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Global synchronisation in translation invariant coupled map lattices

 where CML with reflection invariant couplings are considered, the condition only involves the linearised dynamics in the diagonal, namely for all points in the diagonal, the derivative must be contractive in all transverse directions. In addition to this result, a (weaker) condition that ensures the CML attractor to be composed of either 2-periodic or constant configurations, is also obtained.

Synchronisation is probably the most commonly observed dynamical phenomenon in interacting (coupled) nonlinear systems. Generally speaking, it is said to occur in a multidimensional dynamical system when the attractor lies inside a one-dimensional subset of the phase space so that the knowledge of the trajectory of a single coordinate allows to determine all coordinate trajectories [Boccaletti et al., 2006;[START_REF] Pikovsky | Synchronization. A universal concept in nonlinear sciences[END_REF]. In other words, all components asymptotically evolve "in phase", possibly in a chaotic motion [START_REF] Pecora | Synchronisation of chaotic systems[END_REF]. In practice, the phenomenon takes various forms upon the system under consideration. For instance, phase synchronisation takes place in systems of coupled oscillators [START_REF] Fujisaka | Stability theory of synchronized motion in coupled oscillator systems[END_REF]] and master-slave, or generalized synchronisation are possible phenomena in unidirectionally coupled systems [START_REF] Hunt | Differentiable generalized synchronization of chaos[END_REF][START_REF] Rulkov | Multivalued mappings in generalized chaos synchronization[END_REF][START_REF] Tresser | Master-slave synchronisation from the point of view of global dynamics[END_REF].

Another specific form of synchronisation happens in dynamical systems with symmetry where it consists in the convergence to the symmetry fixed point set (which is invariant under dynamics, see e.g. [START_REF] Ashwin | From attractor to chaotic saddle: a tale of transverse instability[END_REF]). Challenging problems in this framework then concern conditions on parameters (or on components) for synchronisation. These conditions often involve the notion of transverse Lyapunov exponent in order to specify the basin of attraction of the symmetry fixed point set. In particular, a seminal result [START_REF] Alexander | Riddled basins[END_REF] states that this basin has positive Lebesgue measure (in phase space) when all transverse Lyapunov exponents are negative, for Lebesgue almost every point in the invariant set. Moreover, it is likely to have a fractal "riddled structure" (see the chapter by P. Ashwin in [Chazottes & Fernandez, 2005] for a mathematical definition) and has actually such a structure in various examples. However, [START_REF] Ashwin | From attractor to chaotic saddle: a tale of transverse instability[END_REF] showed that this basin is indeed a neighbourhood of the invariant set when the supremum of all transverse Lyapunov exponents with respect to all ergodic measures supported in the invariant set, is negative. Naturally, and as observed in [START_REF] Ashwin | From attractor to chaotic saddle: a tale of transverse instability[END_REF], without any further specification of the dynamics, these results are optimal and one cannot expect to control the global behaviour. In some cases however, it is possible to determine the fate of every orbit in phase space from properties of the linearised dynamics in the invariant set.

CML have been introduced at the beginning of the eighties as simple discrete-time models of reactiondiffusion systems [Chazottes & Fernandez, 2005;[START_REF] Kaneko | Synchronization analysis of linearly coupled networks of discrete time systems[END_REF]. Their specificity resides in the definition of their mapping which is the composition of an individual map and of a linear coupling. This presents the double advantage of being well-adapted to numerical simulations and to mathematical analysis. Recently, [START_REF] Kaneko | Synchronization analysis of linearly coupled networks of discrete time systems[END_REF]] has established and analyzed synchronisation conditions in CML with arbitrary linear coupling operators, mostly in absence of symmetry but yet with invariant diagonal.

For reflection invariant coupled map lattices (CML), [START_REF] Jost | Spectral properties and synchronization in coupled map lattices[END_REF] proved that if all transverse eigenvalues of the jacobian matrix are contractive for all points in the diagonal (the invariant set in this case), then all points in phase space asymptotically approach the diagonal, a property called global synchronisation. Although slightly stronger than the previous one, this condition is much simpler to check in practice.

In this Letter, we focus on translation invariant (but not necessarily reflection invariant) CML on periodic lattices. Translation invariance is usually assumed in most studies [Chazottes & Fernandez, 2005;[START_REF] Kaneko | Synchronization analysis of linearly coupled networks of discrete time systems[END_REF] as it reflects the simplifying assumptions that the individual systems are all identical and that the coupling is of diffusive type. As in [START_REF] Jost | Spectral properties and synchronization in coupled map lattices[END_REF], we show that global synchronisation holds provided that all transverse directions are contractive for all points in the diagonal. Our condition is actually a bit more general than the one in [START_REF] Jost | Spectral properties and synchronization in coupled map lattices[END_REF]] and the technique is different. The results in particular complete a previous result in [START_REF] Lin | Synchronisation in coupled map lattices with periodic boundary condition[END_REF] on global synchronisation for lattices of 2,3 and 4 coupled logistic maps.

A translation invariant CML on the periodic lattice Z L := {s ∈ Z modL} (L > 1) is the dynamical system generated by the following induction relation in R

x t+1 s = n∈Z L c n f (x t s-n ), s ∈ Z L . (1) 
Here the coefficients c n are non-negative (c n 0) and normalized (

n∈Z L c n = 1). The most frequent
examples are respectively, the asymmetric nearest neighbour coupling, the symmetric one (L > 2) and the global coupling for which the coefficients are respectively given by ( ∈ [0, 1])

c n =    1 - if n = 0 if n = 1 0 otherwise , c n =    1 - if n = 0 2 if n = ±1 0 otherwise and c n = 1 - if n = 0 L otherwise
More generally, a coupling on the periodic lattice with L sites can be defined from any normalised sequence {γ n } n∈Z of non-negative coefficients by summing over the periods, namely

c n = k∈Z γ n+kL .
The individual map f in (1) is assumed to possess an invariant interval I (which may be the whole R) on which it satisfies the following inequality for some K > 0 (i.e. f is Lipschitz continuous)

|f (x) -f (y)| K|x -y|, ∀x, y ∈ I.
We assume that K is the smallest of such numbers. Note that if f is continuously differentiable, then K is the maximum of |f (x)| on I. However, f needs not be differentiable for our purpose.

The CML (1) leaves invariant the diagonal in I Z L . For any point x s = x (s ∈ Z L ) on this diagonal, the eigenvalues of the jacobian matrix associated with the CML derivative (which exists when f is differentiable) can be easily computed. Indeed, since this matrix commutes with translations on the lattice Z L , its eigenvectors in In particular, f (x)ĉ 0 = f (x) is the eigenvalue along the diagonal and all other eigenvalues correspond to transverse directions. The quantities ĉk and ĉL-k are complex conjugate for k = 0, L/2 (and equal in the case of reflection invariant couplings, i.e. c -n = c n ). This implies that the contraction rate in the subset of R Z L normal to the diagonal and defined by

C Z L are the elements e k (k = 0, • • • , L -1)
{ae k + āe L-k : a ∈ C} if k = 0, L/2 (and by ae L/2 : a ∈ R if k = L/2), is equal to |ĉ k |.
As a consequence, the normal Lyapunov exponents for any point on the diagonal write λ(x)

+ log |ĉ k | (k = 1, • • • L -1)
where λ(x) is the individual map Lyapunov exponent evaluated at x ∈ I. According to Theorem 2.12 in [START_REF] Ashwin | From attractor to chaotic saddle: a tale of transverse instability[END_REF], the condition log(K) + log max

1 k L-1 |ĉ k | < 0
ensures the existence of a neighbourhood of the diagonal in I Z L in which the orbit of every point asymptotically approaches the diagonal. Due to the specific structure of the CML (1), the very same condition actually implies that convergence to the diagonal holds for every point in phase space in such systems.

Theorem. The condition K max

1 k L-1 |ĉ k | < 1, (2) 
implies global synchronisation of the CML. That is to say, the following limit holds

lim t→∞ max s∈Z L |x t s -x t s+1 | = 0 for all initial configurations {x 0 s } ∈ I Z L .
(The proof is given below.) Several comments on this result can be made. First, since the definition of ĉk implies max

1 k L-1
|ĉ k | 1, the condition (2) may hold in the case where K > 1 and in particular for chaotic individual maps as it happens in the case of chaotic synchronisation of CML. (On the other hand, global synchronisation always hold when K < 1 because the whole CML is contracting in this case.)

Moreover, the coupling eigenvalues have the following limit (whose proof is given after the proof of the Theorem) lim

L→∞ max 1 k L-1 |ĉ k | = 1. (3) 
This implies that, for any coupling coefficient sequence {γ n } n∈Z and given individual map (with K > 1), the condition (2) becomes stronger and is hardly satisfied when the lattice size increases (and actually exceeds few sites in common examples). Alternatively, given a coupling coefficient sequence {γ n } n∈Z and a number of sites L, the condition (2) may not hold whenever K exceeds some threshold. For instance, for the symmetric nearest neighbour coupling defined above, L = 2 or 3 and K > 1, the condition (2) holds for all in some interval contained inside [0, 1]. However, if L = 4 (resp. L = 6), the same condition holds -for at least one value of in [0, 1] -only if K < 1/3 (resp. K < 3/5).

Proof of the Theorem. The proof is not as trivial as the presentation may suggest. The natural strategy which consists in controlling the dynamics of transverse modes by applying the triangle inequality, does not work for L > 2. Indeed, this method provides upper bounds for both the modulus of transverse modes at time t and at time t+1, but no direct relationship between the two quantities. The alternative strategy which consists in directly estimating the difference x t s -x t s+1 does not work either when L exceeds a threshold, because it implies the whole spectrum and leads to the condition K < 1. Therefore, one has to find a better combination of coordinates in order to find the appropriate expression.

We consider the euclidean scalar product and associated norm • in C Z L and the euclidean scalar product and associated norm

• R in R Z L . Let M 1 be the diagonal in I Z L and let M ⊥ 1 := {x ∈ I Z L : s∈Z L x s = 0}
be its orthogonal complement. Let also C denotes the coupling operator, i.e.

(C(x)) s = n∈Z L c n x s-n , s ∈ Z L
where x = {x s } s∈Z L . In a first step, we show that global synchronisation occurs under the condition x t -R(x t ) R = 0, for all x 0 ∈ I Z L . The CML dynamics commutes with R and since x -R(x) ∈ M ⊥ 1 for all x ∈ I Z L , we obtain the following inequality

K max x∈M ⊥ 1 : x R =1 C(x) R < 1. Let R
x t+1 -R(x t+1 ) R K max x∈M ⊥ 1 : x R =1 C(x) R x t -R(x t ) R
An induction then completes the first step.

In a second step, we show that max

x∈M ⊥ 1 : x R =1 C(x) R = max 1 k L-1 |ĉ k |.
We identify every vector {x s } ∈ R Z L with the vector {z s } ∈ C Z L where z s = x s for all s. It follows that every vector x ∈ M ⊥ 1 can be viewed as belonging to the subspace orthogonal to the diagonal in C Z L . Therefore, this vector writes x = L-1 k=1

x k e k with complex coordinates x k . Since the e k are the eigenvectors of C in C Z L with eigenvalues ĉk we have

(C(x) = L-1 k=1
x k ĉk e k , and then C(x) max

1 k L-1 |ĉ k | x . Since C(x) ∈ R Z L and x = x R , we have actually showed that max x∈M ⊥ 1 : x R =1 C(x) R max 1 k L-1 |ĉ k | .
It only remains to shows that the inequality is indeed an equality. Let k ∈ {1, • • • , L -1} be such that The sequence {γ n } is assumed to be summable. Thus for every δ > 0, there exists n δ such that

|ĉ k | = max 1 k L-1 |ĉ k | . The normalised vector v = 1 √ 2 (e k + e L-k ) (resp. v = e L/2 if k = L/
|n|>n δ γ n e -2iπn L |n|>n δ γ n < δ.
Now, let δ < 1 and define L δ to be sufficiently large so that for all L L δ , we have cos 2πn L 1 -δ for all |n| n δ . The two estimates imply that the following inequality hold for L L δ

|n| n δ γ n e -2iπn L |n| n δ γ n cos 2πn L (1 -δ) |n| n δ γ n (1 -δ) 2 It results that |ĉ 1 | (1 -δ)
2 -δ for L L δ and the desired limit (3) follows. 2

To conclude this Letter, we mention that global synchronisation can be seen as a special case of convergence to a spatially periodic configuration subset with prescribed period, namely period 1 in the present case. The arguments of the proof above can be adapted in order to obtain a condition such that the CML attractor is composed of periodic configurations with (not necessarily minimal) period, a given divisor of L. We only consider here the situation where this period is 2 and we provide the corresponding condition.

Proposition. Assume that L is even and that the following condition holds (-1) s x s = 0 is the hyperplane orthogonal both to the diagonal and to the linear subspace generated by e L/2 . As in the proof of the Theorem, we conclude that the condition K max

x∈M ⊥ 2 : x R =1
C(x) R < 1 implies the limit lim t→+∞ x t -R 2 (x t ) R = 0 which is equivalent to the desired result. Now, by definition of M ⊥ 2 , every configuration x ∈ M ⊥ 2 (viewed as an element of C Z L ) writes x =

1 k L-1, k =L/2
x k e k . As in the proof of the Theorem, this implies that max

x∈M ⊥ 2 : x R =1 C(x) R = max 1 k L-1 : k =L/2 |ĉ k |
The Proposition then easily follows. 2

  of the Fourier basis, where (e k ) s = 1 √ L e 2iπks L (s ∈ Z L ). A simple calculation shows that the eigenvalues are given by f (x)ĉ k where ĉk = n∈Z L c n e -2iπkn L .

  denotes the (right) translation operator. Since the norms • R and max s∈Z L |x s | are equivalent, global synchronisation is equivalent to the limit lim t→∞

  2) has real coordinates, belongs to M ⊥ 1 and satisfies C(v) = |ĉ k | since ĉk and ĉL-k are complex conjugate. In other words, there exists a normalised vector v ∈ M ⊥ 1 such that C(v) R = max1 k L-1 |ĉ k |.The Theorem is proved.Proof of relation (3). Firstly, the triangle inequality implies that for every n > 0 we have n∈Z γ n e -

  We start by observing that for all x ∈ I Z L , we have x -R 2 (x) ∈ M ⊥ 2 whereM ⊥ 2 = x ∈ I Z L : s∈Z Lx s = 0 and s∈Z L
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