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Abstract: In this paper, the problem of identifying stochastic linear discrete-time systems from
noisy input/output data is addressed. The input noise is supposed to be white, while the output
noise is assumed to be coloured. Some methods based on instrumental variable techniques are
studied and compared to a least squares bias compensation scheme with the help of Monte Carlo
simulations.
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1. INTRODUCTION

Identification of errors-in-variables (EIV) models has been
an active domain of research in the recent years (see
e.g. Mahata and Garnier (2006); Mahata (2007); Diversi
et al. (2007); Pintelon and Schoukens (2007); Söderström
(2008); Thil et al. (2007, 2008)). A survey paper gath-
ering most of the recent developments has been recently
published Söderström (2007). Among the ‘classical’ ap-
proaches using second order statistics, the instrumental
variable (IV) methods have not received considerable in-
terest. An explanation can be that the asymptotic accu-
racy of the basic IV method can be far from the Cramér-
Rao lower bound Söderström (2007). However, there is a
large freedom in the choice of the instrument vector, and
many ideas stem from the basic IV principle, e.g. iterative
methods Young (1970, 1984); Gilson and Van den Hof
(2005); Young et al. (2008) or the use of higher-order
statistics Inouye and Tsuchiya (1991); Inouye and Suga
(1994).
The aim of this paper is to present some IV-based methods
dedicated to the EIV system identification problem. It
is organized as follows. The framework is presented in
Section 2. In Section 3, two IV variants are proposed to
consistently identify EIV models, while in Section 4 the
principle of a bias compensated least squares scheme is
recalled. A bias compensated IV scheme is then proposed
in Section 5. Finally, before concluding, the performances
of the proposed methods are assessed by means of a sim-
ulation example in Section 6.
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Fig. 1. Discrete-time EIV model

2. ERRORS-IN-VARIABLES FRAMEWORK

Consider the linear time-invariant errors-in-variables (EIV)
system represented in Figure 1. The noise-free input and
output signals are related by:

yo(tk) = Go(q)uo(tk) (1)

where q is the forward operator and Go(q) is the transfer
operator of the ‘true’ system. The input/output signals
are both contaminated by noise sequences, denoted as ũ
and ỹ respectively. The data-generating system is thus
characterized by:

S :







yo(tk) = Go(q)uo(tk)

u(tk) = uo(tk) + ũ(tk)

y(tk) = yo(tk) + ỹ(tk)

(2)

It is then parameterized as follows:

G(θ) :







y(tk) = G(q, θ) (u(tk) − ũ(tk)) + ỹ(tk)

G(q, θ) = B(q−1,θ)/A(q−1,θ)

A(q−1,θ) = 1 + a1q
−1 + ... + ana

q−na

B(q−1,θ) = b1q
−1 + ... + bnb

q−nb

(3)

with na > nb and θT = [a1 . . . ana
b1 . . . bnb

]. The input
noise ũ is assumed to be white, while the output noise ỹ
is assumed to be given as the output of a moving average
filter driven by a white noise

H :







ũ(tk) = eũ(tk)

ỹ(tk) = C(q−1)eỹ(tk)

C(q−1) = 1 + c1q
−1 + · · · + cnc

q−nc

(4)

where eũ and eỹ are white noise sources of variance λeũ

and λeỹ
respectively. Equation (3) can be rewritten as

y(tk) = ϕT (tk)θ + v(tk,θ) (5)

v(tk,θ) = ỹ(tk) − ϕ̃T (tk)θ (6)

where the regression vector is given as

ϕT (tk) =
[
− y(tk−1) . . . − y(tk−na

)

u(tk−1) . . . u(tk−nb
)
]

(7)

The problem of identifying this errors-in-variables model
is concerned with consistently estimating the parameter



vector θ from the noisy data {u(tk), y(tk)}N
k=1.

2.1 Notations

As the input/output noises are additive, linear functions of
the measured signals can be broken down into two parts,
one made up of the noise-free signals contribution (denoted
with a ‘o’ subscript), the other of the noises contribution
(denoted with the ‘ ˜ ’ sign). For example, the regression
vector ϕ can be decomposed as

ϕ(tk) = ϕo(tk) + ϕ̃(tk) (8)

To keep the notations compact in the sequel, it is also
convenient to define

āT =
[
1 aT

]
= [1 a1 . . . ana

] (9)

bT = [b1 . . . bnb
] (10)

ȳT (tk, n) =
[
y(tk) yT (tk, n)

]
(11)

yT (tk, n) = [y(tk−1) . . . y(tk−n)] (12)

uT (tk, n) = [u(tk−1) . . . u(tk−n)] (13)

Moreover, let w1(tk), w2(tk) be two vectors (of the same
size) and s(tk) be a scalar. The following notations are
used in the sequel for the covariance vectors and matrices

Rw1w2
= Ē

{
w1(tk)wT

2 (tk)
}

(14)

rw1s = Ē{w1(tk)s(tk)} (15)

where Ē{·} stands for (see Ljung (1999))

Ē{f(tk)} = lim
N→∞

1

N

N∑

k=1

E{f(tk)} (16)

Lastly, an estimate of the parameter vector θ from N
samples of input/output data and its asymptotic version
are written as

θ̂ −→
N→∞

θ⋆ w.p.1 (17)

2.2 Assumptions

The following assumptions are needed

A1. The system (1) is asymptotically stable, and all the
system modes are observable and controllable;

A2. The signals uo, eũ and eỹ are stationary, ergodic and
zero-mean;

A3. The signals eũ and eỹ are assumed to be uncorrelated
with each other and with the input uo.

3. INSTRUMENTAL VARIABLE METHODS

Let z(tk) be a vector of instruments of dimension nz >

na + nb. An eXtended IV estimator of θ is given by
Söderström and Stoica (1983)

θ⋆
xiv =

(

RT
zϕWRzϕ

)
−1

RT
zϕWrzy (18a)

= θ +
(

RT
zϕWRzϕ

)
−1

rzv (18b)

where W is a positive definite weighting matrix. In the
sequel no weighting is made, and thus W = I. For the
estimator (18) to be unbiased, the vector of instruments
z(tk) must be uncorrelated with the composite error
v(tk,θ), while being ‘as correlated as possible’ with the

regression vector ϕ(tk), so that the matrix to be inverted
in (18) is not ill-conditioned, which is summarized as

rzv = 0 (19)

Rzϕ is nonsingular (20)

There is no unique way to define z(tk). Two different ways
to handle the EIV problem are presented in this paper.

3.1 First approach: xiv1 method

The first approach has been explored in Söderström and
Mahata (2002), considering the case of white noises on
both input and output. The instrument vector is chosen
to contain delayed inputs only

zT (tk) = uT (tk−d1
, nzu

) (21)

=
[
u(tk−1−d1

) . . . u(tk−d1−nzu
)
]

(22)

Since ũ, ỹ and uo are uncorrelated

rzv = Ē{z(tk)v(tk,θ)} (23)

= Ē
{

z(tk)
(

˜̄y
T
(tk, na)ā − ũT (tk, nb)b

)}

(24)

= −Ē
{

ũ(tk−d1
, nzu

)ũT (tk, nb)
}

b (25)

Thus, if the delay is such that d1 > nb, the vector of
instruments z(tk) satisfies (19). Besides, since ũ and ỹ
are uncorrelated, it is also true when the output noise is
coloured.

3.2 Second approach: xiv2 method

The xiv1 method satisfies the conditions (19)-(20) and
therefore leads to unbiased estimates. However, better
results may be obtained by using an instrument vector
more closely related to the regression vector. Indeed, it can
be seen as a way to avoid – as much as possible – cases
where the matrix Rzϕ has a bad conditioning. To this
end, let us define an instrument vector containing delayed
inputs and delayed outputs as

zT (tk) =
[
− yT (tk−d2

, nzy
) uT (tk−d3

, nzu
)
]

(26)

=
[
− y(tk−1−d2

) . . . − y(tk−d2−nzy
)

u(tk−1−d3
) . . . u(tk−d3−nzu

)
]

(27)

Since ũ, ỹ and uo are uncorrelated

rzv = Ē{z(tk)v(tk,θ)} (28)

= Ē







−y(tk−d2
, nzy

)
(

˜̄y
T
(tk, na)ā − ũT (tk, nb)b

)

u(tk−d3
, nzu

)
(

˜̄y
T
(tk, na)ā − ũT (tk, nb)b

)







= Ē

{

−ỹ(tk−d2
, nzy

) ˜̄y
T
(tk, na)ā

−ũ(tk−d3
, nzu

)ũT (tk, nb)b

}

(29)

Hence, if the delays satisfy d2 > na + nc and d3 > nb,
the vector of instruments z(tk) satisfies (19). Besides,
since the instrument vector (26) is closely linked to the
regression vector, the matrix Rzϕ is expected to have a
better conditioning than when using the instrument vector
(21). Therefore, the xiv2 method is expected to yield more
accurate estimates of the parameter vector than the xiv1

method.



4. BIAS COMPENSATED LS

In the simulation example presented in Section 6, the
proposed methods are compared with the bels

1 method
introduced in Zheng (2002), one of the few existing meth-
ods that can handle the coloured output noise case. Here
is given a quick overview of that method, as well as a way
to improve its performances.
The goal of the bels method is to compensate the bias of
the least squares (LS) estimate, which, in the case of white
noise on input and coloured noise on output, is given by

θ⋆
ls = θ − R−1

ϕϕ

[
rỹỹ + Rỹỹa

λeũ
b

]

(30)

= θ − R−1
ϕϕM(θ)νũ,ỹ (31)

where

νT
ũ,ỹ =

[
λỹ rT

ỹỹ λeũ

]
(32)

M(θ) =

[
M1 + M2(a)

M3(b)

]

(33)

and

– M1 = [0 Ina
0] ∈ R

na×(na+2);
– M2(a) =

∑na

k=1 Ina
(k)aτT

k ∈ R
na×(na+2);

– τ k ∈ R
(na+2)×1 is the vector whose kth component is

1 and the others 0’s;
– In(k) is a square matrix of dimension n whose kth

upper diagonal and kth lower diagonal are made of
1’s, and 0’s everywhere else (by convention In(0) =
In);

– M3(b) = b τT
na+2 ∈ R

nb×(na+2).

If an estimate of νũ,ỹ is available, then the bias of the LS
method can be subtracted to obtain a consistent estimate
of θ

θ⋆
bels = θ⋆

ls + R−1
ϕϕM (θ) νũ,ỹ (34)

4.1 Estimation of νũ,ỹ

The estimate of the vector νũ,ỹ is obtained by solving a
system of linear equations.
A first equation is obtained from the quadratic error of the
LS method, given as Zheng (2002)

J(θ⋆
ls) = Ē

{
e(tk,θ⋆

ls)
2
}

(35)

=
{

τT
1 + θ⋆T

ls M(θ) + aT M3

}

︸ ︷︷ ︸

=q(θ⋆

ls
,θ)

νũ,ỹ (36)

To obtain the other na + 1 equations, the degree of the
numerator of G(q, θ) is increased by na + 1, the new
parameters introduced this way having a true value equal
to 0. It can then be shown that the vector νũ,ỹ satisfies
Zheng (2002)

RT
ϕµR−1

ϕϕM(θ)νũ,ỹ = rµy − RT
ϕµθ⋆

ls (37)

where

µ(tk) = [u(tk−nb−1) . . . u(tk−nb−na−1)]
T (38)

4.2 The bels algorithm

1. Initialization: θ̂
0

bels = θ̂ls;
2. Iteration until convergence:

1 for “Bias Eliminated Least Squares”.

2.1. Computation of ν̂i+1
ũ,ỹ by solving:

[

R̂
T

ϕµR̂
−1

ϕϕM(θ̂
i

bels)

q(θ̂ls, θ̂
i

bels)

]

ν̂i+1
ũ,ỹ =

[

r̂µy − R̂
T

ϕµθ̂ls

J(θ̂ls)

]

(39)

2.2. Computation of θ̂
i+1

bels :

θ̂
i+1

bels = θ̂ls + R̂
−1

ϕϕM(θ̂
i

bels)ν̂
i+1
ũ,ỹ (40)

4.3 Extension to an over-determined system

In the method proposed in Zheng (2002), the estimate of
the statistical properties of the noises, contained in the
vector νũ,ỹ, is obtained by solving the system of linear
equations (39), composed of na +2 equations in the na +2
unknowns. However, it appears that the method gives
rather crude estimates of νũ,ỹ, especially when the signal-
to-noise ratio is low, or when there are many parameters to
estimate (in the numerical example of Zheng (2002) a first-
order model is considered; when the order of the model
increases, the performances of the algorithm deteriorate).
This crude estimation of νũ,ỹ may lead to convergence
problems, and crude estimates of the parameter vector as
well.
An idea to overcome this problem is to use more equations
to estimate the noise statistical properties. Indeed, increas-
ing the numerator’s degree by a number na+1+nbels where
nbels > 1 yields an over-determined system, which can be
solved in a least squares sense to obtain a better estimate
of νũ,ỹ. The following vector

µ(tk) = [u(tk−nb−1) . . . u(tk−nb−na−1−nbels
)]T (41)

is therefore used instead of (38). The resulting parameter
estimate is expected to be more accurate, which in turn
implies a quicker convergence of the algorithm. The asso-
ciated method is denoted abels

2 .

5. BIAS COMPENSATED IV

The bias compensated least squares schemes need to es-
timate a vector ν containing some values of the noises’
autocovariance functions. However, this is a difficult task,
especially when the size of this vector increases. Indeed,
when the noises are both white, only their variance has
to be estimated and the bias compensated least squares
schemes achieve satisfactory results. When the output
noise is coloured, however, the size of this vector is di-
rectly linked to the order of the estimated model, and the
performances deteriorate.
On another hand, the IV methods can be applied in fairly
general noise conditions, but defining an instrument vector
uncorrelated with the noises (see (19)) is often in contra-
diction with the second requirement (20). Indeed, when
the value of the delays appearing in the instrument vector
increases, it becomes ‘less correlated’ with the regression
vector.
Here is proposed a method which avoids both these dis-
advantages. A bias compensated instrumental variable is
used to obtain an estimate of the parameter vector θ:
in the first step the coloured output noise is handled by
an instrumental variable, while in a second step a bias
compensation scheme is applied to remove the bias induced

2 for “Augmented Bias Eliminated Least Squares”.



by the input noise. By allowing the IV estimator to give
biased estimates, the instrument vector can be chosen
‘more correlated’ with the regression vector, while only the
input noise variance is needed to be estimated for the bias
compensation scheme. Note that the idea of compensating
the IV bias was used in Yang et al. (1993).
Define a vector of instruments containing inputs and de-
layed outputs as

zT (tk) =
[
− yT (tk−d4

, nzy
) uT (tk, nzu

)
]

(42)

An IV estimator of θ is then given by

θ⋆
iv3 = R−1

zϕrzy = θ + R−1
zϕrzv (43)

Assume that d4 > na + nc. Then

rzv = Ē

{

−ỹ(tk−d4
, nzy

) ˜̄y
T
(tk, na)ā

−ũ(tk, nzu
)ũT (tk, nb)b

}

(44)

= −λeũ

[
0nzy×na

0nzy×nb

0nzu×na
Inzu×nb

]

θ (45)

= −λeũ
M4θ (46)

Thus finally

θ⋆
iv3 = R−1

zϕrzy = θ − λeũ
R−1

zϕM4θ (47)

If an estimate of the input noise variance λeũ
is available,

then the bias of the estimator (43) can be subtracted to
obtain a consistent estimate of θ

θ⋆
bciv = θ⋆

iv3 + λeũ
R−1

zϕM4θ (48)

5.1 Estimation of λeũ

To obtain an estimate of λeũ
the idea is to use the

correlation between the composite noise v(tk,θ) and the
‘residual’ r1, defined as

r1(tk, d,θ) = y(tk−d, na) − zT (tk)θ (49)

= āT ȳ(tk−d, na) − bT u(tk, nb) (50)

Then, if d > na + nc

J1(d, θ) = Ē{r1(tk, d,θ)v(tk,θ)} (51)

= āTĒ
{

˜̄y(tk−d, na) ˜̄y
T
(tk, na)

}

ā

+ bTĒ
{

ũ(tk, nb)ũ
T(tk, nb)

}

b (52)

= λeũ
bT b (53)

If an estimate of b is available, then an estimate of the
input noise variance is obtained as

λ̂eũ
=

J1(d, θ̂)

b̂
T
b̂

for d > na + nc (54)

Improvement by filtering The estimation of the variance
λeũ

relies on the estimation of b. It is thus preferable to
obtain the best estimation possible of this vector. To this
end, a filtered version of (54) is used. This filtering should
not be viewed as a way to emphasize some spectrum part,
but rather as a way to introduce a priori knowledge to the
problem (i.e. the filter coefficients).
Define a moving average filter F (q−1) as

F (q−1) = 1 +

nf∑

k=1

fkq−k (55)

A second residual is then introduced

r2(tk, d,θ) = āT ȳ(tk−d, na) − bT uf (tk, nb) (56)

where uf (tk, nb) = F (q−1)u(tk, nb). Then, if d > na + nc

J2(d, θ) = Ē{r2(tk, d,θ)v(tk,θ)} (57)

= āT Ē
{

˜̄y(tk−d, na) ˜̄y
T
(tk, na)

}

ā

+ bT Ē
{

ũf (tk, nb)ũ
T (tk, nb)

}

b (58)

= λeũ
bT MF b (59)

where MF is the following Tœplitz matrix

MF =







f0 0 . . . 0
f1 f0 . . . 0
...

. . .
. . .

...
fnb−1 fnb−2 . . . f0







(60)

Hence, if an estimate of b is available, then an estimate of
the input noise variance is obtained as

λ̂eũ
=

J2(d, θ̂)

b̂
T
MF b̂

for d > na + nc (61)

Remark 1. The bciv method requires the knowledge of θ
(in the expression of the bias and in the estimate of the
input noise variance). Hence, it has to be iterative.
Furthermore, since (54) is true for any d > na + nc, the
variance estimation can be improved using nbciv values of
d instead of one.

5.2 The bciv algorithm

1. Initialization: θ̂
0

bciv = θ̂iv3

2. Iteration until convergence:
2.1. Estimation of λeũ

using (54) or (61)

2.2. Computation of θ̂
i+1

bciv

θ̂
i+1

bciv = θ̂iv3 + λ̂i
eũ

R̂
−1

zϕM4θ̂
i

bciv (62)

In the numerical example Section, the algorithm using
(54) to obtain the input variance estimate is referred to
as bciv, while the algorithm using (61) is denoted fbciv

3

(the number of values of J1(d, θ) used to estimated the
input noise variance is noted nbciv).

6. NUMERICAL SIMULATIONS

The following system is considered

Go(q) =
q−1 + 0.5q−2

1 − 1.5q−1 + 0.7q−2
(63)

The noise-free input is defined as Söderström and Mahata
(2002)

uo(tk) =
1

1 − 0.2q−1 + 0.5q−2
euo

(tk) (64)

where euo
is a white noise source. The coloured noise model

is defined in (4) with

C(q−1) = 1 − 0.2q−1 (65)

The variances of the white noises are then set to λeũ
= 0.14

and λeỹ
= 1.45 to obtain a signal-to-noise ratio (SNR)

equal to about 10 dB on both input and output, with

SNR = 10 log10

(
Pxo

Px̃

)

(66)

3 for “Filtered Bias Compensated Instrumental Variable”.



where Px represents the average power of the signal x. In
all the iterative algorithms (bels, abels, bciv and fbciv) the
same stop criterion is used, that is

∥
∥θ̂

i+1
− θ̂

i∥
∥

∥
∥θ̂

i∥
∥

< 10−3 or i > 50 (67)

where ‖ · ‖ is the Euclidian norm and θ̂
i

the estimate
obtained at the ith iteration. Hence, if an algorithm has
not ‘converged’ before 50 iterations, it is automatically
stopped. The system parameters are estimated on the basis
of a data set of length N = 2000, and a Monte Carlo
simulation of nmc = 100 runs is performed. The filter in
the fbciv method is chosen as F (q−1)=1 + q−1+ q−2, and
the delays di, 1 6 i 6 4 are set to their minimum value.
The estimates of the parameter vector and the input noise
variance are given in Table 1, as well as the normalized
root mean square error, defined as

NRMSE =

√
√
√
√ 1

nmc

nmc∑

i=1

∥
∥θ̂

i
− θo

∥
∥

2

∥
∥θo

∥
∥

2 (68)

Besides, since some methods do not always converge be-
fore 50 iterations, the Table 1 also contains ‘Cce’, the
percentage of simulations for which the algorithms have
converged. The Bode diagrams are plotted on Figure 2.

6.1 Discussion

In this example, the bels algorithm fails to give good
results because of a too high number of parameters to
be estimated. Note that it does not lead to a reliable
estimation of the input noise variance. However, its per-
formance is greatly improved by using of the suggested
over-determined system to estimate the noise statistical
properties. Although still not very good, the estimation
of input noise variance is improved, leading to better
parameter estimates. The two IV methods provide un-
biased results with reasonable standard deviation. Note
that, as expected, the use of past outputs in the xiv2

method allows to get overall better estimates than the
xiv1 method. Finally, the bias-compensated instrumental
variable methods give, at first, poor results, but are greatly
improved by using of an over-determined system to esti-
mate the input noise variance. However, thanks to the pre-
filtering operation, the proposed fbciv algorithm provides
accurate results, in particular the estimates of the input
noise variance obtained with this algorithm are (very) close
to the true value.

7. CONCLUSION

This paper was concerned with identification of parametric
errors-in-variables models, assuming white noise on input
and coloured noise on output. Two extended instrumental
variable methods, as well as a bias compensated instru-
mental variable have been proposed. The performances
of the proposed methods have been compared to a bias
compensated least squares algorithm through a numerical
simulation. Future work will include the analysis of the
influence of the various user parameters (the number of
equations added in abels, the filter in fbciv, etc).
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(f) xiv2 (nbels = 4)

Fig. 2. Bode diagrams of the true (‘x’) and estimated models.

true bels abels xiv1 xiv2 bciv fbciv

nbels = 3 nbels = 4 nbciv = 1 nbciv = 2

a1 −1.5 −0.696±0.556 −1.488±0.002 −1.488±0.001 −1.476±0.001 −1.499±0.001 −1.462±0.005 −1.490±0.001 −1.498±0.001

a2 0.7 0.325 ± 0.130 0.691 ± 0.001 0.691 ± 0.001 0.681 ± 0.001 0.699 ± 0.001 0.689 ± 0.001 0.695 ± 0.001 0.697 ± 0.001

b1 1 0.450 ± 0.279 0.973 ± 0.022 0.972 ± 0.014 0.942 ± 0.012 0.996 ± 0.008 1.305 ± 0.251 1.083 ± 0.044 1.022 ± 0.009

b2 0.5 0.207 ± 0.061 0.491 ± 0.003 0.494 ± 0.003 0.495 ± 0.006 0.504 ± 0.007 0.629 ± 0.053 0.533 ± 0.009 0.506 ± 0.003

λeũ
0.14 0.626 ± 12.56 0.069 ± 0.049 0.080 ± 0.028 − − 0.361 ± 0.148 0.209 ± 0.054 0.155 ± 0.013

Cce − 47% 100% 100% − − 52% 88% 100%

Nrmse − 66.4% 7.7% 6.3% 6.9% 5.5% 29.0% 11.2% 5.1%

Table 1. Monte Carlo simulation results for N = 2000, SNR ≃ 10dB.


