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Abstract

We explore statistical inference in self-similar conservative frag-
mentation chains, when only (approximate) observations of the size
of the fragments below a given threshold are available. This frame-
work, introduced by Bertoin and Martinez, is motivated by mineral
crushing in mining industry.

The underlying estimated object is the step distribution of the
random walk associated to a randomly tagged fragment that evolves
along the genealogical tree representation of the fragmentation pro-
cess. We compute upper and lower rates of estimation in a para-
metric framework, and show that in the non-parametric case, the
difficulty of the estimation is comparable to ill-posed linear inverse
problems of order 1 in signal denoising.
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CNRS-UMR 8050, 5, boulevard Descartes, 77454 Marne-la-Vallée Cedex 2, France.
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1 Introduction

1.1 Motivation

Random fragmentation models, commonly used in a variety of physical
models, lay their theoretical roots in the works of Kolmogorov [11] and
Filippov [9] (see also [1, 5, 13, 14] and the references therein). Informally,
we imagine an object that falls apart randomly as time passes. The re-
sulting particles break independently of each other in an independent and
self-similar way. A thorough account on random fragmentation processes
and chains is given in the book by Bertoin [5], a key reference for the
paper.

In this work, we take the perspective of statistical inference. We focus
on the quite specific class of self-similar fragmentation chains. The law of
the fragmentation is then entirely determined by its dislocation measure
and its index of self-similarity, which govern the way and the rate at which
the fragments split. If one is allowed to observe the whole fragmentation
process up to some fixed time, then the statistical problem is somehow
degenerate1. We postulate a more realistic observation scheme, motivated
by mining industry, where the goal is to separate metal from non valued
components in large mineral blocks by a series of blasting, crushing and
grinding. In this setting, one rather observes approximatively the frag-
ments arising from an initial block of size m only when they reach a size
smaller than some screening threshold, say η > 0. Asymptotics are taken
as the ratio ε := η/m vanishes. See Bertoin and Martinez [7] and the
references therein.

1.2 Organization and of the paper

In Section 2, we recall some well known facts about the construction of
conservative fragmentation chains, following closely the book by Bertoin
[5]. For statistical purposes, our main tool is the empirical measure Eε of
the size of fragments when they reach a size smaller than a threshold ε
in the limit ε → 0. We highlight the fact that Eε captures information
about the dislocation measure through the Lévy measure π of a randomly
tagged fragment associated to the fragmentation process.

1in the sense that it can be mapped into relatively standard equivalent inference
problems such as probability distribution estimation from independent observations,
see Section 4.4
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In Section 3, we give a rate of convergence for the empirical measure
Eε toward its limit in Theorem 3.1, extending former results (under more
stringent assumptions) of Bertoin and Martinez [7]. The rate is of the
form ε1/2−ℓ(π), where ℓ(π) > 0 can be made arbitrarily small under ade-
quate exponential moment conditions for π. We add-up the more realistic
framework of observations with limited accuracy, where each fragment is
actually known up to a systematical stochastic error of order σ ≪ ε.

In Section 3, we construct estimators related to functionals of π in
the absolute continuous case. In the parametric case (Theorem 3.4), we
establish that the best achievable rate is ε1/2 in the particular case of
binary fragmentations, where a particle splits into two blocks at each
step exactly. We construct a convergent estimator in a general setting
(Theorem 3.2) with an error of order ε1/2−ℓ′(π), for another ℓ′(π) > 0
that can be made arbitrarily small under appropriate assumptions on the
density of π near 0 and +∞. In the non-parametric case, we construct an
estimator that achieves (Theorem 3.5) a rate of the form (ε1−ℓ′′(π))s/(2s+3),
where s > 0 is the local smoothness of the density of π, up to appropriate
rescaling. Except for the factor ℓ′′(π) > 0, we obtain the same rate as
for ill-posed linear inverse problems of degree 1. We suggest a simple
interpretation of this result in terms of the asymptotic form of Eε in the
discussion Section 4, appended with further remarks about Theorems 3.1,
3.2 and 3.5.

An appendix (Section 6) recalls sharp results on the key renewal the-
orem from Sgibnev [16] that are used to derive Theorem 3.1.

2 Statistical model

2.1 Fragmentation chains

Let X =
(
X(t), t ≥ 0

)
be a fragmentation chain with state space

S↓ :=
{
s = (s1, s2, . . .), s1 ≥ s2 ≥ . . . ≥ 0,

∞∑

i=1

si ≤ 1
}
.

We assume that X has self-similar parameter α ≥ 0. For well-definiteness,
see e.g. Bertoin [5], the following mild assumptions on the dislocation
measure ν(ds) of X are in force throughout the paper:

Assumption A. We have ν
(
(1, 0, . . .)

)
= 0 and ν

(
s1 ∈ (0, 1)

)
> 0.

Moreover, for every ε > 0:
∫
S↓

∑∞
i=1 1{si>ε}ν(ds) <∞.
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We denote by Pm the law of X started from the initial configuration
(m, 0, . . .) with m ∈ (0, 1]. Under Pm, X is a Markov process and its
evolution can be described as follows: a fragment with size x lives for an
exponential time with parameter xαν(S↓) and then splits and gives rize
to a family of smaller fragments distributed as xξ, where ξ is distributed
according to ν(•)/ν(S↓). Under Pm, the law of X is entirely determined
by α and ν(•).

We will repeatedly use the representation of fragmentation chains as
random infinite marked trees. Let

U :=
∞⋃

n=0

N
n

denote the infinite genealogical tree (with N
0 := {∅}) associated to X as

follows: to each node u ∈ U , we set a mark

(ξu, au, ζu),

where ξu is the size of the fragment labelled by u, au is its birthtime and
ζu is its lifetime. We have the following identity between point measures
on (0,+∞):

∞∑

i=1

1{
Xi(t)>0

}δXi(t) =
∑

u∈U
1{

t∈[au,au+ζu)
}δξu , t ≥ 0,

with X(t) =
(
X1(t),X2(t), . . .

)
, and where δx denotes the Dirac mass

at x. Finally, X has the following branching property: for every fragment
s = (s1, . . .) ∈ S↓ and every t ≥ 0, the distribution of X(t) given X(0) = s

is the same as the decreasing rearrangement of the terms of independent
random sequences X(1)(t), X(2)(t), . . . where, for each i, X(i)(t) is dis-
tributed as X(t) under Psi .

2.2 Observation scheme

For simplicity, we assume from now on that ν(S↓) = 1. Keeping in mind
the motivation of mineral crushing, we consider the fragmentation under2

P := P1, initiated with a unique block of size m = 1 and we observe the

2We often need to accomodate further random variables independent of X. Abusing
notation slightly, we will still use the notation P without further notice, working tacitly
on an appropriate enlargement of the original probability space.
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process stopped at the time when all the fragments become smaller than
some given threshold ε > 0, so we have data ξu, for every u ∈ U ε, with

Uε :=
{
u ∈ U , ξu− ≥ ε, ξu < ε

}
,

where we denote by u− the parent of the fragment labelled by u. We will
further assume that the total mass of the fragments remains constant
through time:

Assumption B. (Conservative property). We have: ν
( ∑∞

i=1 si = 1
)

= 1.

We next consider the empirical measure

Eε(g) :=
∑

u∈Uε

ξu g(ξu/ε),

where g(•) is a test function. Indeed, under Assumption B, we have

∑

u∈Uε

ξu = 1 P−almost surely, (2.1)

so Eε(g) appears as a weighted empirical version of g(•). Bertoin and
Martinez show in [7] that under mild assumptions on ν(•), the measure
Eε(g) converges to

E(g) :=
1

c(ν)

∫ 1

0

g(a)

a

∫

S↓

∞∑

i=1

si 1{si<a}ν(ds)da

in probability, as ε → 0, with c(ν) = −
∫
S↓

∑∞
i=1 si log si ν(ds), tacitly

assumed to be well-defined. This suggests a strategy for recovering infor-
mation about ν(•) by picking suitable test functions g(•).

2.3 First estimates

From now on, we assume we have data

Xε :=
(
ξu, u ∈ Uε

)
(2.2)

and we specialize in the estimation of ν(•). Clearly, the data give no
information about the self-similar parameter α that we consider as a
nuisance parameter3. Assumptions A and B are in force. At this stage,

3See however Section 4.4 for auxiliary results about the inference on α.
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we can relate E(g) to a more appropriate quantity by means of the
so-called tagged frament approach.

The randomly tagged fragment. Let us first consider the homogenous
case α = 0. Assume we can “tag” a point at random –according to a
uniform distribution– on the initial fragment and imagine we can follow
the evolution of the fragment that contains this point.

Let us denote by
(
χ(t), t ≥ 0

)
the process of the size of the frag-

ment that contains the randomly chosen point. This fragment is a typical
observation in our data set Xε, and it appears at time

Tε := inf
{
t ≥ 0, χ(t) < ε

}
.

Bertoin [5] shows that the process ζ(t) := − log χ(t) is a subordinator,
with Lévy measure:

π(dx) := e−x
∞∑

i=1

ν(− log si ∈ dx). (2.3)

We can anticipate that the information we get from Xε is actually in-
formation about the Lévy measure π(dx) of ζ(t) throughout ζ(Tε). The
dislocation measure ν(ds) and π(dx) are related by (2.3) which reads

∫

S↓

∞∑

i=1

sif(si)ν(ds) =

∫

(0,+∞)
f(e−x)π(dx), (2.4)

for any suitable f(•) : [0, 1] → [0,+∞). In particular, by Assumption B
and the fact that ν(S↓) = 1, π(dx) is a probability measure hence ζ(t) is
a compound Poisson process. Informally, a typical observation takes the
form ζ(Tε), which is the value of a subordinator with Lévy measure π(dx)
at its first passage time strictly above − log ε. The case α 6= 0 is a bit
more involved and reduces to the homogenous case by a time change.

In terms of the limit of the empirical measure Eε(g), we equivalently
have

E(g) =
1

c(π)

∫ 1

0

g(a)

a
π(− log a,+∞) da =

1

c(π)

∫ +∞

0
g(e−x)π(x,+∞) dx,

with c(π) =
∫
(0,+∞) xπ(dx), the two representations being useful either

way. This approach will prove technically convenient and will be detailed
later on. Except in the binary case (a particular case of interest, see
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Section 4.1), the knowledge of π(•) does not allow to recover ν(•) in
general.

Measurements with limited accuracy. It is unrealistic to assume
that we can observe exactly the size ξu of the fragments. This becomes
even more striking if the dislocation splits at a given time into infinitely
many fragments of non zero size, a situation that we do not discard in
principle. Therefore, we replace (2.2) by the more realistic observation

scheme Xε,σ :=
(
ξ
(σ)
u , u ∈ Uε,σ

)
with

Uε,σ :=
{
u ∈ U , ξ(σ)

u− ≥ ε, ξ(σ)
u < ε

}
,

and
ξ(σ)
u := ξu + σUu. (2.5)

The random variables (Uu, u ∈ U) are identically distributed, and account
for a systematic experimental noise in the measurement of Xε, indepen-
dent of Xε. We assume furthermore that, for every u ∈ U ,

|Uu| ≤ 1 and E[Uu] = 0.

The noise level 0 ≤ σ = σ(ε) ≪ ε is assumed to be known and represents
the accuracy level of the statistician.

The observations ξu + σUu are further discarded below a threshold
σ ≤ tε ≤ ε beyond which they become irrelevant, leading to the modified
empirical measure

Eε,σ(g) :=
∑

u∈U ε,σ

1{ξ(σ)
u ≥ tε}

ξ(σ)
u g

(
ξ(σ)
u /ε

)
.

In the sequel, we take tε = γ0ε for some (arbitrary) 0 < γ0 < 1.

3 Main results

We first exhibit explicit rates in the convergence Eε(g) → E(g) as ε→ 0,
extending Proposition 1.12 in Bertoin4 [5]. We then turn to the estimation
of π(•).

4See also Bertoin and Martinez [7].
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3.1 A rate of convergence for the empirical measure

For κ > 0, we say that a spread-out5 probability measure π(dx) defined
on [0,+∞) belongs to Π(κ) if

∫

[0,+∞)
eκx π(dx) < +∞,

appended with Π(∞) :=
⋂

κ>0 Π(κ). For m > 0, define the class of con-
tinuous functions

C(m) :=
{
g(•) : [0, 1] → R, ‖g‖∞ := sup

x
|g(x)| ≤ m

}
,

and C′(m) the class of continuously differentiable functions g(•) such that
g′ ∈ C(m).

Theorem 3.1. Grant Assumptions A and B. Let 0 < κ ≤ ∞ and assume
that π ∈ Π(κ).

• For every m > 0 and 0 < µ < κ, we have

sup
g∈C(m)

E
[(
Eε(g) − E(g)

)2]
= o

(
εµ/(µ+1)

)
. (3.1)

• The convergence (3.1) remains valid if we replace Eε(•) by Eε,σ(•)
and C(m) by C′(m), up to an additional error term:

sup
g∈C′(m)

E
[(
Eε,σ(g) − Eε(g)

)2]
= O(σ2ε−2). (3.2)

3.2 Statistical estimation

We study the estimation of π(•) by constructing estimators based on
Eε(•) or rather Eε,σ(•). We need the following regularity assumption:

Assumption C. The probability measure π(dx) is absolutely continuous.

We denote by x π(x) its density function. We distinguish two cases:
the parametric case, where we estimate a linear functional of π(•) of the
form

mk(π) :=

∫ +∞

0
xkπ(x)dx, for some k ≥ 1,

5We recall some properties on spread-out measures in the Appendix.

8



and the non-parametric case, where we estimate the function x  π(x)
pointwise. In that latter case, it will prove convenient to assess the lo-
cal smoothness properties of π(•) on a logarithmic scale. Henceforth, we
consider the mapping

a β(a) := a−1π(− log a), a ∈ (0, 1). (3.3)

In the non-parametric case, we estimate β(a) for every a ∈ (0, 1).

3.3 The parametric case

For k ≥ 1, we estimate

mk(π) :=

∫ +∞

0
xk π(x)dx =

∫ 1

0
log(1/a)kβ(a)da

by the correspondence (3.3) and implicitly assumed to be well-defined.
We first focus on the case k = 1. Pick a sufficiently smooth test function
f(•) : [0, 1] → R such that f(1) = 0 and let g(a) := −af ′(a). Plainly

E(g) =
1

c(π)

∫ 1

0

g(a)

a
π(− log a,+∞) da

= − 1

m1(π)

∫ 1

0
f ′(a)

∫ a

0
β(u)du da =

1

m1(π)

∫ 1

0
f(a)β(a)da.

Formally, taking f(•) ≡ 1 would identify 1/m1(π) since β(•) integrates to
one, but this choice is forbidden by the boundary condition f(1) = 0. We
then consider instead the following approximation. Let fγ(•) : [0, 1] → R

with 0 < γ < 1 be a smooth function such that

• fγ(a) = 1 for a ≤ 1 − γ and fγ(1) = 0.

• ‖fγ‖∞ = 1 and ‖f ′γ‖∞ ≤ c γ−1, for some c > 0,

a choice which is obviously possible. For a parametrization γ := γε → 0,
we set gγε(a) := −af ′γε

(a) and define

m̂1,ε :=
1

Eε,σ

(
gγε

) . (3.4)

More generally, for k > 1, we define successive moment estimators as
follows. Set hγε(a) := fγε(1 − a) log(1/a)k and g̃γε(a) := −ah′γε

(a). Let

m̂k,ε :=
Eε,σ

(
g̃γε

)

Eε,σ

(
gγε

) .
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We can describe the performances of m̂k,ε under an additional decay
condition of π(•) near the origin. For κ > 0, we say6 that the probability
π(•) belongs to the class R(κ) if

lim sup
x→0

x−κ+1π(x) < +∞

appended with R(∞) :=
⋂

κ>0 R(κ). We obtain the following upper
bound:

Theorem 3.2. Grant Assumptions A, B and C. Let 0 < κ1, κ2 ≤ ∞ with
κ1 > max{1, κ2}.

For 1 ≤ µ < κ1, let m̂k,ε be specified by γε := εµ/(µ+1)(2κ2+1). The
family

ε−µ κ2/(µ+1)(2κ2+1)
(
m̂k,ε −mk(π)

)

is tight under P1 as soon as

π ∈ Π(κ1) ∩R(κ2)

and σε−3 remains bounded.

Some remarks: the convergence of m̂k,ε to mk(π) is of course no sur-
prise by (3.1). However, the dependence in ε in the test function gε(•) (in
particular gε(•) is unbounded as ε→ 0) requires a slight improvement of
Theorem 3.1. This can be done thanks to Assumption C, see Proposition
5.2 in the proof Section 5.2. The requirement σε−3 = O(1) ensures that
the additional term coming from the approximation of Eε(•) by Eσ,ε(•) is
negligible. This condition is probably not optimal, see Section 4.

Our next result shows that the exponent µκ2/(µ+ 1)(2κ2 + 1) ≤ 1/2
in the rate of convergence is nearly optimal, to within an arbitrarily small
polynomial order.

Definition 3.3. Let π0(•) satisfy the assumptions of Theorem 3.2. The
rate 0 < vε → 0 is a lower rate of convergence for estimating mk(π0) if
there exists a family πε(•) satisfying the assumptions of Theorem 3.2 and
a constant c > 0 such that

lim inf
ε→0

inf
Fε

max
π∈{π0,πε}

P
[
v−1
ε |Fε −mk(π)| ≥ c

]
> 0, (3.5)

where the infimum is taken (for every ε) over all estimators constructed
with Xε,σ at stage ε.

6In the notation, we identify the probability measure π(dx) and its density function
x π(x) when no confusion is possible.
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Definition 3.3 expresses a kind of local min-max information bound:
given π0(•), one can find an opponent πε(•) such that no estimator can
discriminate between π0(•) and πε(•) at a rate faster than vε.

We further restrict our attention to binary fragmentations, see Section
4.1. In that case, the dislocation measure satisfies ν(s1+s2 6= 1) = 0, and,
because of the conservation Assumption B, can be represented as

ν(ds) = ρ(ds1)δ1−s1(ds2), (3.6)

where ρ(•) is a probability measure on [1/2, 1].

Assumption D. (Binary case.) The probability measure ρ(•) associated
to π(•) is absolutely continuous and its density function is bounded away
from zero.

Theorem 3.4. Assume that the fragmentation is binary and grant As-
sumption D. In the same setting as in Theorem 3.2, the rate ε1/2 is a
lower rate of convergence for estimating mk(π).

The restriction to the binary case is made for technical reason and is
inessential. Theorem 3.4 presumably holds in a more general setting.

3.4 The non-parametric case

Under local smoothness assumptions on the parameter β(•), we estimate
β(a) for every a ∈ (0, 1). Given s > 0, we say that β(•) belongs to the
Hölder class Σ(s) if there exists a constant c > 0 such that

∣∣β(n)(y) − β(n)(x)
∣∣ ≤ c|y − x|{s},

where s = n+{s}, with n a non-negative integer and {s} ∈ (0, 1]. We also
need to relate β(•) to the decay of its corresponding Lévy measure π(•).
Abusing again notation, we identify Π(κ) with the set of β(•) such that
exβ(e−x)dx ∈ Π(κ), thanks to the inverse of (3.3). Likewise for R(κ).

We construct an estimator of β(•) as follows: for a ∈ (0, 1) and a
normalizing factor 0 < γε → 0, set

ϕγε,a(•) := γ−1
ε ϕ

(
(• − a)/γε

)
,

where ϕ(•) is a smooth function with support in (0, 1) that satisfies the
following oscillating property: for some integer N ≥ 1,

∫ 1

0
ϕ(a)da = 1,

∫ 1

0
akϕ(a)da = 0, k = 1, . . . , N. (3.7)
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Our estimator then takes the form

β̂ε(a) := m̂1,ε Eε,σ

(
− •ϕ′

γε,a(•)
)
a ∈ (0, 1),

where m̂1,ε is the estimator of m1(π) defined in (3.4). We then have the
following

Theorem 3.5. Grant Assumptions A, B and C. Let 1 < κ1, κ2 ≤ ∞.

For 1 ≤ µ < min{1, κ1/2}, let β̂ε(•) be specified by γε := εµ/(µ+1)(2s+3).
For every a ∈ (0, 1), the family

ε−µs/(µ+1)(2s+3)
(
β̂ε(a) − β(a)

)

is tight under P1, as soon as

β ∈ Σ(s) ∩ Π(κ1) ∩R(κ2)

for s < max{N,κ2 − 1} and σε−3 remains bounded.

A proof of the (near)-optimality in the sense of the lower bound Defini-
tion 3.3 and in the spirit of Theorem 3.4 is presumably a delicate problem
that lies beyond the scope of the paper. More in Section 4.3.

4 Discussion

4.1 Binary fragmentations

The case of binary fragmentations is the simplest, yet an important model
of random fragmentation, where a particle splits into two blocs at each
step (see e.g. [9], [8]). By using representation (3.6), if we assume further
that ρ(ds1) = ρ(s1)ds1 is absolutely continuous, so is π(dx) = π(x)dx and
we have

π(x) = e−2x
(
ρ(e−x)1[0,log 2](x) + ρ(1 − e−x)1(log 2,+∞)(x)

)
, (4.1)

for x ∈ [0,+∞) and

β(a) = a
(
ρ(a)1[1/2,1](a) + ρ(1 − a)1[0,1/2)(a)

)
, a ∈ [0, 1].

In particular, the regularity properties of β(•) are readily obtained from
the local smoothness of ρ(•) and its behaviour near 1/2. For instance, if
ρ(a+ 1/2) = O(aκ−1) near the origin, for some κ > 0, then

π ∈ Π(κ) ∩R(κ).
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4.2 Concerning Theorem 3.1

Optimal rate of convergence. First, Theorem 3.1 readily extends to
error measurements of the form E

[∣∣Eε(g) − E(g)
∣∣p] with 1 ≤ p ≤ 2.

The rate becomes ε−µp/2(µ+1) in (3.1) and σpε−p in (3.2) under the less
stringent condition µ < κ/2p.

Generally speaking, we obtain in (3.1) the (normalized) rate εµ/2(µ+1),
for any µ < κ. Intuitively, we have a number of observations that should
be of order ε−1, so the expected rate would rather be ε1/2. Why cannot we
obtain the rate ε1/2 or simply εκ/2(κ+1)? The proof in Section 5.1 shows
that we loose quite much information when applying Sgibnev’s result (see
Proposition 6.1 in Appendix) on the kew renewal theorem for a random
walk with step distribution π(•) in the limit log(1/ε) → +∞.

Proposition 6.1 ensures that if π(•) has exponential moments up to
order κ, then we can guarantee in the renewal theorem the rate o(εµ)
for any µ < κ with some uniformity in the test function, a crucial point
for the subsequent statistical applications. It is presumably possible to
improve this rate to O(εκ) by accomodating Ney’s result [15]. However,
a careful glance at the proof of Theorem 3.1 shows that we would then
loose an extra logarithmic term when replacing εµ/2(µ+1) by εκ/(2κ+1).
More generally, exhibiting exact rates of convergence in Theorem 3.1
remains a delicate issue: the kew renewal theorem is sensitive to a
modification of the distribution outside a neighbourhood of +∞, see e.g.
Asmussen [2], p.196.

Uniformity in π(•). A slightly annoying fact is that convergence (3.1)
is not uniform in π(•), which can become a methodological issue for
the statistical applications of the subsequent Theorems 3.2 and 3.5, in
particular if min-max results are sought. An inspection of the proof in
Section 5.1 shows that we loose information about the uniformity in π(•)
when applying Proposition 6.1 again. A glance at the proof of Sgibnev’s
result suggest that uniform results in π(•) could presumably be obtained
over classes of π(•) defined in terms of appropriate bounds on their Stone
decomposition [17].

The non-conservative case. If Assumption B is dropped, we define
p− = inf

{
p > 0,

∫
S↓

∑∞
i=1 s

p
i ν(ds) < +∞

}
and make the so-called

Malthusian hypothesis: there exists a (unique) solution p⋆ ≥ p− to the

13



equation ∫

S↓

(
1 −

∞∑

i=1

sp⋆

i

)
ν(ds) = 1.

The empirical measure now becomes

E(p⋆)
ε (g) :=

∑

u∈Uε

ξp⋆

u g(ξu/ε).

The choice of the weights ξp⋆

u is motivated by the fact that the process( ∑
|u|=n ξ

p⋆

u , n ≥ 0
)

is a positive martingale. We denote by M∞ its ter-
minal value. Note that under Assumption B, we always have p⋆ = 1 and

M∞ = 1. Bertoin and Martinez [7] prove the convergence of E(p⋆)
ε (g) to

E(p⋆)(g) :=
M∞
c(ν)

∫ 1

0

g(a)

a

∫

S↓

∞∑

i=1

sp⋆

i 1{si<a}ν(ds)da

in probability, as ε → 0, with now c(ν) := −
∫
S↓

∑∞
i=1 s

p⋆

i log si ν(ds). In
this setting, Theorem 3.1 becomes

Corollary 4.1. Grant Assumptions A, C and the Malthusian hypothesis.
Let 0 < κ ≤ ∞ and m > 0. For every 0 < µ < κ, we have

sup
g∈C(m)

E
[(
E(p⋆)

ε (g) − E(p⋆)(g)
)2]

= o
(
εµ/(µ+p⋆)

)
.

4.3 Concerning Theorems 3.2 and 3.5

The parametric case. We obtain the rate

(
εµ/(µ+1)

)κ2/(2κ2+2)
, for all µ < κ1

which can be made arbitrary close to the lower bound ε1/2 by assuming
κ1 and κ2 large enough. The factor µ/(µ + 1) comes from Theorem 3.1
whereas the factor κ2/(2κ2+1) arises when using the technical assumption
π ∈ R(κ2). We do not know how to improve it.

Also, the condition σε−3 = O(1) is fairly restrictive, and can be
readily improved by assuming that κ2 is large. Indeed, if κ2 ≥ 1, which
only amounts to require that π(•) is bounded near the origin, a glance
at the error term (5.10) in the proof Section 5.2 shows that the condi-
tion drops to σε−2 = O(1). In the limit κ2 → ∞, we obain σε−3/2 = O(1).
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The non-parametric case. The situation is a bit different than in the
parametric case: we obtain now the rate

(
εµ/(µ+1)

)s/(2s+3)
, for all µ < κ1

for the estimation of β(a) for any a ∈ (0, 1). In the limit κ1 → +∞ it
becomes εs/(2s+3), which can be related to more classical models: con-
sider the apparently different problem of recovering a function β(•) in the
integral white noise model

dYa = Kβ(a)da + ε1/2dWa, a ∈ [0, 1], (4.2)

from the observation of (Ya, a ∈ [0, 1]). Here, (Wa, a ∈ [0, 1]) is a standard
Brownian motion and Kβ(a) :=

∫ a
0 β(u)du is the integration operator.

Model (4.2) serves as a toy representation for the problem of recovering
a signal in white noise at level ε1/2, when the observation is obtained
from the action of a smoothing linear operator with unbounded inverse
(here K). The difficulty of the problem is quantified by the degree of ill-
posedness of the operator (equal to ν for ν-fold integration; here ν = 1).
The well-known optimal rate (see e.g. [12]) of pointwise recovery for a
function β ∈ Σ(s) is

εs/(2s+2ν+1) = εs/(2s+3).

The factor 2ν is a futher penalty in the rate of recovery quantifying the
smoothing action of K. The same phenomenon seems to occur in the
setting of fragmentation chain. Put σ := 0 here for simplicity. For a test
function g(•), we can form the observation

Eε(g) ≈ E
(
g) =

1

m1(π)

∫ 1

0
g(u)Kβ(u)du

up to an error of (near)-order ε1/2. If we discard the pre-factor m1(π)
(which can be estimated at a fast rate when κ2 is large) we obtain the
same kind of statistics in Model (4.2) by considering

∫ 1

0
g(a)dYa =

∫ 1

0
g(u)Kβ(u)du + ε1/2N (g),

where N (g) is centred Gaussian with variance
∫ 1
0 g(a)

2da. Note that
the order of the variance in the noise term N (g) is consistent with
the improvement obtained in Proposition 5.2 in the proof Section 5.2:
if g ∈ C̃bε(m), we have

∫ 1
0 g(a)

2da . bε.

This suggests the (near)-optimality of the result in the sense of Defi-
nition 3.3 but a complete proof lies beyond the scope of the paper.
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4.4 Other statistical issues

Observation of the whole path of X. Suppose we observe contin-
uously in time the sample path of X up to some fixed time T > 0.
Asymptotics are taken as T → ∞. Equivalently, we observe all triples
(ξu, au, ζu) for every u in the random set

U(T ) :=
{
u ∈ U , au ≤ T

}

with the restriction that ζu is set to T −au when au + ζu > T . We denote
by U(T−) the subset of U(T ) such that au + ζu ≤ T . In this setting,
statistical inference about the the self-similar parameter α ≥ 0 and the
dislocation measure ν(ds) is relatively straightforward:

Estimation of α: conditional on
(
ξu, u ∈ U(T−)

)
the sequence of ran-

dom variables
(
ζu, u ∈ U(T )

)
are independent and follow exponential dis-

tributions with parameters ξα
u . Conditional on CardU(T ) = n and since

the law of the (ξu, u ∈ U) does not depend on α we are in the setting
of estimating a one-dimensional parameter from n independent random
variables with explicit likelihood ratio

α 

n∏

i=1

ξα
ui

exp
(
ξα
ui
ζui

)
, (4.3)

where the ui range through U(T ). The main difficulty remains that the
law of CardU(T ) usually depends on α.

Estimation of ν(•): for u− ∈ U(T−), when the fragment of size ξu
splits, conditional on ξu = x, it gives rize to the observation of the
rescaled size of its offsprings (x−1 ξui, i ∈ N) which is a realization of the
law ν(ds). As a consequence, conditional on CardU(T ) = n, we observe
a sequence of n independent and identically distributed random variables
with law ν(ds). We are back to the classical problem of estimating a
probability distribution from an n-sample.

More about estimating α. We cannot estimate the index of self-
similarity α from the data Xε. However, if we add the possibility to “tag”
a point at random on the initial fragment7 and if we can observe the
random time Tε when the tagged fragment becomes smaller then ε, then
identifying α from the sole observation of Tε is possible.

7in physical terms, we must be able to identify the mass or length of the fragment.
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In the case α > 0, if χ(t) denotes the size of the tagged fragment at
time t, then

Tε =
{
t > 0, χ(t) ≤ ε

}
.

Applying Proposition 3 of [6], the distribution of εαTε under P1 is tight
as ε→ 0. Therefore, the rate −1/ log ε is achievable for estimating α and
it is attained by the estimator log(Tε)/ log ε. More precise results about
limit laws can be obtained from [6].

5 Proofs

We will repeatedly use the convenient notation aε . bε if 0 < aε ≤ c bε
for some constant c > 0 which may depend on π(•) and m only, any other
dependence on other ancillary quantities being obvious from the context.
A function g ∈ C(m) is tacitly defined on the whole real line by setting
g(a) = 0 for a /∈ [0, 1].

5.1 Proof of Theorem 3.1

Step 1: A preliminary decomposition. We first use the fact that
for η > ε, during the fragmentation process, the unobserved state Xη

necessarily anticipates the state Xε. The choice η = η(ε) will follow later.
This yields the following representation:

Eε(g) =
∑

v∈Uη

ξv
∑

w∈U
1{

ξv ξ̃
(v)
w−≥ε, ξv ξ̃

(v)
w <ε

}ξ̃(v)
w g

(
ξv ξ̃

(v)
w /ε

)
,

where, for each label v ∈ Uη and conditional on Xη , a new indepen-

dent fragmentation chain (ξ̃
(v)
w , w ∈ U) is started thanks to the branching

property, see Section 2.1. Define now

λη(v) := 1{ξv−≥η,ξv<η}ξv

and
Yε(v, g) :=

∑

w∈U
1{

ξv ξ̃
(v)
w−≥ε, ξv ξ̃

(v)
w <ε

}ξ̃(v)
w g

(
ξvξ̃

(v)
w /ε

)
.

We obtain the decomposition of Eε(g)−E(g) as a sum of a centred and a
bias term:

Eε(g) − E(g) = Mε,η(g) +Bε,η,
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with
Mε,η(g) :=

∑

v∈U
λη(v)

(
Yε(v, g) − E

[
Yε(v, g) |λη(v)

])

and
Bε,η(g) :=

∑

v∈U
λη(v)

(
E

[
Yε(v, g) |λη(v)

]
− E(g)

)
,

where we used (2.1) in order to incoporate the limit term E(g) within
the sum in v.

Step 2: The term Mε,η(g). Conditional on the sigma-field generated
by

(
1{ξu−≥η}ξu, u− ∈ U

)
, the variables (Yε(v, g), v ∈ U) are independent.

Therefore

E
[
Mε,η(g)

2
]
≤

∑

v∈U
E

[
λη(v)

2
E[Yε(v, g)

2 |λη(v)]
]
, (5.1)

thus we first need to control the conditional variance of Yε(v, g)
2 given

λη(v) = u, for 0 ≤ u ≤ η, since P-almost surely, λη(v) ≤ η. Moreover, we
have Yε(v, g) = 0 on {λη(v) < ε}, hence we may assume ε ≤ u ≤ η.

To this end, we will use the following representation property:

Lemma 5.1. Let f(•) : [0,+∞) → [0,+∞). Then

E

[ ∑

v∈Uη

ξv f(ξv)
]

= E
⋆
[
f
(
χ(Tη)

)]
, (5.2)

where χ(t) = exp
(
− ζ(t)

)
and

(
ζ(t), t ≥ 0

)
is a subordinator with Lévy

measure π(•) defined on an appropriate probability space (Ω⋆,P⋆), and

Tη := inf
{
t ≥ 0, ζ(t) > − log η

}
.

The proof is given in Appendix 6.1. In order to remain self-contained,
we elaborate in particular on the construction of the randomly tagged
fragment following the presentation of Bertoin [5].

We now plan to bound the right-hand side of (5.1) thanks to Lemma
5.1. For 0 < ε ≤ u ≤ η, we have

E
[
Yε(v, g)

2 |λη(v) = u
]

=E

[( ∑

w∈Uε/u

ξ̃(v)
w g

(
εu−1ξ̃(v)

w

))2 ∣∣λη(v) = u
]

≤E
[ ∑

w∈Uε/u

ξ̃(v)
w g

(
εu−1ξ̃(v)

w

)2 ∣∣λη(v) = u
]
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where we used Jensen’s inequality combined with (2.1). Applying Lemma
5.1 we derive

E
[
Yε(v, g)

2 |λη(v) = u
]
≤ E

⋆
[
g
(
uε−1e−ζ(Tε/u)

)2]
. (5.3)

Let U(•) denote the renewal function associated with the subordinator
(ζ(t), t ≥ 0). By Proposition 2, Ch. III in [3], the right-hand side of (5.3)
is equal to

∫
[
0,− log(ε/u)

) dU(s)

∫

(− log(ε/u)−s,+∞)
g
(
u ε−1e−x−s

)2
π(dx),

=

∫
[
0,− log(ε/u)

) dU(s)

∫

S↓

∞∑

i=1

si 1{si<εu−1 es} g
(
siu ε

−1e−s
)2
ν(ds)

.
1

c(π)
‖g‖2

∞ log(u/ε),

where we successively used the representation (2.4) and the upper bound
U(s) . s/c(π), see for instance Proposition 1, Ch. I in [3]. Therefore, for
ε ≤ u ≤ η,

E
[
Yε(v, g)

2 |λη(v) = u
]
.

1

c(π)
‖g‖2

∞ log(η/ε).

Going back to (5.1), since λη(v)
2 ≤ η λη(v) and using (2.1) again, we

readily derive

E
[
Mε,η(g)

2
]
.

1

c(π)
‖g‖2

∞η log(η/ε) . η log(η/ε). (5.4)

Step 3: The bias term Bε,η(g). Note first that

E
[
Yε(v, g) |λη(v)

]
= ξ−1

v E ξv

[
Eε(g)

]
,

P-almost surely, henceforth

Bε,η(g) =
∑

v∈U
λη(v)

(
ξ−1
v Eξv

[
Eε(g)

]
− E(g)

)
. (5.5)

Conditioning on the mark of the parent u− = ω of u and applying the
branching property, we get that E ξv

[
Eε(g)

]
can be written as

E ξv

[ ∑

ω∈U
1{

ξ̂ω≥ε
}ξ̂ω

∫

S↓

∞∑

i=1

1{
ξ̂ω si<ε

}si g
(
ξ̂ω si ε

−1
)]
.
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where the (ξ̂w, w ∈ U) are the sizes of the marked fragments of a frag-
mentation chain with same dislocation measure ν(•), independent of
(ξv, v ∈ U). Set

Hg(a) :=

∫

S↓

∞∑

i=1

1{
si<e−a

}sig
(
sie

a
)
ν(ds), a ≥ 0.

It follows that E ξv

[
Eε(g)

]
is equal to

Eξv

[ ∞∑

n=0

∑

|ω|=n

1{
log ξ̂ω≥log ε

}ξ̂ωHg(log ξ̂ω − log ε)
]

= ξv E

[ ∞∑

n=0

∑

|ω|=n

1{
log ξ̂ω≥log(ε/ρ)

}Hg

(
log ξ̂ω − log(ε/ρ)

)]

ρ=ξv

by self-similarity, with the notation |ω| = n if ω = (ω1, . . . , ωn) ∈ U .
Using Lemma 1.4 in [5], we finally obtain

E ξv

[
Eε(g)

]
= ξv

∞∑

n=0

E
[
1{

Sn≤log(ρ/ε)
}Hg

(
log(ρ/ε) − Sn

)]
ρ=ξv

,

where Sn is a random walk with step distribution π(dx). We plan to apply
a version of the renewal theorem with explicit rate of convergence as given
in Sgibnev [16], see Proposition 6.1 in Appendix 6.2, with rate function
ϕ(a) := exp(µa) for some arbitrary µ < κ/2 and dominating function
r(a) := e−κ|a|. Indeed, for a < 0:

Hg(−a) = 1{
a≤0

}
∫

(−a,+∞)
g
(
e−x−a

)
π(dx),

by (2.4). Since g(•) has support in [0, 1] and π ∈ Π(κ),

∣∣Hg(−a)
∣∣ ≤

∫

(−a,+∞)

∣∣g
(
e−x−a

)∣∣π(dx) . eκa,

Therefore |1{a≤0}Hg(−a)| . r(a) for all a ∈ R.

Since κ > 2µ, Assumption F of Proposition 6.1 is readily checked. Let
A > 0 (depending on κ, m and π(•) only) such that, if log(ξv/ε) ≥ A,
then ∣∣∣ξ−1

v E ξv

[
Eε(g)

]
− 1

E
⋆
[
S1

]
∫ +∞

0
Hg(a)da

∣∣∣ ≤
( ε

ξv

)µ
. (5.6)
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We next note that

1

E
⋆
[
S1

]
∫ +∞

0
Hg(a)da = E(g).

Introducing the family of events
{

log(ξv/ε) ≥ A
}

in the sum (5.5), we
obtain the following decomposition:

Bε,η(g)
2 . I + II,

with
I :=

∑

v∈Uη

ξv1{ log(ξv/ε)>A
}(
ξ−1
v E ξv

[
Eε(g)

]
− E(g)

)2
,

and
II :=

∑

v∈Uη

ξv1{ log(ξv/ε)≤A
}(
ξ−1
v E ξv

[
Eε(g)

]
− E(g)

)2
.

By (5.6), we have

I ≤ ε2µ
∑

v∈Uη

1{−log ξv<−A+log(1/ε)
}ξv exp

(
2µ(− log ξv)

)
.

Integrating w.r.t. P and applying Lemma 5.1 and in the same way as in
Step 2, we have

E
[
I
]
≤ ε2µ

E
⋆
[
e2µζ(Tη)

]

= ε2µ

∫

[0,− log η)
dU(s)

∫

(− log η−s,+∞)
e2µ(s+x)π(dx)

≤ ε2µ

∫

[0,− log η)
e2µsdU(s) .

(
εη−1

)2µ
log(1/η)

for small enough ε and where we used π ∈ Π(κ) with 2µ < κ. For the
term II, we first notice that by (2.1) and self-similarity,

Eξv

[ ∑

u∈Uε

ξ̂u
]

= ξv, Pξv −almost surely,

hence

(
ξ−1
v E ξv

[
Eε(g)

]
− E(g)

)2 ≤ 4‖g‖2
∞, Pξv −almost surely.
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In the same way as for the term I, we derive

E
[
II

]
. E

[ ∑

v∈Uη

ξv1{−log ξv≥−A+log(1/ε)
}]

= P
⋆
[
ζ(Tη) ≥ −A+ log(1/ε)

]

≤
∫

[0,− log η)
dU(s)

∫

(−A+log(1/ε)−s,+∞)
π(dx)

. εµ log(1/η)

for small enough ε. Putting all the estimates together, we conclude

E
[
Bε,η(g)

2
]
.

(
εµ + (εη−1)2µ

)
log(1/η). (5.7)

Step 4: Proof of (3.1). Putting the estimates (5.4) and (5.7), we have

E
[(
Eε(g) − E(g)

)2]
. E

[
Mε,η(g)

2
]
+ E

[
Bε,η(g)

2
]

. η log(η/ε) +
(
εη−1

)2µ
log(1/η).

The choice η(ε) := ε2µ/(2µ+1) yields the rate ε2µ/(2µ+1) log(1/ε). Since
µ < κ/2 is arbitrary, the conclusion follows.

Step 5: Proof of (3.2). We plan to use the following decomposition:

Eε,σ(g) − Eε(g) = I + II,

with

I :=
∑

u∈U

(
1{ξ(σ)

u−≥ε, ξ
(σ)
u <ε} − 1{ξu−≥ε, ξu<ε}

)
ξ̃(σ)
u g

(
ξ(σ)
u /ε

)
,

and
II :=

∑

u∈Uε

(
ξ̃(σ)
u g

(
ξ(σ)
u /ε

)
− ξu g

(
ξu/ε

))
,

where we have set ξ̃
(σ)
u := ξ

(σ)
u 1{ξ(σ)

u ≥tε}. Clearly,

∣∣∣1{ξ(σ)
u−≥ε, ξ

(σ)
u <ε} − 1{ξu−≥ε, ξu<ε}

∣∣∣ ≤1{ξ(σ)
u−≥ε, ξu−<ε} + 1{ξ(σ)

u <ε, ξu≥ε}

+1{ξu−≥ε, ξ
(σ)
u−<ε} + 1{ξu<ε, ξ

(σ)
u ≥ε}.

Let δ > σ/ε and ω = u or u−. Since |Uω| ≤ 1 for every ω, we readily
check that {

ξ(σ)
ω ≥ ε, ξω < ε

}
⊂

{
(1 − δ)ε ≤ ξω < ε

}
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and {
ξω ≥ ε, ξ(σ)

ω < ε
}
⊂

{
ε ≤ ξω < (1 + δ)ε

}
.

It follows that |I| ≤ III + IV , with

III :=
∑

u∈U
1{(1−δ)ε≤ξu−≤ε(1+δ)}

∣∣ξ̃(σ)
u g

(
ξ(σ)
u /ε

)∣∣

and
IV :=

∑

u∈U
1{(1−δ)ε≤ξu≤(1+δ)ε}

∣∣ξ̃(σ)
u g

(
ξ(σ)
u /ε

)∣∣.

By picking δ is small enough, we may (and will) assume that ξ̃
(σ)
u . ξu. By

(2.1), conditioning on the mark of the parent u− = ω of u and applying
the branching property, E

[
III2

]
is less than

E

[ ∑

v∈U
1{(1−δ)ε≤ξv≤ε(1+δ)}ξv

∫

S↓

∞∑

i=1

si g
(
ε−1(ξvsi + σUv)

)2
ν(ds)

]

= E

[ ∑

ω∈U
1{(1−δ)ε≤ξω≤ε(1+δ)}ξωG1(ξω)

]
,

with

G1(a) :=

∫

S↓

∞∑

i=1

si E
[
g
(
ε−1(asi + σU)

)2]
ν(ds)

and U distributed as the Uω. Likewise,

E
[
IV 2

]
. E

[ ∑

u∈U
1{(1−δ)ε≤ξu≤ε(1+δ)}ξuG2(ξu)

]
,

with
G2(a) := E

[
g
(
ε−1(a+ σU)

)2]
.

For i = 1, 2, the crude bound |Gi(a)| ≤ ‖g‖2
∞ and the genealogical rep-

resentation argument used in Step 3 enables to bound either E[III2] or
E[IV 2] by

‖g‖2
∞

∞∑

n=0

P
⋆
[
− log(1 + δ) ≤ Sn − log(1/ε) ≤ − log(1 − δ)

]

where Sn is a random walk with step distribution π(•). We proceed as in
Step 3 and apply Proposition 6.1. The above term converges to

m1(π)−1 log

(
1 + δ

1 − δ

)
. δ
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uniformly in δ, as soon as δ is bounded, at rate εµ for any 0 < µ < κ,
and thus is of order δ + εµ.

We now turn to the term II. We have II := V + V I + V II, with

V :=
∑

u∈U ε

ξu

(
g
(
ξ(σ)
u /ε

)
− g

(
ξu/ε

))
,

V I := σ
∑

u∈U ε

Uu1{ξ(σ)
u ≥tε}g

(
ξ(σ)
u /ε

)
,

V II := −
∑

u∈U ε

ξu1{ξ(σ)
u <tε}g

(
ξ(σ)
u /ε

)
.

From g ∈ C′(m), (2.1) and Jensen’s inequality we derive

E[V 2] ≤ ‖g′‖2
∞σ

2ε−2.

From |Uu| ≤ 1 and the inclusion {ξ(σ)
u ≥ tε} ⊂ {ξu ≥ tε − σ} we derive

E
[
V I2

]
≤ ‖g‖2

∞
σ2

(tε − σ)2
E

[( ∑

u∈Uε

ξu
)2

]
.
σ2

ε2
,

where we used that tε = γ0ε with 0 < γ0 < 1. Likewise, the inclusion

{ξ(σ)
u < tε} ⊂ {ξu ≤ tε + σ} and Lemma 5.1 yield

E
[
V II2

]
≤ ‖g‖2

∞ P
⋆
[
− log χ(Tε) > − log(tε + σ)

]
. εµ log(1/ε)

for any µ < κ, in the same line as for the bound of the right-hand side of
(5.3) in Step 2.

Putting all the estimates together with, for instance, δ := σ/2ε we
obtain (3.1). The proof of Theorem 3.1 is complete.

5.2 Proof of Theorem 3.2

Preliminaries. Let 0 < bε → 0 as ε→ 0. For m > 0, define the class

C̃bε(m) :=
{
g ∈ C(m),

∣∣supp
(
g(•)

)∣∣ ≤ mbε
}
.

We have the following extension of Theorem 3.1.

Proposition 5.2. Grant Assumptions A, B and C. In the same setting
as Theorem 3.1, if in addition, we assume κ > 1, then, for every µ < κ

sup
g∈C̃bε (m)

E
[(
Eε(g) − E(g)

)2]
= o

(
εµ/(µ+1)bε

)
.
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Proof. We revisit carefully Steps 2 to 4 of the proof of Theorem 3.1 under
the additional Assumption C, and we write g(•) = gε(•) to emphasize that
g(•) may now depend on the asymptotics.

In Step 2, the right-hand side of (5.3) is now bounded by the following
chain of arguments:

∫ − log(ε/u)

0
dU(s)

∫ +∞

− log(ε/u)−s
gε

(
u ε−1e−x−s

)2
π(x)dx

=

∫ − log(ε/u)

0
dU(s)

∫ εu−1es

0
gε

(
xu ε−1e−s

)2
β(x) dx

≤‖β‖∞ u−1ε

∫

[0,− log(ε/u))
esdU(s)

∫ 1

0
gε

(
x
)2
dx . bε log(u/ε)

where we used that | supp(gε)| . bε and U(s) . s/c(π) again. Note that
‖β‖∞ . 1 since κ1 > 1 and κ2 > 1. Therefore

E
[
Yε(v, g)

2 |λη(v) = u
]
. bε,

Hence
E

[
Mε,η(g)

2
]
. bεη.

In Step 3, we replace g(•) by gε(•) in Eε(g) and E(g). We have, for any
0 < µ < κ,

∣∣E(gε)
∣∣ ≤ 1

c(π)

∫ 1

0

|gε(a)|
a

∫ +∞

log(1/a)
π(x)dx da

.

∫ 1

0
|gε(a)|aµ−1da . bε

for µ ≥ 1 and since π ∈ Π(κ) with κ > 1. By Cauchy-Schwarz, for a < 0,

∣∣Hgε(−a)
∣∣ ≤

(∫ +∞

−a
gε

(
e−x−a

)2
π(x)dx

)1/2(∫ +∞

−a
π(x)dx

)1/2

. ea/2
(∫ 1

0
gε

(
y
)2
β(yea)dy

)1/2
eκa/2

. b1/2
ε ea(1+κ)/2,

using again that ‖β‖∞ . 1. Therefore ξ−1
v Eξv

[
Eε(gε)

]
. b

1/2
ε , and we can

apply Proposition 6.1 with rate function ϕ(a) = exp(µa) and dominating
function r(a) := e−(1+κ)|a|/2.
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The terms I and II are bounded in the same way. We obtain

E
[
Bε,η(g)

2
]
. bε

(
εη−1

)2µ
log(1/η)

for µ < min{κ/2, (1 + κ)/2} = κ/2, uniformly over the class C̃bε(m). The
trade-off between Mε,η(gε) and Bε,η(gε) yields the result.

Completion of proof of Theorem 3.2. We first write

E(gγε) −m1(π)−1 =
1

m1(π)

∫ 1

1−γε

(fγε(a) − 1)β(a)da.

We have

∣∣∣
∫ 1

1−γε

(
fγε(a) − 1

)
β(a)da

∣∣∣ ≤ 2

∫ − log(1−γε)

0
π(x)dx . γκ2

ε

since π ∈ R(κ2) and − log(1− x) . x for small enough x ≥ 0. We derive

∣∣E(gγε) −m1(π)−1
∣∣ . γκ2

ε . (5.8)

Next, by construction, γ2
εgγε ∈ C̃γε(1), hence for any 0 < µ < κ1, Propo-

sition 5.2 entails

E
[∣∣Eε(gγε) − E(gγε)

∣∣] . γ−1/2
ε εµ/(2µ+2). (5.9)

Moreover, since γεgγε ∈ C′(1), we have, by (3.2) in Theorem 3.1

E
[∣∣Eε(gγε) − Eε,σ(gγε)

∣∣] . γ−2
ε σε−1. (5.10)

The specification γε = εµ/(µ+1)(2κ2+1) yields the correct rate for (5.8) and
(5.9). The assumption that σε−3 is bounded ensures that the right-hand
side in (5.10) is asymptotically negligible. The conclusion readily follows
for m̂1,ε.

We now turn to higher moment estimators. Thanks to the proof for
the case k = 1, it suffices to show that

m1(π)Eε

(
g̃γε

)
→

∫ 1

0
log(1/a)kβ(a)da

in probability with the correct rate as ε→ 0. Note first that

g̃γε(a) = −a log(1/a)kf ′γε
(1 − a) + kfγε(1 − a) log(1/a)k−1
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is a sum of a function in C̃γε(c1) and a function in C′(c2), for some positive
c1 and c2, hence we may apply Proposition 5.2 and Theorem 3.1 to each
term respectively. Next

c(π)E
(
g̃γε

)
= −

∫ 1

0

(
fγε(1 − a) log(1/a)k

)′
∫ a

0
β(u)du da

=

∫ 1

0
fγε(1 − a) log(1/a)kβ(a)da,

since k > 1 and π ∈ Π(κ1) so that the boundary terms vanish when
integrating by part. We conclude by noticing that by Hölder’s inequality,
for any τ > 0, we have

∣∣
∫ 1

0

(
1 − fγε(1 − a)

)
log(1/a)kβ(a)da

∣∣

≤2
( ∫ +∞

− log γε

π(x)dx
)1−τ ( ∫ +∞

0
xk/τπ(x)dx

)τ
. γκ1(1−τ)

ε .

This term also has the right order since the choice of τ is free and κ1 > κ2

by assumption. The proof of Theorem 3.2 is complete.

5.3 Proof of Theorem 3.4

With no loss of generality, we consider the homogeneous case with α = 0.
We may also assume that σ = 0, since adding experimental noise to the
observation of the fragments only increases the error bounds.

Step 1: An augmented experiment. In the binary case, the dislocation
measure ν(ds) is equivalently mapped by a probability measure on [1/2, 1]
with density function a ρ(a), see (3.6).

We prove a lower bound in the augmented experiment where one can
observe all the sizes X̃ε of the fragments until they become smaller than
ε, namely

X̃ε :=
{
ξu, ξu− ≥ ε

}
∪

{
ξu, u ∈ Uε

}

Clearly, taking the infimum over all estimators based on X̃ε instead of
Xε = Xε,0 only reduces the lower bound.

For every u ∈ Uε, we have ξu− ≥ ε. By the conservative Assumption
B, there are at most ε−1 such ξu− so CardUε ≤ 2ε−1. For every node
u ∈ U , the fragmentation process gives rize to two offsprings with size
ξuU and ξu(1−U), where U is a random variable independent of ξu with
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density function ρ(•). Therefore, the process of the sizes of the fragments
in the enlarged experiment can be realized by less than

2ε−1
(
1 + 1

2 + . . .+ 1
2k(ε)

)
≤ ⌊4ε−1⌋ + 1 =: n(ε)

independent realizations of the law ρ(•), where k(ε) := log2(2/ε), assumed
to be integer with no loss of generality.

In turn, Theorem 3.4 reduces to proving that ε1/2 is a lower rate
of convergence for estimating mk(π) based on the observation of a
n(ε)-sample of the law ρ(•). The one-to-one correspondence between ρ(•)
and π(•) is given in (4.1).

Step 2: Construction of πε. We write ρπ(•) to emphasize the depen-
dence upon π(•). Let

ϕk(a) := a(log(1/a)k + (1 − a) log
(
1/(1 − a)

)k
, a ∈ [1/2, 1].

From (4.1), we have

mk(π0) =

∫ 1

1/2
ϕk(a)ρπ0(a)da.

Let 0 < τ < 1. Pick a function ψk(•) : [1/2, 1] → R such that

‖ψk‖∞ ≤ τ inf
a
ρπ0(a),

∫ 1

1/2
ψk(a)da = 0, r(k) :=

∫ 1

1/2
ϕk(a)ψk(a)da 6= 0,

a choice which is obviously possible thanks to Assumption D. For ε > 0,
define

ρπε(a) := ρπ0(a) + ε1/2ψk(a), a ∈ [1/2, 1].

(And so (4.1) defines πε(•) unambiguously.) By construction, ρπε(•) is a
density function on [1/2, 1] and has a corresponding binary fragmentation
with Lévy measure given by πε(•). Moreover,

mk(πε) = mk(π0) + r(k)ε1/2.

Step 3: A two-point lower bound. The following chain of arguments
is fairly classical. We denote by P̃π the law of the independent random
variables

(
Ui, i = 1, . . . , n(ε)

)
with common density ρπ(•) that we use to

realize the augmented experiment.
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Let Fε be an arbitrary estimator based on X̃ε. Put c := |r(k)|/2. We
have

max
π∈{π0,πε}

P̃π

[
ε−1/2|Fε −mk(π)| ≥ c

]

≥ 1
2

(
P̃π0

[
ε−1/2|Fε −mk(π0)| ≥ c

]
+ P̃πε

[
ε−1/2|Fε −mk(πε)| ≥ c

])

≥ 1
2 Ẽπ0

[
1{ε−1/2|Fε−mk(π0)|≥c} + 1{ε−1/2|Fε−mk(πε)|≥c}

]
− 1

2‖P̃π0 − P̃πε‖TV ,

where ‖•‖TV denotes the total variation distance between probability
measures. By the triangle inequality, we have

ε−1/2
(
|Fε −mk(π0)| + |Fε −mk(πε)|

)
≥ |r(k)| = 2c,

so one of the two indicators within the expectation above must be equal
to one with full P̃π0-probability. Therefore

max
π∈{π0,πε}

P̃π

[
ε−1/2|Fε −mk(π)| ≥ c

]
≥ 1

2(1 − ‖P̃π0 − P̃πε‖TV ),

and Theorem 3.4 is proved if

lim sup
ε→0

‖P̃π0 − P̃πε‖TV < 1. (5.11)

By Pinsker’s inequality

‖P̃π0 − P̃πε‖TV ≤
√

2

2

(
Ẽπ0

[
log

d P̃π0

d P̃πε

])1/2
,

and

Ẽπ0

[
log

d P̃π0

d P̃πε

]
= −

n(ε)∑

i=1

Ẽπ0

[
log

ρπε(Ui)

ρπ0(Ui)

]

= −
n(ε)∑

i=1

Ẽπ0

[
log

(
1 + ε1/2ψk(Ui)ρπ0(Ui)

−1
)
− ε1/2ψk(Ui)ρπ0(Ui)

−1
]
,

where we used

Ẽπ0

[
ψk(Ui)ρπ0(Ui)

−1
]

=

∫ 1

1/2
ψk(a)da = 0.

We also have ε1/2|ψk(Ui)ρπ0(Ui)
−1| ≤ τε1/2 hence for small enough τ ,

∣∣ − log
(
1 + ε1/2ψk(Ui)ρπ0(Ui)

−1
)

+ ε1/2ψk(Ui)ρπ0(Ui)
−1

∣∣ ≤ τ2ε.

Therefore ‖P̃π0−P̃πε‖TV ≤
√

2
2 τε

1/2n(ε)1/2 < 1 by picking τ small enough,
and (5.11) follows. The proof of Theorem 3.4 is complete.
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5.4 Proof of Theorem 3.5

We plan to use the following decomposition

β̂(a) − β(a) = m̂1,ε Eε,σ

(
− •ϕ′

γε,a(•)
)
− β(a) = I + II + III + IV,

with

I := m̂1,ε

(
Eε,σ

(
− •ϕ′

γε,a(•)
)
− Eε

(
− •ϕ′

γε,a(•)
))

II := m̂1,ε

(
Eε

(
− •ϕ′

γε,a(•)
)
− E

(
− •ϕ′

γε,a(•)
))
,

III :=
(
m̂1,ε −m1(π)

)
E
(
− •ϕ′

γε,a(•)
)
,

IV := m1(π) E
(
− •ϕ′

γε,a(•)
)
− β(a).

Considering I and II, the term m̂1,ε is bounded in probability by
Theorem 3.2. By (3.2) in Theorem 3.1 together with the fact that
γ3

εϕ
′
γε

∈ C′(‖ϕ′‖∞), we have

E
[∣∣Eε

(
− •ϕ′

γε,a(•)
)
− Eε,σ

(
− •ϕ′

γε,a(•)
)∣∣] . γ−3

ε σε−1.

By construction, we have γ2
ε •ϕ

′
γε,a(•) ∈ C̃γε(‖ϕ‖∞), therefore, by Propo-

sition 5.2

E

[(
Eε

(
− •ϕ′

γε,a(•)
)
− E

(
− •ϕ′

γε,a(•)
))2]

. γ−3
ε εµ/(µ+1). (5.12)

Considering III, using (5.8), we have
∣∣E

(
−•ϕ′

γε,a(•)
)∣∣ . γ−1

ε . By Theorem
3.2, we conclude that III2 has order

γ−2
ε ε2µκ2/(µ+1)(2κ2+1) (5.13)

in probability. For IV , we first notice that

m1(π) E
(
− •ϕ′

γε,a(•)
)

=

∫ 1

0
ϕγε,a(u)β(u)du,

hence

IV 2 =
( ∫ 1

0
ϕγε,a(u)β(u)du − β(a)

)2
. γ2s

ε (5.14)

by a Taylor expansion and using that the terms up to order s− 1 vanish
by the cancellation property (3.7) of ϕ(•) since s < N .

Putting together (5.12), (5.13) and (5.14), we see that the specification
γε = εµ/(µ+1)(2s+3) yields the correct rate for II and IV , as well as for III
as soon as κ2 ≥ s+1. Finally, the term I proves asymptotically negligible
in the same way as (5.10) thanks to the assumption that σε−3 is bounded.
The proof of Theorem 3.5 is complete.
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6 Appendix

6.1 Proof of Lemma 5.1

First, we enrich the structure of the genealogical tree representation of
Section 2 by adding a random mark M : U → [0, 1]×[0,+∞)×[0,+∞) on
the tree together with a random branch8 β of U and define unambiguously
the law P

⋆ of (M,β) by setting

E
⋆
[
Φn(M,β)

]
:= E

[ ∑

|u|=n

Φn(M,u)ξu
]
, n ≥ 1,

where Φn is a bounded functional which depends on the mark M and the
branch β up to the n-th generation only. If βn is the node of the random
branch at the n-th generation, we set χn := ξβn and χ(t) for the size of
the tagged particle at time t:

χ(t) :=

{
χn if aβn ≤ t < aβn + ζβn ,
0 if t ≥ limn→∞ aβn ,

where aβn and ζβn denote respectively the birth-time and lifetime of the
particle labeled by the tagged node βn. We then have

E
[ ∑

v∈Uε

ξvf(ξv)
]

= E
[ ∞∑

n=0

∑

|v|=n

1{
ξv−≥η, ξv<η

}ξvf(ξv)
]

=

∞∑

n=0

E
⋆
[
1{

χn−1≥η, χn<η
}f(χn)

]
.

By Proposition 1.6 in [5], − log χn is a random walk under P
⋆ with step

distribution π(dx). In particular, the last term above is independent of α.

Consider now a homogeneous fragmentation process with same dis-
location measure ν(•) living on the same (possibly enlarged) proba-
bility space for simplicity. Applying the same construction above, we
obtain a process

(
χ(0)(t), t ≥ 0

)
that can be expressed in the form

χ(0)(t) = exp
(
−ζ(0)(t)

)
where

(
ζ(0)(t), t ≥ 0

)
is a compound Poisson pro-

cess with jump intensity 1 and jump distribution π(•). By construction,

we have χ(0)
(
T

(0)
η

)
= χ

(0)
n on the event {χ(0)

n−1 ≥ η, χ
(0)
n < η} therefore

E
⋆
[
f
(
χ(0)(T (0)

η )
)]

=
∞∑

n=0

E
⋆
[
1{

χ
(0)
n−1≥η, χ

(0)
n <η

}f
(
χ(0)

n

)]
.

8A branch is an infinite sequence of positive integers which we can think of as the
line of ancestors of some leaf of the tree.
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The conclusion follows by identifying the right-hand sides of the last two
equalities.

6.2 Rates of convergence in the key renewal theorem

We give a version of Sgibnev’s result [16] on uniform rates of convergence
in the key renewal theorem, which is proved in a more general setting.

Let F (dx) be a probability distribution with positive mean m and
renewal function H =

∑∞
n=0 F

n⋆, with F 0⋆ := δ0, F
1⋆ := F and

F (n+1)⋆ := F ⋆ Fn⋆, n ≥ 0.

We assume that F is spread-out, that is, for some n ≥ 1, F ∗n has a non-
zero absolutely continuous component. Stone [17] shows that then there
exists a decomposition H = H1 +H2, where H2 is finite measure and H1

is absolutely continuous with bounded continuous density function h(•)
such that limx→+∞ h(x) = m−1 and limx→−∞ h(x) = 0.

We denote by T (F ) the σ-finite measure with density function

∫

(x,+∞)
F (du)1[0,+∞)(x) −

∫

(−∞,x]
F (du)1(−∞,0)(x).

and T 2(F ) := T
(
T (F )

)
. Let ϕ(•) : R → [0,+∞) be a submultiplicative

function, i.e. such that ϕ(0) = 1, ϕ(x + y) ≤ ϕ(x)ϕ(y). Then we have
(see for instance [10], Section 6)

−∞ < r1 := lim
x→−∞

logϕ(x)

x
≤ lim

x→+∞
logϕ(x)

x
=: r2 < +∞,

Assumption E. We have r1 ≤ 0 ≤ r2 and there exists r(•) : R → R an
integrable function and such that the following conditions are fulfilled:

sup
x

|r(x)|ϕ(x) < +∞ , lim
|x|→∞

r(x)ϕ(x) = 0,

lim
x→+∞

ϕ(x)

∫

[x,+∞)
r(u)du = lim

x→−∞
ϕ(x)

∫

(−∞,x]
r(u)du = 0,

and ∫

R

ϕ(x)T 2(F )(dx) <∞.

Sgibnev’s result takes the form:
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Proposition 6.1. (Theorem 5.1 in [16]). Grant Assumption E. Then

lim
|t|→∞

ϕ(t) sup
g,|g(x)|≤|r(x)|

∣∣∣g ⋆ H(t) −m−1

∫

R

g(x)dx
∣∣∣ = 0.

We call ϕ(•) a rate function and r(•) a dominating function.
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