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Mixed control for robust vibration isolation: numerical 
energy comparison for an active micro suspension device

Y Meyer and M Collet

FEMTO ST Département LMARC, UMR 6174, F-25000 Besançon, France

An original control approach for robust vibration isolation is introduced in this paper. Two feedback 
signals, the relative displacement and the transmitted force between the sensitive element and its disturbing 
support, are employed in a so-called mixed control design. This strategy is used to perform control in the 
case of protection of electronic components, such as frequency generators, vibrating gyroscopes and certain 
accelerometers, essential to the operation of electronic cards. The simplicity of the control law allows us to 
tune the parameters of the controller with a very simple optimization process. The proposed isolation 
control is implemented and optimized for a micromechanical piezocomposite structure and the performance 
and the energy cost are compared with those of integral sliding control and LMI-optimized control.

1. Introduction

Vibration isolation is necessary in two broad classes of

problems:

• a vibrating element is fixed on a structure. The waves can

move into this whole structure. Thus, they can damage the

different sensitive elements of the structure or reduce their

service life.

• a sensitive element is fixed on a vibrating structure. So, the

vibrations can modify the operating points of this element

but also damage it strongly.

Due to these problems, limiting the vibration transfer

between an element and its support becomes very attractive.

In fact, the objective of vibration isolation is to limit

vibration energy flow between two structures. The idea

is to create a mechanical connection which allows the

greatest operation of sensitive elements, such as electronic

components. In a vibratory environment, the good operation of

electronic components, such as frequency generators, vibrating

gyroscopes and certain accelerometers, are essential to the

operation of electronic cards. In this paper, one way to protect

them against hazardous vibrations is studied.

Passive vibration isolation is the simplest way to achieve

this goal. Several passive techniques have been studied in the

literature such as the use of elastomer materials, shape memory

alloys or modifying the mechanical impedance [1–4].

The passive suspension described in figure 1 is considered.

The transfer function of the system, i.e. the relationship

between the acceleration of the mass (Ẅs) and the acceleration

imposed on the support (Ẅu) is written in Laplace variables:

TẄs,Ẅu
=

(Ẅ )s

(Ẅ )u

=
sC + K

s2M + sC + K
(1)

with

K : the stiffness of the suspension (in N m−1),

M: the mass of the structure (in kg),

C: the damping produced by the suspension (in kg s−1).

(2)

The objective of any suspension is obviously to limit

the acceleration of the system to be isolated in the required
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Figure 1. ‘Mass-Spring-Damper’ system.
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Figure 2. Evolution of the transfer function for different values of
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frequency bandwidth. The behavior of the system is observed

in figure 2 where different transfer functions are plotted for

different values of the reduced damping ratio ξ = C
2

√
( M

K
).

As shown in figure 2, this system presents a modal

resonance peak, that is to say an increase of the acceleration

of the system to be isolated in a narrow frequency bandwidth.

Obviously, modal peaks attenuate when the damping ratio

of the system is increased. Consequently, the resonance

amplification is decreased and the sensitive mass stability

increases in the narrow frequency bandwidth around the

considered eigenfrequency. However, this effect also results in

a reduction of the high frequency filtering decay rate. Indeed,

this high frequency decay rate evolves from −40 dB/decade

when no structural damping is considered in the suspension

to −20 dB/decade when ξ is non-null with an amplification

shift proportional to this value. It results also in poor isolation

in this frequency range. It also becomes necessary to lower

the cutoff frequency to increase the high frequency isolation

capability of the suspension. This modification is performed

by limiting the stiffness of the connection, which involves a

loss of stability in low frequencies. Ultimately, the traditional

mechanical compromise is in the ratio between the stiffness

and the damping of the connection [1].

The best mechanical compromise can be obtained by using

an active control process [1]. Sky-hook control is the simplest

and most common control strategy [5]. This isolation method

is stable and robust. The idea is to introduce actively, in the

mechanical connection, a viscous damper rigidly fixed to a

stationary coordinate system. The design of this controller

is based on an absolute sensing signal such as acceleration,

transmitted force, absolute velocity or absolute displacement.

The studies of various sky-hook-type strategies are broadly

proposed in the literature [6]. These isolation techniques are

highly efficient and robust for operating frequencies over the

resonance peak of suspension. However, for design constraints,

actively modifying the mechanical connection at frequencies

below the resonance peak of suspension can be necessary.

Indeed, in the micromechanics field, the small dimensions of

structures do not allow us to decrease the resonance peak of

suspension for reasons of the strength of materials. So research

on isolation control for large frequency bandwidths have been

carried out. In these control strategies, the control laws are

computed by strong mathematical processes such as sliding

surface methods [7–9] or LMI-optimized control [10–13]. Let

us note that the methods of reduced order control [11] cannot

be directly applied when a feedthrough term is present in a

state–space model of the studied device, like when transmitted

force or acceleration are picked up. In this paper, an original

and simple control approach for robust vibration isolation is

introduced. Two feedback signals, the relative displacement

and the transmitted force between the sensitive element and its

disturbing support, are employed in a ‘mixed’ control strategy.

Indeed, the measurement of a primal quantity such as relative

displacement is mixed with the measurement of a dual quantity

such as acceleration to provide a mixed set of inputs in the

proposed control strategy. This strategy is used to perform

large frequency bandwidth control. An energy comparison

with other control techniques is also performed. Indeed, in

micromechanical devices, the limited power of actuators, the

problems of electronic operation and the power perturbations

of electronics indicate that control energy becomes a crucial

design parameter.

This paper is organized as follows. In section 2,

the description and the modeling of the micromechanical

piezocomposite structure studied are given. At the end of

this section, the state–space model for active suspension is

introduced. This section is the basis for the numerical

implementation of the mixed isolation control in section 3.

The efficiency and the energy cost of this control strategy

are compared with those of integral sliding control [9] and

LMI-optimized control [11] in section 4. Finally, concluding

remarks are given in section 5.

2. Modeling of the micro suspension device

An active suspension system made of silicon and piezoelectri-

cally transduced is considered (cf figure 3). A silicon clamped–

clamped cross is used as the basic passive structure on which

the element to be isolated is located [14]. The active func-

tion is conferred to the structure by two piezoelectric actuators

and three piezoelectric sensors deposited on the top face of the

cross. These active parts of the system are founded on thin

PZT-type layers [15]. Thus, the direct and opposite piezoelec-

tric effects are used. In order to simultaneously allow detection

and activation, a multielectrode system was designed. The ac-

tuators are placed near the boundaries of the main beam and
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Figure 3. Photograph of the suspension device.
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Figure 4. Dimensions of the device.

their length is optimized in order to obtain the maximum ac-

tion force on the first natural mode [16, 17]. On the transversal

beam, two layers are used as strain sensors, that is to say as

displacement sensors. An acceleration sensor is also located

on the middle of the suspension. It constitutes the support

of the sensitive element, in our case, a small mass made of

steel (7.9 mg). In figures 4 and 5, the dimensions of the device

are presented. The device is considered as a pseudo-collocated

system in a large frequency bandwidth because of its small di-

mensions and the induced in-phase responses of its actuators

and sensors set-up. Collocated strategies guarantee the asymp-

totic stability of the closed-loop system. This property is a

consequence of the systematic introduction of energy dissipa-

tion into the structure via the controller. A robust damper is

added to the structure by the collocated strategies. The stabil-

ity and the robustness of the system are thus guaranteed under

the sensible assumption that the control force is applied instan-

taneously [1].

The numerical model employed is a multiphysics finite

element model developed under the Femlab software. For

the FE discretization of the model, the automatic mesher of

Femlab is used. In the 2D space (plan ZX), the Argyris’ finite

elements are used [18]. The 2D space is considered in order to

account for the shear effect in the piezoelectric film [19, 20].

50 µm Si

2 µm PZT
2 µm SiO2Bottom

electrode

Top

electrodes

Figure 5. Thickness of the different films of the suspension device.

Siglab

Charge

Amplifier

Power

amplifier

Mass

Silicon structure

External force

Figure 6. Experimental verification architecture.

The modeling of the system was based on piezoelectric theory,

so on a linear theory [21, 22]. For modeling, only the first

natural mode of the device is considered (cf. figure 8). Indeed,

the system induces an active isolation only along one single

degree of freedom (the Z axis) of the electronic system to be

stabilized. So, the acceleration forces on the sensitive system

are only applied along the Z axis and the natural suspension

mode is supposed to be the major device response. The

diagram of the experimental verification of the single-mode

model hypothesis is shown in figure 6. The input of external

forces applied to a seismic mini-table (especially manufactured

for this application) is generated by a Siglab plate-form. This

Siglab plate-form is also placed for acceleration measurement

purposes.

In figure 7, the experimental Bode diagram between the

output signal from the acceleration sensor and the signal

applied to the actuators of the seismic table is presented.

Experimental results show that a large frequency bandwidth is

dominated by the vibrational response of only the first natural

mode.

The inherent damping factor is considered small (ξ =
0, 1%) because the materials used (silicon and PZT) are brittle.

The first projected equation of motion around the

equilibrium state is written as:

Mẅs + C(ẇs − ẇu) + K (ws − wu) − u(wu, ws) = 0 (3)

with M the mass of the sensitive element, C the damping

coefficient, K the stiffness coefficient, ws the first mode

displacement of the sensitive element, wu the displacement of

the support and u(wu, ws) the control force.

Moreover, the control device has two types of sensor:
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Figure 8. Isolation system based on mixed vibration control.

• the first sensor behaves as a relative displacement sensor

located between the moving mass and the support. So, the

signal y1(t) is

y1(t) = α(ws(t) − wu(t)) = αw(t) (4)

where α is the sensing factor.

• the second sensor is an effort sensor. The measured signal

F(t) is written:

F(t) = β Mẅs = β(−Cẇ(t)− Kw(t)+u(wu, ws)) (5)

where β is the sensing factor. We can also underline the

feedthrough term in this measurement is directly linking

the control signal u(wu, ws) into the output signal carried

out.

So, the reduced state–space model of the suspension

is built with the tension applied to the actuators and the

acceleration applied to the device as input signals and the

signals of the sensors and the absolute acceleration endured

by the sensitive element as output signals.

The state–space representation can be expressed as

follows, according to equations (3)–(5):

{

ẇ

ẅ

}

= A

{

w

ẇ

}

+ B

{

u(wu, ws)

ẅu

}

(6)

Table 1. Parameters of the experimental device expressed on its first
natural mode.

M (in g) 7.9

K (in N m−1) 4.9 × 106

ξ (in %) 0.1
α 0.062
β 1

with

A =
[

0 1

−M−1 K −M−1C

]

(7)

and,

B =
[

0 0

M−1 −1

]

. (8)

The equation of observation can be written:

⎧

⎨

⎩

y1(t)

F(t)

ẅs

⎫

⎬

⎭

= C

{

w

ẇ

}

+ D

{

u(wu, ws)

ẅu

}

(9)

where

C =

⎡

⎣

α 0

−β K −βC

−M−1 K −M−1C

⎤

⎦ (10)

and

D =

⎡

⎣

0 0

β 0

M−1 0

⎤

⎦ . (11)

The experimental parameters of the suspension device are

given in table 1. They represent equivalent mechanical values

on the first natural mode of the system. The value of the first

frequency is 3545 Hz. These equivalent values are used in the

following numerical simulations.
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3. Mixed isolation control

3.1. Control law

The aim of vibration isolation systems is to protect sensitive

elements by limiting the vibration transfer between this

element and its support, that is to say, in a perfect case, to

obtain ẅs = 0. According to (3), a control force u(wu, ws) =
Cẇ(t) + Kw(t) is an ideal solution. Nevertheless, this

control law is not robust and highly unstable in the Lyapunov

sense [23, 24]. Indeed, the controller tries to remove

the mechanical connection. Consequently, the relative

displacement of the sensitive element is increased and leads

to instabilities for high control gains.

The idea of our construction logic is to take advantage of

the removing of the mechanical connection. A ‘numerical’

connection is introduced, in the precedent control strategy,

by using a sky-hook-type feedback thanks to the effort

sensor. With this pseudo-collocated feedback introduction, the

control is stable [1]. So, two feedback signals, the relative

displacement and the transmitted force between the sensitive

element and the disturbing structure, are employed in a design

called mixed control design. According to (3)–(5), the control

force can be established as:

u(wu, ws) = K y1 + C ẏ1−
Cnew

M

∫ ∞

0

F(t)∂t

− Knew

M

∫ ∞

0

∫ ∞

0

F(t)∂t (12)

where Cnew and Knew are, respectively, the damping and

stiffness coefficients of the desired mechanical connection.

The choice of Cnew and Knew is absolutely not crucial for

the efficiency of the mixed control strategy. Indeed, all

the external forces come by the support. So, the first part

of the control force Cẇ(t) + Kw(t) breaks the mechanical

connection between the support and the element to be isolated.

The sky-hook-type part of the control force −Cnew

M

∫ ∞
0

F(t)∂t−
Knew

M

∫ ∞
0

∫ ∞
0

F(t)∂t introduces a ‘numerical’ connection fixed

to a stationary coordinate system. In an ideal case, the

numerical connection will never see the external vibration So,

we make the choice of Cnew = C and Knew = c2 K where c is

a tuning parameter.

The control force, defined in (12), cannot be implemented

directly in a DSPace plate-form for the experiments. Indeed the

direct integration algorithm is not physically realizable because

of poles located at 0. So it is necessary to introduce high pass

filters, avoiding constant signal unstable integration. So, it

becomes necessary to avoid this part in the frequency scale of

control. Consequently, various transfer functions, in Laplace

variables, are used:

• an integration-type filter at first order:

I (s) = 1

s + a
(13)

• a derivative-type filter at first order:

D(s) = s

s + b
(14)

• a transfer function to avoid the bias of signals:

P H(s) = s

s + a
(15)

where a, b are design parameters of control.
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as a function of the parameters a and

b.

With equations (13)–(15), the control force (12) is

expressed as:

u(wu, ws) = TF−1

(

P H(s)

[

K ỹ1 + C D(s)ỹ1

− Cnew

M
I (s)F̃ − Knew

M
I (s)I (s)F̃

])

(16)

with TF−1 the inverse Laplace transformation and x̃ the

Laplace transformation of x(t).

3.2. Optimization process and numerical results

The design parameters have to be optimized in order to

minimize the absolute acceleration ẅs and the control energy

cost for a random disturbance with an intensity value of 1 g

(9.81 m s−2). The value u(wu, ws) being proportional to

the value ẅu, the values of energy consumption of control

can be simply computed. The objective functions are the

H2 and H∞ norms of the different transfer functions [24].

The choice of optimization type depends on the performance

requirement and the disturbance. Generally, for a state–

space model, H2 optimization is used to optimize the energy

of the output signal for a random disturbance, that is to

say to obtain the best performance in a large frequency

bandwidth, and H∞ optimization is used to optimize the

maximal amplitude value of the output signal, that is to

say to obtain the best performance in a narrow frequency

bandwidth. The optimization process is performed under the

Matlab environment.

The optimization process is carried out in two steps. The

first step concerns the determination of the high frequency

cutoff parameter b. As shown in figures 9 and 10, this

coefficient has no effect on the H2 and H∞ norms of

Tẅs,ẅu
(a, b, c) if it is chosen so that b ≫ 3545 Hz, and thus

for a large set of c values, including those obtained at the end

of the optimization process. Arbitrarily, we can fix it equal to

b = 1.5 × 105 Hz. By fixing this roll-off frequency, which has

no influence on the used criterion, we simplify the numerical

complexity of our optimization.

Once the parameter b is fixed, the parameters a and

c are considered for the second optimization loop. The
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Table 2. Optimal values of the design parameters a and c for H2 and
H∞ optimization processes (b is chosen equal to 1.5 × 105 Hz.).

Parameter a Parameter c
(in Hz) (without unit)

H2 optimization 610 0.75
H∞ optimization 700 0.75

H2 and H∞ norms of the function Tẅs,ẅu
(a, b = 1.5 ×

105, c). Tu(ws,wu),ẅu
(a, b = 1.5 × 105, c), which represent

the objective functions, are optimized to obtain the best

compromise between efficiency and control energy flow. In

figures 11 and 12, the response surfaces for, respectively, the

H∞ and H2 optimization processes, are presented.

Thanks to the optimization loops, the optimal values

of design parameters a and c are found for H2 and H∞
optimization and presented in table 2.

In figures 13 and 14, the relation between the absolute

input acceleration ẅu and the absolute output acceleration ẅs

is shown for the H∞ and H2 optimizations. The responses of

the controlled and uncontrolled systems are compared.

It can be observed that the first natural mode is strongly

attenuated (cf table 4) for both optimizations. Moreover, the

high frequency isolation is improved. Indeed, the value of the

high frequency decay rate is around −60 dB/decade just after

the resonance peak. This value is unreachable with a simple

Table 3. Energy comparison of the performance obtained for the
mixed control applied to the studied device with H2 and H∞
optimization.

H2 norm H∞ norm Maximum
control control control power
force force (in µW)

H2 optimization 7.85 0.19 51.1
H∞ optimization 6.95 0.15 42.5

Table 4. Comparison of the performance obtained for the different
optimized vibration control strategies for 1 g random disturbance.

Damping ratio
H2 norm H∞ norm (in %)

Free system 2492.8 500 0.1
Mixed control (H2 opt.) 138.8 2.5 13.5
Mixed control (H∞ opt.) 162 2.8 16.1
Integral sliding control 101.22 4.19 23.2
LMI-optimized control 32.9 1 100
(H2 opt.)
LMI-optimized control 3.78 48.1 1
(H∞ opt.)

collocated control. Figures 13 and 14 indicates also, by the

dashed line, the control force evolution. In table 3, a energy

comparison is presented. With an H2 optimization, it makes it

possible to improve the isolation capabilities of the system for

a large frequency bandwidth. That is why the energy cost of a

H2 optimized controller is most important.

The interest of the mixed control strategy is to limit ẅs =
0 without creating instabilities due to an excessive relative

displacement of the sensitive element. In figures 15 and 16,

the relation between the absolute input acceleration ẅu and

the relative displacement y1 is presented for the H∞ and H2

optimizations. It can be observed that there is an increase of

the relative displacement level around the frequency where the

mechanical connection is modified. But this amplification is

limited.

4. Numerical comparison

For the efficiency and energy comparison, two other different

vibration control strategies are selected for their robustness and
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Table 5. Energy comparison of the performance obtained for the
different optimized vibration control strategies for 1 g random
disturbance.

H2 norm H∞ norm Maximum
control control control power
force force (in µW)

Mixed control 7.85 0.19 51.1
(H2 opt.)
Mixed control 6.95 0.15 42.5
(H∞ opt.)
Integral sliding control 1.01 22.6 891.6
LMI-optimized control 503.2 239.3 52 000
(H2 opt.)
LMI-optimized control 3.78 7.83 14.1
(H∞ opt.)

performance properties: integral sliding control [9] and LMI-

optimized control [11]. In the case considered, the structure is

excited with a 1 g random disturbance. The controllers are

optimized for the best damping ratio and the lowest energy

cost. All the optimization processes were computed under

Matlab software. SeDuMi 1.04 freeware is used for LMI

optimization [25].
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and for the controlled system with the H2 norm optimized controller
(dotted line). The dashed line shows the associated control force.

For the optimization processes of the classical vibration

control strategies, the feedthrough term, introduced by the

acceleration measurement, is removed in the state–space

equations. This term induces instabilities in the computation

of the norms [11]. Let us note that, in the optimization

process of the mixed isolation strategy presented in section 3,

measurement with a feedthrough term is used with no problem

of stability.

In figure 17 and in table 4, H2 LMI-optimized control

appears as the best vibration isolation control for efficiency.

But this performance has a very high energy cost (cf table 5).

On the opposite side, the energy cost of H∞ LMI-optimized

control is very low and high frequency decay rate is around

−60 dB/decade. The problem is the large amplitude at cutoff

frequency. Indeed, the initial damping is lightly increased but

not significantly.

So, the last comparison step is between mixed controls and

integral sliding control. In figure 17 and in table 4, the damping

ratio reached by the integral sliding mode strategy is better

than the one from mixed controls on the suspension frequency.

Unfortunately, another amplification peak is observed in the
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Figure 15. Bode diagrams of Ty1,ẅu
for the free system (solid line)

and for the controlled system with the H∞ norm optimized controller
(dotted line).
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Figure 16. Bode diagrams of Ty1,ẅu
for the free system (solid line)

and for the controlled system with the H2 norm optimized controller
(dotted line).

low frequency bandwidth. Moreover, the energy cost of

mixed controllers is a great advantage. In fact, the mixed

approach is the greatest compromise between energy cost and

efficiency. The simple implementation is another advantage of

these engineering laws.

5. Concluding remarks

In this paper, a new robust vibration control is proposed to

achieve vibration isolation. This control is based on a signal

mixing relative displacement and transmitted forces between a

sensitive element and its disturbing structure.

The energy and performance comparison between two

robust and stable vibration isolation strategies and the mixed

controls demonstrated numerically the large capacities of the

mixed approach. Moreover, this strategy does not need a

heavy mathematical background to implement a controller
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Figure 17. Bode diagrams of Tẅs,ẅu
for the free system (solid line),

for the controlled system with the integral sliding controller (dotted
line), for the controlled system with the Hinf norm LMI-optimized
controller (dashed line), for the controlled system with the Hinf norm
optimized mixed controller (dashed–dotted line), for the controlled
system with the H2 norm optimized mixed controller (plus signs) and
for the controlled system with the H2 norm LMI-optimized controller
(circles).

based on the mixed approach. Moreover, this strategy allows

the introduction of measurements with feedthrough terms with

no stability problems.

The following research is on the experimental implemen-

tation of the mixed vibration control. The manufacturing fea-

sibility of micro suspension devices has already been shown

in [26]. Before demonstrating experimentally the concept of

‘small isolation islands’, difficulties, due to the complex elec-

trode configuration and the existence of the inevitable bottom

electrode common to actuating layers and sensing layers, have

to be completely managed [27].
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