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Statistical analysis of self-similar conservative fragmentation chains

1 Introduction

Motivation

Random fragmentation models, commonly used in a variety of physical models, lay their theoretical roots in the works of Kolmogorov [11] and Filippov [START_REF] Filippov | On the distribution of the sizes of particles which undergo splitting[END_REF] (see also [START_REF] Aldous | Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of the mean-field theory for probabilists[END_REF][START_REF] Bertoin | Random fragmentation and Coagulation Processes[END_REF][START_REF] Krapivsky | Scaling and multiscaling in models of fragmentation[END_REF][START_REF] Krapivsky | Stable distributions in stochastic fragmentation[END_REF] and the references therein). Informally, we imagine an object that falls apart randomly as time passes. The resulting particles break independently of each other in an independent and self-similar way. A thorough account on random fragmentation processes and chains is given in the book by Bertoin [START_REF] Bertoin | Random fragmentation and Coagulation Processes[END_REF], a key reference for the paper.

In this work, we take the perspective of statistical inference. We focus on the quite specific class of self-similar fragmentation chains. The law of the fragmentation is then entirely determined by its dislocation measure and its index of self-similarity, which govern the way and the rate at which the fragments split. If one is allowed to observe the whole fragmentation process up to some fixed time, then the statistical problem is somehow degenerate 1 . We postulate a more realistic observation scheme, motivated by mining industry, where the goal is to separate metal from non valued components in large mineral blocks by a series of blasting, crushing and grinding. In this setting, one rather observes approximatively the fragments arising from an initial block of size m only when they reach a size smaller than some screening threshold, say η > 0. Asymptotics are taken as the ratio ε := η/m vanishes. See Bertoin and Martinez [START_REF] Bertoin | Fragmentation energy[END_REF] and the references therein.

Organization and of the paper

In Section 2, we recall some well known facts about the construction of conservative fragmentation chains, following closely the book by Bertoin [START_REF] Bertoin | Random fragmentation and Coagulation Processes[END_REF]. For statistical purposes, our main tool is the empirical measure E ε of the size of fragments when they reach a size smaller than a threshold ε in the limit ε → 0. We highlight the fact that E ε captures information about the dislocation measure through the Lévy measure π of a randomly tagged fragment associated to the fragmentation process.

In Section 3, we give a rate of convergence for the empirical measure E ε toward its limit in Theorem 3.1, extending former results (under more stringent assumptions) of Bertoin and Martinez [START_REF] Bertoin | Fragmentation energy[END_REF]. The rate is of the form ε 1/2-ℓ(π) , where ℓ(π) > 0 can be made arbitrarily small under adequate exponential moment conditions for π. We add-up the more realistic framework of observations with limited accuracy, where each fragment is actually known up to a systematical stochastic error of order σ ≪ ε.

In Section 3, we construct estimators related to functionals of π in the absolute continuous case. In the parametric case (Theorem 3.4), we establish that the best achievable rate is ε 1/2 in the particular case of binary fragmentations, where a particle splits into two blocks at each step exactly. We construct a convergent estimator in a general setting (Theorem 3.2) with an error of order ε 1/2-ℓ ′ (π) , for another ℓ ′ (π) > 0 that can be made arbitrarily small under appropriate assumptions on the density of π near 0 and +∞. In the non-parametric case, we construct an estimator that achieves (Theorem 3.5) a rate of the form (ε 1-ℓ ′′ (π) ) s/(2s+3) , where s > 0 is the local smoothness of the density of π, up to appropriate rescaling. Except for the factor ℓ ′′ (π) > 0, we obtain the same rate as for ill-posed linear inverse problems of degree 1. We suggest a simple interpretation of this result in terms of the asymptotic form of E ε in the discussion Section 4, appended with further remarks about Theorems 3.1, 3.2 and 3.5.

An appendix (Section 6) recalls sharp results on the key renewal theorem from Sgibnev [START_REF] Sgibnev | Stone's decomposition of the renewal measure via Banach-algebraic techniques[END_REF] that are used to derive Theorem 3.1.

Statistical model 2.1 Fragmentation chains

Let X = X(t), t ≥ 0 be a fragmentation chain with state space

S ↓ := s = (s 1 , s 2 , . . .), s 1 ≥ s 2 ≥ . . . ≥ 0, ∞ i=1 s i ≤ 1 .
We assume that X has self-similar parameter α ≥ 0. For well-definiteness, see e.g. Bertoin [START_REF] Bertoin | Random fragmentation and Coagulation Processes[END_REF], the following mild assumptions on the dislocation measure ν(ds) of X are in force throughout the paper: Assumption A. We have ν (1, 0, . . .) = 0 and ν s 1 ∈ (0, 1) > 0. Moreover, for every ε > 0:

S ↓ ∞ i=1 1 {s i >ε} ν(ds) < ∞.
We denote by P m the law of X started from the initial configuration (m, 0, . . .) with m ∈ (0, 1]. Under P m , X is a Markov process and its evolution can be described as follows: a fragment with size x lives for an exponential time with parameter x α ν(S ↓ ) and then splits and gives rize to a family of smaller fragments distributed as xξ, where ξ is distributed according to ν(•)/ν(S ↓ ). Under P m , the law of X is entirely determined by α and ν(•).

We will repeatedly use the representation of fragmentation chains as random infinite marked trees. Let

U := ∞ n=0 N n
denote the infinite genealogical tree (with N 0 := {∅}) associated to X as follows: to each node u ∈ U, we set a mark

(ξ u , a u , ζ u ),
where ξ u is the size of the fragment labelled by u, a u is its birthtime and ζ u is its lifetime. We have the following identity between point measures on (0, +∞):

∞ i=1 1 X i (t)>0 δ X i (t) = u∈ U 1 t∈[au,au+ζu) δ ξu , t ≥ 0,
with X(t) = X 1 (t), X 2 (t), . . . , and where δ x denotes the Dirac mass at x. Finally, X has the following branching property: for every fragment s = (s 1 , . . .) ∈ S ↓ and every t ≥ 0, the distribution of X(t) given X(0) = s is the same as the decreasing rearrangement of the terms of independent random sequences X (1) (t), X (2) (t), . . . where, for each i, X (i) (t) is distributed as X(t) under P s i .

Observation scheme

For simplicity, we assume from now on that ν(S ↓ ) = 1. Keeping in mind the motivation of mineral crushing, we consider the fragmentation under 2 P := P 1 , initiated with a unique block of size m = 1 and we observe the process stopped at the time when all the fragments become smaller than some given threshold ε > 0, so we have data ξ u , for every u ∈ U ε , with

U ε := u ∈ U, ξ u-≥ ε, ξ u < ε ,
where we denote by u-the parent of the fragment labelled by u. We will further assume that the total mass of the fragments remains constant through time:

Assumption B. (Conservative property). We have: ν

∞ i=1 s i = 1 = 1. We next consider the empirical measure E ε (g) := u∈ Uε ξ u g(ξ u /ε),
where g(•) is a test function. Indeed, under Assumption B, we have

u∈ Uε ξ u = 1 P -almost surely, (2.1) 
so E ε (g) appears as a weighted empirical version of g(•). Bertoin and Martinez show in [START_REF] Bertoin | Fragmentation energy[END_REF] that under mild assumptions on ν(•), the measure E ε (g) converges to

E(g) := 1 c(ν) 1 0 g(a) a S ↓ ∞ i=1 s i 1 {s i <a} ν(ds)da
in probability, as ε → 0, with c(ν) = -S ↓ ∞ i=1 s i log s i ν(ds), tacitly assumed to be well-defined. This suggests a strategy for recovering information about ν(•) by picking suitable test functions g(•).

First estimates

From now on, we assume we have data

X ε := ξ u , u ∈ U ε (2.2)
and we specialize in the estimation of ν(•). Clearly, the data give no information about the self-similar parameter α that we consider as a nuisance parameter 3 . Assumptions A and B are in force. At this stage, we can relate E(g) to a more appropriate quantity by means of the so-called tagged frament approach.

The randomly tagged fragment. Let us first consider the homogenous case α = 0. Assume we can "tag" a point at random -according to a uniform distribution-on the initial fragment and imagine we can follow the evolution of the fragment that contains this point.

Let us denote by χ(t), t ≥ 0 the process of the size of the fragment that contains the randomly chosen point. This fragment is a typical observation in our data set X ε , and it appears at time

T ε := inf t ≥ 0, χ(t) < ε .
Bertoin [START_REF] Bertoin | Random fragmentation and Coagulation Processes[END_REF] shows that the process ζ(t) :=log χ(t) is a subordinator, with Lévy measure:

π(dx) := e -x ∞ i=1 ν(-log s i ∈ dx). (2.3) 
We can anticipate that the information we get from X ε is actually information about the Lévy measure π(dx) of ζ(t) throughout ζ(T ε ). The dislocation measure ν(ds) and π(dx) are related by (2.3) which reads

S ↓ ∞ i=1 s i f (s i )ν(ds) = (0,+∞)
f (e -x )π(dx), (2.4) for any suitable f (•) : [0, 1] → [0, +∞). In particular, by Assumption B and the fact that ν(S ↓ ) = 1, π(dx) is a probability measure hence ζ(t) is a compound Poisson process. Informally, a typical observation takes the form ζ(T ε ), which is the value of a subordinator with Lévy measure π(dx) at its first passage time strictly abovelog ε. The case α = 0 is a bit more involved and reduces to the homogenous case by a time change.

In terms of the limit of the empirical measure E ε (g), we equivalently have

E(g) = 1 c(π) 1 0 g(a) a π(-log a, +∞) da = 1 c(π) +∞ 0 g(e -x )π(x, +∞) dx,
with c(π) = (0,+∞) x π(dx), the two representations being useful either way. This approach will prove technically convenient and will be detailed later on. Except in the binary case (a particular case of interest, see Section 4.1), the knowledge of π(•) does not allow to recover ν(•) in general.

Measurements with limited accuracy. It is unrealistic to assume that we can observe exactly the size ξ u of the fragments. This becomes even more striking if the dislocation splits at a given time into infinitely many fragments of non zero size, a situation that we do not discard in principle. Therefore, we replace (2.2) by the more realistic observation scheme X ε,σ := ξ

(σ) u , u ∈ U ε,σ with U ε,σ := u ∈ U, ξ (σ) u-≥ ε, ξ (σ) u < ε , and 
ξ (σ) u := ξ u + σU u . (2.5) 
The random variables (U u , u ∈ U) are identically distributed, and account for a systematic experimental noise in the measurement of X ε , independent of X ε . We assume furthermore that, for every u ∈ U,

|U u | ≤ 1 and E[U u ] = 0.
The noise level 0 ≤ σ = σ(ε) ≪ ε is assumed to be known and represents the accuracy level of the statistician.

The observations ξ u + σU u are further discarded below a threshold σ ≤ t ε ≤ ε beyond which they become irrelevant, leading to the modified empirical measure

E ε,σ (g) := u∈ U ε,σ 1 {ξ (σ) u ≥ tε} ξ (σ) u g ξ (σ) u /ε .
In the sequel, we take t ε = γ 0 ε for some (arbitrary) 0 < γ 0 < 1.

Main results

We first exhibit explicit rates in the convergence E ε (g) → E(g) as ε → 0, extending Proposition 1.12 in Bertoin4 [START_REF] Bertoin | Random fragmentation and Coagulation Processes[END_REF]. We then turn to the estimation of π(•).

A rate of convergence for the empirical measure

For κ > 0, we say that a spread-out 5 probability measure π(dx) defined on [0, +∞) belongs to Π(κ) if

[0,+∞)
e κx π(dx) < +∞, appended with Π(∞) := κ>0 Π(κ). For m > 0, define the class of continuous functions

C(m) := g(•) : [0, 1] → R, g ∞ := sup x |g(x)| ≤ m ,
and C ′ (m) the class of continuously differentiable functions g(•) such that g ′ ∈ C(m).

Theorem 3.1. Grant Assumptions A and B. Let 0 < κ ≤ ∞ and assume that π ∈ Π(κ).

• For every m > 0 and 0 < µ < κ, we have

sup g∈C(m) E E ε (g) -E(g) 2 = o ε µ/(µ+1) . (3.1) 
• The convergence (3.1) remains valid if we replace E ε (•) by E ε,σ (•) and C(m) by C ′ (m), up to an additional error term:

sup g∈C ′ (m) E E ε,σ (g) -E ε (g) 2 = O(σ 2 ε -2 ). (3.2)

Statistical estimation

We study the estimation of π(•) by constructing estimators based on E ε (•) or rather E ε,σ (•). We need the following regularity assumption:

Assumption C. The probability measure π(dx) is absolutely continuous.

We denote by x π(x) its density function. We distinguish two cases: the parametric case, where we estimate a linear functional of π(•) of the form

m k (π) := +∞ 0
x k π(x)dx, for some k ≥ 1, 5 We recall some properties on spread-out measures in the Appendix. and the non-parametric case, where we estimate the function x π(x) pointwise. In that latter case, it will prove convenient to assess the local smoothness properties of π(•) on a logarithmic scale. Henceforth, we consider the mapping a β(a) := a -1 π(-log a), a ∈ (0, 1).

(3.3)

In the non-parametric case, we estimate β(a) for every a ∈ (0, 1).

The parametric case

For k ≥ 1, we estimate

m k (π) := +∞ 0 x k π(x)dx = 1 0 log(1/a) k β(a)da
by the correspondence (3.3) and implicitly assumed to be well-defined. We first focus on the case k = 1. Pick a sufficiently smooth test function

f (•) : [0, 1] → R such that f (1) = 0 and let g(a) := -af ′ (a). Plainly E(g) = 1 c(π) 1 0 g(a) a π(-log a, +∞) da = - 1 m 1 (π) 1 0 f ′ (a) a 0 β(u)du da = 1 m 1 (π) 1 0 f (a)β(a)da.
Formally, taking f (•) ≡ 1 would identify 1/m 1 (π) since β(•) integrates to one, but this choice is forbidden by the boundary condition f (1) = 0. We then consider instead the following approximation. Let f γ (•) : [0, 1] → R with 0 < γ < 1 be a smooth function such that

• f γ (a) = 1 for a ≤ 1 -γ and f γ (1) = 0. • f γ ∞ = 1 and f ′ γ ∞ ≤ c γ -1
, for some c > 0, a choice which is obviously possible. For a parametrization γ := γ ε → 0, we set g γε (a) := -af ′ γε (a) and define 

m 1,ε := 1 E ε,σ g γε . ( 3 
m k,ε := E ε,σ g γε E ε,σ g γε .
We can describe the performances of m k,ε under an additional decay condition of π(•) near the origin. For κ > 0, we say6 that the probability

π(•) belongs to the class R(κ) if lim sup x→0 x -κ+1 π(x) < +∞ appended with R(∞) := κ>0 R(κ)
. We obtain the following upper bound:

Theorem 3.2. Grant Assumptions A, B and C. Let 0 < κ 1 , κ 2 ≤ ∞ with κ 1 > max{1, κ 2 }. For 1 ≤ µ < κ 1 , let m k,ε be specified by γ ε := ε µ/(µ+1)(2κ 2 +1) . The family ε -µ κ 2 /(µ+1)(2κ 2 +1) m k,ε -m k (π)
is tight under P 1 as soon as

π ∈ Π(κ 1 ) ∩ R(κ 2 )
and σε -3 remains bounded.

Some remarks: the convergence of m k,ε to m k (π) is of course no surprise by (3.1). However, the dependence in ε in the test function g ε (•) (in particular g ε (•) is unbounded as ε → 0) requires a slight improvement of Theorem 3.1. This can be done thanks to Assumption C, see Proposition 5.2 in the proof Section 5.2. The requirement σε -3 = O(1) ensures that the additional term coming from the approximation of E ε (•) by E σ,ε (•) is negligible. This condition is probably not optimal, see Section 4.

Our next result shows that the exponent µκ 2 /(µ + 1)(2κ 2 + 1) ≤ 1/2 in the rate of convergence is nearly optimal, to within an arbitrarily small polynomial order. Definition 3.3. Let π 0 (•) satisfy the assumptions of Theorem 3.2. The rate 0 < v ε → 0 is a lower rate of convergence for estimating m k (π 0 ) if there exists a family π ε (•) satisfying the assumptions of Theorem 3.2 and a constant c > 0 such that

lim inf ε→0 inf Fε max π∈{π 0 ,πε} P v -1 ε |F ε -m k (π)| ≥ c > 0, (3.5) 
where the infimum is taken (for every ε) over all estimators constructed with X ε,σ at stage ε.

Definition 3.3 expresses a kind of local min-max information bound: given π 0 (•), one can find an opponent π ε (•) such that no estimator can discriminate between π 0 (•) and π ε (•) at a rate faster than v ε .

We further restrict our attention to binary fragmentations, see Section 4.1. In that case, the dislocation measure satisfies ν(s 1 +s 2 = 1) = 0, and, because of the conservation Assumption B, can be represented as

ν(ds) = ρ(ds 1 )δ 1-s 1 (ds 2 ), (3.6) 
where ρ(•) is a probability measure on [1/2, 1].

Assumption D. (Binary case.) The probability measure ρ(•) associated to π(•) is absolutely continuous and its density function is bounded away from zero.

Theorem 3.4. Assume that the fragmentation is binary and grant Assumption D. In the same setting as in Theorem 3.2, the rate ε 1/2 is a lower rate of convergence for estimating m k (π).

The restriction to the binary case is made for technical reason and is inessential. Theorem 3.4 presumably holds in a more general setting.

The non-parametric case

Under local smoothness assumptions on the parameter β(•), we estimate β(a) for every a ∈ (0, 1). Given s > 0, we say that β(•) belongs to the Hölder class Σ(s) if there exists a constant c > 0 such that

β (n) (y) -β (n) (x) ≤ c|y -x| {s} ,
where s = n + {s}, with n a non-negative integer and {s} ∈ (0, 1]. We also need to relate β(•) to the decay of its corresponding Lévy measure π(•). Abusing again notation, we identify Π(κ) with the set of β(•) such that e x β(e -x )dx ∈ Π(κ), thanks to the inverse of (3.3). Likewise for R(κ).

We construct an estimator of β(•) as follows: for a ∈ (0, 1) and a normalizing factor 0 < γ ε → 0, set

ϕ γε,a (•) := γ -1 ε ϕ (• -a)/γ ε , where ϕ(•)
is a smooth function with support in (0, 1) that satisfies the following oscillating property: for some integer N ≥ 1,

1 0 ϕ(a)da = 1, 1 0 a k ϕ(a)da = 0, k = 1, . . . , N.
(3.7)

Our estimator then takes the form

β ε (a) := m 1,ε E ε,σ -•ϕ ′ γε,a (•) a ∈ (0, 1),
where m 1,ε is the estimator of m 1 (π) defined in (3.4). We then have the following Theorem 3.5. Grant Assumptions A, B and C. Let

1 < κ 1 , κ 2 ≤ ∞. For 1 ≤ µ < min{1, κ 1 /2}, let β ε (•) be specified by γ ε := ε µ/(µ+1)(2s+3)
. For every a ∈ (0, 1), the family

ε -µs/(µ+1)(2s+3) β ε (a) -β(a)
is tight under P 1 , as soon as

β ∈ Σ(s) ∩ Π(κ 1 ) ∩ R(κ 2 )
for s < max{N, κ 2 -1} and σε -3 remains bounded.

A proof of the (near)-optimality in the sense of the lower bound Definition 3.3 and in the spirit of Theorem 3.4 is presumably a delicate problem that lies beyond the scope of the paper. More in Section 4.3.

Discussion

Binary fragmentations

The case of binary fragmentations is the simplest, yet an important model of random fragmentation, where a particle splits into two blocs at each step (see e.g. [START_REF] Filippov | On the distribution of the sizes of particles which undergo splitting[END_REF], [START_REF] Brennan | Splitting intervals. II. Limit laws for lengths[END_REF]). By using representation (3.6), if we assume further that ρ(ds 1 ) = ρ(s 1 )ds 1 is absolutely continuous, so is π(dx) = π(x)dx and we have

π(x) = e -2x ρ(e -x )1 [0,log 2] (x) + ρ(1 -e -x )1 (log 2,+∞) (x) , (4.1) 
for x ∈ [0, +∞) and

β(a) = a ρ(a)1 [1/2,1] (a) + ρ(1 -a)1 [0,1/2) (a) , a ∈ [0, 1].
In particular, the regularity properties of β(•) are readily obtained from the local smoothness of ρ(•) and its behaviour near 1/2. For instance, if ρ(a + 1/2) = O(a κ-1 ) near the origin, for some κ > 0, then

π ∈ Π(κ) ∩ R(κ).

Concerning Theorem 3.1

Optimal rate of convergence. First, Theorem 3.1 readily extends to error measurements of the form

E E ε (g) -E(g) p with 1 ≤ p ≤ 2.
The rate becomes ε -µp/2(µ+1) in (3.1) and σ p ε -p in (3.2) under the less stringent condition µ < κ/2p.

Generally speaking, we obtain in (3.1) the (normalized) rate ε µ/2(µ+1) , for any µ < κ. Intuitively, we have a number of observations that should be of order ε -1 , so the expected rate would rather be ε 1/2 . Why cannot we obtain the rate ε 1/2 or simply ε κ/2(κ+1) ? The proof in Section 5.1 shows that we loose quite much information when applying Sgibnev's result (see Proposition 6.1 in Appendix) on the kew renewal theorem for a random walk with step distribution π(•) in the limit log(1/ε) → +∞. Proposition 6.1 ensures that if π(•) has exponential moments up to order κ, then we can guarantee in the renewal theorem the rate o(ε µ ) for any µ < κ with some uniformity in the test function, a crucial point for the subsequent statistical applications. It is presumably possible to improve this rate to O(ε κ ) by accomodating Ney's result [START_REF] Ney | A refinement of the coupling method in renewal theory[END_REF]. However, a careful glance at the proof of Theorem 3.1 shows that we would then loose an extra logarithmic term when replacing ε µ/2(µ+1) by ε κ/(2κ+1) . More generally, exhibiting exact rates of convergence in Theorem 3.1 remains a delicate issue: the kew renewal theorem is sensitive to a modification of the distribution outside a neighbourhood of +∞, see e.g. Asmussen [START_REF] Asmussen | Applied probability and queues[END_REF], p.196.

Uniformity in π(•).

A slightly annoying fact is that convergence (3.1) is not uniform in π(•), which can become a methodological issue for the statistical applications of the subsequent Theorems 3.2 and 3.5, in particular if min-max results are sought. An inspection of the proof in Section 5.1 shows that we loose information about the uniformity in π(•) when applying Proposition 6.1 again. A glance at the proof of Sgibnev's result suggest that uniform results in π(•) could presumably be obtained over classes of π(•) defined in terms of appropriate bounds on their Stone decomposition [START_REF] Stone | On absolutey continuous components and renewal theory[END_REF].

The non-conservative case. If Assumption B is dropped, we define p -= inf p > 0, S ↓ ∞ i=1 s p i ν(ds) < +∞ and make the so-called Malthusian hypothesis: there exists a (unique) solution p ⋆ ≥ p -to the equation

S ↓ 1 - ∞ i=1 s p ⋆ i ν(ds) = 1.
The empirical measure now becomes

E (p ⋆ ) ε (g) := u∈ Uε ξ p ⋆ u g(ξ u /ε).
The choice of the weights ξ p ⋆ u is motivated by the fact that the process |u|=n ξ p ⋆ u , n ≥ 0 is a positive martingale. We denote by M ∞ its terminal value. Note that under Assumption B, we always have p ⋆ = 1 and M ∞ = 1. Bertoin and Martinez [START_REF] Bertoin | Fragmentation energy[END_REF] prove the convergence of

E (p ⋆ ) ε (g) to E (p ⋆ ) (g) := M ∞ c(ν) 1 0 g(a) a S ↓ ∞ i=1 s p ⋆ i 1 {s i <a} ν(ds)da in probability, as ε → 0, with now c(ν) := -S ↓ ∞ i=1 s p ⋆ i log s i ν(ds).
In this setting, Theorem 3.1 becomes Corollary 4.1. Grant Assumptions A, C and the Malthusian hypothesis. Let 0 < κ ≤ ∞ and m > 0. For every 0 < µ < κ, we have

sup g∈C(m) E E (p ⋆ ) ε (g) -E (p ⋆ ) (g) 2 = o ε µ/(µ+p ⋆ ) .
4.3 Concerning Theorems 3.2 and 3.5

The parametric case. We obtain the rate

ε µ/(µ+1) κ 2 /(2κ 2 +2
) , for all µ < κ 1 which can be made arbitrary close to the lower bound ε 1/2 by assuming κ 1 and κ 2 large enough. The factor µ/(µ + 1) comes from Theorem 3.1 whereas the factor κ 2 /(2κ 2 +1) arises when using the technical assumption π ∈ R(κ 2 ). We do not know how to improve it.

Also, the condition σε -3 = O(1) is fairly restrictive, and can be readily improved by assuming that κ 2 is large. Indeed, if κ 2 ≥ 1, which only amounts to require that π(•) is bounded near the origin, a glance at the error term (5.10) in the proof Section 5.2 shows that the condition drops to σε -2 = O(1). In the limit κ 2 → ∞, we obain σε -3/2 = O(1).

The non-parametric case. The situation is a bit different than in the parametric case: we obtain now the rate ε µ/(µ+1) s/(2s+3) , for all µ < κ 1 for the estimation of β(a) for any a ∈ (0, 1). In the limit κ 1 → +∞ it becomes ε s/(2s+3) , which can be related to more classical models: consider the apparently different problem of recovering a function β(•) in the integral white noise model

dY a = Kβ(a)da + ε 1/2 dW a , a ∈ [0, 1], (4.2) 
from the observation of (Y a , a ∈ [0, 1]). Here, (W a , a ∈ [0, 1]) is a standard Brownian motion and Kβ(a) := a 0 β(u)du is the integration operator. Model (4.2) serves as a toy representation for the problem of recovering a signal in white noise at level ε 1/2 , when the observation is obtained from the action of a smoothing linear operator with unbounded inverse (here K). The difficulty of the problem is quantified by the degree of illposedness of the operator (equal to ν for ν-fold integration; here ν = 1). The well-known optimal rate (see e.g. [START_REF] Korostelev | Minimax theory of image reconstruction[END_REF]) of pointwise recovery for a function

β ∈ Σ(s) is ε s/(2s+2ν+1) = ε s/(2s+3) .
The factor 2ν is a futher penalty in the rate of recovery quantifying the smoothing action of K. The same phenomenon seems to occur in the setting of fragmentation chain. Put σ := 0 here for simplicity. For a test function g(•), we can form the observation

E ε (g) ≈ E g) = 1 m 1 (π) 1 0 g(u)Kβ(u)du
up to an error of (near)-order ε 1/2 . If we discard the pre-factor m 1 (π) (which can be estimated at a fast rate when κ 2 is large) we obtain the same kind of statistics in Model (4.2) by considering

1 0 g(a)dY a = 1 0 g(u)Kβ(u)du + ε 1/2 N (g),
where N (g) is centred Gaussian with variance 1 0 g(a) 2 da. Note that the order of the variance in the noise term N (g) is consistent with the improvement obtained in Proposition 5.2 in the proof Section 5.2: if g ∈ C bε (m), we have 1 0 g(a) 2 da b ε . This suggests the (near)-optimality of the result in the sense of Definition 3.3 but a complete proof lies beyond the scope of the paper.

Other statistical issues

Observation of the whole path of X. Suppose we observe continuously in time the sample path of X up to some fixed time T > 0. Asymptotics are taken as T → ∞. Equivalently, we observe all triples (ξ u , a u , ζ u ) for every u in the random set

U(T ) := u ∈ U, a u ≤ T
with the restriction that ζ u is set to Ta u when a u + ζ u > T . We denote by U(T -) the subset of U(T ) such that a u + ζ u ≤ T . In this setting, statistical inference about the the self-similar parameter α ≥ 0 and the dislocation measure ν(ds) is relatively straightforward: Estimation of α: conditional on ξ u , u ∈ U(T -) the sequence of random variables ζ u , u ∈ U(T ) are independent and follow exponential distributions with parameters ξ α u . Conditional on Card U(T ) = n and since the law of the (ξ u , u ∈ U) does not depend on α we are in the setting of estimating a one-dimensional parameter from n independent random variables with explicit likelihood ratio

α n i=1 ξ α u i exp ξ α u i ζ u i , (4.3) 
where the u i range through U(T ). The main difficulty remains that the law of Card U(T ) usually depends on α.

Estimation of ν(•): for u-∈ U(T -), when the fragment of size ξ u splits, conditional on ξ u = x, it gives rize to the observation of the rescaled size of its offsprings (x -1 ξ ui , i ∈ N) which is a realization of the law ν(ds). As a consequence, conditional on Card U(T ) = n, we observe a sequence of n independent and identically distributed random variables with law ν(ds). We are back to the classical problem of estimating a probability distribution from an n-sample.

More about estimating α. We cannot estimate the index of selfsimilarity α from the data X ε . However, if we add the possibility to "tag" a point at random on the initial fragment7 and if we can observe the random time T ε when the tagged fragment becomes smaller then ε, then identifying α from the sole observation of T ε is possible.

In the case α > 0, if χ(t) denotes the size of the tagged fragment at time t, then

T ε = t > 0, χ(t) ≤ ε .
Applying Proposition 3 of [START_REF] Bertoin | Entrance from 0+ for increasing semi-stable Markov processes[END_REF], the distribution of ε α T ε under P 1 is tight as ε → 0. Therefore, the rate -1/ log ε is achievable for estimating α and it is attained by the estimator log(T ε )/ log ε. More precise results about limit laws can be obtained from [START_REF] Bertoin | Entrance from 0+ for increasing semi-stable Markov processes[END_REF].

Proofs

We will repeatedly use the convenient notation a ε b ε if 0 < a ε ≤ c b ε for some constant c > 0 which may depend on π(•) and m only, any other dependence on other ancillary quantities being obvious from the context. A function g ∈ C(m) is tacitly defined on the whole real line by setting g(a) = 0 for a / ∈ [0, 1].

Proof of Theorem 3.1

Step 1: A preliminary decomposition. We first use the fact that for η > ε, during the fragmentation process, the unobserved state X η necessarily anticipates the state X ε . The choice η = η(ε) will follow later. This yields the following representation:

E ε (g) = v∈ Uη ξ v w∈ U 1 ξv ξ(v) w-≥ε, ξv ξ(v) w <ε ξ(v) w g ξ v ξ(v) w /ε ,
where, for each label v ∈ U η and conditional on X η , a new independent fragmentation chain ( ξ(v) w , w ∈ U) is started thanks to the branching property, see Section 2.1. Define now

λ η (v) := 1 {ξ v-≥η,ξv<η} ξ v and Y ε (v, g) := w∈ U 1 ξv ξ(v) w-≥ε, ξv ξ(v) w <ε ξ(v) w g ξ v ξ(v) w /ε .
We obtain the decomposition of E ε (g) -E(g) as a sum of a centred and a bias term:

E ε (g) -E(g) = M ε,η (g) + B ε,η , with M ε,η (g) := v∈ U λ η (v) Y ε (v, g) -E Y ε (v, g) | λ η (v) and B ε,η (g) := v∈ U λ η (v) E Y ε (v, g) | λ η (v) -E(g) ,
where we used (2.1) in order to incoporate the limit term E(g) within the sum in v.

Step 2: The term M ε,η (g). Conditional on the sigma-field generated by

1 {ξ u-≥η} ξ u , u-∈ U , the variables (Y ε (v, g), v ∈ U) are independent. Therefore E M ε,η (g) 2 ≤ v∈ U E λ η (v) 2 E[Y ε (v, g) 2 | λ η (v)] , (5.1) 
thus we first need to control the conditional variance of

Y ε (v, g) 2 given λ η (v) = u, for 0 ≤ u ≤ η, since P-almost surely, λ η (v) ≤ η. Moreover, we have Y ε (v, g) = 0 on {λ η (v) < ε}, hence we may assume ε ≤ u ≤ η.
To this end, we will use the following representation property:

Lemma 5.1. Let f (•) : [0, +∞) → [0, +∞). Then E v∈ Uη ξ v f (ξ v ) = E ⋆ f χ(T η ) , (5.2) 
where χ(t) = expζ(t) and ζ(t), t ≥ 0 is a subordinator with Lévy measure π(•) defined on an appropriate probability space (Ω ⋆ , P ⋆ ), and

T η := inf t ≥ 0, ζ(t) > -log η .
The proof is given in Appendix 6.1. In order to remain self-contained, we elaborate in particular on the construction of the randomly tagged fragment following the presentation of Bertoin [START_REF] Bertoin | Random fragmentation and Coagulation Processes[END_REF].

We now plan to bound the right-hand side of (5.1) thanks to Lemma 5.1. For 0 < ε ≤ u ≤ η, we have

E Y ε (v, g) 2 | λ η (v) = u = E w ∈U ε/u ξ (v) w g εu -1 ξ (v) w 2 λ η (v) = u ≤ E w∈ U ε/u ξ (v) w g εu -1 ξ (v) w 2 λ η (v) = u
where we used Jensen's inequality combined with (2.1). Applying Lemma 5.1 we derive

E Y ε (v, g) 2 | λ η (v) = u ≤ E ⋆ g uε -1 e -ζ(T ε/u ) 2 .
(5.3)

Let U (•) denote the renewal function associated with the subordinator (ζ(t), t ≥ 0). By Proposition 2, Ch. III in [START_REF] Bertoin | Lévy processes[END_REF], the right-hand side of (5.3) is equal to

0,-log(ε/u) dU (s) (-log(ε/u)-s,+∞) g u ε -1 e -x-s 2 π(dx), = 0,-log(ε/u) dU (s) S ↓ ∞ i=1 s i 1 {s i <εu -1 e s } g s i u ε -1 e -s 2 ν(ds) 1 c(π) g 2 ∞ log(u/ε),
where we successively used the representation (2.4) and the upper bound U (s) s/c(π), see for instance Proposition 1, Ch. I in [START_REF] Bertoin | Lévy processes[END_REF]. Therefore, for

ε ≤ u ≤ η, E Y ε (v, g) 2 | λ η (v) = u 1 c(π) g 2 ∞ log(η/ε).
Going back to (5.1), since λ η (v) 2 ≤ η λ η (v) and using (2.1) again, we readily derive

E M ε,η (g) 2 1 c(π) g 2 ∞ η log(η/ε) η log(η/ε).
(5.4)

Step 3: The bias term B ε,η (g). Note first that

E Y ε (v, g) | λ η (v) = ξ -1 v E ξv E ε (g) , P-almost surely, henceforth B ε,η (g) = v∈ U λ η (v) ξ -1 v E ξv E ε (g) -E(g) . (5.5)
Conditioning on the mark of the parent u-= ω of u and applying the branching property, we get that E ξv E ε (g) can be written as

E ξv ω∈U 1 ξω≥ε ξ ω S ↓ ∞ i=1 1 ξω s i <ε s i g ξ ω s i ε -1 .
where the ( ξ w , w ∈ U) are the sizes of the marked fragments of a fragmentation chain with same dislocation measure ν(•), independent of (ξ v , v ∈ U). Set

H g (a) := S ↓ ∞ i=1
1 s i <e -a s i g s i e a ν(ds), a ≥ 0.

It follows that

E ξv E ε (g) is equal to E ξv ∞ n=0 |ω|=n 1 log ξω≥log ε ξ ω H g (log ξ ω -log ε) = ξ v E ∞ n=0 |ω|=n 1 log ξω≥log(ε/ρ) H g log ξ ω -log(ε/ρ) ρ=ξv by self-similarity, with the notation |ω| = n if ω = (ω 1 , . . . , ω n ) ∈ U.
Using Lemma 1.4 in [START_REF] Bertoin | Random fragmentation and Coagulation Processes[END_REF], we finally obtain

E ξv E ε (g) = ξ v ∞ n=0 E 1 Sn≤log(ρ/ε) H g log(ρ/ε) -S n ρ=ξv ,
where S n is a random walk with step distribution π(dx). We plan to apply a version of the renewal theorem with explicit rate of convergence as given in Sgibnev [START_REF] Sgibnev | Stone's decomposition of the renewal measure via Banach-algebraic techniques[END_REF], see Proposition 6.1 in Appendix 6.2, with rate function ϕ(a) := exp(µa) for some arbitrary µ < κ/2 and dominating function r(a) := e -κ|a| . Indeed, for a < 0:

H g (-a) = 1 a≤0 (-a,+∞) g e -x-a π(dx), by (2.4). Since g(•) has support in [0, 1] and π ∈ Π(κ),

H g (-a) ≤ (-a,+∞) g e -x-a π(dx) e κa , Therefore |1 {a≤0} H g (-a)| r(a) for all a ∈ R. Since κ > 2µ, Assumption F of Proposition 6.1 is readily checked. Let A > 0 (depending on κ, m and π(•) only) such that, if log(ξ v /ε) ≥ A, then ξ -1 v E ξv E ε (g) - 1 E ⋆ S 1 +∞ 0 H g (a)da ≤ ε ξ v µ . (5.6) 
We next note that

1 E ⋆ S 1 +∞ 0 H g (a)da = E(g).
Introducing the family of events log(ξ v /ε) ≥ A in the sum (5.5), we obtain the following decomposition:

B ε,η (g) 2 I + II, with I := v∈ Uη ξ v 1 log(ξv /ε)>A ξ -1 v E ξv E ε (g) -E(g) 2 ,
and

II := v∈ Uη ξ v 1 log(ξv/ε)≤A ξ -1 v E ξv E ε (g) -E(g) 2 .
By (5.6), we have

I ≤ ε 2µ v∈ Uη 1 -log ξv<-A+log(1/ε) ξ v exp 2µ(-log ξ v ) .
Integrating w.r.t. P and applying Lemma 5.1 and in the same way as in

Step 2, we have

E I ≤ ε 2µ E ⋆ e 2µζ(Tη ) = ε 2µ [0,-log η) dU (s) 
(-log η-s,+∞) e 2µ(s+x) π(dx)

≤ ε 2µ [0,-log η) e 2µs dU (s) εη -1 2µ log(1/η)
for small enough ε and where we used π ∈ Π(κ) with 2µ < κ. For the term II, we first notice that by (2.1) and self-similarity,

E ξv u∈ Uε ξ u = ξ v , P ξv -almost surely, hence ξ -1 v E ξv E ε (g) -E(g) 2 ≤ 4 g 2 ∞ , P ξv -almost surely.
In the same way as for the term I, we derive

E II E v∈ Uη ξ v 1 -log ξv≥-A+log(1/ε) = P ⋆ ζ(T η ) ≥ -A + log(1/ε) ≤ [0,-log η)
dU (s)

(-A+log(1/ε)-s,+∞) π(dx) ε µ log(1/η)
for small enough ε. Putting all the estimates together, we conclude

E B ε,η (g) 2 ε µ + (εη -1 ) 2µ log(1/η). (5.7) 
Step 4: Proof of (3.1). Putting the estimates (5.4) and (5.7), we have

E E ε (g) -E(g) 2 E M ε,η (g) 2 + E B ε,η (g) 2 η log(η/ε) + εη -1 2µ log(1/η).
The choice η(ε) := ε 2µ/(2µ+1) yields the rate ε 2µ/(2µ+1) log(1/ε). Since µ < κ/2 is arbitrary, the conclusion follows.

Step 5: Proof of (3.2). We plan to use the following decomposition:

E ε,σ (g) -E ε (g) = I + II, with 
I := u∈U 1 {ξ (σ) u-≥ε, ξ (σ) 
u <ε} -1 {ξ u-≥ε, ξu<ε} ξ (σ) u g ξ (σ) u /ε , and

II := u∈Uε ξ (σ) u g ξ (σ) u /ε -ξ u g ξ u /ε ,
where we have set ξ

(σ) u := ξ (σ) u 1 {ξ (σ) u ≥tε} . Clearly, 1 {ξ (σ) u-≥ε, ξ (σ) 
u <ε} -1 {ξ u-≥ε, ξu<ε} ≤1 {ξ (σ) u-≥ε, ξ u-<ε} + 1 {ξ (σ) u <ε, ξu≥ε} +1 {ξ u-≥ε, ξ (σ) u-<ε} + 1 {ξu<ε, ξ (σ) u ≥ε} .
Let δ > σ/ε and ω = u or u-. Since |U ω | ≤ 1 for every ω, we readily check that

ξ (σ) ω ≥ ε, ξ ω < ε ⊂ (1 -δ)ε ≤ ξ ω < ε and ξ ω ≥ ε, ξ (σ) ω < ε ⊂ ε ≤ ξ ω < (1 + δ)ε .
It follows that |I| ≤ III + IV , with

III := u∈U 1 {(1-δ)ε≤ξ u-≤ε(1+δ)} ξ (σ) u g ξ (σ) u /ε and IV := u∈U 1 {(1-δ)ε≤ξu≤(1+δ)ε} ξ (σ) u g ξ (σ) u /ε .
By picking δ is small enough, we may (and will) assume that ξ (σ) u ξ u . By (2.1), conditioning on the mark of the parent u-= ω of u and applying the branching property, E III 2 is less than

E v∈U 1 {(1-δ)ε≤ξv ≤ε(1+δ)} ξ v S ↓ ∞ i=1 s i g ε -1 (ξ v s i + σU v ) 2 ν(ds) = E ω∈U 1 {(1-δ)ε≤ξω ≤ε(1+δ)} ξ ω G 1 (ξ ω ) , with G 1 (a) := S ↓ ∞ i=1 s i E g ε -1 (as i + σU ) 2 ν(ds)
and U distributed as the U ω . Likewise,

E IV 2 E u∈U 1 {(1-δ)ε≤ξu≤ε(1+δ)} ξ u G 2 (ξ u ) , with G 2 (a) := E g ε -1 (a + σU ) 2 .
For i = 1, 2, the crude bound |G i (a)| ≤ g 2 ∞ and the genealogical representation argument used in Step 3 enables to bound either

E[III 2 ] or E[IV 2 ] by g 2 ∞ ∞ n=0 P ⋆ -log(1 + δ) ≤ S n -log(1/ε) ≤ -log(1 -δ)
where S n is a random walk with step distribution π(•). We proceed as in Step 3 and apply Proposition 6.1. The above term converges to

m 1 (π) -1 log 1 + δ 1 -δ δ
Proof. We revisit carefully Steps 2 to 4 of the proof of Theorem 3.1 under the additional Assumption C, and we write g(•) = g ε (•) to emphasize that g(•) may now depend on the asymptotics.

In Step 2, the right-hand side of (5.3) is now bounded by the following chain of arguments:

-log(ε/u) 0 dU (s) +∞ -log(ε/u)-s g ε u ε -1 e -x-s 2 π(x)dx = -log(ε/u) 0 dU (s) εu -1 e s 0 g ε xu ε -1 e -s 2 β(x) dx ≤ β ∞ u -1 ε [0,-log(ε/u))
e s dU (s)

1 0 g ε x 2 dx b ε log(u/ε)
where we used that | supp(g ε )| b ε and U (s) s/c(π) again. Note that

β ∞ 1 since κ 1 > 1 and κ 2 > 1. Therefore E Y ε (v, g) 2 | λ η (v) = u b ε , Hence E M ε,η (g) 2 b ε η.
In Step 3, we replace g(•) by g ε (•) in E ε (g) and E(g). We have, for any 0 < µ < κ, The terms I and II are bounded in the same way. We obtain

E(g ε ) ≤ 1 c(π)
E B ε,η (g) 2 b ε εη -1 2µ log(1/η)
for µ < min{κ/2, (1 + κ)/2} = κ/2, uniformly over the class C bε (m). The trade-off between M ε,η (g ε ) and B ε,η (g ε ) yields the result.

Completion of proof of Theorem 3.2. We first write

E(g γε ) -m 1 (π) -1 = 1 m 1 (π) 1 1-γε (f γε (a) -1)β(a)da.
We have

1 1-γε f γε (a) -1 β(a)da ≤ 2 -log(1-γε) 0 π(x)dx γ κ 2 ε since π ∈ R(κ 2
) andlog(1x) x for small enough x ≥ 0. We derive

E(g γε ) -m 1 (π) -1 γ κ 2 ε . (5.8) 
Next, by construction, γ 2 ε g γε ∈ C γε (1), hence for any 0 < µ < κ 1 , Proposition 5.2 entails

E E ε (g γε ) -E(g γε ) γ -1/2 ε ε µ/(2µ+2) .
(5.9)

Moreover, since γ ε g γε ∈ C ′ (1), we have, by (3.2) in Theorem 3.1

E E ε (g γε ) -E ε,σ (g γε ) γ -2 ε σε -1 .
(5.10)

The specification γ ε = ε µ/(µ+1)(2κ 2 +1) yields the correct rate for (5.8) and (5.9). The assumption that σε -3 is bounded ensures that the right-hand side in (5.10) is asymptotically negligible. The conclusion readily follows for m 1,ε .

We now turn to higher moment estimators. Thanks to the proof for the case k = 1, it suffices to show that since k > 1 and π ∈ Π(κ 1 ) so that the boundary terms vanish when integrating by part. We conclude by noticing that by Hölder's inequality, for any τ > 0, we have

m 1 (π)E ε g γε → 1 0 log(1/a) k β(a)da
1 0 1 -f γε (1 -a) log(1/a) k β(a)da ≤2 +∞ -log γε π(x)dx 1-τ +∞ 0 x k/τ π(x)dx τ γ κ 1 (1-τ ) ε .
This term also has the right order since the choice of τ is free and κ 1 > κ 2 by assumption. The proof of Theorem 3.2 is complete.

Proof of Theorem 3.4

With no loss of generality, we consider the homogeneous case with α = 0. We may also assume that σ = 0, since adding experimental noise to the observation of the fragments only increases the error bounds.

Step 1: An augmented experiment. In the binary case, the dislocation measure ν(ds) is equivalently mapped by a probability measure on [1/2, 1] with density function a ρ(a), see (3.6).

We prove a lower bound in the augmented experiment where one can observe all the sizes X ε of the fragments until they become smaller than ε, namely

X ε := ξ u , ξ u-≥ ε ∪ ξ u , u ∈ U ε
Clearly, taking the infimum over all estimators based on X ε instead of X ε = X ε,0 only reduces the lower bound.

For every u ∈ U ε , we have ξ u-≥ ε. By the conservative Assumption B, there are at most ε -1 such ξ u-so Card U ε ≤ 2ε -1 . For every node u ∈ U, the fragmentation process gives rize to two offsprings with size ξ u U and ξ u (1 -U ), where U is a random variable independent of ξ u with density function ρ(•). Therefore, the process of the sizes of the fragments in the enlarged experiment can be realized by less than

2ε -1 1 + 1 2 + . . . + 1 2 k(ε) ≤ ⌊4ε -1 ⌋ + 1 =: n(ε)
independent realizations of the law ρ(•), where k(ε) := log 2 (2/ε), assumed to be integer with no loss of generality.

In turn, Theorem 3.4 reduces to proving that ε 1/2 is a lower rate of convergence for estimating m k (π) based on the observation of a n(ε)-sample of the law ρ(•). The one-to-one correspondence between ρ(•) and π(•) is given in (4.1).

Step 2: Construction of π ε . We write ρ π (•) to emphasize the dependence upon π(•). Let

ϕ k (a) := a(log(1/a) k + (1 -a) log 1/(1 -a) k , a ∈ [1/2, 1].
From (4.1), we have (And so (4.1) defines π ε (•) unambiguously.) By construction, ρ πε (•) is a density function on [1/2, 1] and has a corresponding binary fragmentation with Lévy measure given by π ε (•). Moreover,

m k (π 0 ) = 1 1/2 ϕ k (a)ρ π 0 (a)da. Let 0 < τ < 1. Pick a function ψ k (•) : [1/2, 1] → R such that ψ k ∞ ≤ τ inf a ρ π 0 (a),
m k (π ε ) = m k (π 0 ) + r(k)ε 1/2 .
Step 3: A two-point lower bound. The following chain of arguments is fairly classical. We denote by P π the law of the independent random variables U i , i = 1, . . . , n(ε) with common density ρ π (•) that we use to realize the augmented experiment.

Let F ε be an arbitrary estimator based on X ε . Put c := |r(k)|/2. We have max π∈{π 0 ,πε}

P π ε -1/2 |F ε -m k (π)| ≥ c ≥ 1 2 P π 0 ε -1/2 |F ε -m k (π 0 )| ≥ c + P πε ε -1/2 |F ε -m k (π ε )| ≥ c ≥ 1 2 E π 0 1 {ε -1/2 |Fε-m k (π 0 )|≥c} + 1 {ε -1/2 |Fε-m k (πε)|≥c} -1 2 P π 0 -P πε T V ,
where • T V denotes the total variation distance between probability measures. By the triangle inequality, we have

ε -1/2 |F ε -m k (π 0 )| + |F ε -m k (π ε )| ≥ |r(k)| = 2c,
so one of the two indicators within the expectation above must be equal to one with full P π 0 -probability. Therefore max π∈{π 0 ,πε}

P π ε -1/2 |F ε -m k (π)| ≥ c ≥ 1 2 (1 -P π 0 -P πε T V ),
and Theorem 3.4 is proved if lim sup ε→0 P π 0 -P πε T V < 1.

(5.11) By Pinsker's inequality

P π 0 -P πε T V ≤ √ 2 2 E π 0 log d P π 0 d P πε 1/2
, and

E π 0 log d P π 0 d P πε = - n(ε) i=1 E π 0 log ρ πε (U i ) ρ π 0 (U i ) = - n(ε) i=1 E π 0 log 1 + ε 1/2 ψ k (U i )ρ π 0 (U i ) -1 -ε 1/2 ψ k (U i )ρ π 0 (U i ) -1 ,
where we used

E π 0 ψ k (U i )ρ π 0 (U i ) -1 = 1 1/2 ψ k (a)da = 0.
We also have ε

1/2 |ψ k (U i )ρ π 0 (U i ) -1 | ≤ τ ε 1/2 hence for small enough τ , -log 1 + ε 1/2 ψ k (U i )ρ π 0 (U i ) -1 + ε 1/2 ψ k (U i )ρ π 0 (U i ) -1 ≤ τ 2 ε. Therefore P π 0 -P πε T V ≤ √ 2 
2 τ ε 1/2 n(ε) 1/2 < 1 by picking τ small enough, and (5.11) follows. The proof of Theorem 3.4 is complete.

Proof of Theorem 3.5

We plan to use the following decomposition

β(a) -β(a) = m 1,ε E ε,σ -• ϕ ′ γε,a (•) -β(a) = I + II + III + IV, with I := m 1,ε E ε,σ -• ϕ ′ γε,a (•) -E ε -• ϕ ′ γε,a (•) II := m 1,ε E ε -• ϕ ′ γε,a (•) -E -• ϕ ′ γε,a (•) , III := m 1,ε -m 1 (π) E -• ϕ ′ γε,a (•) , IV := m 1 (π) E -• ϕ ′ γε,a (•) -β(a).
Considering I and II, the term m 1,ε is bounded in probability by Theorem 3.2. By (3.2) in Theorem 3.1 together with the fact that

γ 3 ε ϕ ′ γε ∈ C ′ ( ϕ ′ ∞ ), we have E E ε -• ϕ ′ γε,a (•) -E ε,σ -• ϕ ′ γε,a (•) γ -3 ε σε -1 .
By construction, we have

γ 2 ε • ϕ ′ γε,a (•) ∈ C γε ( ϕ ∞ ), therefore, by Propo- sition 5.2 E E ε -• ϕ ′ γε,a (•) -E -• ϕ ′ γε,a (•) 2 γ -3 ε ε µ/(µ+1) . (5.12) 
Considering III, using (5.8), we have E -• ϕ ′ γε,a (•) γ -1 ε . By Theorem 3.2, we conclude that III 2 has order γ -2 ε ε 2µκ 2 /(µ+1)(2κ 2 +1) (5.13) in probability. For IV , we first notice that m 1 (π) E -• ϕ ′ γε,a (•) = Putting together (5.12), (5.13) and (5.14), we see that the specification γ ε = ε µ/(µ+1)(2s+3) yields the correct rate for II and IV , as well as for III as soon as κ 2 ≥ s + 1. Finally, the term I proves asymptotically negligible in the same way as (5.10) thanks to the assumption that σε -3 is bounded. The proof of Theorem 3.5 is complete. First, we enrich the structure of the genealogical tree representation of Section 2 by adding a random mark M : U → [0, 1]×[0, +∞)×[0, +∞) on the tree together with a random branch8 β of U and define unambiguously the law P ⋆ of (M, β) by setting

E ⋆ Φ n (M, β) := E |u|=n Φ n (M, u)ξ u , n ≥ 1,
where Φ n is a bounded functional which depends on the mark M and the branch β up to the n-th generation only. If β n is the node of the random branch at the n-th generation, we set χ n := ξ βn and χ(t) for the size of the tagged particle at time t:

χ(t) := χ n if a βn ≤ t < a βn + ζ βn , 0 if t ≥ lim n→∞ a βn ,
where a βn and ζ βn denote respectively the birth-time and lifetime of the particle labeled by the tagged node β n . We then have

E v∈Uε ξ v f (ξ v ) = E ∞ n=0 |v|=n 1 ξ v-≥η, ξv<η ξ v f (ξ v ) = ∞ n=0 E ⋆ 1 χ n-1 ≥η, χn<η f (χ n ) .
By Proposition 1.6 in [START_REF] Bertoin | Random fragmentation and Coagulation Processes[END_REF],log χ n is a random walk under P ⋆ with step distribution π(dx). In particular, the last term above is independent of α.

Consider now a homogeneous fragmentation process with same dislocation measure ν(•) living on the same (possibly enlarged) probability space for simplicity. Applying the same construction above, we obtain a process χ (0) (t), t ≥ 0 that can be expressed in the form χ (0) (t) = exp -ζ (0) (t) where ζ (0) (t), t ≥ 0 is a compound Poisson process with jump intensity 1 and jump distribution π(•). By construction, we have χ (0) T (0) η = χ (0) n on the event {χ

(0) n-1 ≥ η, χ (0) n < η} therefore E ⋆ f χ (0) (T (0) η ) = ∞ n=0 E ⋆ 1 χ (0) n-1 ≥η, χ (0) 
n <η f χ (0) n .

The conclusion follows by identifying the right-hand sides of the last two equalities.

Rates of convergence in the key renewal theorem

We give a version of Sgibnev's result [START_REF] Sgibnev | Stone's decomposition of the renewal measure via Banach-algebraic techniques[END_REF] on uniform rates of convergence in the key renewal theorem, which is proved in a more general setting.

Let F (dx) be a probability distribution with positive mean m and renewal function H = ∞ n=0 F n⋆ , with F 0⋆ := δ 0 , F 1⋆ := F and F (n+1)⋆ := F ⋆ F n⋆ , n ≥ 0.

We assume that F is spread-out, that is, for some n ≥ 1, F * n has a nonzero absolutely continuous component. Stone [START_REF] Stone | On absolutey continuous components and renewal theory[END_REF] shows that then there exists a decomposition H = H 1 + H 2 , where H 2 is finite measure and H 1 is absolutely continuous with bounded continuous density function h(•) such that lim x→+∞ h(x) = m -1 and lim x→-∞ h(x) = 0.

We denote by T (F ) the σ-finite measure with density function Sgibnev's result takes the form:

. 4 )

 4 More generally, for k > 1, we define successive moment estimators as follows. Set h γε (a) := f γε (1a) log(1/a) k and g γε (a) := -ah ′ γε (a). Let

1 0 2 e κa/ 2 b 1 /2 ε e a(1+κ)/ 2 , 1 / 2 ε

 1221212 |g ε (a)|a µ-1 da b ε for µ ≥ 1 and since π ∈ Π(κ) with κ > 1. By Cauchy-Schwarz, for a < 0,H gε (-a) ≤ +∞ -a g ε e -x-a 2 π(x)dx using again that β ∞ 1. Therefore ξ -1 v E ξv E ε (g ε ) b ,and we can apply Proposition 6.1 with rate function ϕ(a) = exp(µa) and dominating function r(a) := e -(1+κ)|a|/2 .

1 0f 0 β(u)du da = 1 0f

 101 in probability with the correct rate as ε → 0. Note first thatg γε (a) = -a log(1/a) k f ′ γε (1a) + kf γε (1a) log(1/a) k-1is a sum of a function in C γε (c 1 ) and a function in C ′ (c 2 ), for some positive c 1 and c 2 , hence we may apply Proposition 5.2 and Theorem 3.1 to each term respectively. Next c(π)E g γε =γε (1a) log(1/a) k ′ a γε (1a) log(1/a) k β(a)da,

1 1 / 2 ψ 1 1/ 2 ϕ

 1212 k (a)da = 0, r(k) := k (a)ψ k (a)da = 0, a choice which is obviously possible thanks to Assumption D. For ε > 0, define ρ πε (a) := ρ π 0 (a) + ε 1/2 ψ k (a), a ∈ [1/2, 1].

1 0ϕ 2 = 1 0ϕ

 121 γε,a (u)β(u)du, hence IV γε,a (u)β(u)duβ(a) Taylor expansion and using that the terms up to order s -1 vanish by the cancellation property (3.7) of ϕ(•) since s < N .

F

  (du)1 [0,+∞) (x) -(-∞,x] F (du)1 (-∞,0) (x).and T 2 (F ) := T T (F ) . Let ϕ(•) : R → [0, +∞) be a submultiplicative function, i.e. such that ϕ(0) = 1, ϕ(x + y) ≤ ϕ(x)ϕ(y). Then we have (see for instance[START_REF] Hille | Functional Analysis and Semigroups[END_REF], Section 6)-∞ < r 1 := lim x→-∞ log ϕ(x) x ≤ lim x→+∞ log ϕ(x) x =: r 2 < +∞,Assumption E. We have r 1 ≤ 0 ≤ r 2 and there exists r(•) : R → R an integrable function and such that the following conditions are fulfilled:sup x |r(x)|ϕ(x) < +∞ , lim |x|→∞ r(x)ϕ(x) )T 2 (F )(dx) < ∞.

in the sense that it can be mapped into relatively standard equivalent inference problems such as probability distribution estimation from independent observations, seeSection 4.4 

We often need to accomodate further random variables independent of X. Abusing notation slightly, we will still use the notation P without further notice, working tacitly on an appropriate enlargement of the original probability space.

See however Section

4.4 for auxiliary results about the inference on α.

See also Bertoin and Martinez[START_REF] Bertoin | Fragmentation energy[END_REF].

In the notation, we identify the probability measure π(dx) and its density function x π(x) when no confusion is possible.

in physical terms, we must be able to identify the mass or length of the fragment.

A branch is an infinite sequence of positive integers which we can think of as the line of ancestors of some leaf of the tree.

uniformly in δ, as soon as δ is bounded, at rate ε µ for any 0 < µ < κ, and thus is of order δ + ε µ .

We now turn to the term II. We have II := V + V I + V II, with

From g ∈ C ′ (m), (2.1) and Jensen's inequality we derive

From |U u | ≤ 1 and the inclusion {ξ

where we used that t ε = γ 0 ε with 0 < γ 0 < 1. Likewise, the inclusion {ξ

for any µ < κ, in the same line as for the bound of the right-hand side of (5.3) in Step 2.

Putting all the estimates together with, for instance, δ := σ/2ε we obtain (3.1). The proof of Theorem 3.1 is complete.

Proof of Theorem 3.2

Preliminaries. Let 0 < b ε → 0 as ε → 0. For m > 0, define the class

We have the following extension of Theorem 3.1. Proposition 5.2. Grant Assumptions A, B and C. In the same setting as Theorem 3.1, if in addition, we assume κ > 1, then, for every µ < κ We call ϕ(•) a rate function and r(•) a dominating function.