loudspeakers in experimental works of Crow and Champagne [9],
Zaman and Hussain [17]. This excitation (varicose excitation) is aimed at obtaining more
intense vortex rings. Figure 7(b) describes schematically this varicose excitation.

The final varicose–flapping forcing expression is given by

Uforc(−→x0 , t) = εUm(−→x0 ) sin

(
2πSt0DU1t

D

)

+ εUm(−→x0 ) sin

(
2π

St0D
α

U1t

D
+ π

4

)
cos(θ )

(
2r

D

)
, (11)

where r =
√

y2 + z2 is the radial distance from the jet axis and θ is the azimuthal angle.
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Table 2. Summary of the several excitation types.

Forcing Description

Flap-1 Flapping excitation at preferred mode
Flap-2 Flapping excitation at first subharmonic mode
Flap-3 Flapping excitation at second subharmonic mode
A-Flap Varicose excitation at preferred mode +

flapping excitation at first subharmonic mode

Note that almost all the excitations concern only the streamwise velocity component:

Vforc(−→x0 , t) = Wforc(−→x0 , t) = 0. (12)

4.2 Subsonic jet control

4.2.1 Flapping excitation at the fundamental. The first simulation LESfor1, which uses
forcing Flap-1 (see table 2 for the description of various runs), was carried out with a Strouhal
number St0D = 0.39 and α = 1. This corresponds to the preferred mode frequency. The re-
sulting structures are shown in figures 8(a) and (b). It is clear that the difference between
the bifurcating and bisecting planes is very weak. In fact, direct numerical simulations of
Silva and Métais [3] showed that the efficiency (in terms of increasing the jet spreading rate)

Figure 8. Isosurfaces of positive Q (green) coloured by the streamwise vorticity �x (red and blue) for the simulation
LESfor1. The threshold is 0.20(U1/D)2. (a) View in bifurcating plane, (b) view in bisecting plane.
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Figure 9. Isosurfaces of low pressure coloured by the streamwise vorticity �x for the simulation LESfor1. The
threshold is (p − p0) = −0.05ρ0U 2

1 .

of this type of forcing is highly sensitive to the jet Reynolds number. They found that for
Re ≥ 5000, the jet control efficiency is suppressed when using the flapping excitation at
the preferred mode frequency, since the bifurcating and bisecting spreading rates are almost
identical.

Now we examine the low-pressure isosurfaces in the present simulation for the bisecting
plane (see figure 9). One sees with this indicator that the jet flow structures are quickly
fragmented at this Reynolds number. This early fragmentation diminishes the efficiency of
the flapping excitation to control the local reconnections of toroidal vortex rings, which shows
that the present forcing is not capable of creating a bifurcating jet.

To quantify these observations, it is of interest to evaluate certain statistical quantities. Let
us look at the shear-layer thicknesses δxy in the bifurcating plane and δxz in the bisecting plane

〈ux (x, y = δxy(x), z = 0)〉 − Ucof(xy) = 〈ux (x, r = 0)〉 − U2

2
, (13)

〈ux (x, y = 0, z = δxz(x))〉 − Ucof(xz) = 〈ux (x, r = 0)〉 − U2

2
, (14)

where Ucof(xy) = 〈ux (x, y = ∞, z = 0)〉 and Ucof(xz) = 〈ux (x, y = 0, z = ∞)〉 are the local
coflow velocities in the bifurcating and bisecting planes, respectively.

Figure 10(a) shows the downstream evolution of δxy(x) and δxz(x) for simulation LESfor1

and for the natural subsonic jet simulation (LESnat1). One can see that the difference between
the bifurcating and bisecting shear-layer thicknesses is limited to the early transitional stages
(x/R ≤ 10). Further downstream, the bifurcating shear-layer evolution becomes comparable
to the bisecting one and to the natural jet.

The downstream evolution of the longitudinal mean centerline velocity (figure 10(b)) con-
firms these conclusions.

4.2.2 Flapping excitation at the first subharmonic. Since the alternate-pairing vortex
organization has been seen to be associated with the growth of subharmonic frequency, it is
of interest to excite the jet with the flapping excitation at the first subharmonic frequency. The
parameter α in equation (10) is then taken to be equal to 2.

The following simulation called LESfor2 is performed with the same Mach and Reynolds
numbers as the preceding one (see table 1 for the description of the various runs). The flow
visualizations of LESfor2 simulation can be seen in figures 11(a) and (b). It shows that with this
specific subharmonic frequency f = f0/2, the jet-control efficiency is very much improved.
Indeed, when compared with natural jet simulation (figure 1), an important jet spreading is
obtained in the bifurcating plane, while the jet contracts in the bisecting one. This is confirmed
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Figure 10. (a) Downstream evolution of the bifurcating and bisecting shear-layer thicknesses (δxy(x) and δxz(x)) for
the LESfor1 simulation; (b) streamwise evolution of the mean centerline velocity. The profiles for the natural jet are
also given for comparaison.

by figure 12 representing the downstream evolution of the bifurcating and bisecting shear-layer
thicknesses. It turns out that the difference between the bifurcating and bisecting shear-layer
thicknesses is huge. Unlike the previous excitation, this difference is now more marked beyond
the end of the jet potential core (x/R > 11). In agreement with these results, the low-pressure

Figure 11. Isosurfaces of positive Q (green) coloured by the streamwise vorticity�x (red and blue) for the simulation
LESfor2. The threshold is 0.20(U1/D)2. (a) View in bifurcating plane, (b) view in bisecting plane.

12



Figure 12. Downstream evolution of the bifurcating and bisecting shear-layer thicknesses (δxy(x) and δxz(x)) for
the LESfor1 and LESfor2 simulations.

isosurfaces in the bisecting plane (see figure 13) show that the large-scale structures survive
longer in the present simulation (LESfor2) than in the previous one (LESfor1). In fact, the use
of subharmonic frequency ( f = f0/2) gives the primary vortices the time to grow naturally
before being alternatively confined in the bifurcating plane.

The high spreading rate achieved by the present method of forcing is in good agreement with
the experimental results of Suzuki et al. [14] as well as with the direct numerical simulations
of Silva and Métais [3] for incompressible round jets. These authors found that the flapping
excitation reaches a maximum spreading rate when applied at a frequency corresponding to
half the preferred Strouhal number.

In addition to the enhanced jet spreading rate noted in the bifurcating plane, figure 16(a)
indicates that the potential core length resulting from the present simulation (LESfor2) is
reduced to 13% with respect to the previous natural jet case (simulation LESnat1).

4.2.3 Varicose-flapping excitation. Numerous experimental and numerical studies of in-
compressible round jets [1, 9, 36] showed that the vortex rings resulting from the upstream
varicose excitation are more intense than those obtained in the natural jet case. Thus, we now

Figure 13. Isosurfaces of low pressure coloured by the streamwise vorticity �x for the simulation LESfor2. The
threshold is (p − p0) = −0.05ρ0U 2

1 .
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Figure 14. Isosurfaces of positive Q (green) coloured by the streamwise vorticity �x (red and blue) for the simu-
lation LESfor3. The threshold is 0.20(U1/D)2. (a) View in bifurcating plane; (b) view in bisecting plane. The figure
corresponds to animation 1.

superimpose the varicose excitation at the preferred jet frequency to the flapping one at the first
subharmonic frequency. Our objective is to increase the strength of primary vortices before
throwing them alternatively in the bifurcating plane, in the hope of enhancing the jet spread-
ing rate. The excitation method employed here is similar to that performed by Danaila and
Boersma [2], Hilgers [15] and Silva and Métais [3] in DNS and LES of incompressible round
jets, respectively. Note that our forcing amplitude is much lower than that used by Danaila
and Boersma [2].

The resulting structures are shown in figure 14 and complemented by animation 1. We
can see that now the jet exhibits a spectacular growth in the bifurcating plane. This is con-
firmed by the spatial evolution of the shear-layer thicknesses in the bifurcating and bisecting
planes presented in figure 16(b). The present simulation (LESfor3) yields the highest bifur-
cating spreading rate when compared with the preceding simulations (LESfor1 and LESfor2).
This enhanced spreading rate in the bifurcating plane is associated with strong positive ra-
dial velocities observed in this plane at x/R = 19 and x/R = 28.5 (see figure 15). This
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Figure 15. Bifurcating and bisecting profiles of the mean radial velocity for the simulation LESfor3. P1 and P2
represent the bifurcating and bisecting planes, respectively.

suggests that the bifurcating shear-layer grows by radial diffusion inducing an outward fluid
motion.

A closer look at figure 14(a) shows that the primary vortex rings keep their coherence until
the end of the jet potential core. This observation can be explained by the action of varicose
forcing which tends to intensify the primary vortices as mentioned above.

We have evaluated the mean streamwise velocity on the jet centerline, in order to obtain
a more quantitative measure of turbulent mixing. We show in figure 16(a) the centerline
velocity obtained from different types of forcing and natural jet computations. For the present
simulation (LESfor3), the centerline velocity decays faster than in the flapping excitation case

Figure 16. (a) Streamwise evolution of the mean centerline velocity for the LESfor1, LESfor2 and LESfor3 simula-
tions; (b) downstream evolution of the bifurcating and bisecting shear-layer thicknesses for the LESfor2 and LESfor3
simulations. The profiles for the natural jet are also given for comparaison.
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and the natural jet. Indeed, with the varicose–flapping excitation, the centerline velocity starts
dropping at about x/R = 8, representing a decrease of 28% of the potential core length with
respect to the natural jet simulation. This early decay leads to the enhanced mixing rate of the jet
which can play a significant role in various industrial applications, among which combustion
and aeroacoustics may be mentioned as examples.

These results are in good agreement with experimental studies of Lee and Reynolds [4],
Parekh et al. [10], and incompressible DNS of Danaila and Boersma [2] and Silva and Métais
[3].

We recall that with this low regime of compressibility (M = 0.7), the natural jet simulations
exhibit strong similarities with incompressible round jet, as pointed out in section (3).

4.3 Supersonic jet control

In this section we are interested in the supersonic jet control using the different types of
forcing employed previously in the subsonic jet control, in order to assess their efficiency. The
Reynolds number is the same (Re = 36 000). The preferred jet frequency now corresponds
to a Strouhal number St0D = 0.44. This value has been evaluated in natural jet simulation
(section 3).

4.3.1 Flapping excitation at first subharmonic. The previous study of subsonic jet control
showed that the flapping excitation achieves a maximum efficiency at the first subharmonic
frequency. We reproduce here such a forcing. In fact, the corresponding simulation (LESfor4)
does display a higher jet spreading in the bifurcating plane (see figure 17). In agreement

Figure 17. Isosurfaces of positive Q (green) coloured by the streamwise vorticity�x (red and blue) for the simulation
LESfor4. The threshold is 0.20(U1/D)2. (a) View in bifurcating plane, (b) view in bisecting plane.
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Figure 18. (a) Downstream evolution of the bifurcating and bisecting shear-layer thicknesses for the simulation
LESfor4, (b) streamwise evolution of the mean centerline velocity for the simulation LESfor4. The profiles for the
natural jet are also given for comparison.

with these visualizations, figure 18(a) shows that the bifurcating shear-layer thickness is much
higher than the thickness measured in the bisecting plane and in the natural jet. This difference
begins to develop beyond x/R ≈ 10 inducing a quicker transition to turbulence, which can be
seen in figure 18(b). Indeed, the mean centerline velocity decays faster than for the natural jet.
In this case, the potential core length is 10 R instead of 14 R, indicating a greater efficiency
of this forcing to improve the supersonic jet mixing.

4.3.2 Varicose–flapping excitation. As in the subsonic jet case, we have tested the second
type of forcing which combines a varicose excitation at the fundamental and flapping excitation
at the first subharmonic. The present simulation is referred to as LESfor5.

The resulting vortical structures are shown in figure 19. Contrary to what was expected,
the jet development is very close to that obtained only with a flapping excitation at first
subharmonic. This is confirmed by the downstream evolution of the bifurcating and bisect-
ing shear-layer thicknesses shown in figure 20(a). The difference between the shear-layer
evolution for the present simulation and the simulation LESfor4 is very weak. Moreover, the
mean centerline velocity decay is almost similar to that obtained with the flapping excitation
(LESfor4).

One possible explanation for the origin of the similarity between the two cases is the weak
contribution of the varicose excitation since this later acts principally upon axisymmetric pri-
mary vortices. Indeed, as mentioned above for the natural jet, axisymmetric toroidal vortices
disappear in supersonic jets, due to an inhibition of Kelvin–Helmhotz instability by com-
pressibility. Note that the present jet visualizations exhibit alternate pairing in the transitional
regime downstream of the nozzle.

4.3.3 Flapping excitations at the second subharmonic. We return to the flapping exci-
tation using the second subharmonic frequency. This simulation, referred to as (LESfor6), is
carried out with α in equation (10) taken equal to 4.

The flow visualizations are displayed in figures 21(a) and (b) showing the isosurfaces
of positive Q coloured by streamwise vorticity. They are complemented by animation 2.
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Figure 19. Isosurfaces of positive Q (green) coloured by the streamwise vorticity�x (red and blue) for the simulation
LESfor5. The threshold is 0.20(U1/D)2. (a) View in bifurcating plane, (b) view in bisecting plane.

Compared with previous cases of forcing, one can see that the present jet exhibits the highest
spreading rate in the bifurcating plane. To confirm these observations, we have examined the
downstream evolution of the bifurcating and bisecting shear-layer thicknesses (figure 22(a))
for all the natural and excited jet simulations. In agreement with the visual observations of

Figure 20. (a) Downstream evolution of the bifurcating and bisecting shear-layer thicknesses for the LESfor4 and
LESfor5 simulations, (b) streamwise evolution of the mean centerline velocity for the LESfor4 and LESfor5 simulations.
The profiles for the natural jet are also given for comparison.
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Figure 21. Isosurfaces of positive Q (green) coloured by the streamwise vorticity �x (red and blue) for the simu-
lation LESfor6. The threshold is 0.20(U1/D)2. (a) View in bifurcating plane, (b) view in bisecting plane. The figure
corresponds to animation 2.

Figure 22. (a) Downstream evolution of the bifurcating and bisecting shear-layer thicknesses for the LESfor5 and
LESfor6 simulations, (b) streamwise evolution of the mean centerline velocity for the LESfor5 and LESfor6 simulations.
The profiles for the natural jet are also given for comparaison.
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figure 21, figure 22(a) shows that the present excitation leads to the highest spreading rate
in the bifurcating plane, while in the bisecting plane the jet spreading is shown to be almost
similar to the one obtained with the preceding forcing case.

The streamwise evolution of the mean centerline velocity is presented in figure 22(b). We
include for comparison the mean centerline velocity profiles obtained for all the natural and
excited supersonic jet simulations. We show that the mean centerline velocity decays faster in
the present case than in the previous natural and forced supersonic jet simulations. Indeed, the
centerline velocity now starts dropping near x/R = 10, representing an important decrease of
28% with respect to the natural jet.

These results highlight that with a suitable forcing frequency, the flapping excitation strategy
is efficiently able to control the supersonic jet dynamics.

5. Conclusion

We have described in this paper the different forcing strategies aimed to control the spatial
evolution of the compressible subsonic and supersonic round jets with the aid of large-eddy
simulation. Our goal was to find upstream perturbations which maximize mixing in jets using
information provided by a LES of natural compressible round jets. The simulated jet is initiated
upstream by a basic velocity profile close to a top-hat shape, which is perturbed by various
small forcings.

Our LES of natural jets have been carried out at a Reynolds number Re = 36 000 and for
two Mach numbers: Mach 0.7 and Mach 1.4 for subsonic and supersonic cases, respectively.
At this stage, the upstream velocity profile is forced by a weak random isotropic perturbation.

Visualizations of the subsonic jet simulation exhibit the shedding of axisymmetric vortex
rings close to the numerical nozzle. Their passage frequency at the end of the potential core
corresponds to the preferred Strouhal number St0D = 0.39. Further downstream, the rings give
rise to a vortex arrangement consisting in alternate localized pairings which cause an important
jet spreading.

Two types of upstream perturbations have been considered here for controlling the jet
dynamics. The first, called flapping excitation, is similar to the excitation proposed by Urbin
and Métais [1], and used by Danaila and Boersma [2] and Silva and Métais [3]. The second type
of excitation is of the varicose–flapping type and consists in the combination of fundamental
varicose and subharmonic flapping perturbations, similar to that used by Danaila and Boersma
[2] and Silva and Métais [3] in their incompressible simulations. For both subsonic and
supersonic cases, we have analysed the jet response to each forcing method using several
forcing frequencies.

In the subsonic jet case, the highest spreading rate is obtained with the varicose–flapping
excitation. We have also checked that the potential core length is then reduced by 27% with
respect to the natural jet simulation. These results have analogies with the experimental results
of Lee and Reynolds [4], Parekh et al. [10] and incompressible DNS or LES of Danaila and
Boersma [2] and Silva and Métais [3].

In the supersonic jet case, the most efficient strategy for jet control, as far as a high spreading
is concerned, is obtained by using a flapping excitation at the second subharmonic frequency.
The potential core length is now reduced by 28% with respect to the natural jet simulation.
This causes a quick transition to turbulence and leads to the more enhanced mixing rate of the
jet which can play a significant role in various industrial applications such as combustion and
aeroacoustics.

Future work will concern the study of acoustic fields resulting from each excitation type in
order to evaluate the ability of these different forcings to reduce the jet acoustic emission.
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[1] Urbin, G. and Métais O., 1997, Large-eddy simulations of three-dimensional spatially-developing round jets.
In Direct and large-eddy simulations II, P.R. Chollet, J.P. Voke and L. Kleiser, Kluwer: Dordrecht, pp. 539–542.

[2] Danaila, I. and Boersma, B.J., 2000, Direct numerical simulation of bifurcating jets. Physics of Fluids A, 12,
1255–1257.
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