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In this paper, the problem of identifying stochastic linear discrete-time systems from noisy input/output data is addressed. The input noise is supposed to be white, while the output noise is assumed to be coloured. Some methods based on instrumental variable techniques are studied and compared to a least squares bias compensation scheme with the help of Monte Carlo simulations.

INTRODUCTION

Identification of errors-in-variables (EIV) models has been an active domain of research in the recent years (see e.g. [START_REF] Mahata | Identification of continuoustime errors-in-variables models[END_REF]; [START_REF] Mahata | An improved bias-compensation approach for errors-in-variables model identification[END_REF]; [START_REF] Diversi | Maximum likelihood identification of noisy input-output models[END_REF]; [START_REF] Pintelon | Frequency domain maximum likelihood estimation of linear dynamic errors-invariables models[END_REF]; [START_REF] Söderström | Extending the Frisch scheme for errorsin-variables identification to correlated output noise[END_REF]; [START_REF] Thil | Continuous-time model identification from noisy input/output measurements using fourth-order cumulants[END_REF][START_REF] Thil | Third-order cumulants based methods for continuous-time errors-in-variables model identification[END_REF]). A survey paper gathering most of the recent developments has been recently published [START_REF] Söderström | Errors-in-variables methods in system identification[END_REF]. Among the 'classical' approaches using second order statistics, the instrumental variable (IV) methods have not received considerable interest. An explanation can be that the asymptotic accuracy of the basic IV method can be far from the Cramér-Rao lower bound [START_REF] Söderström | Errors-in-variables methods in system identification[END_REF]. However, there is a large freedom in the choice of the instrument vector, and many ideas stem from the basic IV principle, e.g. iterative methods [START_REF] Young | An instrumental variable method for realtime identification of a noisy process[END_REF][START_REF] Young | Recursive Estimation and Time Series Analysis[END_REF]; [START_REF] Gilson | Instrumental variable methods for closed-loop system identification[END_REF]; [START_REF] Young | Refined instrumental variable identification of continuous-time hybrid Box-Jenkins models[END_REF] or the use of higher-order statistics [START_REF] Inouye | Identification of linear systems using input-output cumulants[END_REF]; [START_REF] Inouye | Identification of linear systems with noisy input using input-output cumulants[END_REF]. The aim of this paper is to present some IV-based methods dedicated to the EIV system identification problem. It is organized as follows. The framework is presented in Section 2. In Section 3, two IV variants are proposed to consistently identify EIV models, while in Section 4 the principle of a bias compensated least squares scheme is recalled. A bias compensated IV scheme is then proposed in Section 5. Finally, before concluding, the performances of the proposed methods are assessed by means of a simulation example in Section 6. 

G o • + • + ✲ ✲ ❄ ✲ ✲ ❄ ✲ ✲ u o (t k ) ũ(t k ) y o (t k ) u(t k ) ỹ(t k ) y(t k )
y o (t k ) = G o (q)u o (t k ) (1)
where q is the forward operator and G o (q) is the transfer operator of the 'true' system. The input/output signals are both contaminated by noise sequences, denoted as ũ and ỹ respectively. The data-generating system is thus characterized by: S :

   y o (t k ) = G o (q)u o (t k ) u(t k ) = u o (t k ) + ũ(t k ) y(t k ) = y o (t k ) + ỹ(t k ) (2)
It is then parameterized as follows:

G(θ) :        y(t k ) = G(q, θ) (u(t k ) -ũ(t k )) + ỹ(t k ) G(q, θ) = B(q -1 , θ)/A(q -1 , θ) A(q -1 , θ) = 1 + a 1 q -1 + ... + a na q -na B(q -1 , θ) = b 1 q -1 + ... + b n b q -n b (3) with n a n b and θ T = [a 1 . . . a na b 1 . . . b n b ].
The input noise ũ is assumed to be white, while the output noise ỹ is assumed to be given as the output of a moving average filter driven by a white noise

H :    ũ(t k ) = e ũ(t k ) ỹ(t k ) = C(q -1 )e ỹ (t k ) C(q -1 ) = 1 + c 1 q -1 + • • • + c nc q -nc (4)
where e ũ and e ỹ are white noise sources of variance λ eũ and λ eỹ respectively. Equation (3) can be rewritten as

y(t k ) = ϕ T (t k )θ + v(t k , θ) (5) v(t k , θ) = ỹ(t k ) -φT (t k )θ (6)
where the regression vector is given as

ϕ T (t k ) = -y(t k-1 ) . . . -y(t k-na ) u(t k-1 ) . . . u(t k-n b ) (7)
The problem of identifying this errors-in-variables model is concerned with consistently estimating the parameter vector θ from the noisy data {u(t k ), y(t k )} N k=1 .

Notations

As the input/output noises are additive, linear functions of the measured signals can be broken down into two parts, one made up of the noise-free signals contribution (denoted with a 'o' subscript), the other of the noises contribution (denoted with the ' ˜' sign). For example, the regression vector ϕ can be decomposed as

ϕ(t k ) = ϕ o (t k ) + φ(t k ) (8) To keep the notations compact in the sequel, it is also convenient to define āT = 1 a T = [1 a 1 . . . a na ] (9) b T = [b 1 . . . b n b ] (10) ȳT (t k , n) = y(t k ) y T (t k , n) (11) y T (t k , n) = [y(t k-1 ) . . . y(t k-n )] (12) u T (t k , n) = [u(t k-1 ) . . . u(t k-n )]
(13) Moreover, let w 1 (t k ), w 2 (t k ) be two vectors (of the same size) and s(t k ) be a scalar. The following notations are used in the sequel for the covariance vectors and matrices

R w1w2 = Ē w 1 (t k )w T 2 (t k ) (14) r w1s = Ē{w 1 (t k )s(t k )} (15) 
where Ē{•} stands for (see [START_REF] Ljung | System Identification: Theory for the User[END_REF])

Ē{f (t k )} = lim N →∞ 1 N N k=1 E{f (t k )} (16) 
Lastly, an estimate of the parameter vector θ from N samples of input/output data and its asymptotic version are written as θ -→

N →∞ θ ⋆ w.p.1 (17)

Assumptions

The following assumptions are needed A1. The system (1) is asymptotically stable, and all the system modes are observable and controllable; A2. The signals u o , e ũ and e ỹ are stationary, ergodic and zero-mean; A3. The signals e ũ and e ỹ are assumed to be uncorrelated with each other and with the input u o .

INSTRUMENTAL VARIABLE METHODS

Let z(t k ) be a vector of instruments of dimension n z n a + n b . An eXtended IV estimator of θ is given by [START_REF] Söderström | Instrumental Variable Methods for System Identification[END_REF] 

θ ⋆ xiv = R T zϕ W R zϕ -1 R T zϕ W r zy (18a) = θ + R T zϕ W R zϕ -1 r zv (18b)
where W is a positive definite weighting matrix. In the sequel no weighting is made, and thus W = I. For the estimator (18) to be unbiased, the vector of instruments z(t k ) must be uncorrelated with the composite error v(t k , θ), while being 'as correlated as possible' with the regression vector ϕ(t k ), so that the matrix to be inverted in ( 18) is not ill-conditioned, which is summarized as

r zv = 0 (19) R zϕ is nonsingular (20)
There is no unique way to define z(t k ). Two different ways to handle the EIV problem are presented in this paper.

First approach: xiv1 method

The first approach has been explored in [START_REF] Söderström | On instrumental variable and total least squares approaches for identification of noisy systems[END_REF], considering the case of white noises on both input and output. The instrument vector is chosen to contain delayed inputs only

z T (t k ) = u T (t k-d1 , n zu ) (21) = u(t k-1-d1 ) . . . u(t k-d1-nz u ) (22)
Since ũ, ỹ and u o are uncorrelated

r zv = Ē{z(t k )v(t k , θ)} (23) = Ē z(t k ) ỹT (t k , n a )ā -ũT (t k , n b )b (24) = -Ē ũ(t k-d1 , n zu )ũ T (t k , n b ) b (25)
Thus, if the delay is such that d 1 n b , the vector of instruments z(t k ) satisfies ( 19). Besides, since ũ and ỹ are uncorrelated, it is also true when the output noise is coloured.

Second approach: xiv2 method

The xiv1 method satisfies the conditions ( 19)-( 20) and therefore leads to unbiased estimates. However, better results may be obtained by using an instrument vector more closely related to the regression vector. Indeed, it can be seen as a way to avoid -as much as possible -cases where the matrix R zϕ has a bad conditioning. To this end, let us define an instrument vector containing delayed inputs and delayed outputs as

z T (t k ) = -y T (t k-d2 , n zy ) u T (t k-d3 , n zu ) (26) = -y(t k-1-d2 ) . . . -y(t k-d2-nz y ) u(t k-1-d3 ) . . . u(t k-d3-nz u ) (27)
Since ũ, ỹ and u o are uncorrelated

r zv = Ē{z(t k )v(t k , θ)} (28) = Ē   -y(t k-d2 , n zy ) ỹT (t k , n a )ā -ũT (t k , n b )b u(t k-d3 , n zu ) ỹT (t k , n a )ā -ũT (t k , n b )b    = Ē -ỹ(t k-d2 , n zy ) ỹT (t k , n a )ā -ũ(t k-d3 , n zu )ũ T (t k , n b )b (29)
Hence, if the delays satisfy d 2 n a + n c and d 3 n b , the vector of instruments z(t k ) satisfies (19). Besides, since the instrument vector ( 26) is closely linked to the regression vector, the matrix R zϕ is expected to have a better conditioning than when using the instrument vector (21). Therefore, the xiv2 method is expected to yield more accurate estimates of the parameter vector than the xiv1 method.

BIAS COMPENSATED LS

In the simulation example presented in Section 6, the proposed methods are compared with the bels 1 method introduced in [START_REF] Zheng | A bias correction method for identification of linear dynamic errors-in-variables models[END_REF], one of the few existing methods that can handle the coloured output noise case. Here is given a quick overview of that method, as well as a way to improve its performances. The goal of the bels method is to compensate the bias of the least squares (LS) estimate, which, in the case of white noise on input and coloured noise on output, is given by

θ ⋆ ls = θ -R -1 ϕϕ r ỹ ỹ + R ỹ ỹ a λ eũ b (30) = θ -R -1 ϕϕ M (θ)ν ũ,ỹ (31) where ν T ũ,ỹ = λ ỹ r T ỹ ỹ λ eũ (32) M (θ) = M 1 + M 2 (a) M 3 (b) (33) 
and

-M 1 = [0 I na 0] ∈ R na×(na+2) ; -M 2 (a) = na k=1 I na (k)aτ T k ∈ R na×(na+2) ; -τ k ∈ R (na+2)×1
is the vector whose kth component is 1 and the others 0's; -I n (k) is a square matrix of dimension n whose kth upper diagonal and kth lower diagonal are made of 1's, and 0's everywhere else (by convention (na+2) . If an estimate of ν ũ,ỹ is available, then the bias of the LS method can be subtracted to obtain a consistent estimate of θ θ

I n (0) = I n ); -M 3 (b) = b τ T na+2 ∈ R n b ×
⋆ bels = θ ⋆ ls + R -1 ϕϕ M (θ) ν ũ,ỹ (34) 

Estimation of ν ũ,ỹ

The estimate of the vector ν ũ,ỹ is obtained by solving a system of linear equations. A first equation is obtained from the quadratic error of the LS method, given as Zheng ( 2002)

J(θ ⋆ ls ) = Ē e(t k , θ ⋆ ls ) 2 (35) = τ T 1 + θ ⋆T ls M (θ) + a T M 3 =q(θ ⋆ ls ,θ) ν ũ,ỹ (36) 
To obtain the other n a + 1 equations, the degree of the numerator of G(q, θ) is increased by n a + 1, the new parameters introduced this way having a true value equal to 0. It can then be shown that the vector ν ũ,ỹ satisfies Zheng (2002)

R T ϕµ R -1 ϕϕ M (θ)ν ũ,ỹ = r µy -R T ϕµ θ ⋆ ls (37) where µ(t k ) = [u(t k-n b -1 ) . . . u(t k-n b -na-1 )] T (38)
4.2 The bels algorithm 1. Initialization: θ0 bels = θls ; 2. Iteration until convergence:

1 for "Bias Eliminated Least Squares".

Computation of νi+1

ũ,ỹ by solving:

RT ϕµ R-1 ϕϕ M ( θi bels ) q( θls , θi bels ) νi+1 ũ,ỹ = rµy - RT ϕµ θls J( θls ) (39)
2.2. Computation of θi+1 bels :

θi+1 bels = θls + R-1 ϕϕ M ( θi bels )ν i+1 ũ,ỹ (40) 

Extension to an over-determined system

In the method proposed in [START_REF] Zheng | A bias correction method for identification of linear dynamic errors-in-variables models[END_REF], the estimate of the statistical properties of the noises, contained in the vector ν ũ,ỹ , is obtained by solving the system of linear equations ( 39), composed of n a + 2 equations in the n a + 2 unknowns. However, it appears that the method gives rather crude estimates of ν ũ,ỹ , especially when the signalto-noise ratio is low, or when there are many parameters to estimate (in the numerical example of [START_REF] Zheng | A bias correction method for identification of linear dynamic errors-in-variables models[END_REF] a firstorder model is considered; when the order of the model increases, the performances of the algorithm deteriorate). This crude estimation of ν ũ,ỹ may lead to convergence problems, and crude estimates of the parameter vector as well.

An idea to overcome this problem is to use more equations to estimate the noise statistical properties. Indeed, increasing the numerator's degree by a number n a +1+n bels where n bels 1 yields an over-determined system, which can be solved in a least squares sense to obtain a better estimate of ν ũ,ỹ . The following vector

µ(t k ) = [u(t k-n b -1 ) . . . u(t k-n b -na-1-n bels )] T ( 
41) is therefore used instead of (38). The resulting parameter estimate is expected to be more accurate, which in turn implies a quicker convergence of the algorithm. The associated method is denoted abels2 .

BIAS COMPENSATED IV

The bias compensated least squares schemes need to estimate a vector ν containing some values of the noises' autocovariance functions. However, this is a difficult task, especially when the size of this vector increases. Indeed, when the noises are both white, only their variance has to be estimated and the bias compensated least squares schemes achieve satisfactory results. When the output noise is coloured, however, the size of this vector is directly linked to the order of the estimated model, and the performances deteriorate. On another hand, the IV methods can be applied in fairly general noise conditions, but defining an instrument vector uncorrelated with the noises (see ( 19)) is often in contradiction with the second requirement (20). Indeed, when the value of the delays appearing in the instrument vector increases, it becomes 'less correlated' with the regression vector.

Here is proposed a method which avoids both these disadvantages. A bias compensated instrumental variable is used to obtain an estimate of the parameter vector θ: in the first step the coloured output noise is handled by an instrumental variable, while in a second step a bias compensation scheme is applied to remove the bias induced by the input noise. By allowing the IV estimator to give biased estimates, the instrument vector can be chosen 'more correlated' with the regression vector, while only the input noise variance is needed to be estimated for the bias compensation scheme. Note that the idea of compensating the IV bias was used in [START_REF] Yang | Identification of continuous-time systems from sampled input-output data using bias eliminating techniques[END_REF]. Define a vector of instruments containing inputs and delayed outputs as

z T (t k ) = -y T (t k-d4 , n zy ) u T (t k , n zu ) (42) An IV estimator of θ is then given by θ ⋆ iv3 = R -1 zϕ r zy = θ + R -1 zϕ r zv (43) Assume that d 4 n a + n c . Then r zv = Ē -ỹ(t k-d4 , n zy ) ỹT (t k , n a )ā -ũ(t k , n zu )ũ T (t k , n b )b (44) = -λ eũ 0 nz y ×na 0 nz y ×n b 0 nz u ×na I nz u ×n b θ (45) = -λ eũ M 4 θ (46) Thus finally θ ⋆ iv3 = R -1 zϕ r zy = θ -λ eũ R -1 zϕ M 4 θ ( 
47) If an estimate of the input noise variance λ eũ is available, then the bias of the estimator ( 43) can be subtracted to obtain a consistent estimate of θ θ

⋆ bciv = θ ⋆ iv3 + λ eũ R -1 zϕ M 4 θ (48)

Estimation of λ eũ

To obtain an estimate of λ eũ the idea is to use the correlation between the composite noise v(t k , θ) and the 'residual' r 1 , defined as

r 1 (t k , d, θ) = y(t k-d , n a ) -z T (t k )θ (49) = āT ȳ(t k-d , n a ) -b T u(t k , n b ) (50) Then, if d > n a + n c J 1 (d, θ) = Ē{r 1 (t k , d, θ)v(t k , θ)} (51) = āT Ē ỹ(t k-d , n a ) ỹT (t k , n a ) ā + b T Ē ũ(t k , n b )ũ T (t k , n b ) b (52) = λ eũ b T b (53) If an estimate of b is available, then an estimate of the input noise variance is obtained as λeũ = J 1 (d, θ) bT b for d > n a + n c ( 54 
)
Improvement by filtering The estimation of the variance λ eũ relies on the estimation of b. It is thus preferable to obtain the best estimation possible of this vector. To this end, a filtered version of (54) is used. This filtering should not be viewed as a way to emphasize some spectrum part, but rather as a way to introduce a priori knowledge to the problem (i.e. the filter coefficients). Define a moving average filter F (q -1 ) as

F (q -1 ) = 1 + n f k=1 f k q -k (55) 
A second residual is then introduced

r 2 (t k , d, θ) = āT ȳ(t k-d , n a ) -b T u f (t k , n b ) (56) 
where

u f (t k , n b ) = F (q -1 )u(t k , n b ). Then, if d > n a + n c J 2 (d, θ) = Ē{r 2 (t k , d, θ)v(t k , θ)} (57) = āT Ē ỹ(t k-d , n a ) ỹT (t k , n a ) ā + b T Ē ũf (t k , n b )ũ T (t k , n b ) b (58) = λ eũ b T M F b (59 
) where M F is the following Toeplitz matrix

M F =     f 0 0 . . . 0 f 1 f 0 . . . 0 . . . . . . . . . . . . f n b -1 f n b -2 . . . f 0     (60) 
Hence, if an estimate of b is available, then an estimate of the input noise variance is obtained as

λeũ = J 2 (d, θ) bT M F b for d > n a + n c (61)
Remark 1. The bciv method requires the knowledge of θ (in the expression of the bias and in the estimate of the input noise variance). Hence, it has to be iterative. Furthermore, since ( 54) is true for any d > n a + n c , the variance estimation can be improved using n bciv values of d instead of one.

The bciv algorithm

1. Initialization: θ0 bciv = θiv3 2. Iteration until convergence:

2.1. Estimation of λ eũ using ( 54) or (61)

Computation of θi+1

bciv

θi+1 bciv = θiv3 + λi eũ R-1 zϕ M 4 θi bciv (62) 
In the numerical example Section, the algorithm using (54) to obtain the input variance estimate is referred to as bciv, while the algorithm using ( 61) is denoted fbciv3 (the number of values of J 1 (d, θ) used to estimated the input noise variance is noted n bciv ).

NUMERICAL SIMULATIONS

The following system is considered

G o (q) = q -1 + 0.5q -2 1 -1.5q -1 + 0.7q -2 (63) 
The noise-free input is defined as [START_REF] Söderström | On instrumental variable and total least squares approaches for identification of noisy systems[END_REF] 

u o (t k ) = 1 1 -0.2q -1 + 0.5q -2 e uo (t k ) ( 64 
)
where e uo is a white noise source. The coloured noise model is defined in (4) with C(q -1 ) = 1 -0.2q -1 (65) The variances of the white noises are then set to λ eũ = 0.14 and λ eỹ = 1.45 to obtain a signal-to-noise ratio (SNR) equal to about 10 dB on both input and output, with SNR = 10 log 10 P xo P x (66)

where P x represents the average power of the signal x. In all the iterative algorithms (bels, abels, bciv and fbciv) the same stop criterion is used, that is θi+1 -θi θi < 10 -3 or i 50 (67

)
where • is the Euclidian norm and θi the estimate obtained at the ith iteration. Hence, if an algorithm has not 'converged' before 50 iterations, it is automatically stopped. The system parameters are estimated on the basis of a data set of length N = 2000, and a Monte Carlo simulation of n mc = 100 runs is performed. The filter in the fbciv method is chosen as F (q -1 ) = 1 + q -1 + q -2 , and the delays d i , 1 i 4 are set to their minimum value. The estimates of the parameter vector and the input noise variance are given in Table 1, as well as the normalized root mean square error, defined as

NRMSE = 1 n mc nmc i=1 θi -θ o 2 θ o 2 (68)
Besides, since some methods do not always converge before 50 iterations, the Table 1 also contains 'C ce ', the percentage of simulations for which the algorithms have converged. The Bode diagrams are plotted on Figure 2.

Discussion

In this example, the bels algorithm fails to give good results because of a too high number of parameters to be estimated. Note that it does not lead to a reliable estimation of the input noise variance. However, its performance is greatly improved by using of the suggested over-determined system to estimate the noise statistical properties. Although still not very good, the estimation of input noise variance is improved, leading to better parameter estimates. The two IV methods provide unbiased results with reasonable standard deviation. Note that, as expected, the use of past outputs in the xiv2 method allows to get overall better estimates than the xiv1 method. Finally, the bias-compensated instrumental variable methods give, at first, poor results, but are greatly improved by using of an over-determined system to estimate the input noise variance. However, thanks to the prefiltering operation, the proposed fbciv algorithm provides accurate results, in particular the estimates of the input noise variance obtained with this algorithm are (very) close to the true value.

CONCLUSION

This paper was concerned with identification of parametric errors-in-variables models, assuming white noise on input and coloured noise on output. Two extended instrumental variable methods, as well as a bias compensated instrumental variable have been proposed. The performances of the proposed methods have been compared to a bias compensated least squares algorithm through a numerical simulation. Future work will include the analysis of the influence of the various user parameters (the number of equations added in abels, the filter in fbciv, etc). 
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 1 Fig. 1. Discrete-time EIV model

  Fig. 2. Bode diagrams of the true ('x') and estimated models.

  696 ± 0.556 -1.488 ± 0.002 -1.488 ± 0.001 -1.476 ± 0.001 -1.499 ± 0.001 -1.462 ± 0.005 -1.490 ± 0.001 -1.498 ± 0.001 a 2 0.7 0.325 ± 0.130 0.691 ± 0.001 0.691 ± 0.001 0.681 ± 0.001 0.699 ± 0.001 0.689 ± 0.001 0.695 ± 0.001 0.697 ± 0.001

Table 1 .

 1 ± 0.279 0.973 ± 0.022 0.972 ± 0.014 0.942 ± 0.012 0.996 ± 0.008 1.305 ± 0.251 1.083 ± 0.044 1.022 ± 0.009 b 2 0.5 0.207 ± 0.061 0.491 ± 0.003 0.494 ± 0.003 0.495 ± 0.006 0.504 ± 0.007 0.629 ± 0.053 0.533 ± 0.009 0.506 ± 0.003 Monte Carlo simulation results for N = 2000, SNR ≃ 10dB.

	b 1 0.450 λe ũ 0.14 0.626 ± 12.56 0.069 ± 0.049 0.080 ± 0.028 1	-	-	0.361 ± 0.148 0.209 ± 0.054 0.155 ± 0.013
	C ce	-	47%	100%	100%	-	-	52%	88%	100%
	Nrmse	-	66.4%	7.7%	6.3%	6.9%	5.5%	29.0%	11.2%	5.1%

for "Augmented Bias Eliminated Least Squares".

for "Filtered Bias Compensated Instrumental Variable".