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Abstract

A graph is a path graph if it is the intersection graph of a family of subpaths
of a tree. In 1970, Renz asked for a characterization of path graphs by forbidden
induced subgraphs. Here we answer this question by listing all graphs that are not
path graphs and are minimal with this property.

1 Introduction

A hole is a chordless cycle of length at least four. A graph is chordal (or triangulated)
if it contains no holes as an induced subgraph. Gavril [3] proved that a graph is chordal
if and only if it is the intersection graph of a family of subtrees of a tree.

An interval graph is the intersection graph of a family of intervals; equivalently, it is
the intersection graph of a family of subpaths of a path. An asteroidal triple in a graph
G is a set of three non adjacent vertices such that for any two of them, there exists a path
between them in G that does not intersect the neighborhood of the third. Lekkerkerker
and Boland [5] proved that a graph is an interval graph if and only if it is chordal and
contains no asteroidal triple. They derive from this result the list of minimal forbidden
subgraphs for interval graphs.

Another interesting class is the class of path graphs. A graph is a path graph if
it is the intersection graph of a family of subpaths of a tree. Clearly, the class of path
graphs is included in the class of chordal graphs and contains the class of interval graphs.
Several characterizations of path graphs have been given [4, 6, 7] but no characterization
by forbidden subgraphs is known, whereas such results exists for intersection graphs of
subpaths of a paths (interval graphs [3]) and subtrees of a tree (chordal graphs [5]).

In 1970, Renz [7] gave two examples of graphs that are chordal and not path graphs
and are minimal with this property. He also asked for a complete list of such graphs.
In this paper we answer this question and obtain a characterizaton of path graphs by
forbidden induced subgraphs.

2 Special simplicial vertices in chordal graphs

A vertex is simplicial if its neighborhood is a clique.
Let G be a chordal graph, and let Q(G) be the set of all maximal cliques of G.
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Given two vertices u, v in a graph G, a u, v-separator is a set S of vertices of G
such that u and v lie in two different components of G \ S and S is minimal with this
property. A set is a separator if it is a u, v-separator for some u, v in G. Let S(G)
be the set of separators of G. Given a simplicial vertex v, let Qv = N(v) ∪ {v} and
Sv = Qv ∩ N(V \ Qv). Since v is simplicial, Qv ∈ Q (remark that Sv is not necessarily
in S).

A clique tree T of G is a tree whose vertices are in Q and such that for each vertex v
of G, the set of cliques that contain v induces a subtree of T . A graph is chordal if and
only if it has a clique tree representation.

For a clique tree T , the label of an edge QQ′ of T is SQQ′ = Q ∩ Q′. For all edges
QQ′, we have SQQ′ ∈ S. The number of times an element S of S appears as a label of
an edge is constant for every clique-tree.

Given X ⊆ Q, let G(X) be the subgraph of G induced by all the vertices that appears
in members of X. If T is a clique tree of G, then T [X] is the subtree of T of minimum
size whose vertices contains X. Note that if |X| = 2, then T [X] is a path. For every
vertex a, set T a = T [{Q ∈ Q | a ∈ Q}].

Given a subtree T ′ of a clique-tree T of G. Let Q(T ′) be the set of vertices of T ′ and
S(T ′) be the set of separators of G(Q(T ′)).

The following lemma is clear.

Lemma 1 A vertex is simplicial if and only if it does not belong to any separator.

Dirac [2] proved that a chordal graph that is not a clique contains two non adjacent
simplicial vertices. We need to generalize this theorem to the following. Let us say that
a simplicial vertex v is special if Sv is (inclusionwise) maximal in S.

Theorem 1 In a chordal graph that is not a clique, there exist two non adjacent special
simplicial vertices.

Proof. We prove the lemma by induction on |Q|. By the hypothesis, G is not a clique,
so |Q| ≥ 2.

Case 1: S has only one maximal element S. Let Q,Q′ be two maximal cliques such
that Q∩Q′ = S. Let v ∈ Q\Q′ and v′ ∈ Q′\Q. The set S is the only maximal separator
and it does not contain v or v′. So v and v′ do not belong to any element of S, and they
are simplicial by Lemma 1 and Sv = Sv′ = S.

Case 2: S has two distinct maximal elements S, S′. Let T be a clique tree of G. Let
Q1, Q2, Q

′
1, Q

′
2 ∈ Q be such that S = SQ1Q2

, S′ = SQ′

1
Q′

2
, and Q2, Q1, Q

′
1, Q

′
2 appear in

this order along the path T [{Q2, Q1, Q
′
1, Q

′
2}] (maybe Q1 = Q′

1).
Let Y be the subtree of T \Q1 that contains Q2, and let Z be the tree that consists

of Y plus the vertex Q1 and the edge Q1Q2. The subtree Z does not contain Q′
2, so

G(Q(Z)) has strictly fewer maximal cliques than G. By the induction hypothesis, there
exist two non adjacent simplicial vertices v,w of G(Q(Z)) such that Sv, Sw are maximal
elements of S(Z). At most one of v,w is in Q1 since they are not adjacent. Suppose v is
not in Q1. We claim that v is a simplicial vertex of G and that Sv is a maximal element
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of S. Vertex v does not belong to any element of S(Z). If it belongs to an element of
S \S(Z), then it also belongs to S ∈ S(Z), a contradiction. So v does not belong to any
element of S and it is a simplicial vertex of G by Lemma 1. The set Sv is a maximal
element of S(Z). If it is not a maximal element of S, then it is included in S ∈ S(Z), a
contradiction. So v is a special simplicial vertex of G.

Likewise, let Y ′ be the subtree of T \Q′
1 that contains Q′

2, and let Z ′ be the tree that
consists of Y ′ plus the vertex Q′

1 and the edge Q′
1Q

′
2. Just like with v, we can find a

simplicial vertex v′ of G(Q(Z ′)) not in Q′
1 that is a simplicial vertex of G with Sv′ being

a maximal element of S.
Vertices v, v′ are not adjacent as there are separated by Q1. 2

Algorithms LexBFS [8] and MCS [10] are linear time algorithms that were developed
to find a simplicial vertex in a chordal graph. But the simplicial vertex that is found
by these algorithms is not necessarily special. For example, on the graph with vertices
a, b, c, d, e, f, g, h and edges ab, bc, cd, de, ef, fg, gh, bd, be, gd, ge, both algorithms LexBFS
and MCS will always end on one of simplicial vertices a, h, which are not special.

The proof of Theorem 1 can be turned into a polynomial time algorithm to find a
special simplicial vertex in a chordal graph. We do not know how to find such a vertex
in linear time.

3 Forbidden induced subgraphs

Figures 1, 2, 3, 4 and 5 give a list of minimal forbidden subgraphs for path graphs. Let
P be the class of graphs that do not contain any Fi (0 ≤ i ≤ 16) as an induced subgraph.
In the next sections, will prove that graphs in P are exactly path graphs.

Each graph in Figure 2 is obtained by adding a universal vertex to some minimal
forbidden subgraph for interval graphs. Graphs F10(n)n≥8 are also forbidden in interval
graphs. Graphs F6 and F10(8) are from Renz [7, Figures 1 and 5].

The following lemma is clear.

Lemma 2 In a path graph the neighborhood of every vertex is an interval graph.

Lekkerkerker and Boland [5] proved that a graph is an interval graph if and only if it
is chordal and contains no asteroidal triple. So we can deduce the following corollaries.

Corollary 1 In a path graph the neighborhood of every vertex contains no asteroidal
triple.

Corollary 2 F1, . . . , F5 are not path graphs.

One could have hoped (as we did initially) that a chordal graph in which the neigh-
borhood of every vertex contains no asteroidal triple is a path graph; but this is not
true, as observed already by Renz [7] and shown by graphs F6, . . . , F16. (Renz’s graphs
is our F6 and F10(8).)
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It is a routine matter (and we omit the details) to check that each Fi (0 ≤ i ≤ 16) is
not a path graph and that for every vertex x of Fi the graph Fi \ x is a path graph. So
we have:

Theorem 2 F0, . . . , F16 are minimally not path graphs.

4 Co-special simplicial vertices

A clique path tree T of G is a clique tree of G such that, for each vertex v of G, the
subtree induced by the set of cliques that contain v is a path. Clearly, a graph is a path
graph if and only if it has a clique path tree.

A simplicial vertex v is co-special if Sv is a minimal element of S and G \ Sv has
exactly two components (note that in that case Sv appears on exactly one label of any
path tree of G).

Lemma 3 Let G be a minimally not path graph. Then either G is one of F11, . . . F15 or
every simplicial vertex of G is co-special.

Proof. Suppose on the contrary that G is minimally not path graph, different from
F11, . . . F15, and there is a simplicial vertex v of G that is not co-special. All simplicial
vertices of F0, . . . F10 are co-special, so G is not any of these graphs; moreover it does not
contain any of them strictly (for otherwise G would not be minimally not path graph).
So G is in P.

Let T0 be a clique path tree of G \ v. Let Q′
v ∈ Q(G \ v) be such that Sv ⊆ Q′

v. If
Q′

v = Sv, then we can add v to Q′
v to obtain a clique path tree of G, a contradiction. So

Q′
v 6= Sv and Sv ∈ S.

Let T ′ be the maximal subtree of T0 that contains Q′
v and such that no label of the

edges of T0 is included in Sv. Remark that T ′ plus vertex Qv and edge Q′
vQv is a clique

tree of G(Q(T ′) ∪ {Qv}) (but not necessarily a clique path tree), and in that tree only
one label is included in Sv. Vertex v is not co-special, so in T0 there is an edge whose
label is included in Sv, and so T ′ has strictly fewer vertices than T0. So G(Q(T ′)∪{Qv})
is a path graph. Let T be a clique path tree of this graph.

We claim that Qv is a leaf of T . If not, then there are at least two labels of T that
are included in Sv, which contradicts the definition of T ′ (the number of times a label
appears in a clique tree is constant).

Let T1, . . . , Tℓ be the subtrees of T0 \ T ′ (ℓ ≥ 1). For 1 ≤ i ≤ ℓ, let QiQ
′
i be the

edge between Ti and T ′ with Qi ∈ Ti and Q′
i ∈ T ′. Note that Q1, . . . , Qℓ are pairwise

disjoint; on the other hand, Q′
v, Q

′
1, . . . , Q

′
ℓ are not necessarily pairwise disjoint). Let

Si = Qi ∩Q′
i and vi ∈ Qi \Q′

i. Let H = (VH, EH) be the intersection graph of S1, . . . , Sℓ,
that is, VH = {S1, . . . , Sℓ} and EH = {SiSj | Si ∩ Sj 6= ∅}. For 1 ≤ i ≤ ℓ, let
Ri = {S ∈ S(T ′) | Si ∩ S 6= ∅ and Si \ S 6= ∅}. Let X = {Si | Ri 6= ∅}.

Claim 1 H contains no odd cycle.
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Proof. Suppose on the contrary that there is an odd cycle S1-· · · -Sp-S1 in H, with length
p = 2r +1 (r ≥ 1). Let Ij = Sj ∩Sj+1, with Sp+1 = S1. Suppose that for some j 6= k we
have Ij ∩ Ik 6= ∅; then there is a common vertex in the cliques Qj , Qj+1, Qk, Qk+1, and
the number of different cliques among these is at least three, which contradicts the fact
that T0 is a clique path tree as these three cliques do not lie on a common path of T0.
For 1 ≤ j ≤ p, let sj ∈ Ij. By the preceeding remark, the sj’s are pairwise distinct. By
the definition of T ′, we have Sj ⊆ Sv for each 1 ≤ j ≤ p, so the sj’s are all in Qv and Q′

v.
Let v′ ∈ Q′

v \ Qv. Let us consider the subgraph induced by v, v′, v1, . . . , vp, s1, . . . , sp.
Each of the non-adjacent vertices v and v′ is adjacent to all of the clique formed by the
sj’s. Each vertex vj is adjacent to sj−1 and sj (with s0 = sp) and not to any other si

or to v. Vertex v′ can have at most two neighbors among the vj ’s. If v′ has no neighbor
among them, then v, v′, v1, . . . , vp, s1, . . . , sp induce F11(4r + 4)r≥1. If v′ has exactly one
neighbor among the vj ’s, then v, v′, v1, . . . , vp, s1, . . . , sp induce F12(4r + 4)r≥1. If v has
two consecutive neighbors vj, vj+1, then v, v′, vj , vj+1, sj−1, sj, sj+1 induce F2. If v has
two non-consecutive neighbors vj , vk, then we can assume that 1 ≤ j < j + 1 < k ≤ p
and k− j is odd, k − j = 2s + 1 with s ≥ 1, and then v, v′, vj , . . . , vk, sj, . . . , sk−1 induce
F14(4s + 5)s≥1, in all cases we obtain a contradiction. 2

Claim 2 H contains no odd path between two vertices in X.

Proof. Suppose on the contrary that there is an odd path S1-· · · -Sp (with p = 2k, k ≥ 1)
in H between two vertices S1, Sp of X, and assume that p is minimum with this property.
By the minimality, all interior vertices Sj (1 < j < p) are not in X. For 1 ≤ j < p, let
sj be a vertex in Sj ∩Sj+1. As in the preceding claim, the sj ’s are pairwise distinct and
lie in Qv and Q′

v. Let P be the subpath T ({Q′
1, Q

′
2}). If p 6= 2, then S2 is not in X, so

Q′
3 = Q′

1; then S3 is not in X, so Q′
4 = Q′

2, and so on. So, the two extremities of P are
Q′

1 = Q′
3 = · · · = Q′

p−1 and Q′
2 = Q′

4 = · · · = Q′
p. Since S1, Sp are in X, the sets R1,Rp

are non empty. We distinguish between several cases.
Case 1: there exists R1 ∈ R1 and Rp ∈ Rp that are labels of edges not in P . We can

assume that R1 is the label of an edge K0L0 of T ′, with L0 ∈ P , K0 /∈ P . Let s0 ∈ S1∩R1

and v0 ∈ K0 \L0. Vertex s0 belongs to Qv and Q′
v by the definition of T ′ and is distinct

from s1, . . . , sp−1 because T ′ is a clique path tree. Vertex v0 is not adjacent to any of
s1, . . . , sp−1 because T ′ is a clique path tree and v0 /∈ L0. Similarly, we can assume
that Rp is the label of an edge Kp+1Lp+1 of T ′, with Lp+1 ∈ P . Let sp ∈ Sp ∩ Rp and
vp+1 ∈ Kp+1 \ Q′

p+1. Vertex sp belongs to Qv and Q′
v and is distinct from s0, . . . , sp−1.

Vertex vp+1 is not adjacent to any of s1, . . . , sp−1. Since T ′ is a clique path tree, Q′
v lies

between Q′
1 and L0 and between Lp+1 and Q′

p along P . So Q′
1, Lp+1, Q

′
v , L0, Q

′
p lie in

this order on P (these cliques are not necessarily all distinct). We distinguish between
two cases.

Case 1.1: K0 and Kp+1 are equal. Then L0 = Lp+1 = Q′
v and we can assume that

v0 = vp+1. By the definition of T ′, there exists y ∈ R1 \ Sv. Vertex y is distinct from
s0, sp as it is not in Sv. Vertex y is adjacent to v0, s0, . . . , sp and to no vertex among
v, v1, . . . , vp. So v, y, v0, . . . , vp, s0, . . . , sp induce F12(4k + 4)k≥1, a contradiction.
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Case 1.2: K0 and Kp+1 are different. Then v0 and vp+1 are distinct. We can choose
vertices x1, . . . , xr (r ≥ 1) not in Sv and on the labels of T ′[{K0,Kp+1}] such that they
form a chordless path v0-x1-. . .-xr-vp+1. These vertices are distinct from and adjacent
to s0, . . . , sp and not to v, v1, . . . , vp. If r = 1, then v, v0, . . . , vp+1, s0, . . . , sp, x1 induce
F14(4k + 5)k≥1. If r = 2, then v, v0, . . . , vp+1, s0, . . . , sp, x1, x2 induce F15(4k + 6)k≥1. If
r ≥ 3, then v, v0, vp+1, s0, sp, x1, . . . , xr induce F10(r + 5)r≥3. A contradiction.

Case 2: there exists R1 ∈ R1 and Rp ∈ Rp that are labels of edges in P . We can
assume that R1 is the label of an edge K0L0 of T ′, with L0 ∈ P , K0 ∈ P , S1 ⊆ L0,
S1 * K0. Let s0 ∈ S1\R1 and v0 ∈ K0 \ L0. Vertex s0 belongs to Qv and Q′

v by
the definition of T ′ and is distinct from s1 because it is not in K0. Similarly, we can
assume that Rp is the label of an edge Kp+1Lp+1 of T ′, with Lp+1 ∈ P . Kp+1 ∈ P ,
Sp ⊆ Lp+1, Sp * Kp+1. Let sp ∈ Sp\Rp and vp+1 ∈ Kp+1 \ Q′

p+1. Vertex sp belongs
to Qv and Q′

v and is distinct from s0, s1 because it is not in Kp+1. Since T ′ is a
clique path tree, Q′

v lies between Q′
1 and L0 and between Lp+1 and Q′

p along P . So
Q′

1,Kp+1, Lp+1, Q
′
v, L0,K0, Q

′
p lie in this order on P . We can choose vertices x1, . . . , xr

(r ≥ 1) not in Sv and on the labels of T ′[{K0,Kp+1}] such that they form a chordless path
v0-x1-. . .-xr-vp+1. These vertices are distinct from and adjacent to s0, . . . , sp. If r = 1,
then v, v0, vp+1, s0, s1, sp, x1 induce F2. If r = 2, then v, v0, vp+1, s0, s1, sp, x1, x2 induce
F3. If r ≥ 3, then v, v0, vp+1, x1, . . . , xr, s0, sp induce F10(r + 5)r≥3. A contradiction.

Case 3: there is R1 ∈ R1 that is the label of and edge in P and Rp ∈ Rp that is the
label of an edge not in P (or the symetric case). We can assume that R1 is the label
of an edge K0L0 of T ′, with L0 ∈ P , K0 ∈ P , S1 ⊆ L0, S1 * K0. Since T ′ is a clique
path tree, Q′

v lies between Q′
1 and L0 along P . So Q′

1, Q
′
v, L0,K0, Q

′
p lie in this order on

P . Let s0 ∈ S1\R1 and v0 ∈ K0 \ L0. Vertex s0 belongs to Qv and Q′
v by the definition

of T ′ and is distinct from s1, . . . , sp−1 because it is not in K0. Vertex v0 is adjacent to
s1, . . . , sp−1. Vertex v0 is not in L0, so not in Sv, so not in any Si. So v0 is not adjacent
to v, v1, . . . , vp. We can assume that Rp is the label of an edge Kp+1Lp+1 of T ′, with
Lp+1 ∈ P . Let sp ∈ Sp∩Rp and vp+1 ∈ Kp+1\Q′

p+1. Vertex sp belongs to Qv and Q′
v and

is distinct from s0, . . . , sp−1. Vertex vp+1 is not adjacent to any of s1, . . . , sp−1. If vertex
s0 sees vp+1, then Rp ∈ R1 and we can apply case 1. So we can assume that vp+1 is not
adjacent to s0. Since T ′ is a clique path tree, Q′

v lies between Lp+1 and Q′
p along P . We

can choose vertices x1, . . . , xr (r ≥ 1) not in Sv and on the labels of T ′[{K0,Kp+1}] such
that they form a chordless path v0-x1-. . .-xr-vp+1. These vertices are distinct from and
adjacent to s0, . . . , sp and not to v, v1, . . . , vp. If r = 1, then v, v0, . . . , vp+1, s0, . . . , sp, x1

induce F13(4k + 5)k≥1. If r ≥ 2, then v, v0, vp+1, x1, . . . , xr, s0, sp induce F5(r + 5)r≥2. A
contradiction.

2

By the preceding claims, H is a bipartite graph (A,B,EH) such that X ⊆ A.
We claim that all the subtrees Ti can be linked to T to get a clique path tree of

G. For each Si ∈ A, we add an edge QvQi between T and Ti. This creates no illegal
branching because A is a stable set of H and Qv is a leaf of T . For each Si ∈ B, let
Q′′

i ∈ Q(T ) be such that Q′′
i ∩ Si 6= ∅ and the length of T [{Qv , Q

′′
i }] is maximal. For
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each Si ∈ B, we have Ri = ∅ so Si ⊆ Q′′
i and we can add an edge Q′′

i Qi between T and
Ti. This creates no illegal branching because B is a stable set of H and by the definition
of Q′′

i . Thus we obtain a clique path tree of G, a contradiction. 2

5 Characterization of path graphs

In this section we prove the main theorem, that is, the class of path graphs is exactly
P. We could not find a characterization similar to the one found by Lekkerkerker and
Boland [5] for interval graphs (“an interval graph is a chordal graph with no asteroidal
triple”). We know that in a path graph, the neighborhood of every vertex contains no
asteroidal triple but the converse is not true. So we prove directly that a graph that
does not contain any of the excluded subgraphs is a path graph.

Lemma 4 In a graph in P, the neighborhood of every vertex does not contain an aster-
oidal triple.

Proof. It suffice to check that when a universal vertex is added to a minimal forbidden
induced subgraph for interval graphs ([5]), then one obtains a graph that contains one
of F0, . . . , F5, F10. The easy details are left to the reader. 2

Given three non adjacent vertices a, b, c, we say that a is the middle of b, c if every
path between b and c contains a vertex from N(a). If a, b, c is not an asteroidal triple,
then at least one of them is the middle of the others.

Let us say that a vertex x is complete to a set S of vertices if x is adjacent to every
vertex in S.

Lemma 5 In a chordal graph G with clique tree T , a vertex a is the middle of b, c if
and only if for all cliques Qb and Qc such that b ∈ Qb and c ∈ Qc, there is an edge of
the path T [{Qb, Qc}] such that a is complete to its label.

Proof. Suppose that a is the middle of b, c. Let Qb and Qc be cliaues such that b ∈ Qb

and c ∈ Qc, and suppose there is no edge of T [{Qb, Qc}] such that a is complete to its
label. For each edge on T [{Qb, Qc}], one can select a vertex that is not adjacent to a.
Then the set of selected vertices forms a path from b to c that uses no vertex from N(a),
a contradiction.

Suppose now that for all cliques Qb and Qc such that b ∈ Qb and c ∈ Qc, there is
an edge of the path T [{Qb, Qc}] such that a is complete to its label. Suppose that there
exists a path x0-· · · -xr, with b = x0 and c = xr and none of the xi’s is in N(a). We
can assume that this path is chordless. Then, for 1 ≤ i ≤ r, let Qi be a maximal clique
containing xi−1, xi. Then Q1, . . . , Qr appear in this order along a subpath of T . On each
T [{Qi, Qi+1}] (1 ≤ i ≤ r− 1), vertex a is not adjacent to xi, so a is not complete to any
label of T [{Q1, . . . , Qr}], but Q1 contains b and Qr contains c, a contradiction. 2

Now we are ready to prove the main theorem. Part of the proof has be done in the
previous section. Lemma 3 deals with the case where there exists a simplicial vertex that
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is the middle of two other vertices; now we have to look at the case where all simplicial
vertices are not the middle of any pair of vertices.

Theorem 3 A chordal graph is a path graph if and only if it does not contain any of
F0, . . . , F16 as an induced subgraph.

Proof. By Theorem 2, a path graph is in P. Suppose now that there exists a minimally
not path graph G in P. Graph G is chordal. By Theorem 1, there is a special simplicial
vertex q of G. By Lemma 3, q is co-special. Let Q = Qq and SQ = Sq ∈ S. Let T0 be a
clique path tree of G(Q \ Q). Let Q′ ∈ Q \ Q be such that SQ ⊆ Q′. We add the edge
QQ′ to T0 to obtain a clique tree T ′

0 of G.
For each clique L ∈ Q \ {Q,Q′}, let L′ be the neighbor of L along T0[{L,Q′}]. Let

SL = L∩L′. Let SL be the set of labels of edges incident to L in T0. Let L be the clique
such that L,L′, L, L

′
appear in this order along T0[{L,Q′}], no label of T0[{L

′
, Q′}] is

included in SL, and SL ⊆ SL.
Let L be the set of cliques L of Q\{Q,Q′} such that no element of SL \SL contains

SL.
For each clique L ∈ L, we define a subtree TL of T ′

0, where TL is the biggest subtree

of T ′
0 that contains Q′ and for which no label is included in SL. Note that L

′
is in TL and

L is not in TL. Subtree TL contains Q as q is special and co-special, and so SQ * SL.

Claim 1 For each clique L ∈ L we have L′ ∈ TL.

Proof. Suppose on the contrary that L′ /∈ TL. Then L 6= L. When we remove the edges
LL′ and LL

′
from T ′

0, there remain three connected subtrees. Let T1 be the subtree
containing L, T2 be the subtree containing L′, L, and T3 be the subtree containing
L
′
, Q′, Q. Let T4 be the tree formed by T1, T3 plus the edge LL

′
. Then T4 is a clique

tree of G(Q(T4)). The set Q(T4) contains strictly fewer maximal cliques than Q, so let
T5 be a clique path tree of G(Q(T4)).

We claim that there is an edge of T5 that is incident to L and that has SL as a label.

On the clique tree T4, the label SL is on the edge LL
′
, so it is also a label of T5. So

there is an edge with label S′

L
, incident to L such that SL ⊆ S′

L
⊆ L. Suppose that

SL ( S′

L
. Then there is an edge of T1 or T3 with label S′

L
. No label of T1 can be S′

L
by

the definition of L. All the labels of T3 that are included in L are also included in SL,
so no label of T3 can be S′

L
. So SL = S′

L
.

Let LL
′′

be an edge of T5 incident to L with label SL (maybe L
′′

= L
′
). We can

remove this edge from T5 and replace it by the subtree T2 and edges LL′, LL
′′
. Thus we

obtain a clique path tree of G, a contradiction. 2

Let L∗ be the subset of L such that TL is a strict subtree of T ′
0 \L. Let A be the set

of vertices a of Q such that Q′ is a vertex of T a
0 that is not a leaf. Then A is not empty,

for otherwise T ′
0 would be a clique path tree of G. For each a ∈ A, the leaves of T a

0 are
in L and we claim that at least one of them is in L∗. Let a ∈ A and let L1, L2 be the
leaves of T a

0 . For i = 1, 2, let li ∈ Li \SLi
. The three vertices q, l1, l2 are adjacent to a so
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they do not form an asteroidal triple by Lemma 4, so one of them is the middle of the
others. Vertex q cannot be the middle of l1, l2, for otherwise by Lemma 5 there would
be an edge of T0[{L1, L2}] with a label included in SQ, contradicting that q is co-special.
So one of l1, l2 is the middle of the others (maybe both). By symmetry we can assume
that l1 is the middle of q, l2. So there is an edge of T ′

0[{Q,L2}] with a label included in
SL1

. So TL1
is a strict subtree of T ′

0 \ L1 and so L1 ∈ L∗. So L∗ is not empty.
We choose L ∈ L∗ such that the subtree TL is maximal. Let SQ′ be the label of the

edge of T0[{L,Q′}] that is incident to Q′. Vertex q is special and co-special, so there
exists sQ in SQ\SQ′ , and we have sQ /∈ SL. We add the edge LL′ to TL to obtain a clique
tree T ′

L of G(Q(TL) ∪ {L}). The subtree T ′
L is a strict subtree of T ′

0, so we can consider
a clique path tree T of G(Q(T ′

L)). We claim that L is a leaf of T . If not, then there are
at least two labels of T that are included in SL, which contradicts the definition of TL.

We define U ,V,W as follows :

U = {U ∈ Q \ Q(T ′
L) | UL is an edge of T0}

V = {V ∈ Q \ Q(T ′
L) | ∃ V ′ ∈ Q(TL), s.t. V V ′ is an edge of T0 and SV V ′ ∩ SQ = ∅}

W = {W ∈ Q\Q(T ′
L) | ∃ W ′ ∈ Q(TL), s.t. WW ′ is an edge of T0 and SWW ′ ∩SQ 6= ∅}

For each U ∈ U ∪V ∪W, let TU be the connected component of T ′
0 \T ′

L that contains
U .

We claim that the SV ’s, with V ∈ V ∪W, are pairwise disjoint. For if they are not
disjoint, then there is a vertex in SV ∩ SV ′ with V, V ′ in V ∪W. But then SV , SV ′ are
included in SL, so this vertex is on three labels of T0 that are not on a path, contradicting
that T0 is a clique path tree.

Let U1 = {U ∈ U | ∃ W ∈ W such that U ∩ W 6= ∅}.

Claim 2 There exists U ∈ U1, such that SU \ Q′ 6= ∅·

Proof. We define Up≥1,Vp≥0 as follows. Let V0 = W and for p ≥ 1:

Up = {U ∈ U \ (U1 ∪ · · · ∪ Up−1) | ∃ V ∈ Vp−1 such that U ∩ V 6= ∅}

Vp = {V ∈ V \ (V1 ∪ · · · ∪ Vp−1) | ∃ U ∈ Up−1 such that V ∩ U 6= ∅}

Let k be the smallest k ≥ 1 such that there exists U ∈ Uk with SU \ Q′ 6= ∅. Let
k = ∞ if it does not exists.

Suppose by contradiction that k > 1. For all 1 ≤ p ≤ k − 1 and all U ∈ Up, we have
SU ⊆ Q′ and we define U ′′ ∈ Q(T ) such that U ′′ ∩ SU 6= ∅ and the length of T [{L,U ′′}]
is maximal.

Suppose that there exists Up ∈ Up, 1 ≤ p ≤ k − 1, such that SUp * U ′′
p , and let p be

minimal with this property. Let V0, . . . , Vp−1, U1, . . . , Up be such that Vi ∈ Vi, Ui ∈ Ui,
Vi−1 ∩Ui 6= ∅, and Ui ∩Vi 6= ∅. Let ui ∈ Ui \SUi

, let vi ∈ Vi \SVi
. Let x1, . . . , xr be such

that x1 ∈ V0 ∩ U1, x2 ∈ U1 ∩ V1, . . . , xr ∈ Vp−1 ∩ Up with r = 2p − 1. By the definition
of V, none of x2, . . . , xr is in Q. Let x0 ∈ V0 ∩ Q (maybe x0 = x1). As x0 ∈ SV0

, vertex
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x0 is also is L. None of U2, . . . , Up can contain x0 by the definition of U1. Let Z be a
clique of TL such that Z ′ ∈ T x0

0
, SUp ⊆ Z ′, SUp ∩ Z 6= ∅ and SUp \ Z 6= ∅ (such a Z

exists because of U ′′
p ). Let z ∈ Z \ Z ′. Vertex Q′ is on T [{L,Z ′}] as SUp ⊆ Q′. We

choose vertices y1, . . . , ys on the labels of T ′
0[Z,Q] such that none of them is in SL and

z-y1-· · · -ys-q is a chordless path.
If Z ∈ T x0

0
, then let b ∈ SUp \Z. As q is special and co-special, we have SQ * SZ , so

let c ∈ SQ\SZ . Then z, l, q form an asteroidal triple, with paths z-y1-· · · -ys-q and l-b-c-q,
and they lie in the neighborhood of x0, a contradiction. So Z /∈ T x0

0
. Let xr+1 ∈ Z ∩Up.

If xr+1 ∈ Q, then z, l, q form an asteroidal triple, with paths z-y1-· · · -ys-q and l-x0-q,
and they lie in the neighborhood of xr+1, a contradiction; so xr+1 /∈ Q. The SUi

’s are
all included in Q′ and so in SL too. They are pairwise disjoint, for otherwise T0 is not
a clique path tree. Let l ∈ L \ SL. Vertex l is not in any of the SUi

’s, and l is adjacent
to x0, . . . , xr+1 but none of u1, . . . , up, v0, . . . , vp−1, y1, . . . , ys, z, q.

Suppose that one of x1, x0 is in V0 ∩U1 ∩Q. Then we can assume that x0 = x1. Let
L1, L2 ∈ L be the leaves of T x0

0
with U1 ∈ T0[{L1, Q

′}] and V0 ∈ T0[{L2, Q
′}]. Every

edge of TL is not included in SL and so is not included in SL1
. So TL1

contains TL. If
L1 ∈ L∗, then TL1

= TL by the maximality of TL. But then L′
1 is not in TL1

, which
contradicts Claim 1. So L1 /∈ L∗ and L2 ∈ L∗. Every edge of TL is not included in SL

and so is not included in SV0
and also not in SL2

. So TL2
contains TL. Vertex xr+1 /∈ SV0

,
so xr+1 /∈ SL2

, so SL * SL2
, so TL2

contains L, which contradicts the maximality of TL.
So x0 6= x1, x0 /∈ U1, x1 /∈ Q.

If s = 1, then u1, . . . , up, v0, . . . , vp−1, x0, . . . , xr+1, y1, q, z, l induce F14(4p + 5)p≥1. If
s = 2, then u1, . . . , up, v0, . . . , vp−1, x0, . . . , xr+1, y1, y2, q, z, l induce F15(4p + 6)p≥1. If
s ≥ 3, then x0, xr+1, y1, . . . , ys, q, z, l induce F10(s + 5)s≥3. A contradiction.

Therefore we have SU ⊆ U ′′ for every U ∈ Up, 1 ≤ p ≤ k − 1.
Suppose that k is infinite. Then, the Ui’s are pairwise disjoint, for otherwise T0 is

not a clique path tree as SUi
⊆ Q′. For each V ∈

⋃
p≥0

Vp, we add the edge V L between
TV and T . For each U ∈

⋃
p≥1

Up, we add the edge UU ′′ between TU and T . For each
U ∈ U \ (

⋃
p≥1

Up), we add the edge UL between TU and T . For each V ∈ V \ (
⋃

p≥1
Vp),

we define V ′′ ∈ Q(T ) such that V ′′ ∩ SV 6= ∅ and the length of T [{L, V ′′}] is maximal.
By the definition of V, we have SV ∩ Q = ∅, so V ′′ 6= Q, so V ′′ is a vertex of TL on
T0[L, V ] so it contains all SV as SV ⊆ SL. Then we can add the edge V V ′′ between TV

and T to obtain a clique path tree of G, a contradiction.
So k is finite and ≥ 2.
As before, let V0, . . . , Vk−1, U1, . . . , Uk be such that Vi ∈ Vi, Ui ∈ Ui, Vi−1 ∩ Ui 6= ∅,

and Ui ∩ Vi 6= ∅. Let ui ∈ Ui \ SUi
, let vi ∈ Vi \ SVi

. Let x1, . . . , xr be such that
x1 ∈ V0 ∩U1, x2 ∈ U1 ∩ V1, . . . , xr ∈ Vk−1 ∩Uk with r = 2k − 1. None of x2, . . . , xr is in
Q. Let x0 ∈ V0 ∩ Q.

Suppose that one of x1, x0 is in V0 ∩ U1 ∩ Q. Then we can assume that x0 = x1.
Let L1, L2 ∈ L be the leaves of T x0

0
with U1 ∈ T0[{L1, Q

′}] and V0 ∈ T0[{L2, Q
′}]. As

before, we have L2 ∈ L∗. Every edge of TL is not included in SL so it is also not in SV0

and not in SL2
. So TL2

contains TL. We have k ≥ 2, so U2 exists and there is a vertex
x2 ∈ U1 ∩ V1. Vertex x2 is not in SV0

, so it is not in SL2
, so SL * SL2

, so TL2
contains
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L, which contradicts the maximality of TL. So x0 6= x1, x0 /∈ U1, x1 /∈ Q.
Let sUk

∈ SUk
\ Q′. Vertex sUk

is not adjacent to any of q, sQ, v0, . . . , vk−1 because
sUk

/∈ Q′, and by the minimality of k, vertex sUk
is not adjacent to u1, . . . , uk−1. Then

u1, . . . , uk, v0, . . . , vk−1, x0, . . . , xr, sUk
, sQ, q induce F16(4k + 3)k≥2. A contradiction. 2

Let U ∈ U1 be such that SU \ Q′ 6= ∅. Let sU ∈ SU \ Q′. Vertex sU is not adjacent
to sQ. Let u ∈ U \ SU . Let W ∈ W be such that U ∩ W 6= ∅. Let w ∈ W \ SW .

Claim 3 SW = SL.

Proof. Suppose SW 6= SL. Then SW ( SL. By the definition of W, there exists
a ∈ W ∩ Q and so a ∈ L.

Suppose SW ⊆ SU . Then a is in U . Let L1, L2 ∈ L be the leaves of T a
0 with

U ∈ T0[{L1, Q
′}] and W ∈ T0[{L2, Q

′}]. Every edge of TL is not included in SL so it
is also not in SL1

. By the definition of L, the set SL is not included in SL1
. So TL1

is
strictly greater than TL. So L1 /∈ L∗, so L2 ∈ L∗. Every edge of TL is not included in
SL, so it is also not in SW and not in SL2

. The same goes for SL by the hypothesis. So
TL2

is strictly greater than TL, which contradicts the definition of L. So SW * SU . Let
b be a vertex of SW \ SU .

Vertex sU is in SU \Q′, so SU * SW . Every labels of the edges of TL is not included
in SL, so it is also not in SW . So we can choose vertices x1, . . . , xr on the labels of
T ′

0[{U,Q}] such that none of the xi’s is in SW , x1 ∈ U , xr ∈ Q and x1-· · · -xr is a
chordless path.

Then w-b-sq-q is a path from w to q that avoids N(u); and u-x1-. . .-xr-q is a path
from u to q that avoids N(w). So q, u,w form an asteroidal triple. By Lemma 4, we
have Q ∩ U ∩ V = ∅. So a /∈ U .

Let c ∈ U ∩ W (by the definition of U1). Vertex c is not in Q. Let r = 1. Then
x1 is different from sU and sQ, and q, u,w, a, c, sQ, sU , x1 induce F8. Let r = 2. If x1

is adjacent to sQ, then q, u,w, a, c, sQ, sU , x1 induce F9; and if x1 is not adjacent to
sQ, then q, u,w, a, c, sQ, x1, x2 induce F9. If r ≥ 3, then q, u,w, a, c, x1 , . . . , xr induce
F10(r + 5)r≥3. In all cases we obtain a contradiction. 2

Claim 4 W ∈ L∗

Proof. Suppose that W /∈ L∗. Let a ∈ W ∩ Q, we have a ∈ L. Let L1, L2 ∈ L be the
leaves of T a

0 , with L ∈ T0[{L1, Q
′}] and W ∈ T0[{L2, Q

′}]. Let K ∈ T0[{L2,W}] ∩ L be
such that the length of T0[{K,W}] is minimal. If W ∈ L, then TW = TL and W ∈ L∗,
a contradiction. So W /∈ L, so W 6= K. The edges of TL are not included in SL, so they
are also not in SW and not in SK . So TK contains TL. If K ∈ L∗, then TK = TL by the
maximality of TL, which contradicts Claim 1; so K /∈ L∗. So TK = T ′

0 \K and the labels
of T ′

0 \ K are not included in SK , so SW * SK . Let X be the edge of T0[{W,K}] such
that X ′ contains SW and X does not (maybe X ′ = W , X = K). The set SX contains a
but not all of S′

X . So no element of SX′ \ SX′ contains SX′ . So X ′ ∈ L, a contradiction
to the definition of K. 2
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By claim 4, we have W ∈ L∗. Then TW = TL is also maximal and what we have
proved for L can be done for W . By Claim 2 we know that there exists X /∈ TL such
that XW is an edge of T0 with SX ∩ SW 6= ∅ and SX \ Q′ 6= ∅. Let x ∈ X \ W . Let
sX ∈ SX \ Q′. Vertex sX is not in SW , for otherwise it would also be in SL and in
Q′. Vertex sQ is not in SL, so not in SW . So sQ, sX are not adjacent. We distinguish
between two cases.

Case 1: U ∩ X = ∅. Let a ∈ U ∩ W , so a /∈ X. Suppose a /∈ Q. If there exists
b ∈ X ∩ Q then b is also in L and q, u, x, sQ, sU , sX , a, b induces F6, a contradiction.
So there is no vertex is X ∩ Q. Let c ∈ W ∩ Q, we have c ∈ L and c /∈ X. Let
d ∈ X ∩ SW , we have d /∈ Q. If c is adjacent to U , then q, u, x, sQ, sU , sX , c, d induces
F6, if c misses u, then q, u, x, sQ, sU , sX , a, c, d induce F7, a contradiction. So a ∈ Q. Let
e ∈ X ∩ SW . If e /∈ Q then q, u, x, sQ, sU , sX , a, e induce F6, a contradiction, so e ∈ Q.
Let f ∈ SW \SQ (as q is special and co-special); maybe f is in U or X, but not in both.
Then q, u, x, sU , sX , a, e, f induce F9 or F10(8), according to whether f is adjacent to
none or exactly one of u, x, a contradiction.

Case 2: U ∩X 6= ∅. Suppose U ∩X ∩Q 6= ∅. Let z ∈ U ∩X ∩Q. Let L1, L2 ∈ L be
the leaves of T z

0 . Let i ∈ {1, 2} be such that Li ∈ L∗. The edges of TL are not included
in SL = SW , thus also not in SLi

. So TLi
contains TL, so TLi

= TL by maximality of TL.
But this contradicts Claim 1. So U ∩ X ∩ Q = ∅.

Let a ∈ U ∩ X. Vertex a is not in Q. Let b ∈ W ∩ Q. If b /∈ X ∪ U , then
q, u, x, sQ, sU , sX , a, b induce F6, a contradiction. If b ∈ X, then b /∈ U . Let c ∈ SW \SX .
If c ∈ U \Q, then q, u, x, sQ, sU , sX , b, c induce F6. If c ∈ Q\U , then q, u, x, sQ, sU , sX , a, c
induce F6. If c ∈ U ∩ Q, then q, u, x, sQ, sU , sX , a, b, c induce F8. If c /∈ U ∪ Q, then
q, u, x, sQ, sU , a, b, c induce F10(8). A contradiction. If b ∈ U , then b /∈ X. Let d ∈
SL \ SU . If d ∈ X \ Q, then q, u, x, sQ, sU , sX , b, d induce F6. If d ∈ Q \ X, then
q, u, x, sQ, sU , sX , a, d induce F6. If d ∈ U ∩ Q, then q, u, x, sQ, sU , sX , a, b, d induce F8.
If d /∈ U ∪ Q, then q, u, x, sQ, sU , a, b, d induce F10(8). A contradiction.

This ends the proof of Theorem 3. 2

6 Recognition algorithm

Gavril [4] and Schäffer [9] gave polynomial time algorithms to recognize path graphs.
The characterization that we give in this paper suggests a new recognition algorithm,
which takes any graph G as input and either builds a clique path tree for G or finds one
of F0, . . . , F16. We have not analyzed the exact complexity of such a method but it will
give a new polynomial algorithm to recognize path graphs.

There are linear time recognition algorithms for interval graphs [1] and triangulated
graphs [8] but surprisingly not for path graphs. One can hope that the work presented
here will be helpful in the search for a linear time recognition algorithm for path graphs.
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F0(n)n≥4

Figure 1: Forbidden subgraphs with no simplicial vertices

F1 F2 F3 F4 F5(n)n≥7

Figure 2: Forbidden subgraphs with a universal vertex

F6 F7 F8 F9 F10(n)n≥8

Figure 3: Forbidden subgraphs with no universal vertex and exactly three simplicial
vertices

F11(4k)k≥2 F12(4k)k≥2 F13(4k + 1)k≥2 F14(4k + 1)k≥2 F15(4k + 2)k≥2

Figure 4: Forbidden subgraphs with at least one simplicial vertex that is not co-special.
(bold edges form a clique)

F16(4k + 3)k≥2

Figure 5: Forbidden subgraphs with ≥ 4 simplicial vertices that are all co-special. (bold
edges form a clique)
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