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Implementation of a model taking into account the asymmetry 
between tension and compression, the temperature effects in a finite 

element code for shape memory alloys structures calculations

Frederic Thiebaud *, Christian Lexcellent, Manuel Collet, Emmanuel Foltete

Institut Femto-ST, Department LMARC, 24 rue de l’epitaphe, 25000 Besancon, France 

Shape memory alloys (SMAs) are good candidates for being used as passive dampers, strain sensors, stiffness or shape drivers. To design 
these structures, an implementation which takes into account the obvious asymmetry between tension–compression and the ther-
momechanical coupling taken into account with the introduction of the heat equation is required. We present in this paper an implemen-
tation of a phenomenological model based on the RL model (Raniecki and Lexcellent [B. Raniecki, C. Lexcellent, Eur. J. Mech. A/Solids 
17 (2) (1998) 185–205]) in a finite element code called COMSOL� which allows to build automatically many loading cases in force or 
displacement. The results clearly show the influence of the temperature on the pseudoelastic behavior of SMA and on the asymmetry 
between tension and compression. This implementation could be useful to simulate complex three dimensional SMA structures as 
dynamical devices.
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1. Introduction

In problems involving SMA materials, thermomechani-
cal coupling has to be taken into account due mainly to the
latent heat associated to the martensitic transformation
and heat production/absorption resulting from SMA
material by internal dissipation process. Raniecki and
Lexcellent [1] have developed a thermodynamic three
dimensional model of SMA behavior taking into account:

• relevant kinetic laws of thermoelastic martensitic
transformation,

• asymmetry of stress–strain curves under tension and
compression, symmetry in pure shear.

The experience shows that taking into account both heat
equation and the asymmetry of stress–strain curves is not
obvious to implement into a finite element code. Although
this asymmetry and the heat equation coupling are impor-
tant parameters of the pseudoelastic behavior of SMA,
most of numerical implementation are leaded without its.

Thus, the aim of this paper is to present a clear imple-
mentation of the so called RL model [1]. At first a phenom-
enological model at the macroscopic scale in the frame of
the thermodynamics of irreversible process devoted to mul-
tiaxial pseudoelasticity [1] is recalled. In a second part, this
model is implemented in a finite element code. The soft-
ware COMSOL� have been chosen because of its facilities
to solve multiphysic coupled problems which is the case for
phase transition linked to the heat equation. In order to
validate the implementation, some tests are performed: a
plate in tension and a plate under bending in its plane,
for three different thermal simulations: isothermal, adia-
batic and with an external imposed temperature on the
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edge. Finally, rate effects are shown by loading a plate in
tension with different force rates.

2. A thermomechanical model for the pseudoelasticity

2.1. Thermodynamical potential functions

Modeling material behavior needs classically a choice of
a thermodynamic potential and also a dissipation potential
function or alternatively some yield functions of phase
transformation initiation (as it is the scheme in plasticity).
Hence, a Helmholtz free energy and two yield functions,
the first for the forward phase transformation (A ! M)
and the second for the reverse phase transformation
(M ! A) are chosen. The model initiated by Raniecki
et al. [2] has been written in order to fit multiaxial loading.

Let consider a representative volume element (RVE) of
SMA in a single solid phase state at the reference stress
state r = 0 and at the reference temperature T = T0

(T 0 > A0
f ). This phase is called austenite A. Its properties

will be denoted by index a = 1. Under applied thermome-
chanical loading, austenite can be transformed into mar-
tensite M. The properties of martensite will be denoted
by index a = 2.

Some studies performed by [3,4] have shown the mar-
tensite partition: the austenite can be transformed in a
self-accommodating martensite Mt by pure cooling or in
stress induced martensite Mr under pure mechanical load-
ing. In our study, this partition is not taken into account
because of the loading which is only mechanical.

Suppose that a non-equilibrium state of two phases
RVE is described by the following variables:

• ea: the strain tensor of each phase (a = 1, 2),
• T: the actual temperature,
• n: the fraction of martensite,
• hk (k = 1, . . . ,n): a set of internal variables.

Generally, hk are variables of displacement type. They
represent the RVE internal pattern rearrangements at the
micro-scale level.

The following form of the specific free energy /n of a
two phases mixture is chosen as

/nðT ; ea; n; hÞ ¼ ð1� nÞ/1 þ n/2 þ D/ ð1Þ

where

D/ ¼ nð1� nÞ/itðT Þ ð2Þ

/it ¼ �u0 � T�s0: ð3Þ

/it represents some configurational energy associated with
the coherency of phases. For most cases: �s0 ¼ 0, thus /it is
constant (/it(T) = /it). The exact form of D/ remains an
open problem since it strongly depends on the incompati-
bilities between the martensite platelets and between mar-
tensite and austenite. Sometimes, �u0ð�s0Þ is called internal

configurational energy (entropy). Both phases are regarded
as thermoelastic solids such that

/aðT ; ea;n;hÞ ¼ ua0 � Tsa0 þ
1

2q
½ea � etra � etha � : L½ea � etra � etha �

þCv ðT � T 0Þ � T ln
T

T 0

� �

where q is the mass density, T0 is the reference temperature,
ua0 is the internal energy of the a phase and sa0 is the internal
entropy of the a phase.

The elastic stiffness tensor L, the thermal expansion
coefficient a and the specific heat Cv are supposed indepen-
dent of the phase state. The thermal strain tensor and the
elastic strain tensor are respectively:

etha ¼ eth ¼ aðT � T 0ÞI ð4Þ

eela ¼ eel ¼ L�1r ¼ e� etr � eth: ð5Þ

Moreover etr1 ¼ 0, the phase transformation strain tensor
is:

etr2 ¼ KðhkÞ ð6Þ

where K is the traceless (tr(K) = 0) eigenstrain associated
with the formation of the martensite phase. Thus, it is
stipulated that merely eigenstrain K depends on internal
variables hk.

Assuming that the total macroscopic strain tensor e and
the total intrinsic strain tensors ea must comply with the
following relation:

e ¼ ð1� nÞe1 þ ne 2 ð7Þ

The Helmholtz specific free energy function of the two
phases system in constrained equilibrium [1] by considering
the Eqs. (1), (4) and (7) is

/ðT ;e;n;hÞ¼ u10�Ts10þ
1

2q
½e�Kn�aðt�T 0ÞI�

:L½e�Kn�aðT �T 0ÞI�

þCv ðT �T 0Þ�T ln
T

T 0

� �
�npf

0ðT Þþnð1�nÞ/it

ð8Þ

where pf
0ðT Þ represents the thermodynamic driving force

associated to the phase transformation under stress free
state:

pf
0ðT Þ ¼ Du0 � TDs0 ð9Þ

and

Du0 ¼ u10 � u20 ð10Þ

Ds0 ¼ s10 � s20 ð11Þ

represent the difference between internal energy (entropy)
of austenite and martensite.

In a classical way, the Cauchy stress tensor can be
obtained as



r ¼ q
o/

oe
¼ Lðe� etr � ethÞ ð12Þ

where

etr ¼ KðhkÞn ð13Þ

eth ¼ aðT � T 0ÞI: ð14Þ

We shall now introduce the concept of ‘‘optimum inter-
nal arrangements’’. Raniecki and Lexcellent [1] have estab-
lished that the set of internal variables hk minimizes the
Helmholtz specific free energy function and the tensor K

can be derived from a positively homogeneous function
of first order g* (r # g*(r)). This description allows to take
into account the tension compression asymmetry and
finally leads to:

r : KðhkÞ ¼ qg�ðrÞ ð15Þ

so

KðhkÞ ¼ q
og�ðrÞ

or
: ð16Þ

The Gibbs potential function g of two phases is defined by

gðr; T ; n; hkÞ ¼ /ðe; T ; n; hkÞ �
r : e

q
: ð17Þ

Assuming the expression of / (Eq. (8)), one obtains as an
expression of g:

gðr; T ; n; hkÞ ¼ u10 � Ts10 � npf
0ðT Þ þ Cv ðT � T 0Þ� � T ln

T

T 0

� �

�
1

2q
r : L�1r� ng�ðrÞ �

a

q
ðT � T 0Þr

: Id þ nð1� nÞ/it:

Thus, thermal equations of state following from the Eq.
(18) are:

• the strain tensor e:

e ¼ �q
og

or
¼ L�1rþ Knþ aðT � T 0ÞI ð18Þ

• the specific entropy s:

s ¼ �
og

oT
¼ s10 � nDs0 þ Cv ln

T

T 0

� �
þ

a

q
r : I ð19Þ

• the thermodynamic driving force pf:

pfðr; T ; nÞ ¼ �
og

on
¼ g�ðrÞ � ð1� 2nÞ/it þ pf

0ðT Þ: ð20Þ

These equations form the first group of constitutive
equations. One must underline the important strain tensor:

etr ¼ KðhkÞn ð21Þ

specially associated with the phase transformation and
which takes by time differentiation:

_etr ¼ _KðhkÞnþ KðhkÞ _n: ð22Þ

For proportional loadings ( _K ¼ 0) [5], the right term is
consistent with a normal phase transformation evolution.

The second law of thermodynamics when written for
infinitesimal processes of successive constrained phase
equilibria takes the form:

dsþ
dq

T
¼

dD

T
P 0 ð23Þ

where dq and dD are the incrementals of heat exchange and
energy dissipation per unit of mass, respectively. A classical
calculation delivers the expression of the increment of
dissipation dD which can not be negative:

dD ¼ pfdnP 0: ð24Þ

Thus, the present inequality precludes the forward phase
transformation (A ! M) only if pfP 0 and the reverse
only if pf 6 0. One has to note that pf = 0 implies the equi-
librium conditions. The complete set of equations should
contain additional kinetics relation for n (one for A ! M
and one another for M ! A) and will be exposed further
in this section.

2.2. Heat equation

It is known that the forward transformation (A ! M) is
exothermal and the reverse transformation (M ! A) endo-
thermal. Many studies have shown or just taken into
account the temperature influence: for dynamic loadings
by Collet et al. [6] or for the rate effects loading by Rejzner
et al. [7]. In order to quantify the temperature influence on
the classical behavior, relations between all of the thermo-
mechanical parameters of the SMA are investigated. First
of all, let us consider the energy conservation (Eq. (25)):

q _u ¼ r : _eþ r þ divq ð25Þ

where u is the internal specific energy, q is the heat flow vec-
tor and r is the internal heat source. Here / = u + Ts.
From the Eq. (25), the expression of the heat equation is
thus obtained:

Cv
_T þ divq ¼ r þ pfðr; T ; nÞ _nþ TDs0 _n�

Ta

q
I : _r: ð26Þ

The Fourier’s law gives the relation between the heat
flow and the temperature:

q ¼ �kgrad ðT Þ ð27Þ

where k is the conduction coefficient. Assuming this rela-
tion, the heat equation becomes:

Cv
_T � kDT ¼ r þ ½pfðr; T ; nÞ þ TDs0� _n�

Ta

q
I : _r ð28Þ

where DT = T,ii. Moreover, boundary conditions have to
be considered following the different simulations: adiabatic
or with imposed external temperature. In a general case,
boundary conditions are convection type. The expression
given on the boundary domain is written as



�k
oT

on
¼ hðT � T 0Þ ð29Þ

where h is the convection coefficient and n the outgoing
perpendicular vector. One must consider that for an adia-
batic simulation: div(q) = 0 and for major cases, r = 0.
Thus in this case, the heat equation is reduced to the Eq.
(30):

Cv
_T ¼ ½pfðr; T ; nÞ þ TDs0� _n�

T a

q
I : _r: ð30Þ

2.3. Equivalent stress and equivalent transformation strain

The main objective of this study is to investigate the
pseudoelastic behavior of SMAs under multiaxial propor-
tional loadings. A proportional loading can be interpreted
as an uniaxial loading in the equivalent stress–equivalent
strain. A definition of an equivalent stress and an equiva-
lent transformation strain is thus required. To do it, we
use the transformation domain which has the same role
as the yield domain in the elasto-plastic materials. The
equation of this yield surface can be written as

f1 ¼ req � r0 ¼ 0 ð31Þ

where r0 is an offset, and req an equivalent stress to defined
and based on the experimental results presented by Bouvet
et al. [8,5]. Clearly, an asymmetry between tension and
compression is shown into these results. The equivalent
Von Mises stress is thus insufficient to describe this phe-
nomenon. We limit ourselves to isotropic SMA, then the
equivalent stress depends on the three tensor invariants:

• the hydrostatic pressure P :

P ¼
1

3

trðrÞ

�r
ð32Þ

• the equivalent Von Mises stress �r:

�r ¼
3

2
devðrÞ : devðrÞ

� �1=2

ð33Þ

• the Lode angle h between rI and r the stress direction in
the deviatoric stress plane:

yr ¼
27

2

detðdevðrÞÞ

�r3
¼ cosð3hÞ: ð34Þ

Moreover, on can assume that the martensitic transfor-
mation of SMA is volume invariant [9] and hence the form
of the Eq. (35), independent of the first stress invariant P is
chosen:

req ¼ reqð�r; yrÞ ¼ �rf ðyrÞ ð35Þ

where the function f allows for the description of the
tension– compression asymmetry behavior. For instance:
Bouvet et al. [5] have chosen:

f ðyrÞ ¼ cos
cos�1ð1� að1� yrÞÞ

3

� �
ð36Þ

where a is a material parameter. This expression yields a
convex forward phase transformation criterion for all val-
ues of a varying within the range [0,1]. The value a = 0.7
has been experimentally identified by Bouvet et al. [5] for
a CuAlBe SMA sample.

The specific numeric factor occurring in the definition of
yr normalize this variable such that |yr| 6 1 for all stress
states [1]. Many forms of the function f have been already
proposed, one can notice these one explicited in [10–12].
The isotropic behavior of two phases RVE and the inde-
pendence of P of the macroscopic eigenstrain K imply that
the potential g* is at most function of the stress deviator
dev(r). Taking into account that g* is a homogeneous func-
tion of order one, we conclude that its general representa-
tion may be written in the form:

g�ðrÞ ¼
c

q
req ð37Þ

where c is the maximum phase transformation strain in
pure shearing. Assuming the Eq. (16), it can be noticed that

KðhkÞ ¼ c
oreq

or
: ð38Þ

Thus, one can explicit the expression of K:

K ¼ K1 þ K 2 ð39Þ

where

K1 ¼
3

2
cf ðyrÞN ð40Þ

K2 ¼
9

2
cf 0ðyrÞ 3N 2 � yrN �

2

3
I

� �
ð41Þ

with N a tensor defined as

N ¼
devðrÞ

�r
: ð42Þ

The eigenstrain K is splitted additively into two parts which
are mutually orthogonal in the sense that tr(K1K2) = 0,
what follows that tr(K2N) = 0.

The fraction of martensite n is thus defined by

n ¼
etreq

c
ð43Þ

where etreq is an equivalent transformation strain to be de-
fined. To do it, one must consider the equality between
the phase transformation power under proportional load-
ing P

tr and the equivalent transformation power Ptr
eq [5]:

r : _etr|fflffl{zfflffl}
P

tr

¼ req : _e
tr
eq|fflfflfflffl{zfflfflfflffl}

P
tr
eq

ð44Þ

with this definition, all multiaxial proportional loadings
have the same representation in the ðetreq; reqÞ graph. Denot-
ing the equivalent transformation Von Mises strain �etr by
the Eq. (45):



�etr ¼
2

3
etr : etr

� �1=2

ð45Þ

an expression of the equivalent transformation strain is
thus obtained (Eq. (46)):

etreq ¼
�etrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2ðyrÞ þ 9f 02ðyrÞð1� yrÞ
p : ð46Þ

With this definition, etreq depends on the stress trough yr. To
avoid this problem, it is possible to calculate yr as a func-
tion of etr for every proportional loading path. But, this
function can not be analytically determined, and an
approximation defined by the Eq. (47) is used:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðyrÞ þ 9f 02ðyrÞð1� yrÞ

p �
f ð�yeÞ

f ð�1Þ
ð47Þ

where ye is the third strain tensor invariant:

ye ¼ 4
detðetrÞ

ð�etrÞ
3

: ð48Þ

2.4. Kinetic laws

The inequality of Clausius–Duhem precludes the for-
ward phase transformation only if pfP 0 and the reverse
one if pf 6 0. One has to note that pf = 0 implies the equi-
librium condition. Thus it does not exist any thermody-
namic relation giving the hysteresis loop branches
equations. Nevertheless, such equations are needed to
determine the evolution laws of the fraction of martensite
n. In order to specify the kinetic equations driving the
phase transformation, it can be presumed the existence of
two functions wa(pf,n) (a = 1,2) such that an active process
of parent phase decomposition (A ! M:dn > 0) can only
proceed when w1 = const, (dw1 = 0) and an active process
of martensite decomposition (M ! A:dn < 0) can only pro-
ceed if w2 = const, (dw2 = 0). These yield functions are
chosen as

w1 ¼ pf � kð1ÞðnÞ ð49Þ

w2 ¼ �pf þ kð2ÞðnÞ: ð50Þ

The expression of ka(n) are built to give kinetics in agree-
ment with the measurements of metallurgists as Koistinen
and Marbuger [13]:

kð1ÞðnÞ ¼ �A1 lnð1� nÞ ð51Þ

kð2ÞðnÞ ¼ A2 lnðnÞ: ð52Þ

with

A1 ¼
Ds0 � �s0

a1
; A2 ¼

Ds0 þ �s0

a2
ð53Þ

The coefficient a1 and a2 can be obtained with the condition
wa = 0 for stress free state. They can be written as

a1 ¼
� lnð1� nMf Þ

M0
s �M0

f

; a2 ¼
� lnðnAf Þ

A0
f � A0

s

ð54Þ

Commonly used values for the forward and reverse trans-
formations are respectively nMf ¼ 0:99 and nAf ¼ 0:01.
Thanks to derivation, the kinetic laws for forward and re-
verse phase transformations are obtained:

_nA!Mð _req; n; _T Þ ¼

c _req

q
� Ds0 _T

A1

1�n
� 2/it

; ð55Þ

_nM!Að _req; n; _T Þ ¼

c _req

q
� Ds0 _T

A2

n
� 2/it

: ð56Þ

2.5. Assessment of the equations set

An assessment of all the model equations developed in
this section is yet done:

• the equivalent Von Mises stress �r:

�r ¼
3

2
devðrÞ : devðrÞ

� �1=2

ð57Þ

• the equivalent Von Mises strain �e:

�e ¼
2

3
devðeÞ : devðeÞ

� �1=2

ð58Þ

• the quantity yr:

yr ¼
27

2

detðdevðrÞÞ

�r3
ð59Þ

• the function f:

f ðyrÞ ¼ cos
cos�1ð1� að1� yrÞÞ

3

� �
ð60Þ

• the equivalent stress req:

reqð�r; yrÞ ¼ �rf ðyrÞ ð61Þ

• the equivalent transformation strain etreq:

etreq ¼
�etrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2ðyrÞ þ 9f 02ðyrÞð1� yrÞ
p ð62Þ

• the tensor N:

N ¼
devr

�r
ð63Þ

• the eigenstrain K:

K ¼
3

2
cf ðyrÞN þ

9

2
cf 0ðyrÞ 3N 2 � yrN �

2

3
I

� �
ð64Þ

• the transformation strain tensor etr:

etr ¼ KðhkÞn ð65Þ

• the thermal strain tensor eth:

eth ¼ aðT � T 0ÞI ð66Þ

• the thermodynamic driving force pf:

pfðreq; T ; nÞ ¼
creq

q
þ pf

0ðT Þ � ð1� 2nÞ/it ð67Þ



• the stress tensor r:

r ¼ Lðe� Kn� aðT � T 0ÞIÞ ð68Þ

• the heat equation:

Cv
_T � kDT ¼ r þ pfðreq; T ; nÞ _nþ TDs0 _n�

Ta

q
I : _r

ð69Þ

• the boundary thermal condition associated to an exter-
nal imposed temperature:

oT

on
¼ �

h

k
ðT � T0Þ ð70Þ

• the kinetic laws:

_nA!Mð _req; n; _T Þ ¼

c _req

q
� Ds0 _T

A1

1�n
� 2/it

; ð71Þ

_nM!Að _req; n; _T Þ ¼

c _req

q
� Ds0 _T

A2

n
� 2/it

: ð72Þ

3. Implementation in COMSOL�

COMSOL� is a modeling package for the simulation of
any physical process and can be described with partial dif-
ferential equations (PDEs). It features state-of-the-art solv-
ers that address complex problems quickly and accurately,
while its intuitive structure is designed to provide ease of
use and flexibility. This software is chosen for its ability
to build automatically some cycles and internal loops.
The RL model described in the previous section has been
implemented for 2D problems with plane stress assump-
tions. It can be assimilated to a multiphysic coupled prob-
lem between the structural mechanic module (for the
mechanic behavior) and the PDEs module (for the kinetic
transformations).

This section resumes the ‘‘translation’’ of the RL model
for plane stress problems into characteristic equations to be
implemented in COMSOL�.

3.1. Principle of virtual work

The principle of virtual work expressed in global stress
components states that the sum of virtual works from inter-
nal strains are equal to works from external loads. This
principle will be applied under the assumption of small
disturbances.

Let us consider a continuous domain X as it is shown on
the Fig. 1, loaded in force F =Ct or in displacement U 0=Cu. �f
represents the volumic force and �n the outgoing perpendic-
ular vector. The total stored energy W from external and
internal strains and loads is:

Wðu�Þ ¼�
1

2

Z

X

trr � eðu�Þ�dXþ

Z

X

�f� � u�dXþ

Z

Ct

F � u�dX

ð73Þ

where �f� is defined in function of the acceleration �c and �f as

�f� ¼ �f � q � �c ð74Þ

and u* belongs to the whole of the kinematically admissible
fields defined by

Uad ¼ fu� 2 H 1=u
� ¼ U0 on Cug ð75Þ

and

rðnÞ ¼ F on Ct: ð76Þ

Thus, the principal of virtual work states that

dW ¼ 0: ð77Þ

3.2. Implementation

In order to calculate W, the stress tensor r, solution of
the multiphysic problem must be evaluated in the COM-
SOL� scalar expressions. This can be done by considering
the Eq. (77). One can note that the thermal strain eth in the
expression of r is neglected.

r ¼ LðeðuÞ � KðrÞnÞ: ð78Þ

The Eq. (78) appears as an implicit expression of r,
(r = f(e( u),r)), which is incomprehensible by COMSOL�.
The value of Kij depends on the boundary conditions, load-
ings and finally the investigated problem.

In the case of force loadings (displacement loadings), a
tensor eK is obtained by the elastic resolution of the Neu-
mann’s problem (Dirichlet’s problem). This elastic resolu-
tion is typically done by a ‘‘structural mechanic module’’
called ‘‘PS1’’.

If ð~r;~eÞ is the elastic solution obtained by this module,
the Eq. (78) becomes:

r ¼ LðeðuÞ � eKnÞ ð79Þ

where

eK ¼
3

2
cf ð~yrÞeN þ

9

2
cf 0ð~yrÞ 3eN 2 � ~yr eN �

2

3
I

� �
ð80Þ

and

~yr ¼
27

2

detðdevð~rÞÞ
�~r3

; eN ¼
devð~rÞ

�~r
ð81Þ

0U

n

f *

F

t
Γ

u
Γ

Ω

0
T

Fig. 1. Domain X and boundary conditions.



By this way, the implicit problem (Eq. (78)) is transformed
into the explicit problem (Eq. (79)), which is easily imple-
mented in COMSOL�.

Finally, four modules are used to solve the multiphysic
problem:

• ‘‘structural mechanic 1’’ (PS1): elastic resolution, con-
struction of the components eK ij of ~K,

• ‘‘structural mechanic 2’’ (PS2): nonlinear resolution,
construction of the multiphysic problem where the solu-
tion is r and u,

• ‘‘partial differential equation 1’’ (PDEs1): nonlinear
coupling with PS2. Calculation of the increment or dec-
rement of n,

• ‘‘partial differential equation 2’’ (PDEs2): nonlinear
coupling with PS2 and PDEs1. Integration of the heat
equation, calculation of the temperature T.

The diagram given on Fig. 2 shows the interactions
between these four modules.

The computation of eK and n (at each time of the pro-
cess) gives etr and allows the nonlinear resolution of the
Eq. (77).

3.3. Case of the plane stress

By considering the plane stress assumptions (corre-
sponding to a plate under ‘‘ad hoc’’ loading conditions),
the stress tensor is clearly defined by

r ¼

r11 r12 0

r12 r22 0

0 0 0

2
64

3
75: ð82Þ

Thus, ~yr can be explicited as

~yr ¼
1
�~r3

ð~r3
11 þ ~r3

22 þ 9=2ð~r22 þ ~r11Þ~r
2
12 � 3=2ð~r2

11~r22 þ ~r2
22~r11ÞÞ

ð83Þ

with the equivalent Von Mises stress:

�~r ¼ ð~r2
11 þ ~r2

22 þ 3~r2
12 � ~r11~r12Þ

1=2
: ð84Þ

Assuming this definition of �r, the tensor K components can
be explicited as

Fig. 2. Diagram of the interactions between the four modules ‘‘PS1’’,

‘‘PS2’’, ‘‘PDEs1’’ and ‘‘PDEs2’’.

Table 1

Constants for NiTi alloy (1)

Phase transformation temperature

Designation Notation Value Unit

Austenite start A0
s 247 K

Austenite finish A0
f 279 K

Martensite start M0
s 275 K

Martensite finish M0
f 209 K

Table 2

Constants for NiTi alloy (2)

Material parameters

Designation Notation Value Unit

Young’s modulus E 52 · 109 Pa

Poisson’s ratio m 0.3 B

Density q 6500 kg m�3

Internal energy difference Du0 8909 J kg�1

Internal entropy difference Ds0 46 J kg�1 K�1

Coherence internal energy �u0 461.5 J kg�1

Coherence internal entropy �s0 0 J kg�1

Equivalent eigenstrain c 6% B

Thermal dilatation coefficient a 11 · 10�6 K�1

Conduction coefficient k 56.5 W m�1 K�1

Convection coefficient h 5 W m�2 K�1

Specific heat Cv 480 J K kg�1

Coefficient A1 A1 699 J kg�1

Coefficient A2 A2 280 J kg�1

Asymmetry parameter a a 0.7 B
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Fig. 3. Force loading and boundary conditions for a plate in tension.



eK 11 ¼ 3=2cf ð~yrÞeN 11

þ 9=2cf 0ð~yrÞð3ðeN 2
11 þ

eN 2
12Þ � ~yr eN 11 � 2=3Þ ð85Þ

eK 22 ¼ 3=2cf ð~yrÞeN 22

þ 9=2cf 0ð~yrÞð3ðeN 2
22 þ

eN 2
12Þ � ~yr eN 22 � 2=3Þ ð86Þ

eK 33 ¼ 3=2cf ð~yrÞeN 33

þ 9=2cf 0ð~yrÞð3eN 2
33 � ~yr eN 33 � 2=3Þ ð87Þ

eK 12 ¼ 3=2cf ð~yrÞeN 33

þ 9=2cf 0ð~yrÞð3eN 12ðN 11 þ eN 22Þ � ~yr eN 12Þ ð88Þ

and with the definition of the tensor N:

eN ¼
1
�~r

2~r11�~r22
3

~r12 0

~r12
�~r11þ2~r22

3
0

0 0 � ~r11þ~r22
3

2
64

3
75: ð89Þ

The explicit heat equation expression is written:

Cv
_T � kDT ¼ r þ pfðreq; T ; nÞ _nþ TDs0 _n�

Ta

q
ð _r11 þ _r22Þ:

ð90Þ

Assuming the plane stress assumptions, the strain tensor
expression is given by

e ¼

e11 e12 0

e12 e22 0

0 0 e33

2
64

3
75: ð91Þ

The partition of the total strain in elastic part and phase
transformation part is recalled:

e ¼ eel þ etr ð92Þ

and the elastic strain tensor can be clarified as
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eel ¼

e11 � eK 11n e12 � eK 12n 0

e12 � eK 12n e22 � eK 22n 0

0 0 eel33

2
64

3
75 ð93Þ

with

eel33 ¼ �
m

1� m
ðeel11 þ eel22Þ: ð94Þ

The equivalent Von Mises strain can be explicited as

�e ¼
2

3
ðe211 þ e222 þ e233 þ 3e212 � e11e22 � e11e33 � e22e33Þ

1=2
:

ð95Þ

and the equivalent transformation Von Mises strain:

�etr ¼
2

3
ðe211tr þ e222tr þ e233tr þ 3e212tr � e11tre22tr � e11tre33tr

� e22tre33trÞ
1=2: ð96Þ

The quantity ye is thus explicited as

ye ¼ 4
e11tre22tre33tr � e212tre33tr

�etr
: ð97Þ

3.4. Model constants for NiTi alloy

The composition of the SMA used in the numerical
application is NiTi. Its characteristics phase transforma-
tion and material parameters are indexed in the Tables 1
and 2. These parameters have been identified by perform-
ing classical tensile tests at different temperature in the
range of plasticity as described in [1,7,2].
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Fig. 8. Force loading: plate in bending loaded in its plane.

Fig. 9. Ratio n of martensite on the plate.



4. Results

In order to validate the implementation presented in the
previous section, many static tests were performed. One
homogeneous and one nonhomogeneous test are presented:
a plate in tension and a plate in bending loaded in its plane.
These tests are performed for a rectangular plate. Its
dimensions are:

• length: L = 80 mm,
• width: l = 40 mm,
• thickness: e = 2 mm.

For both tests, three implementation are performed: iso-
thermal (T(x,y) = T0), adiabatic (q = 0) and with an exter-
nal imposed temperature: (Text = T0).

4.1. Plate in tension

As it is shown in the Fig. 3, a plate is loaded in force for
a tension–compression cycle in order to observe the for-
ward and reverse transformation.

The normal stress r11 isothermal evolution in function
of the normal strain e11 is given at the test point A on
the Fig. 4.

Raniecki et al. [1] have established the following
conclusions:

• the critical stress for the forward transformation in ten-
sion rAM

T is smaller than the absolute value of corre-
sponding critical stress rAM

C < 0 in compression:

rAM
T < �rAM

C ð98Þ

on the Fig. 4, one can notice that rAM
T ¼ 4:8� 108 Pa

and rAM
C ¼ �6:2� 108 Pa, thus the relation (98) is quite

verified.
• the pseudoelastic amplitude cT in tension is greater than
the one found in compression say cC. However, the ener-
gies in tension and compression represented by product
of critical stress and pseudoelastic amplitude are the
same:

cT > cC ð99Þ

rAM
T cT ¼ jrAM

C jcC ð100Þ

The marksheet on the Fig. 4 gives: cT = 0.0675, cC =
0.0529. Thus one can calculates rAM

T cT ¼ 328� 105 Pa
and jrAM

C jcC ¼ 324� 105 Pa. Both Eqs. (99) and (100)
are verified.

The normal stress r11 evolution versus the normal strain
e11 is given at the test point A on the Fig. 5 for isothermal,
adiabatic and external imposed temperature.

The temperature evolution in function of the time t is
given at the test point A on the Fig. 6.

For the adiabatic case, the SMA cannot evacuate the
calories. Thus, an increase (decrease) of the temperature
is noticed for the forward (reverse) transformation. Rani-
ecki et al. [1] have shown an increase of the stress with
an increase of the temperature. It can be noticed that for
the adiabatic case. The pseudoelastic adiabatic stress is
more important as the isothermal stress for a fixed strain
(Fig. 6).

For the external imposed temperature case, the SMA
can evacuate the calories. Thus, the increase (decrease) of
the temperature is quickly stopped by this convection ther-
mal transfer. And, finally, the SMA temperature is practi-
cally equal to T0.

For a fixed given strain, the external imposed stress is
thus between the isothermal stress and the adiabatic stress.
The evolution of the fraction of martensite n in function of
the time t is given at the test point A on the Fig. 7. One can
assume that the fraction of martensite evolution is faster
with the temperature evolution.

Fig. 10. Force loading plate ratio of martensite n on the plate in both

cases of the symmetrical model [2] and the asymmetric model [1].



4.2. Plate in bending loaded in its plane

A plate in bending loaded in its plane (Fig. 8) is now
performed. this is a nonhomogeneous test. The aim of this
simulation is to observe different ratios of martensite and
the temperature evolution inside the plate. The volume
fraction of martensite depends on the location on the
plate.

The four figures in Fig. 9 show for an isothermal sim-
ulation the appearance of the martensite and thus the dis-
appearance of the austenite during the load phase. It
clearly show that the martensite ratio repartition is not
symmetrical compared to the ð0; x!Þ axis. A simulation
with the symmetrical model developed in 1992 by Rani-
ecki et al. [2] is compared with the one [1] recalled in
the Section 2.1. For the same material properties and
force loading level, the Fig. 10 represents the martensite
ratio repartition for both modelisations in the case of
the plate loaded in its plane. The upper part of the plate
works in tension while the lower part of the plate works

in compression. Thus, the asymmetry tension–compres-
sion clearly appears: The martensite ratio repartition is
symmetric with the [2] implementation (Fig. 10a) com-
pared to the ð0; x!Þ axis and asymmetrical with the [1]
implementation (Fig. 10b).

For the adiabatic case, a temperature increase is shown.
This phenomenon is predicted in [1]. The following figures
(Fig. 11) represent the temperature on the plate for differ-
ent values of loading F.

As it is the same case for the adiabatic implementation
of a plate in tension, the SMA cannot evacuate the calories
for this present simulation. Thus, an increase of tempera-
ture is notice and it is evaluated as seven degrees
(293 K ! 300 K). On these previous figures (Fig. 11), one
can check that the temperature increase with the fraction
volume of martensite increase. Thus, these simulations con-
firms that the temperature evolution is due to the martens-
itic transformation: the forward transformation (A ! M)
is exothermic and the reverse transformation (M! A)
endothermic.

Fig. 11. Adiabatic simulations: temperature T on the plate.



At least, a test with an external imposed temperature is
presented. As previously, the following figures (Fig. 12)
show the temperature and the heat flow (arrows) on the
plate.

Let us consider a test point A(x,y) located at the posi-
tion (x = 10 mm, y = 5 mm) as it is shown on the Fig. 8.
At this point, the material response is thus given in the
ðetreq; reqÞ plane (Fig. 13).

Fig. 12. With an external imposed temperature simulation: temperature T on the plate and heat flow.



The typical pseudoelastic behavior is obtained for iso-
thermal, adiabatic and with imposed external temperature.
One can notice that there’s no equivalent transformation
strain for both elastic behavior of austenite and martensite.
(details 1 and 2 on the Fig. 13).

4.3. Rate effects

In 2000, Lexcellent and Rejzner [14] clearly show that
the rate loading effects are not negligible because it induces
a continuous change of the actual temperature of the SMA
sample. The change in temperature linked to the strain rate
or during creep or relaxation is evaluated by the integration
of the heat equation.

Previously, the experiments performed by Lim and
Mcdowell [15] in 1999 on thin NiTi tubes shown that
during phase transformation latent heat will be released/
absorbed and the temperature history and coupled trans-
formation driving force depend on the rate of the applied
loading relative to heat transfer to or away from the spec-
imen gage section.

The thermodynamical model with external imposed
temperature written in the Section 2.1 is able to confirm
these rate effects. To do it, let us consider the plate in ten-
sion presented in the Section 4.1. The plate is loaded in
force with three different force rates (with section area
equal to 8 · 10�4 m):

• _F 1 ¼ 0:04 N s�1

• _F 2 ¼ 0:4 N s�1

• _F 3 ¼ 4 N s�1

The material response is given in the following Fig. 14 in
the (e11,r11) plane.

One can notice that the pseudoelastic behavior of the
SMA is clearly influenced by the force loading rate. This
results confirms the investigations results exposed in

[14,15]. Typically, a slow rate loading test can be assimi-
lated as a quasi static test. Thus, the SMA sample keep
the temperature constant during this test. Hence, an exter-
nal imposed temperature test with a high rate loading can
be assimilated as an isothermal test. In the same way, an
external imposed temperature test with a high rate loading
can be assimilated as an adiabatic test: the heat transfer
between the external field and the SMA sample has not
the time to be effected. Fig. 15 clearly shows us this result:
both adiabatic and isothermal tension tests are represented
versus tests with an external imposed temperature at both
slow and high force rates.

5. Conclusion

In this paper, the numerical implementation of the
asymmetric pseudoelastic behavior of SMA coupled with
the heat equation has been done.

In a first part, a phenomenological model [1] has been
implemented in COMSOL� in order to take into account
this asymmetry between tension and compression and the
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temperature effects. The thermodynamical coupling
between the stress–strain and temperature is solved with
the heat equation.

In the second part, for checking this implementation,
many static tests have been performed: plate in tension,
in bending loaded in its plane. These tests have clearly
shown the influence of the type of solicitations (tension
or compression) and the influence of the temperature on
the pseudoelastic behavior of a SMA sample. At last, rate
effects have been shown by loading a plate in tension with
different force rates.

This study shows us the influence of the heat equation
and the asymmetric aspect on the quality of the modelisa-
tion of the SMA. This taking into account appears essential
for the modeling of SMA structures, particularly for com-
plex dynamical SMA devices where the solicitations can be
complex (tension and compression) and the temperature
effects important (high frequency, thus adiabatic behavior).
Typically, a slow rate loading test can be assimilated as a
quasi static test. Thus, the SMA sample keep the tempera-
ture constant during this test. Hence, an external imposed
temperature test with a high rate loading can be assimilated
as an isothermal test. In the same way, an external imposed
temperature test with a high rate loading can be assimilated
as an adiabatic test: the heat transfer between the external
field and the SMA sample has not the time to be effected.
Fig. 15 clearly shows us this result: both adiabatic and iso-
thermal tension tests are represented versus tests with an
external imposed temperature at different force rates.
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