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Abstract: This paper deals with identification of dynamic discrete-time errors-in-variables
systems. The statistical accuracy of a least squares estimator based on third-order cumulants
is analyzed. In particular, the asymptotic covariance matrix of the estimated parameters is
derived. The results are supported by numerical simulation studies.
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1. INTRODUCTION

Consider the linear time-invariant errors-in-variables (EIV)
system represented in Figure 1. The noise-free input and
output signals are related by:

y0(tk) = G0(q)u0(tk) (1)

where q is the forward operator and G0(q) is the transfer
function of the ‘true’ system. The input/output signals are
both contaminated by noise sequences, denoted as ũ and
ỹ respectively.
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Fig. 1. Discrete-time EIV model

The data-generating system is thus characterized by:

S :







y0(tk) = G0(q)u0(tk)

u(tk) = u0(tk) + ũ(tk)

y(tk) = y0(tk) + ỹ(tk)

(2)

It is then parameterized as follows:

G(θ) :















y(tk) = G(q, θ) (u(tk) − ũ(tk)) + ỹ(tk)

G(q, θ) = B(q−1,θ)/A(q−1,θ)

A(q−1,θ) = 1+a1q
−1 + ... + ana

q−na

B(q−1,θ) = b0+b1q
−1 + ... + bnb

q−nb

(3)

where θ = [a1 . . . ana
b0 . . . bnb

]
T
. The problem of iden-

tifying this errors-in-variables system is concerned with
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consistently estimating the parameter vector θ from the
measured noisy data {u(tk), y(tk)}N

k=1
.

It is well known Anderson and Deistler [1984], Scherrer
and Deistler [1998] that if only the second-order statistics
are exploited and without introducing more explicit as-
sumptions, a unique solution to identification of the errors-
in-variables systems does not exist. It is thus natural to
study alternative methods based on higher-order statistics
(HOS). Under different assumptions on the distributional
properties of the noises and noise-free signals, we could re-
move the effect of the disturbances from the measured data
to get consistent estimates. Several identification meth-
ods using higher-order statistics have been proposed for
discrete-time EIV systems, for example, in Friedlander and
Porat [1990], Tugnait [1992], Delopoulos and Giannakis
[1994] and Tugnait and Ye [1995]. Recently a new HOS-
based method for identification of continuous-time EIV
models has been proposed, using the fact that the equation
of the model is satisfied by the third-order cumulants. For
details, see Thil et al. [2008] and references therein.
Here we are interested in deriving the asymptotic prop-
erties of (the discrete-time equivalent of) the third-order
cumulants-based estimator proposed in that paper. An
explicit expression for the asymptotic covariance matrix
of the estimated parameters is derived. To apply the iden-
tification method, the following assumptions are needed:

A1. G0(z) is asymptotically stable and there is no com-
mon factor between A0(z) and B0(z);

A2. The polynomial degrees na and nb are a priori known;
A3. The noise-free signal u0 is a zero-mean, stationary,

ergodic stochastic process such that its third-order
cumulants are non-zero. Its probability density func-
tion (pdf) is thus not symmetric;



A4. ũ and ỹ are zero-mean, stationary, ergodic mutually
independent stochastic processes 2 with symmetric
pdf’s, and both are independent of u0;

A5. The moments of second, fourth- and sixth-order of
the noise-free input u0 and the noises ũ, ỹ decay
exponentially, that is E

{

x(tk)x(tk+τ1
) . . . x(tk+τp

)
}

decays exponentially as maxj |τj | → ∞.

The outline of the paper is as follows. In the next section
we recall the main definitions and properties of the third-
order cumulants, and the identification method is quickly
introduced. In Section 3 the asymptotic covariance matrix
of the estimator is derived. Finally, before concluding in
Section 5, a simulation example is given in Section 4
to assess the agreement between the theoretical and the
simulated results.

2. THIRD-ORDER CUMULANTS BASED
ESTIMATOR

2.1 Properties of HOS

The identification technique developed in this paper is
based on higher-order statistics Brillinger [1981], Mendel
[1991], Lacoume et al. [1997]. The main definitions and
properties used in the proposed approach are recalled in
this section.
The third-order cumulant of a real-valued, zero-mean
stationary random process x is defined as:

Cxxx(τ1, τ2) = Cum[x(tk), x(tk+τ1
), x(tk+τ2

)]

= E{x(tk)x(tk+τ1
)x(tk+τ2

)}
The cumulants of order higher than two have many prop-
erties amongst which we only recall those used in the
proposed estimation scheme.
Let x, y ∈ R

n be two random vectors.

P1. Multilinearity: the cumulants are linear with respect
to each of their arguments. If αi, βj , γk are scalars:

Cum





∑

i

αix(ti),
∑

j

βjx(tj),
∑

k

γkx(tk)





=
∑

i,j,k

αiβjγkCum[x(ti), x(tj), x(tk)]

P2. Additivity: if x and y are independent, the cumulant
of their sum equals the sum of their cumulants:

Cum[x(t1)+ y(t1), . . . , x(tn)+ y(tn)]

= Cum[x(t1), . . . , x(tn)]

+ Cum[y(t1), . . . , y(tn)]

P3. The third-order cumulant of a random variable with
a symmetric pdf is equal to zero.

From assumptions A3, A4 and using properties P2, P3 we
have:

Cuyu(τ1, τ2) = Cu0y0u0
(τ1, τ2)

Cuuu(τ1, τ2) = Cu0u0u0
(τ1, τ2)

The third-order (cross-)cumulants of the input and out-
put signals are thus insensitive to the symmetrically dis-
tributed noises. In the sequel, the notation τ = [τ1 τ2] will
be used.
2 The independence simplifies the analysis. The method also works

when ũ and ỹ are mutually correlated.

2.2 Third-order cumulants based system identification
algorithm

The identification algorithm is based on the following
result: it can be proven that the equation of the system
is satisfied for the third-order cross-cumulants (see Thil
et al. [2008] and references therein). More specifically:

A(q−1)Cuyu(τ1, τ2) = B(q−1)Cuuu(τ1, τ2) (4)

i.e. Cuyu(τ1, τ2) = ϕT
cum(τ1, τ2)θ (5)

where:

ϕT
cum(τ1, τ2) =

[

−Cuyu(τ1−1, τ2) . . . −Cuyu(τ1−na, τ2)

Cuuu(τ1, τ2) . . . Cuuu(τ1− nb, τ2)
]

Setting τ2 = 0 and taking 0 6 τ1 6 M − 1 yields:






Cuyu(0, 0)
...

Cuyu(M − 1, 0)






=







ϕT
cum(0, 0)

...
ϕT

cum(M − 1, 0)






θ

which is expressed in a compact form as:

C = ΦT θ (6)

An estimate of the parameter vector θ can then be
obtained by solving (6) in a least squares sense, yielding
the so-called Third-Order Cumulant based Least Squares
estimator:

θtocls =
(

ΦΦT
)

−1

ΦC (7)

Remark 1. There are several questions that raise, such as:

• how to choose the user parameter M ;
• which cumulant slice should be chosen (here 0 6 τ1 6

M − 1 and τ2 = 0);
• is it better to use (4) or another equation, such as

A(q−1)Cyyy(τ ) = B(q−1)Cyuy(τ ).

Some answers to the first two issues are given in Thil et al.
[2008], and some further insight is given in the present
work.
Besides, note that the third-order cumulants have to be
estimated with a finite number of available data, replacing
expectations by sample averages:

Ĉxxx(τ )=
1

N

N
∑

k=1

x(tk)x(tk+τ1)x(tk+τ2)

Since the estimate of the expectation is unbiased and
consistent, third-order cumulants estimates are unbiased
and consistent as well.

3. STATISTICAL ANALYSIS

A statistical analysis of the accuracy of the HOS-based
method described in Section 2 is valuable. It can highly
facilitate evaluation of and comparison with other identi-
fication approaches, especially methods based on second-
order properties, for identifying the EIV system. Besides,
one may also get insight into important issues like how
different user choices of the algorithm can influence the
accuracy.
By extending the approach used for the second-order based
methods Söderström [2005], Hong et al. [2007], the aim
is to derive an expression for the asymptotic covariance



matrix of the estimated parameters for the HOS-based
estimator:

P = lim
N→∞

NE

{

(

θ̂tocls − θo

) (

θ̂tocls − θo

)T
}

Let:

Ĉ = C + C̃ and Φ̂ = Φ + Φ̃ (8)

be the corresponding estimates of C,Φ, while C̃, Φ̃ denote
the relevant estimation errors. Assuming that the true
process belongs to the model set (that is Go ∈ G), and
utilizing (8) and (7) leads to:

θ̂tocls − θo =
(

Φ̂Φ̂
T
)

−1 (

Φ̂Ĉ
)

− θo

=
(

Φ̂Φ̂
T
)

−1 (

Φ̂
(

Ĉ − Φ̂
T
θo

))

=
(

Φ̂Φ̂
T
)

−1(

Φ
(

C̃ − Φ̃
T
θo

)

+ Φ̃
(

C̃ − Φ̃
T
θo

))

(9)

Assume that N is large. Since the estimates of the third-
order cumulants are consistent, we have ‖C̃‖ ≪ ‖C‖ and

‖Φ̃‖ ≪ ‖Φ‖. The following lemma is now needed.

Lemma 1. Let R, R̃ be two non-singular square matrices
such that ‖R̃‖ ≪ ‖R‖. Then:

(

R + R̃
)

−1

≈ R−1 − R−1R̃R−1 + O(‖R̃‖2)

Using this lemma, we get:
(

Φ̂Φ̂
T
)

−1

=
(

ΦΦT + ΦΦ̃
T

+ Φ̃ΦT + Φ̃Φ̃
T
)

−1

≈
(

ΦΦT
)

−1

−
(

ΦΦT
)

−1(

ΦΦ̃
T
+ Φ̃ΦT+ Φ̃Φ̃

T
)(

ΦΦT
)

−1

Injecting that expression in (9) and neglecting second-
order terms yields:

θ̂tocls − θo ≈
(

ΦΦT
)

−1

Φ
(

C̃ − Φ̃
T
θo

)

(10)

≈
(

ΦΦT
)

−1

Φ
(

Ĉ − Φ̂
T
θo

)

(11)

Let w = Ĉ − Φ̂
T
θo ∈ R

M . Note that Φ is a deterministic
matrix, while w is a random term which has zero mean
and a variance that should decrease when N increases.
Due to Assumptions A1 and A5, it follows that the
third-order (cross-)cumulants Cuyu(τ1, 0) and Cuuu(τ1, 0)
have the property of exponential forgetting, i.e. decay
exponentially with τ1 increasing. Under the assumptions
given in Section 1 and using Theorem 3 and 4 in Ljung
[1977], the following Theorem can be stated:

Theorem 2. The estimated parameter θ̂tocls is asymptoti-
cally Gaussian distributed:

√
N(θ̂tocls − θo)

dist−→ N (0,P ) (12)

where:

P = lim
N→∞

NE

{

(

θ̂tocls − θo

) (

θ̂tocls − θo

)T
}

= Q lim
N→∞

NE
{

wwT
}

QT (13)

and Q = (ΦΦT )−1Φ.

Proof. From (11) it can be seen that θ̂tocls − θo ≈ Qw.
Then, using Lemma 9A.1. in [Ljung, 1987, p. 266], it can
be shown that Qw is asymptotically Gaussian distributed
with covariance P given by (13).

Let us introduce a convenient notation for the moments
used in the sequel. The moment of order r of a stationary
signal x will be noted as:

µxr (τ ) = E
{

x(tk)x(tk+τ1
) . . . x(tk+τr−1

)
}

where the size r− 1 of τ is determined by the order of the
moment.
The following lemma gives some insights into the term
lim

N→∞

NE
{

wwT
}

appearing in (13).

Lemma 3. It holds that:

lim
N→∞

NE{wj1+1wj2+1} =

∞
∑

τ=−∞

{

na
∑

l1=0

na
∑

l2=0

al1al2µỹ2(τ + j1 − j2 − l1 + l2)

[

µu4

0

(0, τ, τ) + 4µu2

0

(τ)µũ2(τ)

+ 2µu2

0

(0)µũ2(0) + µũ4(0, τ, τ)
]

+

nb
∑

l1=0

nb
∑

l2=0

bl1bl2

[

µũ6(0, τ, τ, τ + j1 − l1, j2 − l2)

+ 4µu2

0

(τ)µũ4(τ, τ + j1 − l1, j2 − l2)

+ µu2

0

(0)
(

µũ4(0, τ + j1 − l1, j2 − l2)

+ µũ4(0, j1 − l1, j2 − l2 − τ)
)

+ µu4

0

(0, τ, τ)µũ2(τ + j1 − l1 − j2 + l2)
]

}

(14)

Proof. See Appendix A.

To get the asymptotic covariance matrix P from (13), the
problem left now is to calculate the fourth- and sixth-order
moments needed in (14). This can be done by using the
following lemma.

Lemma 4. Assume that ũ is given by a filtered white noise
eũ with variance µe2

ũ
and fourth moment µe4

ũ
:

ũ(tk) = H ũ(q−1)eũ(tk) (15)

H ũ(q−1) =

∞
∑

j=0

hũ
j q−j (16)

Then the general fourth- and a particular sixth-order
moment of ũ can be written as:

µũ4(τ ) = µ2

e2

ũ

∞
∑

j1=0

∞
∑

j2=0

(

hũ
j1

hũ
j1+τ1

hũ
j2

hũ
j2+τ2−τ3

+ hũ
j1

hũ
j1+τ2

hũ
j2

hũ
j2+τ1−τ3

+ hũ
j1

hũ
j1+τ3

hũ
j2

hũ
j2+τ2−τ1

)

+
(

µe4

ũ
− 3µ2

e2

ũ

)

∞
∑

j1=0

hũ
j1

hũ
j1+τ1

hũ
j1+τ2

hũ
j1+τ3

(17)

and:



µũ6(0, τ, τ, τ1, τ2) = µ3

e2

ũ

∞
∑

j1=0

∞
∑

j2=0

∞
∑

j3=0
∑

τa,τb,τc

hũ
j1

hũ
j1+τa

hũ
j2

hũ
j2+τb

hũ
j3

hũ
j3+τc

+
(

µe2

ũ
µe4

ũ
− 3µ3

e2

ũ

)

∞
∑

j1=0

∞
∑

j2=0
∑

τd,τe,τf ,τg

hũ
j1

hũ
j1+τd

hũ
j2

hũ
j2+τe

hũ
j2+τf

hũ
j2+τg

+
(

µe6

ũ
− 15µe2

ũ
µe4

ũ
+ 30µ3

e2

ũ

)

∞
∑

j1=0

(hũ
j1

)2(hũ
j1+τ )2hũ

j1+τ1
hũ

j1+τ2
(18)

where τa, . . . , τg are given in Tables B.1 and B.2.

Proof. See Appendix B.

The moments of u0 can be obtained in the same way,
assuming that u0 is also given by a filtered white noise.
From (14) we see that the statistical properties of the input
noise ũ have a larger impact to the asymptotic estimation
accuracy than those of the output noise. This is because of
the use of (4). If another equation based on the third-order
cumulants is used, as for example:

A(q−1)Cyyy(τ1, τ2) = B(q−1)Cyuy(τ1, τ2) (19)

then the statistical properties of the output noise ỹ will
have more effect. Theorem 1 remains true, the only change
being that the third-cumulants appearing in C and Φ are
then Cyyy(·, ·) and Cyuy(·, ·). As a result, (14) becomes:

lim
N→∞

NE{wj1+1wj2+1} =

∞
∑

τ=−∞

{

na
∑

l1=0

na
∑

l2=0

al1al2

[

µy4

0

(0, τ, τ)µỹ2(τ +j1− j2− l1+ l2)

+ 4µy2

0

(τ)µỹ4(τ, τ + j1 − l1, j2 − l2)

+ µy2

0

(0)
(

µỹ4(0, τ + j1 − l1, j2 − l2)

+ µỹ4(0, j1 − l1, j2 − l2 − τ)
)

+ µỹ6(0, τ, τ, τ + j1 − l1, j2 − l2)
]

+

nb
∑

l1=0

nb
∑

l2=0

bl1bl2µũ2(τ + j1 − j2 − l1 + l2)

[

µy4

0

(0, τ, τ) + 4µy2

0

(τ)µỹ2(τ)

+ 2µy2

0

(0)µỹ2(0) + µỹ4(0, τ, τ, )
]

}

4. NUMERICAL SIMULATIONS

Consider a second-order system:

G0(q) =
1 − 0.5q−1

1 − 1.5q−1 + 0.7q−2

The noise-free input u0(tk) is an ARMA process:

u0(tk) =
1 + 0.7q−1

1 − 0.5q−1
eu0

(tk)

where eu0
is a zero-mean exponentially distributed white

noise with unit variance. The third- and fourth-order

moment of eu0
are thus µe3

u0

= 2 and µe4
u0

= 9.

The measurement noise at the input is an AR process:

ũ(tk) =
1

1 − 0.7q−1
eũ(tk) (20)

where eũ is a zero-mean Gaussian white noise with unit
variance, and the fourth- and sixth-order moments equal
to 3 and 15, respectively.
The output measurement noise ỹ is an ARMA process:

ỹ(tk) =
1 + 0.7q−1

1 − 0.7q−1
eỹ(tk) (21)

where eỹ is also a zero-mean Gaussian white noise with
unit variance, and therefore its fourth-order moment
equals 3.
The Monte Carlo simulations results (200 runs) are shown
below for N = 50000. The parameter M is chosen equal
to 5. Using the tocls algorithm the following results are
obtained:

Psim =







83.34
−60.16 44.37
−14.92 9.10 21.32
112.42 −78.99 −35.26 169.62







and the theoretical normalized asymptotic covariance ma-
trix is:

P =







80.13
−58.14 43.51
−12.84 6.56 20.62
109.54 −77.22 −30.73 166.95







As can be seen, the agreement between theory and simu-
lation is fairly good.

5. CONCLUSION

The asymptotic properties of a third-order cumulants
based estimator for identifying discrete-time errors-in-
variables models have been analyzed. An explicit expres-
sion for the asymptotic covariance matrix of the parameter
vector estimates has been derived. Monte Carlo simula-
tions support the theoretical results.

Appendix A. PROOF OF LEMMA 3

For jth element of the vector w, 0 6 j 6 M − 1, we have:

wj+1 = Ĉuyu(j, 0) − ϕ̂T
cum(j, 0)θo

=
1

N

N
∑

t=1

u2(tk)ε(tk+j) (A.1)

where:

ε(tk+j) = A(q−1)ỹ(tk+j) − B(q−1)ũ(tk+j)

According to (A.1) and Assumptions A3 and A4, we have:



E{wj1+1wj2+1}

= E

{

1

N2

N
∑

k=1

N
∑

l=1

u2(tk)u2(tl)ε(tk+j1)ε(tl+j2)

}

=
1

N2

N
∑

k=1

N
∑

l=1

{

E
{

u2
0(tk)u2

0(tl)
}

E{ε(tk+j1)ε(tl+j2)}

+ E
{

u2
0(tk)

}

E
{

ũ2(tl)ε(tk+j1)ε(tl+j2)
}

+ 4E{u0(tk)u0(tl)}E{ũ(tk)ũ(tl)ε(tk+j1)ε(tl+j2)}
+ E

{

u2
0(tl)

}

E
{

ũ2(tk)ε(tk+j1)ε(tl+j2)
}

+ E
{

ũ2(tk)ũ2(tl)ε(tk+j1)ε(tl+j2)
}

}

(A.2)

Set τ = k − l. Then:

E{wj1+1wj2+1} =

N
∑

τ=−N

N − |τ |
N2

{

µu4

0

(0, τ, τ)E{ε(tk+τ+j1)ε(tk+j2)}
+ µu2

0

(0)E
{

ũ2(tk)ε(tk+τ+j1)ε(tk+j2)
}

+ 4µu2

0

(τ)E{ũ(tk+τ )ũ(tk)ε(tk+τ+j1)ε(tk+j2)}
+ µu2

0

(0)E
{

ũ2(tk+τ )ε(tk+τ+j1)ε(tk+j2)
}

+ E
{

ũ2(tk+τ )ũ2(tk)ε(tk+τ+j1)ε(tk+j2)
}

}

(A.3)

Using Assumption A4, the first term in (A.3) becomes:

E{ε(tk+τ+j1)ε(tk+j2)}

=

na
∑

l1=0

na
∑

l2=0

al1al2E{ỹ(tk+τ+j1−l1)ỹ(tk+j2−l2)}

+

nb
∑

l1=0

nb
∑

l2=0

bl1bl2E{ũ(tk+τ+j1−l1)ũ(tk+j2−l2)} (A.4)

Therefore:

E{ε(tk+τ+j1)ε(tk+j2)}

=

na
∑

l1=0

na
∑

l2=0

al1al2µỹ2(τ + j1 − l1 − j2 + l2)

+

nb
∑

l1=0

nb
∑

l2=0

bl1bl2µũ2(τ + j1 − l1 − j2 + l2) (A.5)

Following the same steps the other expectations in (A.3)
can be obtained, and thus:

E{wj1+1wj2+1} =

N
∑

τ=−N

N − |τ |
N2

{

na
∑

l1=0

na
∑

l2=0

al1al2

[

µu4

0

(0, τ, τ)µỹ2(τ + j1− l1− j2+ l2)

+ 4µu2

0

(τ)µũ2ỹ2(τ, τ + j1 − l1, j2 − l2)

+ µu2

0

(0)
(

µũ2ỹ2(0, τ + j1 − l1, j2 − l2)

+ µũ2ỹ2(0, j1 − l1, j2 − l2 − τ)
)

+ µũ4ỹ2(0, τ, τ, τ + j1 − l1, j2 − l2)
]

+

nb
∑

l1=0

nb
∑

l2=0

bl1bl2

[

µu4

0

(0, τ, τ)µũ2(τ + j1− l1− j2+ l2)

+ 4µu2

0

(τ)µũ4(τ, τ + j1 − l1, j2 − l2)

+ µu2

0

(0)
(

µũ4(0, τ + j1 − l1, j2 − l2)

+ µũ4(0, j1 − l1, j2 − l2 − τ)
)

+ µũ6(0, τ, τ, τ + j1 − l1, j2 − l2)
]

}

(A.6)

Consequently, by Assumption A5, it follows that:

lim
N→∞

NE{wj1+1wj2+1} =

∞
∑

τ=−∞

{

na
∑

l1=0

na
∑

l2=0

al1al2

[

µu4

0

(0, τ, τ)µỹ2(τ + j1− j2− l1+ l2)

+ 4µu2

0

(τ)µũ2ỹ2(τ, τ + j1 − l1, j2 − l2)

+ µu2

0

(0)
(

µũ2ỹ2(0, τ + j1 − l1, j2 − l2)

+ µũ2ỹ2(0, j1 − l1, j2 − l2 − τ)
)

+ µũ4ỹ2(0, τ, τ, τ + j1 − l1, j2 − l2)
]

+

nb
∑

l1=0

nb
∑

l2=0

bl1bl2

[

µu4

0

(0, τ, τ)µũ2(τ + j1− j2− l1+ l2)

+ 4µu2

0

(τ)µũ4(τ, τ + j1 − l1, j2 − l2)

+ µu2

0

(0)
(

µũ4(0, τ + j1 − l1, j2 − l2)

+ µũ4(0, j1 − l1, j2 − l2 − τ)
)

+ µũ6(0, τ, τ, τ + j1 − l1, j2 − l2)
]

}

(A.7)

which gives (14).

Appendix B. PROOF OF LEMMA 4

By virtue of the assumptions in Lemma 3, it holds that:

µũ4(τ ) = E{ũ(tk)ũ(tk+τ1
)ũ(tk+τ2

)ũ(tk+τ3
)}

=

∞
∑

j1=0

∞
∑

j2=0

∞
∑

j3=0

∞
∑

j4=0

hũ
j1

hũ
j2

hũ
j3

hũ
j4

E
{

eũ(tk−j1)

eũ(tk+τ1−j2)eũ(tk+τ2−j3)eũ(tk+τ3−j4)
}

(B.1)

As eũ(tk) is a white noise, the expectation in (B.1) is
nonzero only when the time arguments are pairwise equal
or all equal. Therefore:

E{eũ(tk−j1)eũ(tk+τ1−j2)eũ(tk+τ2−j3)eũ(tk+τ3−j4)}
= µ2

e2

ũ

(

δj1,j2−τ1
δj3−τ2,j4−τ3

+ δj1,j3−τ2
δj2−τ1,j4−τ3

+ δj1,j4−τ3
δj2−τ1,j3−τ2

)

+
(

µe4

ũ
− 3µ2

e2

ũ

)

δj1,j2−τ1
δj2−τ1,j3−τ2

δj3−τ2,j4−τ3

where δ·,· is the Kronecker delta. Inserting this expression
in (B.1) we obtain:



µũ4(τ ) = µ2

e2

ũ

∞
∑

j1=0

∞
∑

j2=0

(

hũ
j1

hũ
j1+τ1

hũ
j2

hũ
j2+τ2−τ3

+ hũ
j1

hũ
j1+τ2

hũ
j2

hũ
j2+τ1−τ3

+ hũ
j1

hũ
j1+τ3

hũ
j2

hũ
j2+τ2−τ1

)

+
(

µe4

ũ
− 3µ2

e2

ũ

)

∞
∑

j1=0

hũ
j1

hũ
j1+τ1

hũ
j1+τ2

hũ
j1+τ3

(B.2)

For the sixth-order moment of ũ the result becomes slightly
more complicated:

µũ6(0, τ, τ, τ1, τ2)

= E
{

ũ(tk)2ũ(tk+τ )2ũ(tk+τ1
)ũ(tk+τ2

)
}

=

∞
∑

i1=0

∞
∑

i2=0

∞
∑

i3=0

∞
∑

i4=0

∞
∑

i5=0

∞
∑

i6=0

hũ
i1

hũ
i2

hũ
i3

hũ
i4

hũ
i5

hũ
i6

E
{

eũ(tk−i1)eũ(tk−i2)eũ(tk+τ−i3)eũ(tk+τ−i4)

eũ(tk+τ1−i5)eũ(tk+τ2−i6)
}

(B.3)

The last expectation in (B.3) is non-zero in the following
cases:

(1) there are three groups of equal time lags, each group
composed of two time lags (fifteen combinations – see
Table B.1);

(2) there are two groups of equal time lags, one group
composed of two time lags, the other of four time
lags (fifteen combinations – see Table B.2);

(3) all the time lags are equal (one combination).

The sixth-order moment of ũ can thus be written as:

µũ6(0, τ, τ, τ1, τ2) = µ3

e2

ũ

∞
∑

j1=0

∞
∑

j2=0

∞
∑

j3=0
∑

τa,τb,τc

hũ
j1

hũ
j1+τa

hũ
j2

hũ
j2+τb

hũ
j3

hũ
j3+τc

+
(

µe2

ũ
µe4

ũ
− 3µ3

e2

ũ

)

∞
∑

j1=0

∞
∑

j2=0
∑

τd,τe,τf ,τg

hũ
j1

hũ
j1+τd

hũ
j2

hũ
j2+τe

hũ
j2+τf

hũ
j2+τg

+
(

µe6

ũ
− 15µe2

ũ
µe4

ũ
+ 30µ3

e2

ũ

)

∞
∑

j1=0

(hũ
j1

)2(hũ
j1+τ )2hũ

j1+τ1
hũ

j1+τ2
(B.4)

where τa, . . . , τg have different combinations leading to
multiplicative coefficients as shown in Tables B.1 and B.2.

Coeff. τa τb τc

1 0 0 τ1 − τ2

2 0 τ − τ1 τ − τ2

2 τ τ τ1 − τ2

2 τ τ1 τ − τ2

2 τ τ2 τ − τ1

2 τ1 τ τ − τ2

2 τ2 τ τ − τ1

2 τ1 τ2 0

Table B.1. Values of τa, τb and τc for the term
in (B.4). ‘Coeff.’ denotes the leading coefficient

of the term.

Coeff. τd τe τf τg

1 0 0 τ − τ1 τ − τ2

2 τ τ τ1 τ2

2 τ1 τ τ τ2

2 τ2 τ τ τ1

2 τ τ τ1 τ2

1 0 0 τ1 τ2

1 τ1 0 τ τ2

1 τ2 0 τ τ1

1 τ − τ1 0 τ τ2

1 τ − τ2 0 τ τ1

1 τ1 − τ2 0 τ τ

Table B.2. Values of τd, τe, τf and τg for the
term in (B.4). ‘Coeff.’ denotes the leading

coefficient of the term.
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