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Large eddy simulations of spatially growing subsonic
and supersonic turbulent round jets

MOHAMED MAIDI and MARCEL LESIEUR∗

Equipe MoST/LEGI, B.P. 53, 38041 Grenoble Cedex 09, France

This paper presents an application of large eddy simulations (LESs) using the filtered structure function
model to spatially developing compressible round jets issuing from a perturbed upstream velocity
profile close to a top hat. For centreline Mach number M = 0.9 and Reynolds number Re = 3600,
the numerical solution compares satisfactorily against a forced-jet direct numerical simulation (DNS)
and experimental data, both previously reported. High Reynolds number (Re = 36 000) ‘free’ jets at
Mach 0.7 (case 1) and 1.4 (case 2) are studied. Here, an isotropic random white-noise perturbation is
superposed on the upstream velocity. The Mach 0.7 jet has a convective Mach number of 0.35, and
is weakly affected by compressibility. In this case, axisymmetric vortex rings are first shed from the
nozzle and undergo alternate pairing further downstream. Then turbulence develops. The centreline
velocity decay and some other statistical quantities are, in the self-similarity region, in very good
agreement with previous incompressible experiments. At Mach 1.4, an impressive upstream reduction
of the jet spreading rate is observed, due to an important delay of Kelvin–Helmholtz instability due to
compressibility effects. Alternate pairing occurs immediately, and vortices are much more elongated in
the flow direction. Further downstream, the jet becomes subsonic, develops into turbulence and spreads
out again at a rate comparable with its subsonic counterpart. The potential-core length is increased by
27% from the subsonic to the supersonic case. This is in agreement with several laboratory experiments.
Finally, the effects of Mach number increase upon various statistical quantities such as Reynolds
stresses and radial lengthscale are studied. Results compare favourably against some experiments and
temporal DNSs. From the point of view of Lumley’s anisotropy invariant map evaluated on the whole
physical domain, the Mach 0.7 jet is dominated by axisymmetric structures and the Mach 1.4 jet by
streamwise perturbations.

1. Introduction

Due to their wide range of industrial applications in propulsion, combustion and acoustics,
round jets have given rise to numerous analytical, experimental and numerical studies. Ex-
tensive research has been carried out in order to provide a more complete understanding of
jet dynamics and a detailed picture of flow structures governing the spatial evolution. Ex-
periments concerning incompressible round jets have demonstrated that for a broad range of
Reynolds numbers, jet dynamics is dominated by large-scale toroidal vortices in the transi-
tional regime downstream of the nozzle [1, 2]. These vortices result from the development
of Kelvin–Helmholtz (KH) instability (axisymmetric mode) and evolve further downstream
under the effect of other instability modes such as the helical mode whose amplification rate
may be larger than that of the axisymmetric mode. The formation and downstream evolu-
tion of these vortices play a significant role in the jet’s spatial development and spreading
rate. It is therefore of interest to understand their dynamics, as well as their role in mixing
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or aerodynamic noise generation. Since the nature and topology of these coherent vortices
depend strongly upon the jet inlet conditions existing in the experiments, it is very important
to investigate the effect of different inlet parameters.

In the present study we focus on the effects of compressibility effects on the spatial de-
velopment of turbulent round jets in an ideal gas. This is achieved by varying (up to 1.4)
the Mach number imposed at inlet conditions. In a plane mixing layer between two parallel
flows of velocities U1 and U2, the theoretical results of Bogdanoff [3] identified the convec-
tive Mach number Mc as the relevant parameter characterising compressibility effects. When
compressibility is not too high, it is equal to �U/(c1 + c2), where �U = U1 − U2 and c1 and
c2 are the sound speeds in each layer. Papamoschou and Roshko [4] showed experimentally
the importance of Mc on the mixing layer growth. The effect of Mc on Reynolds stresses was
considered in experiments camed out by Elliott and Samimy [5, 6]. One can also define Mc
for an annular mixing layer, and its influence on pressure fluctuations was considered in a
temporal study of using DNS [7]. Several works [4, 8–11] have displayed evidence that the
flow structures of planar mixing layers are dramatically affected by the increase of Mc. These
studies indicate that at low Mc (Mc ≤ 0.5), coherent vortices are similar to those observed
in the incompressible case. The pairing of these vortices is the principal cause of shear-layer
linear growth [12]. As Mc exceeds a value of the order of 0.5, turbulence structures become
more three-dimensional, of smaller scale and less coherent. The pairing process of the eddies
is then difficult to identify. Linear-stability analysis and direct numerical simulations (DNSs)
[13, 14] showed that the growth rate and turbulence levels were reduced by increasing con-
vective Mach numbers. In these DNSs, the mixing layer was forced quasi two-dimensionally:
pairing of straight KH vortices was observed at Mc = 0.4, whereas they transformed into large
staggered lambda-shaped vortices superposing on each other at Mc = 0.8 and 1.05. Fouillet
[5] performed a similar simulation, but with an initial random isotropic three-dimensional
perturbation. At low Mc he found the helical-pairing vortex organization discovered in the
incompressible case by Comte et al. [16], but recovered Sandham and Reynolds’ patterns
above Mc = 0.7. In this respect, it seems that helical pairing that occurs in a natural plane
mixing layer is inhibitted above a convective Mach number of this order of magnitude.

Effects of compressibility upon round-jet structures have been experimentally studied [17–
19]. At low compressibility (Mc < 0.5), these works demonstrated the emergence of ring-like
axisymmetric vortices in the transitional region. At high compressibilty (Mc > 0.6), the turbu-
lent structures become increasingly three dimensional and less coherent. These experiments,
as well as the DNSs carried out by Freund et al. [7]), found that the significant effect of com-
pressibility on the annular mixing layer is a reduced growth rate. This is in agreement with
planar mixing layer studies. Let us mention also the DNS of uniformly sheared flow done by
Sarkar [20], who stresses that reduced turbulent production is responsible for a decrease in
turbulence level. This result was also observed by Simone et al. [21] in their DNS of the same
flow. In addition to the reduction in the turbulent fluctuations, Freund’s numerical simulations
and our present study show the inhibition of radial turbulent length scale with increasing Mach
number.

Here, we will study subsonic and supersonic turbulent jets with the aid of large eddy
simulation (LES) techniques. This allows one to reach high Reynolds numbers with a moderate
number of grid points. LESs are hence of very low cost with respect to DNSs at the same
Reynolds number. We will provide ample validations of our calculations against DNS and
laboratory experiments. Concerning the upstream nozzle, it is just replaced by a jet-like inflow
velocity profile to which various random perturbations are superposed. Notice that in the
supersonic case, shocks and Mach waves cannot be produced since, contrary to a real-nozzle
case, no obstacle is present in the flow. But the study is of interest as far as coherent-vortex
dynamics are concerned.
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2. Governing equations

The governing equations for this flow are the compressible Navier–Stokes equations written
in a Cartesian frame, in the so-called fast-conservation form

∂U
∂t

+ ∂Fi

∂xi
= 0 (1)

In which U is a five-component vector defined as

U =T (ρ, ρu1, ρu2, ρu3, ρe) (2)

Such a formulation (1) includes the continuity, momentum and total energy equations. The
total energy ρe is defined as (neglecting gravity)

ρe = ρCvT + 1
2
ρ
(
u2

1 + u2
2 + u2

3
)

(3)

For a Newtonian fluid, the fluxes Fi are

Fi =

⎛⎜⎜⎜⎜⎜⎝
ρui
ρuiu1 + pδi1 − 2μSi1

ρuiu2 + pδi2 − 2μSi2

ρuiu3 + pδi3 − 2μSi3

(ρe + p)ui − 2μui Si j − k∂T/∂xi

⎞⎟⎟⎟⎟⎟⎠ (4)

where k is the thermal conductivity, μ the viscosity and Si j the deviatoric part of the defor-
mation tensor:

Si j = 1
2

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
( �∇·�u)δi j

)
(5)

The viscosity is computed using Sutherland’s law:

μ(T ) = μ(T0)
(

T
T0

)0.5 1 + S/T0

1 + S/T
(6)

where μ(T0), T0 and S are gas dependents. The Prandtl number is assumed constant and equal
to 0.72.

2.1 Large eddy simulation

The LES equations are obtained by applying a low-pass spatial filter G� of width � to
the Navier–Stokes equations (1). This eliminates scales smaller than �. Mathematically, the
filtered field for any quantity f is given by

f̄ (�x, t) =
∫

f (�y, t)G�(�x − �y)d�y (7)

Such a filter will be called a ‘bar-filter’. Scales of motion are then decomposed into a grid-
scale f̄ and subgrid-scale part f ′. The compressible LES formalism is simplified by the use
of density-weighted Favre filtering (see [22] for details)

f̃ = ρ f
ρ̄

(8)

We then have

Ū =T (ρ̄, ρ̄ũ1, ρ̄ũ2, ρ̄ũ3, ρ̄ẽ) (9)
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and the bar-filtered total energy equation becomes

ρ̄ẽ = ρ̄Cv T̃ + 1
2
ρ
(
u2

1 + u2
2 + u2

3
)

(10)

Bar-filtered fluxes Fi are:

Fi =

⎛⎜⎜⎜⎜⎜⎜⎝

ρ̄ũi

ρuiu1 + p̄δi1 − 2μSi1

ρuiu2 + p̄δi2 − 2μSi2

ρuiu3 + p̄δi3 − 2μSi3

(ρe + p)ui − 2μui Si j − k∂T/∂xi

⎞⎟⎟⎟⎟⎟⎟⎠ (11)

The bar-filtered state equation becomes (assuming Cp, Cv and hence R are constant)

p̄ = ρ̄RT̃ (12)

From these expressions, it is natural to consider that the relevant variables for the compressible
LES problem are ρ̄ and the Favre-filtered quantities ũi and ẽ. Working with these variables,
we define the subgrid stress tensor T as

Ti j = −ρuiu j + ρ̄ũi ũ j (13)

This tensor can be split into isotropic and deviatoric parts, the latter denoted τi j :

Ti j = τi j + 1
3
Tllδi j (14)

The bar-filtered total energy then reads

ρ̄ẽ = ρ̄Cv T̃ + 1
2
ρ̄
(
ũ2

1 + ũ2
2 + ũ2

3
) − 1

2
Tll (15)

Lesieur and Comte [22] introduced quantities called macro-pressure and macro-temperature,
defined by

� = p̄ − 1
3
Tll (16)

and

ϑ = T̃ − 1
2Cvρ̄

Tll (17)

The bar-filtered equation of state is:

� = ρ̄Rϑ + 3γ − 5
6

Tll (18)

The ratio of the second to the first term of the r.h.s. of this equation may be shown to be
of modulus proportional to γ |3γ − 5|M2

sgs/6, where Msgs is the subgrid Mach number. This
is less than one for values of γ encountered and ranging from 1.4 to 1.2. So it is not a bad
approximation to replace the bar-filtered state equation by

� ≈ ρ̄Rϑ (19)

which may hold even at high average Mach numbers. The resolved total energy is

ρ̄ẽ = ρ̄Cvϑ + 1
2
ρ̄
(
ũ2

1 + ũ2
2 + ũ2

3
)

(20)
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Finally, the exact form of the bar-filtered fluxes can be written as

Fi 	

⎛⎜⎜⎜⎜⎜⎜⎝

ρ̄ũi

ρ̄ũi ũ1 + �δi1 − τi1 − 2μSi1

ρ̄ũi ũ2 + �δi2 − τi2 − 2μSi2

ρ̄ũi ũ3 + �δi3 − τi3 − 2μSi3

(ρ̄ẽ + � )ũi − Qi − 2μui Si j − k∂T/∂xi

⎞⎟⎟⎟⎟⎟⎟⎠ (21)

in which Qi is the i th component of the subgrid heat-flux vector:

Qi = (ρe + p)ui + (ρ̄ẽ + � )ũi (22)

Bar-filtering equation (1) yields

∂Ū
∂t

+ ∂Fi

∂xi
= 0 (23)

2.1.1 Subgrid-scale model. We will close the system described above by modelling the
unknown terms as:

τi j + 2μSi j 	 2ρ̄(νt + ν)S̃i j (24)

Qi + 2μui Si j + k∂T/∂xi 	 2μ̄ũi S̃i j + k̄∂ϑ/∂xi + ρ̄Cp
νt

Prt

∂ϑ

∂xi
(25)

The subgrid-scale eddy coefficients are determined thanks to the filtered structure function
(FSF) model which writes as

νFSF
t (�x, t) = 0.0014C− 3

2
K �[ ˜̄F2(�x, �, t)]

1
2 (26)

in which,
˜̄F2(�x, �x, t) = 〈‖L3(�̄u(�x + �r , t)) − L3(�̄u(�x, t))‖〉‖r‖=� (27)

is the second-order velocity structure function of the high-pass filtered velocity field L3(�̄u).
The filter L is a Laplacian operator approximated by second-order centred finite differences.
CK is the Kolmogorov constant and � is the mesh size. The turbulent Prandtl Prt number is
taken equal to 0.6.

3. Numerical solution and boundary conditions

In this study we solve the compressible LES equations written in a Cartesian coordinate
system, with x (streamwise), y and z (transverse) directions. The numerical code employs a
finite-difference MacCormack scheme [23], fourth-order in space and second-order in time
[24]. The grid has 100 × 74 × 74 points in a box of 35 × 20 × 20 nozzle radii respectively in
the longitudinal and orthogonal directions. In order to correctly simulate the jet shear layers,
a non-uniform grid with a hyperbolic-tangent stretching is used in the y and z directions.
This resolution of ≈550 000 points is moderate, and calculations have been carried out on a
regular UNIX workstation. However, computing times necessary to have a converged solution
with statistical stationarity are of the order of 40 hours, which is quite important. In fact,
the objective of this work is to develop a LES code for a compressible jet which should be
well validated against existing DNS and experiments, while remaining reasonable in terms
of computing costs for users having only access to machines of this type. In this respect, and
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although convergence studies towards DNS by splitting the grid mesh size are desirable, they
are not possible within this framework. Another appplication of this code will be to become
a tool allowing control of the jet by proper deterministic upstream perturbations in order in
particular to obtain bifurcating jets such as those simulated in [25] in the constant-density case.
These control studies require many successive simulations since the upstream perturbations
are changed. This cannot be done with a code much more expensive computationally if one
keeps the strategy of using a workstation.

As far as the longitudinal dimension of the computational domain is concerned, let us stress
that the ratio of the self-similar range length against the effective domain length is of about
77% in the subsonic case, and 50% in the supersonic case, as will be seen below. The ratio of
the transverse jet shear-layer thickness against the transverse domain dimension is respectively
26% and 20% in both cases. Therefore, one can conclude that the computational domain size
is sufficient. It does not seem to be too large, considering future control studies where the jet
spreads out violently in the bifurcationg plane.

The special behaviour of compressible flows, such as acoustic wave reflection, requires an
adequate treatment of boundary conditions. Otherwise, coherent vortices can be affected by
spurious non-physical reflections and do not exit properly from the computational domain.
For this purpose we have used a non-reflecting boundary condition proposed by Poinsot and
Lele [26]. To absorb outgoing acoustic disturbances and turbulent structures, a sponge zone
was set in the downstream part of the domain [27], of length 17% of the computational domain
length. Boundary conditions based on the same principles have been used satisfactorily by
many authors since then.

Morris [28] and Michalke and Hermann [29] found that the nature of the first instability is
mainly conditioned by the mean velocity profile shape at the nozzle. Therefore, it is essential
to simulate flow at the nozzle exit realistically. For the following simulations, the inflow
longitudinal velocity is the same as for instability studies carried out in [29]:

Um(�x0) = U1 + U2

2
− U1 − U2

2
tanh

[
1
4

R
θ

(
r
R

− R
r

)]
(28)

where U1 is the jet centreline, U2 a small co-flow and θ the momentum thickness of the
upstream shear layer. This profile does not simulate the flow inside the nozzle, but gives
a good approximation of the inlet velocity profiles found in experimental measurements of
round jets [30]. Notice that the inlet mean transverse velocity components are set to zero:

Vm(�x0) = Wm(�x0) = 0 (29)

In a compressible gas, any velocity gradient induces a heating due to molecular dissipation.
Therefore, we associate a temperature profile (given by Crocco–Busemann’s relation) to the
upstream velocity profile.

Since the nozzle boundary layer has a dominant influence on the downstream jet develop-
ment, the correct prescription of inflow perturbation is indeed very important. In the present
study, we superpose a white noise upon the three velocity components in the shear-layer gra-
dient. For all simulations carried out in this paper, the maximum amplitude of the random
noise is set to 1.0% of U1. One may assume that such a low intensity triggers jet natural
development.

Compressibility is here characterized by the jet Mach number M , which is defined by means
of the upstream jet-centre velocity U1 and temperature T1:

M = U1√
γ RT1

(30)
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The Reynolds number is based upon U1 and the upstream jet diameter D:

Re = U1ρ1 D
μ1

(31)

μ1 and ρ1 being the corresponding viscosity and density. We initiated all our simulations
with the upstream profile, which is repeated at each x up to the domain exit (temporal jet).
Then the flow develops into a spatially growing jet up to a time ts where it reaches statistical
stationarity.

4. Validation

First we validate our code by comparison with a forced-jet DNS of Freund [31] and the
experiment of Stromberg et al. [32] at M = 0.9. The Reynolds number is moderate (Re =
3600). The upstream velocity profile is the same as used by Freund:

U (−→x0 , t) = Um(−→x0 ) + Ufor(−→x0 , t) (32)

Um(−→x0 ) being given by equation (28) in which U1 = 0.9,U2 = 0 and R/θ = 11.2. The up-
stream forcing Ufor(−→x0 , t) is

Ufor(−→x0 , t) = εUm(−→x0 ) sin(StD·t) (33)

in which StD = fD/U1 = 0.45 is the forcing Strouhal number and ε = 0.0025 the amplitude.
There is no forcing on the transverse velocity components.

Figure 1(a) shows the mean centreline velocity obtained from our LES at a time of 300D/U1
after ts. It is compared with data from [31] and [32]. Figure 1(b) shows the mean longitudinal
velocity profiles for the same cases. There are some small differences between the data sets,
but the general agreement is quite good, providing very good validation for our compressible
LES code.

Figure 1. (a) Mean centreline velocity obtained at Mach 0.9 from the LES, DNS [31], and experiment [32].
(b) Mean velocity at two different downstream positions.
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5. Compressibility effects in natural round jets

Now we focus on the statistics and on the various coherent vortices present in free round jets
at Mach 0.7 and 1.4.

For all the following simulations, the initial mean velocity is given by equation (28) with
R/θ = 20, The initial centreline and co-flow jet velocities are U1 = 1.02 and U2 = 0.02. The
co-flow is then very small (U2/U1 = 0.0196 <2%) and has only a minor influence on the jet
dynamics.

5.1 Subsonic jet (M = 0.7)

As mentioned above, compressibility effects in compressible mixing layers are governed by
the convective Mach number, which is ≈0.35 here. This is well below the value of 0.6 at which
compressibility effects begin to be important [18, 19]. It is therefore acceptable to compare our
simulation results with incompressible jet experiments carried out within a fully developed
region. In this region, round jets obey the following relations [33]:

U1 − U2

〈ux (x, r = 0) − Ucof〉 = 1
Bu

[
x − x0

D

]
(34)

δ0.5(x)
D

= Cd

[
x − x0

D

]
(35)

where δ0.5(x) is the jet shear-layer thickness, defined by

〈ux (x, r = δ0.5(x))〉 − Ucof = 0.5(〈ux (x, r = 0)〉 − U2) (36)

Ucof = 〈ux (x, r = ∞)〉 is the local co-flow, brackets 〈〉 denote a time average and x0 is the
virtual origin of the jet (see figure 2 for definition). Figure 2 shows that the slope of the
centreline velocity decay agrees well with the experimental data of [33]. To confirm this
point, we have computed the centreline velocity decay rate 1/Bu in the far-field region, and
found Bu = 5.62. This is very close to the value of Bu = 5.8 obtained by Hussein et al.

Figure 2. Streamwise evolution of the centreline velocity decay.
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Figure 3. (a) Streamwise velocity profiles in the far field of the natural round jet at M = 0.7 where Ucof is the
local co-flow velocity and x0 is the virtual jet origin; (b) streamwise normal Reynolds stresses; (c) streamwise radial
stresses; (d) radial stresses.

[33]. Figure 3(a) shows the centreline mean velocity profiles at several downstream locations
obtained from our LES model, compared with incompressible experimental data [33]. The
good superposition of the various self-similar experimental and numerical profiles validates
our LES model. Notice, however, that laboratory experiments are not always carried out exactly
as numerical simulations in terms of boundary conditions.

We have also determined the Reynolds stresses. Figures 3(b), 3(c) and 3(d) display the
profiles of the streamwise normal, streamwise radial and radial components of Reynolds stress
tensor, respectively. Overall, the agreement with experimental self-similar data is very good.
Nevertheless the streamwise normal components (see figure 3(b)) are slightly overpredicted
for a radial distance smaller than η = r/(x − x0) < 0.03. Streamwise radial cross stresses
and radial stresses exhibit a very good agreement with the experimental data (figures 3(c) and
3(d)).

We now study the spatial evolution of coherent vortices present in the transitional region
of the subsonic round jet. To visualize the jet structures, isosurfaces of positive Q are used
[34, 35], where Q is the second invariant of the velocity gradient tensor, Q = 1/2(�i j�i j −
Si j Si j ). We show here jets obtained for Re = 36 000. Figures 4(a) (at t = 30D/(U1 − U2))
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Figure 4. Isosurfaces of positive Q (in green) and longitudinal vorticity (positive, red; negative, blue) for the subsonic
jet at M = 0.7. The threshold is 0.20(U1/D)2. Re = 36 000. (a) t = 30D/(U1 − U2). (b) t = 300D/(U1 − U2).
Animation 1 corresponds to case (b).

and (b) (at t = 300D/(U1 − U2)) present two different times of evolution of the flow, still
at M = 0.7. The flow field of figure 4(a) corresponds to a transient stage close to the initial
computational time. For both cases the shedding of axisymmetric vortex rings is observed
upstream. These axisymmetric coherent vortices represent the emergence of the so-called
varicose mode. Concentrating on figure 4(a), one sees that the vortex rings move downstream
while merging with neighbouring rings, so that the scale of the vortex rings increases with
downstream distance. We have checked that the axisymmetric vortex rings persist up to x/D ≈
6. Pairs of counter-rotating streamwise vortices (hairpin vortices) are stretched between them.
These hairpin vortices have been observed experimentally at moderate Reynolds numbers by
Lasheras and Meiburg [36] and Liepmann and Gharib [37]. Further downstream, (x/D > 6)
they grow through an alternate pairing process. Such a pairing mode corresponds to the
growth of a subharmonic perturbation developing after the formation of the primary vortex
rings (see [25]). This vortex arrangement was also experimentally observed by Broze and
Hussain [38].

Figure 4(b), complemented by animation 1, indicates the vortex-tori shedding upstream.
Then, at a downstream distance of ≈2D, they stretch alternate hairpin-shaped streamwise
vortices providing a 3D perturbation which triggers the alternate pairing. We will see below
that the potential-core length is ≈5.5D, and corresponds to the point where the jet starts
spreading self-similarly. Then the jet dynamics is a chaotic mixing of large-scale vortices
undergoing various interactions (including helical pairing) and small-scale turbulence.

5.2 Supersonic jet (M = 1.4)

We now study the supersonic jet at Mach 1.4 and Reynolds 36 000. Figure 5, taken at t = 300t0
with (t0 = D/(U1 −U2), corresponds to a statistically converged state. It is complemented by
animation 2. Compared with figure 4(b), it shows that the vortex structures are very different
from those existing at Mach 0.7. Indeed, the upstream axisymmetric mode has disappeared and
the structures seem to undergo an alternate pairing immediately downstream of the nozzle.
This is associated with a strong initial reduction of the jet spreading rate. This is in good
agreement with previous experimental visualizations [17–19, 39]. Further downstream, the
jet becomes suddenly more three-dimensional and, as will be confirmed in the next section,
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Figure 5. Isosurfaces of positive Q (green) and longitudinal vorticity (red and blue) for the supersonic jet at M = 1.4
and Re = 36 000. The threshold is 0.20(U1/D)2. The figure corresponds to animation 2.

spreads with a rate close to that of the subsonic jet. However, at a given downstream distance,
the supersonic jet is shown to be more focused than the subsonic jet.

In the region close to the nozzle, the alternate pairing gives rise to strong alternate quasi-
longitudinal vortices. These observations are in agreement with visualizations of low-pressure
isosurfaces carried out by Freund et al. [7]. They observed structures increasingly elongated
in the flow direction when the Mach number increases; their convective Mach number goes
from Mc = 0.21 to Mc = 1.29.

In fact, we recall that Fouillet’s DNS [15] of natural compressible plane temporal mixing
layers (presented in [40]) show an inhibition of helical pairing above a convective Mach
number of 0.6–0.7. In the supersonic round jet at Mach 1.4, where the associated convective
Mach number is equal to 0.69, we have an important alternate pairing. If we identify the two
types of pairing, which are both subharmonic, one would expect an inhibition of alternate
pairing in the jet at higher Mach.

Figure 6 is a zoom of the jet in the transition region between 2R and 5R, showing both
Q and longitudinal vorticity. It indicates the production (by vortex stretching of longitudinal
vorticity) of both signs in the zones of vortex reconnection. This is also visible in figure 7(b)
which shows in this region a typical plot of positive Q isosurfaces coloured by longitudinal
vorticity, seen from downstream. It is compared with the subsonic calculation (figure 7(a)).
The latter displays very clearly the tore-shaped vortex without longitudinal vorticity.

5.3 Compressibility effects upon statistics

In order to reach good statistical convergence, the statistical study was carried out during one
period of 300D/(U1 − U2). This corresponds to twenty times the time required for a vortex
to cross the physical domain.

Figure 6. Isosurfaces of positive Q (green) and longitudinal vorticity (red and blue) for the supersonic jet at M = 1.4
and 2 ≤ x/R ≤ 5. The threshold is 0.05(U1/D)2.
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Figure 7. Isosurfaces of positive Q (green) and longitudinal vorticity (red and blue) seen from downstream in the
initial region (1 ≤ x/R ≤ 5). The threshold is 0.15(U1/D)2. (a) M = 0.7. (b) M = 1.4.

5.3.1 Mean flow statistics. Figure 8(a) shows the centreline streamwise velocity at Mach
number 0.7 and 1.4. The fall around x/D = 5.5 at Mach 0.7 indicates the end of the potential-
core. In this case, the potential-core length is therefore 5.5D. It becomes 7D for a Mach
number of 1.4, representing an important increase of 27%.

The spatial evolution of the jet shear-layer thickness is presented in figure 8(b). One can see
that for both Mach numbers, the jets spread with the same rate up to x/D ≈ 5.5. Beyond that,
there is a sudden increase of the jet spreading rate, which is associated with an abrupt transition
to three-dimensional developed turbulence. The supersonic jet spreads at a lower rate up to
x/D ≈ 10, then its spreading rate becomes comparable to the subsonic one. In fact, the local
Mach number of the jet at a downstream distance x , defined by the jet centreline and the local
sound speed, decreases with the jet centreline velocity. This is clear from figure 9 showing
that the Mach 1.4 jet in fact becomes subsonic at a distance x ≈ 11D. This corresponds,
neglecting possible corrections due to temperature variation, to the distance where its velocity
is the upstream velocity divided by 1.4. Further downstream, the jet will be subsonic.

Figure 8. (a) Streamwise evolution of the mean centreline velocity for the natural jet at M = 0.7 and M = 1.4.
(b) Streamwise evolution of the shear-layer thickness. Ucof is the local co-flow velocity.
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Figure 9. Streamwise evolution of the mean centreline Mach number for the natural jet at M = 0.7 and M = 1.4.

5.3.2 Reynolds stresses. In addition to the reduction in upstream jet spreading rate noticed
at Mach 1.4, figure 10 indicates that compressibility also affects turbulent fluctuations and
Reynolds stresses. In this figure, the Favre-averaged Reynolds stresses for the two Mach
numbers are computed at the end of the jet potential core. It is clear that the streamwise radial
〈ρ〉ũ ′

xu ′
r , radial 〈ρ〉ũ ′

r u
′
r and azimuthal 〈ρ〉ũ ′

θu ′
θ stresses are reduced with increasing Mach

number. On the contrary, the streamwise normal (axial) stress 〈ρ〉ũ ′
xu ′

x (when normalized
by ρ1U 2

1 ) is not reduced, and is very slightly increased. These results are qualitatively in
good agreement with available experimental data [19, 41, 42] and the temporal numerical
simulation of Freund et al. [7]. Notice however that, in figure 10, self-similarity is not yet
achieved, contrary to the above-quoted laboratory experiments. Note also that the experiments
of Samimy and Elliott [5, 6] showed a reduced axial normal stress as the Mach number
increases.

Figure 10. Favre-averaged Reynolds stresses (normalized by ρ1U 2
1 ) profiles at the end of the potential core:

(a) subsonic jet (M = 0.7); (b) supersonic jet (M = 1.4).
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Figure 11. Shear-stress anisotropy profiles for the subsonic and supersonic jet.

5.3.3 Anisotropy tensor. The Reynolds stress reduction in the supersonic case can also be
seen in figure 11 (still at the end of the jet potential core). This figure shows the shear-stress
anisotropy parameter defined as follows:

b12 = ũ ′
xu ′

r
2K

(37)

where K = 1/2ũ ′
i u

′
i is the turbulent kinetic energy. Sarkar [20] proposed that the structural

change in homogeneous shear flow turbulence at high compressibility is due to a change in
magnitude of b12, which implies a less efficient production mechanism. It turns out from
this figure that the shear-stress anistropy across the middle of the mixing region decreases
with increasing Mach number. This is in agreement with previous numerical results [7, 20].
Thus, the supersonic jet mixing layer has a lower production level than the subsonic one.
According to Sarkar [20] (see also [43]), this reduction in turbulence production level is also
responsible for the inhibition of turbulence growth rate. But these statistical results are in
fact the consequence of the modification of the compressible mixing layer structure due to
the inhibition of Kelvin–Helmholtz instability and predominance of three-dimensional quasi-
longitudinal instabilities.

To provide a detailed analysis of flow anisotropy, we have considered the anisotropy-
invariant map proposed by Lumley and Newman [44]. This map uses the anisotropy tensor to
characterize the turbulence state of the fluid flow. The anisotropy tensor is deduced from the
Reynolds stress tensor by

bi j = ũ ′
i u

′
j − 2/3kδi j

2K
(38)

which enables us to have the three following invariants I, II, III:

I = bii

II = −bi j b ji/2 (39)

III = bi j b jkbki/3
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Figure 12. Anisotropy invariant map of the jet at: (a) M = 0.7; (b) M = 1.4. The invariants II and III are computed
at the centerline (r/D = 0), and for downstream locations range from x/D = 0 to x/D = 14.

These invariants are plotted on figures 12(a) and (b), which show that the flow returns to
isotropy faster in the subsonic case than in the supersonic one. According to figure 12(a), the
subsonic jet dynamics is dominated by two-dimensional large-scale structures in which the
radial perturbation is preponderant. This two-dimensionality, associated with the shedding of
vortex rings, disappears in the supersonic case, in which there is a dominance of streamwise
perturbations.

5.3.4 Radial and azimuthal development of instabilities. In order to analyse the devel-
opment of instabilities in the transitional zone of the jet, we have calculated the two following
quantities

Er (x) =
√

1
L y Lz

(
2π

∫ rmax

0

〈
u ′2

r (x, r )
〉
rdr

)
(40)

Eθ (x) =
√

1
L y Lz

(
2π

∫ rmax

0

〈
u ′2

θ (x, r )
〉
rdr

)
(41)

which represent, respectively, the contribution of the radial and azimuthal Reynolds stresses
to turbulent kinetic energy for a given position x . Here rmax = √

y2
max + z2

max is the maximum
radial distance from the jet axis.

Figures 13(a) and 13(b) represent the streamwise evolution of Er and Eθ for M = 0.7 and
M = 1.4. It is clear that in the subsonic case, Er , the quantity associated with the primary
instabilities and the formation of vortex rings [45, 46] is largely dominant until the potential-
core end (x/D ≈ 5.5).

In agreement with the visual observations discussed above, this result demonstrates the
dominance of ring-like structures in the transitional regime downstream of the nozzle. On the
other hand, for the supersonic case (figure 13(b)), Er is dominated by Eθ until (x/D ≈ 7),
with seems to be associated with the strong alternate pairing observed.

5.3.5 Radial lengthscale. The characteristic scales of the flow are very important as they
are used for the statistical quantities scaling. Freund et al. [7] showed that turbulence statistics
do not scale with the velocity difference across the mixing layer. Indeed, the normalization by
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Figure 13. Longitudinal evolution of Er and Eθ at (a) M = 0.7 and (b) M = 1.4.

�U = U1 −Ucof(x), valid in the subsonic case, does not apply in the supersonic case in which
the transverse (radial) lengthscale of large eddies, lr , is less than the shear-layer thickness δ

[7]. Ucof(x) is the (local) streamwise velocity of the ambient fluid. In the compressible case,
the statistics should scale with the velocity difference across a large eddy, �Ulr/δ.

Let us concentrate on the transverse large eddy lengthscale. It was defined by Freund et al.
[47] in terms of the two-point correlation of radial velocity at r = R,〈

u ′
r (R − lr/2)u ′

r (R)
〉〈

u ′
r (R)u ′

r (R)
〉 = Cl (42)

and 〈
u ′

r (R + lr/2)u ′
r (R)

〉〈
u ′

r (R)u ′
r (R)

〉 = Cl (43)

in which Cl is a constant threshold . Freund et al. [47] proposed Cl = 0.5. Here we choose to
compute lr with a threshold value Cl = 0.45. Changing the threshold of 0.45 to 0.5 has little
effect on lr evaluation.

Figure 14 shows the downstream evolution of lr before the end of the potential core.
It increases linearly with downstream distance. We have dlr/dx ≈ 0.18 in the supersonic
case; 0.36 in the subsonic jet. This is in agreement with earlier DNS results [7] show-
ing a decrease of transverse lengthscale with increasing Mach number in a turbulent round
jet.

Previous experimental observations of free-shear flows such as round jets [17, 19, 39]
and plane mixing layers [9, 10] indicate an inhibition of the interaction between turbulence
structures (such as pairing phenomenon) with increasing compressibility. Indeed, the vortex
pairing that occurs in the jet transitional region gives rise to largerscale structures and hence
jet growth. These observations are supported by the present study, where pairing has been
replaced by alternate pairing.

5.3.6 Fluid entrainment. As mentioned above, the large-scale structures of the jet
set the irrotational ambient fluid in motion via the the Reynolds stresses. Therefore the
stress reduction that occurs at high Mach numbers reduces this entrainment phenomenon.
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Figure 14. Radial large eddy lengthscale in the transitional zone of the subsonic and supersonic round jets.

Figure 15 compares the entrainment measurements of the subsonic jet with those of the su-
personic jet in the transitional region. Jet entrainment measurements are based on evaluating
the streamwise mass flux Q(x), which is normalized with its upstream value at the nozzle Q0
[1, 48, 49]. The mass flux Q(x) is defined by a surface integral over the streamwise mean
velocity and density. In agreement with previous observations and results, this figure con-
firms the decrease of jet entrainment with increasing Mach number. Indeed, the entrainment
rate of the subsonic jet is significantly higher than that of the supersonic jet. In the sub-
sonic case the entrainment rate is dQ/dx = 0.1Q0/D for x ≤ 6D and dQ/dx = 0.265Q0/D
for x ≥ 6D. Crow and Champagne [1] give, for incompressible jets, the following values:
dQ/dx = 0.136Q0/D for x ≤ 2D and 0.292Q0/D for x ≥ 6D, which are close. In our su-
personic jet, the entrainment rate becomes 0.048Q0/D for x ≤ 6D, which corresponds to a
decrease of 52% with respect to the subsonic jet. Let us mention the experimental work of
Zaman [50] concerning jets in a range of Mach numbers between 0.3 and 2. His measurements

Figure 15. Downstream evolution of mass flux in the transitional zone of the subsonic and supersonic round jets.
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concern downstream distances larger than10D. He also found a reduction of the entrainment
rate with compressibility. LES in longer domains are required in order to make quantitative
comparisons.

6. Conclusions

We have been able to simulate subsonic and supersonic turbulent round jets with the aid of
large eddy simulations carried out on an orthogonal grid (stretched in the transverse directions)
with MacCormack’s finite-difference methods of fourth-order in space and second-order in
time. The numerical resolution is moderate (550,000 grid points). We use the filtered structure
function model. The jet is initiated upstream by a basic velocity profile close to a top hat,
plus a weak co-flow and various small perturbations. The corresponding temperature profile
is determined thanks to Crocco–Busemann’s relation, and the jet Mach number is based upon
the upstream centreline velocity and temperature.

We first validated our LES code by comparison with a forced-jet DNS at Reynolds number
3600 and Mach number 0.9 carried out by Freund [31], and an experiment by Stromberg et al.
[32]. Agreement is very good, as far as the mean centreline velocity and the transverse mean
velocity profiles are concerned.

After this validation, we considered jets at a higher Reynolds number (36, 000), forced
by a weak random isotropic perturbation. Two Mach numbers were studied: in the subsonic
(M = 0.7) and supersonic (M = 1.4) regimes.

The Mach 0.7 jet has a convective Mach number of 0.35, and is weakly affected by com-
pressibility. Close to the numerical nozzle, the jet sheds quasi-axisymmetric vortex rings with
longitudinal hairpin vortices stretching between them, before the development of alternate
pairing interactions which yield important jet widening and development to turbulence. Al-
ternate pairing is, for the jet, the equivalent of helical pairing for a plane mixing layer. The
centreline velocity, the transverse mean velocity and various Reynolds stress profiles compare
very well in the far field with incompressible experiments of Hussein et al. [33].

The vortex rings shed from the nozzle at Mach 0.7 disappear at Mach 1.4. Instead, we
have shown that the primary vortices undergoing alternate pairing form immediately. This
phenomenon is associated with a dramatic initial reduction of the jet spreading rate, yielding
a 27% increase of the jet potential-core length with respect to the subsonic case. Further
downstream, the jet becomes subsonic and spreads out, as in the Mach 0.7 case. Comparison
of Lumley’s anisotropy-invariant map at the centreline and for downstream location range
from x/D = 0 to x/D = 14 has provided interesting informations on the jet structure, since,
from this viewpoint, the Mach 0.7 jet is dominated by vortex rings while at Mach 1.4 there
are mainly streamwise perturbations. Finally, the analysis of Reynolds stresses has indicated
that turbulence intensities decrease with increasing Mach number, but with only a very weak
effect on the streamwise normal stress. This is in good agreemennt with a decrease of the
large-structure’s radial lengthscale observed.

These results have important applications in active control of compressible jets dynamics,
which will be studied in a forthcoming paper.
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