Characterizing path graphs by forbidden induced subgraphs

Benjamin Lévêque, Frédéric Maffray, Myriam Preissmann

To cite this version:

Benjamin Lévêque, Frédéric Maffray, Myriam Preissmann. Characterizing path graphs by forbidden induced subgraphs. 2008. hal-00261413v1

HAL Id: hal-00261413
 https://hal.science/hal-00261413v1

Preprint submitted on 6 Mar 2008 (v1), last revised 17 Apr 2008 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Characterizing path graphs by forbidden induced subgraphs

Benjamin Lévêque, Frédéric Maffray, Myriam Preissmann

March 6, 2008

Abstract

A graph is a path graph if it is the intersection graph of a family of subpaths of a tree. In 1970, Renz asked for a characterizaton of path graph by forbidden induced subgraphs. Here we answer this question by listing all graphs that are not path graphs and are minimal with this property.

1 Introduction

A hole is a chordless cycle of length at least four. A graph is chordal (or triangulated) if it contains no holes as an induced subgraph. Gavril [3] proved that a graph is chordal if and only if it is the intersection graph of a family of subtrees of a tree.

An interval graph is the intersection graph of a family of intervals; equivalently, it is the intersection graph of a family of subpaths of a path. An asteroidal triple in a graph G is a set of three non adjacent vertices such that for any two of them, there exists a path between them in G that does not intersect the neighborhood of the third. Lekkerkerker and Boland [5] proved that a graph is an interval graph if and only if it is chordal and contains no asteroidal triple. They derive from this result the list of minimal forbidden subgraphs for interval graphs.

Another interesting class is the class of path graphs. A graph is a path graph if it is the intersection graph of a family of subpaths of a tree. Clearly, the class of path graphs is included in the class of chordal graphs and contains the class of interval graphs. Several characterizations of path graphs have been given [4, 6, 7] but no characterization by forbidden subgraphs is known, whereas such results exists for intersection graphs of subpaths of a paths (interval graphs [3]) and subtrees of a tree (chordal graphs [5]).

In 1970, Renz 7 gave two examples of graphs that are chordal and not path graphs and are minimal with this property. He also asked for a complete list of such graphs. In this paper we answer this question and obtain a characterizaton of path graphs by forbidden induced subgraphs.

2 Special simplicial vertices in chordal graphs

A vertex is simplicial if its neighborhood is a clique.

Let G be a chordal graph, and let $\mathcal{Q}(G)$ be the set of all maximal cliques of G. A separator in a graph G is a set S of vertices of G such that there exist two vertices of G that lie in two different components of $G \backslash S$ and S is minimal with this property. Let $\mathcal{S}(G)$ be the set of separators of G. Given a simplicial vertex v, let $Q_{v}=N(v) \cup\{v\}$ and $S_{v}=Q_{v} \cap N\left(V \backslash Q_{v}\right)$. Since v is simplicial, $Q_{v} \in \mathcal{Q}$ (remark that S_{v} is not necessarly in $\mathcal{S})$.

A clique tree T of G is a tree whose vertices are in \mathcal{Q} and such that for each vertex v of G, the set of cliques that contain v induces a subtree of T. A graph is chordal if and only if it has a clique tree representation.

For a clique tree T, the label of an edge $Q Q^{\prime}$ of T is $S_{Q Q^{\prime}}=Q \cap Q^{\prime}$. For all edges $Q Q^{\prime}$, we have $S_{Q Q^{\prime}} \in \mathcal{S}$. The number of times an element S of \mathcal{S} appears as a label of an edge is constant for every clique-tree.

Given $X \subseteq \mathcal{Q}$, let $G(X)$ be the subgraph of G induced by all the vertices that appears in members of X. If T is a clique tree of G, then $T[X]$ is the subtree of T of minimum size whose vertices contains X. Note that if $|X|=2$, then $T[X]$ is a path. For every vertex a, set $T^{a}=T[\{Q \in \mathcal{Q} \mid a \in Q\}]$.

Given a subtree T^{\prime} of a clique-tree T of G. Let $\mathcal{Q}\left(T^{\prime}\right)$ be the set of vertices of T^{\prime} and $\mathcal{S}\left(T^{\prime}\right)$ be the set of separators of $G\left(\mathcal{Q}\left(T^{\prime}\right)\right)$.

The following lemma is clear.
Lemma 1 A vertex is simplicial if and only if it does not belong to any separator.
Dirac [2] proved that a chordal graph that is not a clique contains two non adjacent simplicial vertices. We need to generalize this theorem to the following. Let us say that a simplicial vertex v is special if S_{v} is (inclusionwise) maximal in \mathcal{S}.

Theorem 1 In a chordal graph that is not a clique, there exist two non adjacent special simplicial vertices.

Proof. We prove the lemma by induction on $|\mathcal{Q}|$. By the hypothesis, G is not a clique, so $|\mathcal{Q}| \geq 2$. If $|\mathcal{Q}|=2$, then \mathcal{S} has only one element S that is maximal. Let $\mathcal{Q}=\left\{Q, Q^{\prime}\right\}$, $v \in Q \backslash Q^{\prime}$ and $v^{\prime} \in Q^{\prime} \backslash Q$. Then v and v^{\prime} are simplicial and $S_{v}=S_{v^{\prime}}=S$ is a maximal set of \mathcal{S}. Suppose now that $|\mathcal{Q}| \geq 3$.

Case 1: \mathcal{S} has only one maximal element S. Let Q, Q^{\prime} be two maximal cliques such that $Q \cap Q^{\prime}=S$. Let $v \in Q \backslash Q^{\prime}$ and $v^{\prime} \in Q^{\prime} \backslash Q$. The set S is the only maximal separator and it does not contain v or v^{\prime}. So v and v^{\prime} do not belong to any element of \mathcal{S}, and they are simplicial by Lemma 1 and $S_{v}=S_{v^{\prime}}=S$.

Case 2: \mathcal{S} has two distinct maximal elements S, S^{\prime}. Let T be a clique tree of G. Let $Q_{1}, Q_{2}, Q_{1}^{\prime}, Q_{2}^{\prime} \in \mathcal{Q}$ bz such that $S=S_{Q_{1} Q_{2}}, S^{\prime}=S_{Q_{1}^{\prime} Q_{2}^{\prime}}$, and $Q_{2}, Q_{1}, Q_{1}^{\prime}, Q_{2}^{\prime}$ appear in this order along the path $T\left[\left\{Q_{2}, Q_{1}, Q_{1}^{\prime}, Q_{2}^{\prime}\right\}\right]$ (maybe $Q_{1}=Q_{1}^{\prime}$).

Let Z be the subtree of $T \backslash Q_{1}$ that contains Q_{2} plus the vertex Q_{1} and the edge $Q_{1} Q_{2}$. The subtree Z does not contain Q_{2}^{\prime}, so $G(\mathcal{Q}(Z))$ has strictly fewer maximal cliques than G. By the induction hypothesis, let $v, v^{\prime \prime}$ be two non adjacent vertices of $G(\mathcal{Q}(Z))$ such that $S_{v}, S_{v^{\prime \prime}}$ are maximal elements of $\mathcal{S}(Z)$. At most one of $v, v^{\prime \prime}$ is in Q_{1} since they are not adjacent. Suppose v is not in Q_{1}.

We claim that v is a simplicial vertex of G with S_{v} a maximal element of \mathcal{S}. Vertex v does not belong to any element of $\mathcal{S}(Z)$. If it belongs to an element of $\mathcal{S} \backslash \mathcal{S}(Z)$, then it will also belong to $S \in \mathcal{S}(Z)$, a contradiction. So v does not belong to any element of \mathcal{S} and it is a simplicial vertex of G by Lemma B. The set S_{v} is a maximal element of $\mathcal{S}(Z)$. If it is not a maximal element of \mathcal{S}, then it will be included in $S \in \mathcal{S}(Z)$, a contradiction. So v is a special simplicial vertex of G.

Let Z^{\prime} be the subtree of $T \backslash Q_{1}^{\prime}$ that contains Q_{2}^{\prime} plus the vertex Q_{1}^{\prime} and the edge $Q_{1}^{\prime} Q_{2}^{\prime}$. Just like with v, we can find a simplicial vertex v^{\prime} of $G\left(\mathcal{Q}\left(Z^{\prime}\right)\right)$ not in Q_{1}^{\prime} that is a simplicial vertex of G with $S_{v^{\prime}}$ being a maximal element of \mathcal{S}.

Vertices v, v^{\prime} are not adjacent as there are separated by Q_{1}.
Algorithms LexBFS [8] and MCS [10] are linear time algorithms that were developed to find a simplicial vertex in a chordal graph. Most of the time the simplicial vertex that is found is not special. For example, on the graph with vertices a, b, c, d, e, f and edges $a b, c b, c a, d a, d b, e a, e c, a f$, both algorithms LexBFS and MCS will always end on the simplicial vertex f, which is not special, if they start with one of d, b, c, e.

The proof of Theorem [1 can be turned into a polynomial time algorithm to find a special simplicial vertex in a chordal graph. We do not know how to find such a vertex in linear time.

3 Forbidden induced subgraphs

 section we prove that they are not path graphs and are minimal with this property. In the next sections, we prove that they are the only minimal forbidden induced subgraphs for path graphs.

Each graph in Figure 2 is obtained by adding a universal vertex to some minimal forbidden subgraph for interval graphs. Graphs $F_{10}(n)_{n \geq 8}$ are also forbidden in interval graphs. Graphs F_{6} and $F_{10}(8)$ are from Renz [7, Figures 1 and 5].

The following lemma is clear.
Lemma 2 In a path graph the neighborhood of every vertex is an interval graph.
Lekkerkerker and Boland (5] proved that a graph is an interval graph if and only if it is chordal and contains no asteroidal triple. So we can deduce the following corollaries.

Corollary 1 In a path graph the neighborhood of every vertex contains no asteroidal triple.

Corollary $2 F_{1}, \ldots, F_{5}$ are not path graphs.
One could have hoped (as we did initially) that a chordal graph in which the neighborhood of every vertex contains no asteroidal triple is a path graph; but this is not true, as shown by graphs F_{6}, \ldots, F_{15}.

Theorem $2 F_{0}, \ldots, F_{15}$ are minimally not path graphs.
Proof. We give here only a brief outline of the proof and leave the details to the reader. Suppose that F_{i} is a path graph for any $i=0, \ldots, 15$. Try to build an intersection model for F_{i}, and realize that it is impossible. Then, for each vertex x, observe that $F_{i} \backslash x$ is a path graph.

Let \mathcal{P} be the class of graphs that do not contain any of F_{0}, \ldots, F_{15} as an induced subgraph. We will prove that graphs in \mathcal{P} are exactly path graphs.

4 Co-special simplicial vertices

A clique path tree T of G is a clique tree of G such that, for each vertex v of G, the subtree induced by the set of cliques that contain v is a path. Clearly, a graph is a path graph if and only if it has a clique path tree.

A simplicial vertex v is co-special if S_{v} is a minimal element of \mathcal{S} and $G \backslash S_{v}$ has exactly two components (note that in that case S_{v} appears on exactly one label of any path tree of G).

Lemma 3 Let G be a minimally not path graph. Then either G is one of $F_{11}, \ldots F_{15}$ or every simplicial vertex of G is co-special.

Proof. Suppose on the contrary that G is minimally not path graph, different from $F_{11}, \ldots F_{15}$, and there is a simplicial vertex v of G that is not co-special. All simplicial vertices of $F_{0}, \ldots F_{10}$ are co-special, so G is not any of these graphs; moreover it does not contain any of them strictly (for otherwise G would not be minimally not path graph). So G is in \mathcal{P}.

Let T_{0} be a clique path tree of $G\left(\mathcal{Q} \backslash Q_{v}\right)$. Let $Q_{v}^{\prime} \in \mathcal{Q} \backslash Q_{v}$ be such that $S_{v} \subseteq Q_{v}^{\prime}$. If $Q_{v}^{\prime}=S_{v}$, then we can add v to Q_{v}^{\prime} to obtain a clique path tree of G, a contradiction. So $Q_{v}^{\prime} \neq S_{v}$ and $S_{v} \in \mathcal{S}$.

Let T^{\prime} be the maximal subtree of T_{0} that contains Q_{v}^{\prime} and such that no label of the edges of T_{0} is included in S_{v}. Vertex v is not co-special, so in T_{0} there is an edge whose label is included in S_{v}, and so T^{\prime} has strictly fewer vertices than T_{0}. So $G\left(\mathcal{Q}\left(T^{\prime}\right) \cup\left\{Q_{v}\right\}\right)$ is a path graph. Let T be a clique path tree of this graph.

We claim that Q_{v} is a leaf of T. If not, then there are at least two labels of T that are included in S_{v}, which contradicts the definition of T^{\prime} (the number of times a label appears in a clique tree is constant).

Let T_{1}, \ldots, T_{l} be the subtrees of $T_{0} \backslash T^{\prime}(l \geq 1)$. For $1 \leq i \leq l$, let $Q_{i} Q_{i}^{\prime}$ be the edge between T_{i} and T^{\prime} with $Q_{i} \in T_{i}$ and $Q_{i}^{\prime} \in T^{\prime}$ (remark that Q_{1}, \ldots, Q_{l} are disjoint but maybe $Q_{v}^{\prime}, Q_{1}^{\prime}, \ldots, Q_{l}^{\prime}$ are not). Let $S_{i}=Q_{i} \cap Q_{i}^{\prime}$ and $v_{i} \in Q_{i} \backslash Q_{i}^{\prime}$. Let $\mathcal{H}=\left(V_{\mathcal{H}}, E_{\mathcal{H}}\right)$ be the intersection graph of S_{1}, \ldots, S_{l}, that is, $V_{\mathcal{H}}=\left\{S_{1}, \ldots, S_{l}\right\}$ and $E_{\mathcal{H}}=\left\{S_{i} S_{j} \mid S_{i} \cap S_{j} \neq\right.$ $\emptyset\}$. For $1 \leq i \leq l$, let $\mathcal{R}_{i}=\left\{S \in \mathcal{S}\left(T^{\prime}\right) \mid S_{i} \cap S \neq \emptyset\right.$ and $\left.S_{i} \backslash S \neq \emptyset\right\}$. Let $X=\left\{S_{i} \mid \mathcal{R}_{i} \neq \emptyset\right\}$.

Claim $1 \mathcal{H}$ contains no odd cycle.

Proof. Suppose on the contrary that $S_{i_{1}} \cdots-S_{i_{p}}-S_{i_{1}}$ is a cycle of \mathcal{H} of odd length $p=2 r+1(r \geq 1)$. Let $I_{j}=S_{i_{j}} \cap S_{i_{j+1}}$, with $S_{i_{p+1}}=S_{i_{1}}$. Suppose that for some $j \neq k$ we have $I_{j} \cap I_{k} \neq \emptyset$; then there are at least three distinct cliques in $Q_{i_{j}}, Q_{i_{j+1}}, Q_{i_{k}}, Q_{i_{k+1}}$ with a common vertex, which contradicts the fact that T_{0} is a clique path tree as these three cliques are not on a path of T_{0}. For $1 \leq j \leq p$, let $s_{j} \in I_{j}$. By the preceeding remark, the s_{j} 's are pairwise distinct. By the definition of T^{\prime}, we have $S_{j} \subseteq S_{v}$ for each $1 \leq j \leq p$, so the s_{j} 's are all in Q_{v} and Q_{v}^{\prime}. Let $v^{\prime} \in Q_{v}^{\prime} \backslash Q_{v}$. Let us consider the subgraph induced by $v, v^{\prime}, v_{i_{1}}, \ldots, v_{i_{p}}, s_{1}, \ldots, s_{p}$. Each of the non-adjacent vertices v and v^{\prime} is adjacent to all of the clique formed by the s_{j} 's. Each vertex v_{j} is adjacent to s_{j-1} and s_{j} (with $s_{0}=s_{p}$) and not to v. Vertex v^{\prime} can have 0,1 or 2 neighbors among the v_{j} 's. If v has 0 neighbor, then $v, v^{\prime}, v_{i_{1}}, \ldots, v_{i_{p}}, s_{1}, \ldots, s_{p}$ induce $F_{11}(4 r+4)_{r \geq 1}$. If v has 1 neighbor, then $v, v^{\prime}, v_{i_{1}}, \ldots, v_{i_{p}}, s_{1}, \ldots, s_{p}$ induce $F_{12}(4 r+4)_{r \geq 1}$. If v has 2 consecutive neighbors $v_{i_{j}}, v_{i_{j+1}}$, then $v, v^{\prime}, v_{i_{j}}, v_{i_{j+1}}, s_{j-1}, s_{j}, s_{j+1}$ induce F_{2}. If v has 2 non-consecutive neighbors $v_{i_{j}}$, $v_{i_{k}}$, then we can assume that $1 \leq j<j+1<k \leq p$ and $k-j$ is odd, $k-j=2 s+1$ with $s \geq 1$, and then $v, v^{\prime}, v_{i_{j}}, \ldots, v_{i_{k}}, s_{j}, \ldots, s_{k-1}$ induce $F_{14}(4 s+5)_{s \geq 1}$, in all cases we obtain a contradiction.

Claim $2 \mathcal{H}$ contains no odd path between two vertices in X.
Proof. Suppose on the contrary that $S_{i_{1}} \cdots-S_{i_{p}}$ is an odd path of \mathcal{H} between two vertices $S_{i_{1}}, S_{i_{p}}$ in X, and assume that its length $p=2 k(k \geq 1)$ is minimal with this property. By the minimality, all interior vertices $S_{i_{j}}(1<j<p)$ are not in X. For $1 \leq j<p$, let $s_{j}=S_{i_{j}} \cap S_{i_{j+1}}$. As in the preceding claim, the s_{j} 's are pairwise distinct and lie in Q_{v} and Q_{v}^{\prime}. Let P be the subpath $T\left(\left\{Q_{i_{1}}^{\prime}, Q_{i_{2}}^{\prime}\right\}\right)$. If $p \neq 2$, then $S_{i_{2}}$ is not in X, so $Q_{i_{3}}^{\prime}=Q_{i_{1}}^{\prime}$; then $S_{i_{3}}$ is not in X, so $Q_{i_{4}}^{\prime}=Q_{i_{2}}^{\prime}$, and so on. So, the two extremities of P are $Q_{i_{1}}^{\prime}=Q_{i_{3}}^{\prime}=\cdots=Q_{i_{p-1}}^{\prime}$ and $Q_{i_{2}}^{\prime}=Q_{i_{4}}^{\prime}=\cdots=Q_{i_{p}}^{\prime}$.

Set $S_{i_{1}}$ is in X, so we can choose $R_{1} \in \mathcal{R}_{i_{1}}$ such that R_{1} is the label of an edge $Q_{i_{0}} Q_{i_{0}}^{\prime}$ of T^{\prime}, with $Q_{i_{0}}^{\prime} \in P$ and $Q_{i_{0}} \notin P$. Let $s_{0} \in S_{i_{1}} \cap R_{1}$ and $v_{i_{0}} \in Q_{i_{0}} \backslash Q_{i_{0}}^{\prime}$. Vertex s_{0} belongs to Q_{v} and Q_{v}^{\prime} by the definition of T^{\prime} and is distinct from s_{1}, \ldots, s_{p-1} because T^{\prime} is a clique path tree. Vertex $v_{i_{0}}$ is not adjacent to any of s_{1}, \ldots, s_{p-1} because T^{\prime} is a clique path tree. Similarly, define $R_{p} \in \mathcal{R}_{i_{p}}$ such that R_{p} is the label of an edge $Q_{i_{p+1}} Q_{i_{p+1}}^{\prime}$ of T^{\prime}, with $Q_{i_{p+1}}^{\prime} \in P$ and $Q_{i_{p+1}} \notin P$. Let $s_{p} \in S_{i_{p}} \cap R_{p}$ and $v_{i_{p+1}} \in Q_{p+1} \backslash Q_{p+1}^{\prime}$. Vertex s_{p} belongs to Q_{v} and Q_{v}^{\prime} and is distinct from s_{0}, \ldots, s_{p-1}. Vertex $v_{i_{p+1}}$ is not adjacent to any of s_{1}, \ldots, s_{p-1}. As T^{\prime} is a clique path tree, vertices s_{p} and s_{0} are distinct, Q_{v}^{\prime} lies between $Q_{i_{0}}, Q_{i_{1}}^{\prime}$ and between $Q_{i_{p+1}}, Q_{i_{p}}^{\prime}$ along P. Cliques $Q_{i_{0}}, Q_{i_{p+1}}$ are not necessarly disjoint as for $Q_{v}^{\prime}, Q_{i_{0}}^{\prime}, Q_{i_{p+1}}^{\prime}$.

Case 1: $Q_{i_{0}}=Q_{i_{p+1}}$. Then $Q_{i_{0}}^{\prime}=Q_{i_{p+1}}^{\prime}=Q^{\prime}$ and we can assume that $v_{i_{0}}=v_{i_{p+1}}$. By the definition of T^{\prime}, there exists $r \in R_{1} \backslash S_{v}$. Vertex r is distinct from s_{0}, s_{p} as it is not adjacent to v. Vertex r is adjacent to $v_{i_{0}}, s_{0}, \ldots, s_{p}$ and to no other vertex among $v, v_{i_{1}}, \ldots, v_{i_{p}}$. So $v, r, v_{i_{0}}, \ldots, v_{i_{p}}, s_{0}, \ldots, s_{p}$ induce $\mathcal{F}_{13}(4 k+4)_{k \geq 1}$, a contradiction.

Case 2: $Q_{i_{0}} \neq Q_{i_{p+1}}$. Then $v_{i_{0}}$ and $v_{i_{p+1}}$ are distinct. We can choose vertices $x_{1}, \ldots, x_{r},(r \geq 1)$ not in S_{v} and on the labels of $T^{\prime}\left[\left\{Q_{i_{0}}, Q_{i_{p+1}}\right\}\right]$ such that they
form a chordless path $v_{i_{0}}-x_{1}-\ldots-x_{r}-v_{i_{p+1}}$. These vertices are distinct from the previous ones, there are adjacent to s_{0}, \ldots, s_{p} and not to $v, v_{i_{1}}, \ldots, v_{i_{p}}$. If $r=1$, then $v, v_{i_{0}}, \ldots, v_{i_{p+1}}, s_{0}, \ldots, s_{p}, x_{1}$ induce $\mathcal{F}_{14}(4 k+5)_{k \geq 1}$. If $r=2$, then $v, v_{i_{0}}, \ldots, v_{i_{p+1}}$, $s_{0}, \ldots, s_{p}, x_{1}, x_{2}$ induce $\mathcal{F}_{15}(4 k+6)_{k \geq 1}$. If $r \geq 3$, then $v, v_{i_{0}}, v_{i_{p+1}}, s_{0}, s_{p}, x_{1}, \ldots, x_{r}$ induce $\mathcal{F}_{10}(r+5)_{r \geq 3}$. A contradiction.

By the prceding claims, \mathcal{H} is a bipartite graph $\left(A, B, E_{\mathcal{H}}\right)$ such that $X \subseteq A$.
We claim that all the subtrees T_{i} can be linked to T to get a clique path tree of G. For each $S_{i} \in A$, we add an edge $Q_{v} Q_{i}$ between T and T_{i}. This creates no illegal branching because A is a stable set of \mathcal{H} and Q_{v} is a leaf of T. For each $S_{i} \in B$, let $Q_{i}^{\prime \prime} \in \mathcal{Q}(T)$ be such that $Q_{i}^{\prime \prime} \cap S_{i} \neq \emptyset$ and the length of $T\left[\left\{Q_{v}, Q_{i}^{\prime \prime}\right\}\right]$ is maximal. For each $S_{i} \in B$, we have $\mathcal{R}_{i}=\emptyset$ so $S_{i} \subseteq Q_{i}^{\prime \prime}$ and we can add an edge $Q_{i}^{\prime \prime} Q_{i}$ between T and T_{i}. This creates no illegal branching because B is a stable set of \mathcal{H} and by the definition of $Q_{i}^{\prime \prime}$. Thus we obtain a clique path tree of G, a contradiction.

5 Characterization of path graphs

In this section we prove the main theorem, that is, the class of path graphs is exactly \mathcal{P}. We could not find a characterization similar to the one found by Lekkerkerker and Boland [5] for interval graphs ("an interval graph is a chordal graph with no asteroidal triple"). We know that in a path graph, the neighborhood of every vertex contains no asteroidal triple but the converse is not true. So we prove directly that a graph that does not contain any of the excluded subgraphs is a path graph.

Lemma 4 In a graph in \mathcal{P}, the neighborhood of every vertex does not contain an asteroidal triple.

Proof. It suffice to check that when a universal vertex is added to a minimal forbidden induced subgraph for interval graphs (河]), then one obtains a graph that contains one of $F_{0}, \ldots, F_{5}, F_{10}$. The easy details are left to the reader.

Given three non adjacent vertices a, b, c, we say that a is the middle of b, c if every path between b and c contains a vertex from $N(a)$. If a, b, c is not an asteroidal triple, then at least one of them is the middle of the others.

Let us say that a vertex x is complete to a set S of vertices if x is adjacent to every vertex in S.

Lemma 5 In a chordal graph G with clique tree T, a vertex a is the middle of b, c if and only if for all cliques Q_{b} and Q_{c} such that $b \in Q_{b}$ and $c \in Q_{c}$, there is an edge of the path $T\left[\left\{Q_{b}, Q_{c}\right\}\right]$ such that a is complete to its label.
Proof. Suppose that a is the middle of b, c. Let Q_{b} and Q_{c}, such that $b \in Q_{b}$ and $c \in Q_{c}$, and suppose there is no edges of $T\left[\left\{Q_{b}, Q_{c}\right\}\right]$ such that a is complete to its label. For each edge on $T\left[\left\{Q_{b}, Q_{c}\right\}\right]$, one can select a vertex that is not adjacent to a. Then
the set of selected vertices forms a path from b to c that uses no vertex from $N(a)$, a contradiction.

Suppose now that for all cliques Q_{b} and Q_{c} such that $b \in Q_{b}$ and $c \in Q_{c}$, there is an edge of the path $T\left[\left\{Q_{b}, Q_{c}\right\}\right]$ such that a is complete to its label. Suppose that there exists a path $x_{0} \cdots-x_{r}$, with $b=x_{0}$ and $c=x_{r}$ and none of the x_{i} 's is in $N(a)$. We can assume that this path is chordless. Then, for $1 \leq i \leq r$, let Q_{i} be a maximal clique containing x_{i-1}, x_{i}. Then Q_{1}, \ldots, Q_{r} appear in this order along a subpath of T. On each $T\left[\left\{Q_{i}, Q_{i+1}\right\}\right](1 \leq i \leq r-1)$, vertex a is not adjacent to x_{i}, so a is not complete to any label of $T\left[\left\{Q_{1}, \ldots, Q_{r}\right\}\right]$, but Q_{1} contains b and Q_{r} contains c, a contradiction.

Now we are ready to prove the main theorem. Part of the proof has be done in the previous section. Lemma 3 deals with the case where there exists a simplicial vertex that is the middle of two other vertices; now we have to look at the case where all simplicial vertices are not the middle of any pair of vertices.

Theorem 3 A chordal graph is a path graph if and only if it does not contain any of F_{0}, \ldots, F_{16} as an induced subgraph.

Proof. By Theorem 2, a path graph is in \mathcal{P}. Suppose now that there exists a minimally not path graph G in \mathcal{P}. Graph G is chordal. By Theorem 1 , there is a special simplicial vertex q of G. By Lemma 3, q is co-special. Let $Q=Q_{v}$ and $S_{Q}=S_{v} \in \mathcal{S}$. Let T_{0} be a clique path tree of $G(\mathcal{Q} \backslash Q)$. Let $Q^{\prime} \in \mathcal{Q} \backslash Q$ be such that $S_{Q} \subseteq Q^{\prime}$. We add the edge $Q Q^{\prime}$ to T_{0} to obtain a clique tree T_{0}^{\prime} of G.

For each clique $L \in \mathcal{Q} \backslash\left\{Q, Q^{\prime}\right\}$, let L^{\prime} be the neighbor of L along $T_{0}\left[\left\{L, Q^{\prime}\right\}\right]$. Let $S_{L}=L \cap L^{\prime}$. Let \mathcal{S}_{L} be the set of labels of edges incident to L in T_{0}. Let \mathcal{L} be the set of cliques of $\mathcal{Q} \backslash\left\{Q, Q^{\prime}\right\}$ such that no element of $\mathcal{S}_{L} \backslash S_{L}$ contains S_{L}.

For each clique $L \in \mathcal{L}$, we define a subtree T_{L} of T_{0}^{\prime}, where T_{L} is the biggest subtree of T_{0}^{\prime} that contains Q^{\prime} and for which no label is included in S_{L}. Subtree T_{L} contains Q as q is co-special, and so $S_{Q} \nsubseteq S_{L}$.

Claim $1 L^{\prime} \in T_{L}$.
Proof. Suppose on the contrary that $L^{\prime} \notin T_{L}$. Then there exist $\bar{L}, \bar{L}^{\prime}$ such that $L, L^{\prime}, \bar{L}, \bar{L}^{\prime}$ appear in this order along $T_{0}\left[\left\{L, Q^{\prime}\right\}\right], \overline{L L}^{\prime}$ is an edge of T_{0}, and $\bar{L} \notin T_{L}, \bar{L}^{\prime} \in T_{L}$ (maybe $L^{\prime}=\bar{L}$ and $\bar{L}^{\prime}=Q^{\prime}$. Let $\bar{S}_{L}=\bar{L} \cap \bar{L}^{\prime}$. By the definition of T_{L}, we have $\bar{S}_{L} \subseteq S_{L}$. When we remove the edges $L L^{\prime}, \overline{L L}^{\prime}$ from T_{0}^{\prime}, there remains three connected subtrees. Let T_{1} be the subtree containing L, T_{2} be the subtree containing L^{\prime}, \bar{L}, and T_{3} be the subtree containing $\bar{L}^{\prime}, Q^{\prime}, Q$. Let T_{4} be the tree formed by T_{1}, T_{3} plus the edge $L \bar{L}^{\prime}$. Then T_{4} is a clique tree of $G\left(\mathcal{Q}\left(T_{4}\right)\right)$. The set $\mathcal{Q}\left(T_{4}\right)$ contains strictly fewer maximal cliques than \mathcal{Q}, so let T_{5} be a clique path tree of $G\left(\mathcal{Q}\left(T_{4}\right)\right)$.

We claim that there is an edge of T_{5} that is incident to L and that has \bar{S}_{L} as a label. On the clique tree T_{4}, the label \bar{S}_{L} is on the edge $L \bar{L}^{\prime}$, so it is also a label of T_{5}. So there is an edge with label \bar{S}_{L}^{\prime}, incident to L such that $\bar{S}_{L} \subseteq \bar{S}_{L}^{\prime} \subseteq L$. Suppose that $\bar{S}_{L} \subsetneq \bar{S}_{L}^{\prime}$. Then there is an edge of T_{1} or T_{3} with label \bar{S}_{L}^{\prime}. No label of T_{1} can be \bar{S}_{L}^{\prime} by
the definition of \mathcal{L}. All the labels of T_{3} that are included in L are also included in \bar{S}_{L}, so no label of T_{3} can be \bar{S}_{L}^{\prime}. So $\bar{S}_{L}=\bar{S}_{L}^{\prime}$.

Let $L \bar{L}^{\prime \prime}$ be an edge of T_{5} incident to L with label \bar{S}_{L} (maybe $\bar{L}^{\prime \prime}=\bar{L}^{\prime}$). We can remove this edge from T_{5} and replace it by the subtree T_{2} and edges $L L^{\prime}, \overline{L L}^{\prime \prime}$. Thus we obtain a clique path tree of G, a contradiction.

Let \mathcal{L}^{*} be the subset of \mathcal{L} such that T_{L} is a strict subtree of $T_{0}^{\prime} \backslash L$. Let A be the set of vertices a of Q such that Q^{\prime} is a vertex of T_{0}^{a} that is not a leaf. Then A is not empty, for otherwise T_{0}^{\prime} would be a clique path tree of G. For each $a \in A$, the leaves of T_{0}^{a} are in \mathcal{L} and we claim that at least one of them is in \mathcal{L}^{*}. Let $a \in A$ and let L_{1}, L_{2} be the leaves of T_{0}^{a}. For $i=1,2$, let $l_{i} \in L_{i} \backslash S_{L_{i}}$. The three vertices q, l_{1}, l_{2} are adjacent to a so they do not form an asteroidal triple by Lemma 4 , so one of them is the middle of the others. Vertex q cannot be the middle of l_{1}, l_{2}, for otherwise by Lemma 5 there would be an edge of $T_{0}\left[\left\{L_{1}, L_{2}\right\}\right]$ with a label included in S_{Q}, contradicting that q is co-special. So one of l_{1}, l_{2} is the middle of the others (maybe both). By symmetry we can assume that l_{1} is the middle of q, l_{2}. So there is an edge of $T_{0}^{\prime}\left[\left\{Q, L_{2}\right\}\right]$ with a label included in $S_{L_{1}}$. So $T_{L_{1}}$ is a strict subtree of $T_{0}^{\prime} \backslash L_{1}$ and so $L_{1} \in \mathcal{L}^{*}$. So \mathcal{L}^{*} is not empty.

We choose $L \in \mathcal{L}^{*}$ such that the subtree T_{L} is maximal. Let $S_{Q^{\prime}}$ be the label of the edge of $T_{0}\left[\left\{L, Q^{\prime}\right\}\right]$ that is incident to Q^{\prime}. Vertex q is special and co-special, so there exists s_{Q} in $S_{Q} \backslash S_{Q^{\prime}}$, and we have $s_{Q} \notin S_{L}$. We add the edge $L L^{\prime}$ to T_{L} to obtain a clique tree T_{L}^{\prime} of $G\left(\mathcal{Q}\left(T_{L}\right) \cup\{L\}\right)$. The subtree T_{L}^{\prime} is a strict subtree of T_{0}^{\prime}, so we can consider a clique path tree T of $G\left(\mathcal{Q}\left(T_{L}^{\prime}\right)\right)$. We claim that L is a leaf of T. If not, then there are at least two labels of T that are included in S_{L}, which contradicts the definition of T_{L}.

We define $\mathcal{U}, \mathcal{V}, \mathcal{W}$ as follows :

$$
\mathcal{U}=\left\{U \in \mathcal{Q} \backslash \mathcal{Q}\left(T_{L}^{\prime}\right) \mid U L \text { is an edge of } T_{0}\right\}
$$

$\mathcal{V}=\left\{V \in \mathcal{Q} \backslash \mathcal{Q}\left(T_{L}^{\prime}\right) \mid \exists V^{\prime} \in \mathcal{Q}\left(T_{L}\right)\right.$, s.t. $V V^{\prime}$ is an edge of T_{0} and $\left.S_{V V^{\prime}} \cap S_{Q}=\emptyset\right\}$
$\mathcal{W}=\left\{W \in \mathcal{Q} \backslash \mathcal{Q}\left(T_{L}^{\prime}\right) \mid \exists W^{\prime} \in \mathcal{Q}\left(T_{L}\right)\right.$, s.t. $W W^{\prime}$ is an edge of T_{0} and $\left.S_{W W^{\prime}} \cap S_{Q} \neq \emptyset\right\}$
For each $U \in \mathcal{U} \cup \mathcal{V} \cup \mathcal{W}$, let T_{U} be the connected component of $T_{0}^{\prime} \backslash T_{L}^{\prime}$ that contains U.

We claim that the S_{V} 's, with $V \in \mathcal{V} \cup \mathcal{W}$, are pairwise disjoint. For if they are not disjoint, then there is a vertex in $S_{V} \cap S_{V^{\prime}}$ with V, V^{\prime} in $\mathcal{V} \cup \mathcal{W}$. But then $S_{V}, S_{V^{\prime}}$ are included in S_{L}, so this vertex is on three labels of T_{0} that are not on a path, contradicting that T_{0} is a clique path tree.

Let $\mathcal{U}_{1}=\{U \in \mathcal{U} \mid \exists W \in \mathcal{W}$ such that $U \cap W \neq \emptyset\}$.
Claim 2 There exists $U \in \mathcal{U}_{1}$, such that $S_{U} \backslash Q^{\prime} \neq \emptyset$.
Proof. We define $\mathcal{U}_{p \geq 1}, \mathcal{V}_{p \geq 0}$ as follows. Let $V_{0}=W$ and for $p \geq 1$:

$$
\begin{aligned}
& \mathcal{U}_{p}=\left\{U \in \mathcal{U} \backslash\left(\mathcal{U}_{1} \cup \cdots \cup \mathcal{U}_{p-1}\right) \mid \exists V \in \mathcal{V}_{p-1} \text { such that } U \cap V \neq \emptyset\right\} \\
& \mathcal{V}_{p}=\left\{V \in \mathcal{V} \backslash\left(\mathcal{V}_{1} \cup \cdots \cup \mathcal{V}_{p-1}\right) \mid \exists U \in \mathcal{U}_{p-1} \text { such that } V \cap U \neq \emptyset\right\}
\end{aligned}
$$

Let k be the smallest $k \geq 1$ such that there exists $U \in \mathcal{U}_{k}$ with $S_{U} \backslash Q^{\prime} \neq \emptyset$. Let $k=\infty$ if it does not exists.

Suppose by contradiction that $k>1$. For all $1 \leq p \leq k-1$ and all $U \in \mathcal{U}_{p}$, we have $S_{U} \subseteq Q^{\prime}$ and we define $U^{\prime \prime} \in \mathcal{Q}(T)$ such that $U^{\prime \prime} \cap S_{U} \neq \emptyset$ and the length of $T\left[\left\{L, U^{\prime \prime}\right\}\right]$ is maximal.

Suppose that there exists $U_{p} \in \mathcal{U}_{p}, 1 \leq p \leq k-1$, such that $S_{U_{p}} \nsubseteq U_{p}^{\prime \prime}$, and let p be minimal with this property. Let $V_{0}, \ldots, V_{p-1}, U_{1}, \ldots, U_{p}$ be such that $V_{i} \in \mathcal{V}_{i}, U_{i} \in \mathcal{U}_{i}$, $V_{i-1} \cap U_{i} \neq \emptyset$, and $U_{i} \cap V_{i} \neq \emptyset$. Let $u_{i} \in U_{i} \backslash S_{U_{i}}$, let $v_{i} \in V_{i} \backslash S_{V_{i}}$. Let x_{1}, \ldots, x_{r} be such that $x_{1} \in V_{0} \cap U_{1}, x_{2} \in U_{1} \cap V_{1}, \ldots, x_{r} \in V_{p-1} \cap U_{p}$ with $r=2 p-1$. By the definition of \mathcal{V}, none of x_{2}, \ldots, x_{r} is in Q. Let $x_{0} \in V_{0} \cap Q$ (maybe $x_{0}=x_{1}$). As $x_{0} \in S_{V_{0}}$, vertex x_{0} is also is L. None of U_{2}, \ldots, U_{p} can contain x_{0} by the definition of \mathcal{U}_{1}. Let Z be a clique of T_{L} such that $Z^{\prime} \in T_{0}^{x_{0}}, S_{U_{p}} \subseteq Z^{\prime}, S_{U_{p}} \cap Z \neq \emptyset$ and $S_{U_{p}} \backslash Z \neq \emptyset$ (such a Z exists because of $\left.U_{p}^{\prime \prime}\right)$. Let $z \in Z \backslash Z^{\prime}$. Vertex Q^{\prime} is on $T\left[\left\{L, Z^{\prime}\right\}\right]$ as $S_{U_{p}} \subseteq Q^{\prime}$. We choose vertices y_{1}, \ldots, y_{s} on the labels of $T_{0}^{\prime}[Z, Q]$ such that none of them is in S_{L} and $z-y_{1} \cdots \cdots-y_{s}-q$ is a chordless path.

If $Z \in T_{0}^{x_{0}}$, then let $b \in S_{U_{p}} \backslash Z$. As q is special and co-special, we have $S_{Q} \nsubseteq S_{Z}$, so let $c \in S_{Q} \backslash S_{Z}$. Then z, l, q form an asteroidal triple, with paths $z-y_{1} \cdots-y_{s}-q$ and $l-b-c-q$, and they lie in the neighborhood of x_{0}, a contradiction. So $Z \notin T_{0}^{x_{0}}$. Let $x_{r+1} \in Z \cap U_{p}$. If $x_{r+1} \in Q$, then z, l, q form an asteroidal triple, with paths $z-y_{1} \cdots-y_{s}-q$ and $l-x_{0}-q$, and they lie in the neighborhood of x_{r+1}, a contradiction; so $x_{r+1} \notin Q$. The $S_{U_{i}}$'s are all included in Q^{\prime} and so in S_{L} too. They are pairwise disjoint, for otherwise T_{0} is not a clique path tree. Let $l \in L \backslash S_{L}$. Vertex l is not in any of the $S_{U_{i}}$'s, and l is adjacent to x_{0}, \ldots, x_{r+1} but none of $u_{1}, \ldots, u_{p}, v_{0}, \ldots, v_{p-1}, y_{1}, \ldots, y_{s}, z, q$.

Suppose that one of x_{1}, x_{0} is in $V_{0} \cap U_{1} \cap Q$. Then we can assume that $x_{0}=x_{1}$. Let $L_{1}, L_{2} \in \mathcal{L}$ be the leaves of $T_{0}^{x_{0}}$ with $U_{1} \in T_{0}\left[\left\{L_{1}, Q^{\prime}\right\}\right]$ and $V_{0} \in T_{0}\left[\left\{L_{2}, Q^{\prime}\right\}\right]$. Every edge of T_{L} is not included in S_{L} and so is not included in $S_{L_{1}}$. So $T_{L_{1}}$ contains T_{L}. If $L_{1} \in \mathcal{L}^{*}$, then $T_{L_{1}}=T_{L}$ by the maximality of T_{L}. But then L_{1}^{\prime} is not in $T_{L_{1}}$, which contradicts Claim 1. So $L_{1} \notin \mathcal{L}^{*}$ and $L_{2} \in \mathcal{L}^{*}$. Every edge of T_{L} is not included in S_{L} and so is not included in $S_{V_{0}}$ and also not in $S_{L_{2}}$. So $T_{L_{2}}$ contains T_{L}. Vertex $x_{r+1} \notin S_{V_{0}}$, so $x_{r+1} \notin S_{L_{2}}$, so $S_{L} \nsubseteq S_{L_{2}}$, so $T_{L_{2}}$ contains L, which contradicts the maximality of T_{L}. So $x_{0} \neq x_{1}, x_{0} \notin U_{1}, x_{1} \notin Q$.

If $s=1$, then $u_{1}, \ldots, u_{p}, v_{0}, \ldots, v_{p-1}, x_{0}, \ldots, x_{r+1}, y_{1}, q, z, l$ induce $F_{14}(4 p+5)_{p \geq 1}$. If $s=2$, then $u_{1}, \ldots, u_{p}, v_{0}, \ldots, v_{p-1}, x_{0}, \ldots, x_{r+1}, y_{1}, y_{2}, q, z, l$ induce $F_{15}(4 p+6)_{p \geq 1}$. If $s \geq 3$, then $x_{0}, x_{r+1}, y_{1}, \ldots, y_{s}, q, z, l$ induce $F_{10}(s+5)_{s \geq 3}$. A contradiction.

Therefore we have $S_{U} \subseteq U^{\prime \prime}$ for every $U \in \mathcal{U}_{p}, 1 \leq p \leq k-1$.
Suppose that k is infinite. Then, the U_{i} 's are pairwise disjoint, for otherwise T_{0} is not a clique path tree as $S_{U_{i}} \subseteq Q^{\prime}$. For each $V \in \bigcup_{p \geq 0} \mathcal{V}_{p}$, we add the edge $V L$ between T_{V} and T. For each $U \in \bigcup_{p \geq 1} \mathcal{U}_{p}$, we add the edge $U U^{\prime \prime}$ between T_{U} and T. For each $U \in \mathcal{U} \backslash\left(\bigcup_{p \geq 1} \mathcal{U}_{p}\right)$, we add the edge $U L$ between T_{U} and T. For each $V \in \mathcal{V} \backslash\left(\bigcup_{p \geq 1} \mathcal{V}_{p}\right)$, we define $V^{\prime \prime} \in \mathcal{Q}(T)$ such that $V^{\prime \prime} \cap S_{V} \neq \emptyset$ and the length of $T\left[\left\{L, V^{\prime \prime}\right\}\right]$ is maximal. By the definition of \mathcal{V}, we have $S_{V} \cap Q=\emptyset$, so $V^{\prime \prime} \neq Q$, so $V^{\prime \prime}$ is a vertex of T_{L} on $T_{0}[L, V]$ so it contains all S_{V} as $S_{V} \subseteq S_{L}$. Then we can add the edge $V V^{\prime \prime}$ between T_{V} and T to obtain a clique path tree of G, a contradiction.

So k is finite and ≥ 2.
As before, let $V_{0}, \ldots, V_{k-1}, U_{1}, \ldots, U_{k}$ be such that $V_{i} \in \mathcal{V}_{i}, U_{i} \in \mathcal{U}_{i}, V_{i-1} \cap U_{i} \neq \emptyset$, and $U_{i} \cap V_{i} \neq \emptyset$. Let $u_{i} \in U_{i} \backslash S_{U_{i}}$, let $v_{i} \in V_{i} \backslash S_{V_{i}}$. Let x_{1}, \ldots, x_{r} be such that $x_{1} \in V_{0} \cap U_{1}$, $x_{2} \in U_{1} \cap V_{1}, \ldots, x_{r} \in V_{k-1} \cap U_{k}$ with $r=2 k-1$. None of x_{2}, \ldots, x_{r} is in Q. Let $x_{0} \in V_{0} \cap Q$.

Suppose that one of x_{1}, x_{0} is in $V_{0} \cap U_{1} \cap Q$. Then we can assume that $x_{0}=x_{1}$. Let $L_{1}, L_{2} \in \mathcal{L}$ be the leaves of $T_{0}^{x_{0}}$ with $U_{1} \in T_{0}\left[\left\{L_{1}, Q^{\prime}\right\}\right]$ and $V_{0} \in T_{0}\left[\left\{L_{2}, Q^{\prime}\right\}\right]$. As before, we have $L_{2} \in \mathcal{L}^{*}$. Every edge of T_{L} is not included in S_{L} so it is also not in $S_{V_{0}}$ and not in $S_{L_{2}}$. So $T_{L_{2}}$ contains T_{L}. We have $k \geq 2$, so U_{2} exists and there is a vertex $x_{2} \in U_{1} \cap V_{1}$. Vertex x_{2} is not in $S_{V_{0}}$, so it is not in $S_{L_{2}}$, so $S_{L} \nsubseteq S_{L_{2}}$, so $T_{L_{2}}$ contains L, which contradicts the maximality of T_{L}. So $x_{0} \neq x_{1}, x_{0} \notin U_{1}, x_{1} \notin Q$.

Let $s_{U_{k}} \in S_{U_{k}} \backslash Q^{\prime}$. Vertex $s_{U_{k}}$ is not adjacent to any of $q, s_{Q}, v_{0}, \ldots, v_{k-1}$ because $s_{U_{k}} \notin Q^{\prime}$, and by the minimality of k, vertex $s_{U_{k}}$ is not adjacent to u_{1}, \ldots, u_{k-1}. Then $u_{1}, \ldots, u_{k}, v_{0}, \ldots, v_{k-1}, x_{0}, \ldots, x_{r}, s_{U_{k}}, s_{Q}, q$ induce $F_{16}(4 k+3)_{k \geq 2}$. A contradiction.

Let $U \in \mathcal{U}_{1}$ be such that $S_{U} \backslash Q^{\prime} \neq \emptyset$. Let $s_{U} \in S_{U} \backslash Q^{\prime}$. Vertex s_{U} is not adjacent to s_{Q}. Let $u \in U \backslash S_{U}$. Let $W \in \mathcal{W}$ be such that $U \cap W \neq \emptyset$. Let $w \in W \backslash S_{W}$.

Claim $3 S_{W}=S_{L}$.
Proof. Suppose $S_{W} \neq S_{L}$. Then $S_{W} \subsetneq S_{L}$. By the definition of \mathcal{W}, there exists $a \in W \cap Q$ and so $a \in L$.

Suppose $S_{W} \subseteq S_{U}$. Then a is in U. Let $L_{1}, L_{2} \in \mathcal{L}$ be the leaves of T_{0}^{a} with $U \in T_{0}\left[\left\{L_{1}, Q^{\prime}\right\}\right]$ and $W \in T_{0}\left[\left\{L_{2}, Q^{\prime}\right\}\right]$. Every edge of T_{L} is not included in S_{L} so it is also not in $S_{L_{1}}$. By the definition of \mathcal{L}, the set S_{L} is not included in $S_{L_{1}}$. So $T_{L_{1}}$ is strictly greater than T_{L}. So $L_{1} \notin \mathcal{L}^{*}$, so $L_{2} \in \mathcal{L}^{*}$. Every edge of T_{L} is not included in S_{L}, so it is also not in S_{W} and not in $S_{L_{2}}$. The same goes for S_{L} by the hypothesis. So $T_{L_{2}}$ is strictly greater than T_{L}, which contradicts the definition of L. So $S_{W} \nsubseteq S_{U}$. Let b be a vertex of $S_{W} \backslash S_{U}$.

Vertex s_{U} is in $S_{U} \backslash Q^{\prime}$, so $S_{U} \nsubseteq S_{W}$. Every labels of the edges of T_{L} is not included in S_{L}, so it is also not in S_{W}. So we can choose vertices x_{1}, \ldots, x_{r} on the labels of $T_{0}^{\prime}[\{U, Q\}]$ such that none of the x_{i} 's is in $S_{W}, x_{1} \in U, x_{r} \in Q$ and $x_{1} \cdots-x_{r}$ is a chordless path.

Then $w-b-s_{q}-q$ is a path from w to q that avoids $N(u)$; and $u-x_{1}-\ldots-x_{r}-q$ is a path from u to q that avoids $N(w)$. So q, u, w form an asteroidal triple. By Lemma 4, we have $Q \cap U \cap V=\emptyset$. So $a \notin U$.

Let $c \in U \cap W$ (by the definition of \mathcal{U}_{1}). Vertex c is not in Q. Let $r=1$. Then x_{1} is different from s_{U} and s_{Q}, and $q, u, w, a, c, s_{Q}, s_{U}, x_{1}$ induce F_{8}. Let $r=2$. If x_{1} is adjacent to s_{Q}, then $q, u, w, a, c, s_{Q}, s_{U}, x_{1}$ induce F_{9}; and if x_{1} is not adjacent to s_{Q}, then $q, u, w, a, c, s_{Q}, x_{1}, x_{2}$ induce F_{9}. If $r \geq 3$, then $q, u, w, a, c, x_{1}, \ldots, x_{r}$ induce $F_{10}(r+5)_{r \geq 3}$. In all cases we obtain a contradiction.

Claim $4 W \in \mathcal{L}^{*}$

Proof. Suppose that $W \notin \mathcal{L}^{*}$. Let $a \in W \cap Q$, we have $a \in L$. Let $L_{1}, L_{2} \in \mathcal{L}$ be the leaves of T_{0}^{a}, with $L \in T_{0}\left[\left\{L_{1}, Q^{\prime}\right\}\right]$ and $W \in T_{0}\left[\left\{L_{2}, Q^{\prime}\right\}\right]$. Let $K \in T_{0}\left[\left\{L_{2}, W\right\}\right] \cap \mathcal{L}$ be such that the length of $T_{0}[\{K, W\}]$ is minimal. If $W \in \mathcal{L}$, then $T_{W}=T_{L}$ and $W \in \mathcal{L}^{*}$, a contradiction. So $W \notin \mathcal{L}$, so $W \neq K$. The edges of T_{L} are not included in S_{L}, so they are also not in S_{W} and not in S_{K}. So T_{K} contains T_{L}. If $K \in \mathcal{L}^{*}$, then $T_{K}=T_{L}$ by the maximality of T_{L}, which contradicts Claim 1; so $K \notin L^{*}$. So $T_{K}=T_{0}^{\prime} \backslash K$ and the labels of $T_{0}^{\prime} \backslash K$ are not included in S_{K}, so $S_{W} \nsubseteq S_{K}$. Let X be the edge of $T_{0}[\{W, K\}]$ such that X^{\prime} contains S_{W} and X does not (maybe $X^{\prime}=W, X=K$). The set S_{X} contains a but not all of S_{X}^{\prime}. So no element of $\mathcal{S}_{X^{\prime}} \backslash S_{X^{\prime}}$ contains $S_{X^{\prime}}$. So $X^{\prime} \in \mathcal{L}$, a contradiction to the definition of K.

By claim \AA, we have $W \in \mathcal{L}^{*}$. Then $T_{W}=T_{L}$ is also maximal and what we have proved for L can be done for W. By Claim 2 we know that there exists $X \notin T_{L}$ such that $X W$ is an edge of T_{0} with $S_{X} \cap S_{W} \neq \emptyset$ and $S_{X} \backslash Q^{\prime} \neq \emptyset$. Let $x \in X \backslash W$. Let $s_{X} \in S_{X} \backslash Q^{\prime}$. Vertex s_{X} is not in S_{W}, for otherwise it would also be in S_{L} and in Q^{\prime}. Vertex s_{Q} is not in S_{L}, so not in S_{W}. So s_{Q}, s_{X} are not adjacent. We distinguish between two cases.

Case 1: $U \cap X=\emptyset$. Let $a \in U \cap W$, so $a \notin X$. Suppose $a \notin Q$. If there exists $b \in X \cap Q$ then b is also in L and $q, u, x, s_{Q}, s_{U}, s_{X}, a, b$ induces F_{6}, a contradiction. So there is no vertex is $X \cap Q$. Let $c \in W \cap Q$, we have $c \in L$ and $c \notin X$. Let $d \in X \cap S_{W}$, we have $d \notin Q$. If c is adjacent to U, then $q, u, x, s_{Q}, s_{U}, s_{X}, c, d$ induces F_{6}, if c misses u, then $q, u, x, s_{Q}, s_{U}, s_{X}, a, c, d$ induce F_{7}, a contradiction. So $a \in Q$. Let $e \in X \cap S_{W}$. If $e \notin Q$ then $q, u, x, s_{Q}, s_{U}, s_{X}, a, e$ induce F_{6}, a contradiction, so $e \in Q$. Let $f \in S_{W} \backslash S_{Q}$ (as q is special and co-special); maybe f is in U or X, but not in both. Then $q, u, x, s_{U}, s_{X}, a, e, f$ induce F_{9} or $F_{10}(8)$, according to whether f is adjacent to none or exactly one of u, x, a contradiction.

Case 2: $U \cap X \neq \emptyset$. Suppose $U \cap X \cap Q \neq \emptyset$. Let $z \in U \cap X \cap Q$. Let $L_{1}, L_{2} \in \mathcal{L}$ be the leaves of T_{0}^{z}. Let $i \in\{1,2\}$ be such that $L_{i} \in \mathcal{L}^{*}$. The edges of T_{L} are not included in $S_{L}=S_{W}$, thus also not in $S_{L_{i}}$. So $T_{L_{i}}$ contains T_{L}, so $T_{L_{i}}=T_{L}$ by maximality of T_{L}. But this contradicts Claim 11. So $U \cap X \cap Q=\emptyset$.

Let $a \in U \cap X$. Vertex a is not in Q. Let $b \in W \cap Q$. If $b \notin X \cup U$, then $q, u, x, s_{Q}, s_{U}, s_{X}, a, b$ induce F_{6}, a contradiction. If $b \in X$, then $b \notin U$. Let $c \in S_{W} \backslash S_{X}$. If $c \in U \backslash Q$, then $q, u, x, s_{Q}, s_{U}, s_{X}, b, c$ induce F_{6}. If $c \in Q \backslash U$, then $q, u, x, s_{Q}, s_{U}, s_{X}, a, c$ induce F_{6}. If $c \in U \cap Q$, then $q, u, x, s_{Q}, s_{U}, s_{X}, a, b, c$ induce F_{8}. If $c \notin U \cup Q$, then $q, u, x, s_{Q}, s_{U}, a, b, c$ induce $F_{10}(8)$. A contradiction. If $b \in U$, then $b \notin X$. Let $d \in S_{L} \backslash S_{U}$. If $d \in X \backslash Q$, then $q, u, x, s_{Q}, s_{U}, s_{X}, b, d$ induce F_{6}. If $d \in Q \backslash X$, then $q, u, x, s_{Q}, s_{U}, s_{X}, a, d$ induce F_{6}. If $d \in U \cap Q$, then $q, u, x, s_{Q}, s_{U}, s_{X}, a, b, d$ induce F_{8}. If $d \notin U \cup Q$, then $q, u, x, s_{Q}, s_{U}, a, b, d$ induce $F_{10}(8)$. A contradiction.

This ends the proof of Theorem 3 .

6 Recognition algorithm

Gavril [4] and Schäffer [6] gave polynomial time algorithms to recognize path graphs. The characterization that we give in this paper suggests a new recognition algorithm, which takes any graph G as input and either builds a clique path tree for G or finds one of F_{0}, \ldots, F_{16}. We have not analyzed the exact complexity of such a method but it will give a new polynomial algorithm to recognize path graphs.

There are linear time recognition algorithms for interval graphs [1] and triangulated graphs [8] but surprisingly not for path graphs. One can hope that the work presented here will be helpful in the search for a linear time recognition algorithm for path graphs.

References

[1] K.S. Booth, G.S. Lueker, Testing for the consecutive ones property, interval graphs and graph planarity using PQ-tree algorithm, J. Comput. Syst. Sci. 13 (1976) 335379.
[2] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 38 (1961) 71-76.
[3] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory B 16 (1974) 47-56.
[4] F. Gavril, A recognition algorithm for the intersection graphs of paths in trees, Discrete Math. 23 (1978) 211-227.
[5] C. Lekkerkerker, D. Boland, Representation of finite graphs by a set of intervals on the real line, Fund. Math. 51 (1962) 45-64.
[6] C.L. Monma, V.K. Wei, Intersection graphs of paths in a tree, J. Combin. Theory B 41 (1986) 141-181.
[7] P.L. Renz, Intersection representations of graphs by arcs, Pacific J. Math. 34 (1970) 501-510.
[8] D.J. Rose, R.E. Tarjan, G.S. Lueker, Algorithmic aspects of vertex elimination of graphs, SIAM J. Comput. 5 (1976) 266-283.
[9] A.A. Schäffer, A faster algorithm to recognize undirected path graphs, Discrete Appl. Math. 43 (1993) 261-295.
[10] R.E. Tarjan, M. Yannakakis, Simple linear time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput. 13 (1984) 566-579.

$$
F_{0}(n)_{n \geq 4}
$$

Figure 1: Forbidden subgraphs with no simplicial vertices

Figure 2: Forbidden subgraphs with a universal vertex

Figure 3: Forbidden subgraphs with no universal vertex and exactly three simplicial vertices

Figure 4: Forbidden subgraphs with at least one simplicial vertex that is not co-special. (bold edges form a clique)

Figure 5: Forbidden subgraphs with ≥ 4 simplicial vertices that are all co-special. (bold edges form a clique)

