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Abstract

A sufficient condition for global synchronisation in coupled map lattices (CML) with translation invariant coupling
and arbitrary individual map is proved. As in [Jost & Joy, 2001] where CML with reflection invariant couplings are
considered, the condition only involves the linearised dynamics in the diagonal, namely for all points in the diagonal,
the derivative must be contractive in all transverse directions. In addition to this result, a (weaker) condition that
ensures the CML attractor to be composed of either 2-periodic or constant configurations, is also obtained.

Synchronisation is probably the most commonly observed dynamical phenomenon in interacting (coupled)
nonlinear systems. Generally speaking, it is said to occur in a multidimensional dynamical system when the
attractor lies inside a one-dimensional subset of the phase space so that the knowledge of the trajectory of
a single coordinate allows to determine all coordinate trajectories [Boccaletti et al., 2006; Pikovsky et al.,
2001]. In other words, all components asymptotically evolve ”in phase”, possibly in a chaotic motion [Pecora
& Caroll, 1990]. In practice, the phenomenon takes various forms upon the system under consideration.
For instance, phase synchronisation takes place in systems of coupled oscillators [Fujisaka & Yamada, 1983]
and master-slave, or generalized synchronisation are possible phenomena in unidirectionally coupled systems
[Hunt et al., 1997; Rulkov et al., 2001; Tresser et al., 1995].

Another specific form of synchronisation happens in dynamical systems with symmetry where it consists
in the convergence to the symmetry fixed point set (which is invariant under dynamics, see e.g. [Ashwin et al.,
1996]). Challenging problems in this framework then concern conditions on parameters (or on components)
for synchronisation. These conditions often involve the notion of transverse Lyapunov exponent in order to
specify the basin of attraction of the symmetry fixed point set. In particular, a seminal result [Alexander et
al., 1992] states that this basin has positive Lebesgue measure (in phase space) when all transverse Lyapunov
exponents are negative, for Lebesgue almost every point in the invariant set. Moreover, it is likely to have a
fractal "riddled structure” (see the chapter by P. Ashwin in [Chazottes & Fernandez, 2005] for a mathematical
definition) and has actually such a structure in various examples. However, [Ashwin et al., 1996] showed
that this basin is indeed a neighbourhood of the invariant set when the supremum of all transverse Lyapunov
exponents with respect to all ergodic measures supported in the invariant set, is negative.

Naturally, and as observed in [Ashwin et al., 1996], without any further specification of the dynamics,
these results are optimal and one cannot expect to control the global behaviour. In some cases however, it
is possible to determine the fate of every orbit in phase space from properties of the linearised dynamics in
the invariant set.

CML have been introduced at the beginning of the eighties as simple discrete-time models of reaction-
diffusion systems [Chazottes & Fernandez, 2005; Kaneko, 1993]. Their specificity resides in the definition of
their mapping which is the composition of an individual map and of a linear coupling. This presents the



double advantage of being well-adapted to numerical simulations and to mathematical analysis. Recently,
[Lu & Chen, 2004] has established and analyzed synchronisation conditions in CML with arbitrary linear
coupling operators, mostly in absence of symmetry but yet with invariant diagonal.

For reflection invariant coupled map lattices (CML), [Jost & Joy, 2001] proved that if all transverse
eigenvalues of the jacobian matrix are contractive for all points in the diagonal (the invariant set in this case),
then all points in phase space asymptotically approach the diagonal, a property called global synchronisation.
Although slightly stronger than the previous one, this condition is much simpler to check in practice.

In this Letter, we focus on translation invariant (but not necessarily reflection invariant) CML on periodic
lattices. Translation invariance is usually assumed in most studies [Chazottes & Fernandez, 2005; Kaneko,
1993] as it reflects the simplifying assumptions that the individual systems are all identical and that the
coupling is of diffusive type. As in [Jost & Joy, 2001], we show that global synchronisation holds provided
that all transverse directions are contractive for all points in the diagonal. Our condition is actually a bit
more general than the one in [Jost & Joy, 2001] and the technique is different. The results in particular
complete a previous result in [Lin et al., 1999] on global synchronisation for lattices of 2,3 and 4 coupled
logistic maps.

A translation invariant CML on the periodic lattice Zy, := {s € Z modL} (L > 1) is the dynamical
system generated by the following induction relation in R

d =" e f(at ), s e (1)
ne”Ly
Here the coefficients ¢, are non-negative (¢, > 0) and normalized ( Y. ¢, = 1). The most frequent
neZr

examples are respectively, the asymmetric nearest neighbour coupling, the symmetric one (L > 2) and the
global coupling for which the coefficients are respectively given by (e € [0, 1])

1—€ ifn=0 l1—€ ifn=0 l—e ifn=o0
Cpn = € ifn=1 , ¢,= s ifn==1 and ¢, = { B other_wise
0 otherwise 0 otherwise L

More generally, a coupling on the periodic lattice with L sites can be defined from any normalised sequence
{¥n }nez of non-negative coeflicients by summing over the periods, namely

Cn =:§£:’7n+kL~

keZ

The individual map f in (1) is assumed to possess an invariant interval I (which may be the whole R) on
which it satisfies the following inequality for some K > 0 (i.e. f is Lipschitz continuous)

lf(x)— fly)| < K|z —y|, Vz,yel.

We assume that K is the smallest of such numbers. Note that if f is continuously differentiable, then K is
the maximum of |f/(z)| on I. However, f needs not be differentiable for our purpose.

The CML (1) leaves invariant the diagonal in I”Z. For any point x4y = x (s € Zr) on this diagonal,
the eigenvalues of the jacobian matrix associated with the CML derivative (which exists when f is differ-
entiable) can be easily computed. Indeed, since this matrix commutes with translations on the lattice Z,,
its eigenvectors in CZL are the elements ej (k= 0,---,L — 1) of the Fourier basis, where (ey)s = ﬁe%
(s € Zy1). A simple calculation shows that the eigenvalues are given by f’(x)é; where

. _ 2imkn
Cr = E cpe” L.

nezr,

In particular, f'(z)éy = f'(z) is the eigenvalue along the diagonal and all other eigenvalues correspond to
transverse directions. The quantities ¢, and ér,_j are complex conjugate for k # 0, L/2 (and equal in the
case of reflection invariant couplings, i.e. c_,, = ¢, ). This implies that the contraction rate in the subset of
RZz normal to the diagonal and defined by

{aep +aer—y : a€C}



if k £0,L/2 (and by {aeL/2 D a€ R} if k = L/2), is equal to |éx|. As a consequence, the normal Lyapunov
exponents for any point on the diagonal write A\(x) + log|ék| (kK =1,--+- L — 1) where A(z) is the individual
map Lyapunov exponent evaluated at € I. According to Theorem 2.12 in [Ashwin et al., 1996], the
condition

log(K) + 1 ¢

og(K) + 0g1<g2314|6k|<10
ensures the existence of a neighbourhood of the diagonal in %% in which the orbit of every point asymp-
totically approaches the diagonal. Due to the specific structure of the CML (1), the very same condition
actually implies that convergence to the diagonal holds for every point in phase space in such systems.

Theorem. The condition
K max |&] <1, (2)
1<k<L—1

implies global synchronisation of the CML. That is to say, the following limit holds

lim max|2z! — 2! | =0
t—oo seZy,

for all initial configurations {x9} € I%L.

(The proof is given below.) Several comments on this result can be made. First, since the definition of ¢
implies  mpax |éx] < 1, the condition (2) may hold in the case where K > 1 and in particular for chaotic

individual maps as it happens in the case of chaotic synchronisation of CML. (On the other hand, global
synchronisation always hold when K < 1 because the whole CML is contracting in this case.)

Moreover, the coupling eigenvalues have the following limit (whose proof is given after the proof of the
Theorem)
A 1<ket—1 o] = 1. 3)
This implies that, for any coupling coefficient sequence {7, }necz and given individual map (with K > 1), the
condition (2) becomes stronger and is hardly satisfied when the lattice size increases (and actually exceeds
few sites in common examples). Alternatively, given a coupling coefficient sequence {7y, }necz and a number of
sites L, the condition (2) may not hold whenever K exceeds some threshold. For instance, for the symmetric
nearest neighbour coupling defined above, L = 2 or 3 and K > 1, the condition (2) holds for all € in some
interval contained inside [0, 1]. However, if L = 4 (resp. L = 6), the same condition holds — for at least one
value of € in [0,1] — only if K < 1/3 (resp. K < 3/5).

Proof of the Theorem. The proof is not as trivial as the presentation may suggest. The natural strategy
which consists in controlling the dynamics of transverse modes by applying the triangle inequality, does not
work for L > 2. Indeed, this method provides upper bounds for both the modulus of transverse modes at
time ¢ and at time ¢+ 1, but no direct relationship between the two quantities. The alternative strategy which
consists in directly estimating the difference z% — !, does not work either when L exceeds a threshold,
because it implies the whole spectrum and leads to the condition K < 1. Therefore, one has to find a better
combination of coordinates in order to find the appropriate expression.

We consider the euclidean scalar product and associated norm |[|-|| in C#* and the euclidean scalar product

and associated norm || - ||g in RZ2. Let M; be the diagonal in I2- and let M{ :={z € [?t . Y x, =0}
SELL,
be its orthogonal complement. Let also C denotes the coupling operator, i.e.

(C(x))é = Z CnTs—m, ES ZL

neZr

where © = {Zs}sez,. In a first step, we show that global synchronisation occurs under the condition

K max |C(z)|lr < 1. Let R denotes the (right) translation operator. Since the norms || - ||z and
zeEM7 : ||z|lr=1

max |zs| are equivalent, global synchronisation is equivalent to the limit
SEL,

lim ||z" — R(2")]|, =0,

t—o0



for all ° € I22. The CML dynamics commutes with R and since z — R(x) € M7 for all z € IZL, we obtain
the following inequality

[+ = Rl < K| max 10 Il2" — Rl
zeMT : |lz]|r=1

An induction then completes the first step.

In a second step, we show that max IC(z)|lrg = max |é]. We identify every vector {zs} €
zEME ¢ ||z||r=1 1<k<L—-1
RZz with the vector {zs} € C?* where z, = x, for all s. It follows that every vector # € M3 can be viewed
L—1
as belonging to the subspace orthogonal to the diagonal in CZ*. Therefore, this vector writes z = Y. zpey
k=1
with complex coordinates xj. Since the e, are the eigenvectors of C' in C%% with eigenvalues ¢, we have

L—1
(C(z) = Z Tpérer,
k=1
and then ||C(z)|| < Jmax |ex| ||z||. Since C(z) € R%L and ||z|| = ||z||r, we have actually showed that
max IC(z)|lg £ max |é].
xEMlL s z|lr=1 1<k<L-1
It only remains to shows that the inequality is indeed an equality. Let k' € {1,---, L — 1} be such that
o] = 15;?32{_1 o]

The normalised vector v = %(ek/ +er_p) (vesp. v = er o if K’ = L/2) has real coordinates, belongs to

M and satisfies ||C(v)| = |éx| since ¢ and éf,_js are complex conjugate. In other words, there exists a
normalised vector v € M3 such that ||C(v)||r = | Jmax |éx|. The Theorem is proved.

Proof of relation (3). Firstly, the triangle inequality implies that for every n’ > 0 we have

_ 2imn _ 2imn
= § Yn€ | — E Tn€ |-

In|<n’ [n|>n’

_ 2irn
> e 7

nez

The sequence {7, } is assumed to be summable. Thus for every 6 > 0, there exists ns such that

Z 'yne_% < Z Y < 6.

|n|>ns |n|>ns

Now, let 6 < 1 and define Ls to be sufficiently large so that for all L > L, we have cos (%T”) >1—0 for all
|n| < ns. The two estimates imply that the following inequality hold for L > Ls

Z e T > Z 'yncos<27£n) > (1-9) Z = (1—6)

In|<ns [n|<ns [n|<ns

It results that |¢1] > (1 —6)®> — & for L > Ls and the desired limit (3) follows. O

To conclude this Letter, we mention that global synchronisation can be seen as a special case of con-
vergence to a spatially periodic configuration subset with prescribed period, namely period 1 in the present
case. The arguments of the proof above can be adapted in order to obtain a condition such that the CML
attractor is composed of periodic configurations with (not necessarily minimal) period, a given divisor of L.
We only consider here the situation where this period is 2 and we provide the corresponding condition.



Proposition. Assume that L is even and that the following condition holds

K max |éx] < 1. (4)
I<k<SL=1 : k#L/2

Then for any initial configuration {x°} € I*L, we have

lim max |2} — x'.;+2| =0.
t—+4o00 s€Zr,

Proof: We start by observing that for all x € %% we have z — R?(x) € M3 where

MJ‘Z{JUEIZL : sz=0and Z(—l)sxsz()}

SEZLL SELr

is the hyperplane orthogonal both to the diagonal and to the linear subspace generated by ey ;. As in

the proof of the Theorem, we conclude that the condition K max IC(z)||r < 1 implies the limit
zeEM3z : |z|z=1

limg—, 4 oo th — RQ(xt)HR = 0 which is equivalent to the desired result. Now, by definition of Mj, every

configuration * € My (viewed as an element of C%%) writes » = > rrer. As in the proof of
1<k<L—1, k#L/2
the Theorem, this implies that

max C(x = max ¢
a:e./\/lé' : z|lr=1 || ( )”R 1<k<L-1: k;éL/Z‘ k|

The Proposition then easily follows. |

Acknowledgments

I warmly thank V. Afraimovich for stimulating and fruitful discussions. I am also indebted to P. Guiraud
for a careful reading of the manuscript which allowed to improve the presentation.

References

Alexander J., Kan L., Yorke J. & You Z. [1992] "Riddled basins”, International Journal of Bifurcation and
Chaos 2, pp. 795-813.

Ashwin P. Buescu J. & Stewart I. [1996] ”From attractor to chaotic saddle: a tale of transverse instability”,
Nonlinearity 9, pp. 703-737.

Bocaletti S., Latora V., Moreno Y., Chavez M. & Wang D.-U. [2006] ” Complex networks: structure and
dynamics”, Physics Report 424, pp. 175-308.

Chazottes J-R. & Fernandez B. (ed.) [2005] Dynamics of coupled map lattices and of related spatially extended
systems, Lecture Notes in Physics 671 (Springer).

Fujisaka H. & Yamada T. [1983] ”Stability theory of synchronized motion in coupled oscillator systems”,
Progress of Theoretical Physics 69, pp. 32-47.

Hunt B. Ott E. & Yorke J. [1997] ” Differentiable generalized synchronization of chaos”, Physical Review E
55, pp. 4029-4034.

Jost J. & Joy M.P. [2001] ” Spectral properties and synchronization in coupled map lattices”, Physical Review
E 65, pp. 016201.

Kaneko K. (ed.) [1993] Theory and applications of coupled map lattices, Wiley.

Lu W. & Chen T. [2004] ”Synchronization analysis of linearly coupled networks of discrete time systems”,
Physica D 198, pp. 148-168.

Lin W-W. , Peng C-C. & Wang C-S. [1999] ” Synchronisation in coupled map lattices with periodic boundary
condition”, International Journal of Bifurcation and Chaos 9, pp. 1635-1652.

Pecora L. & Caroll T. [1990] ”Synchronisation of chaotic systems”, Physical Review Letters 64, pp. 821.



Pikovsky A. , Rosenblum M. & Kurths J. [2001] Synchronization. A universal concept in nonlinear sciences
(Cambridge University Press).

Rulkov N., Afraimovich V., Lewis C., Chazottes J-R. & Cordonet A. [2001] ”Multivalued mappings in
generalized chaos synchronization”, Physical Review E 64, pp. 016217.

Tresser C. , Wolfork P. & Bass H. [1995] ”"Master-slave synchronisation from the point of view of global
dynamics”, Chaos 5, pp. 693-699.



