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Abstract

DIVCLUS-T is a divisive hierarchical clustering algorithm based on a monothetic
bipartitional approach allowing the dendrogram of the hierarchy to be read as a
decision tree. It is designed for either numerical or categorical data. Like the Ward
agglomerative hierarchical clustering algorithm and the k-means partitioning algo-
rithm, it is based on the minimization of the inertia criterion. However, unlike Ward
and k-means, it provides a simple and natural interpretation of the clusters. The
price paid by construction in terms of inertia by DIVCLUS-T for this additional
interpretation is studied by applying the three algorithms on six databases from the
UCI Machine Learning repository.

Key words: Divisive clustering; monothetic cluster; decision dendrogram; inertia
criterion

1 Introduction

The end-point of a classification study is often a partition P of a set of objects
Ω into a set of disjoint homogeneous and well separated clusters (C1, ..., Ck).
When the desired number of clusters k is “high” the aim of clustering is
usually to reduce the number of objects. Each cluster is then replaced by
its centroid and statistical methods can be applied to the centroids weighted
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by the number of objects in the corresponding cluster. When the number of
clusters k is “small” the aim of clustering is usually to find both homogeneous
and interpretable clusters. An additional step of cluster interpretation is then
necessary.

The idea of this article is to propose a monothetic divisive hierarchical clus-
tering method called DIVCLUS-T. Like the Ward agglomerative hierarchical
method and the k-means partitioning method, this divisive method is based
on the minimization of the inertia criterion, but it provides, by construction,
a simple and natural interpretation of the clusters.

Divisive hierarchical clustering reverses the process of agglomerative hierar-
chical clustering, by starting with all objects in one cluster, and successively
dividing each cluster into smaller ones. A natural approach for dividing a
cluster into two non-empty subsets would be to consider all the possible bi-
partitions. It is clear that such a complete enumeration procedure provides a
global optimum but is computationally prohibitive. A variety of divisive clus-
tering methods which do not consider all bipartitions have been suggested.
MacNaughton-Smith et al. (1964) and Kaufman and Rousseeuw (1990) pro-
posed iterative divisive procedures using an average dissimilarity between an
object and a group of objects. Other methods using a dissimilarity matrix as
input are based on the optimization of criteria such as the split or the diameter
of the bipartition (Guénoche et al., 1991; Wand et al., 1996). For the inertia
criterion, divisive counterparts to Ward’s agglomerative algorithm have been
proposed: for example, instead of splitting by total enumeration it is possible
to apply the k-means algorithm, with k=2 (Mirkin, 2005).

In divisive clustering, some methods are polythetic, whereas some others are
monothetic. A cluster is called monothetic if a conjunction of logical prop-
erties, each one relating to a single variable, is both necessary and sufficient
for membership in the cluster (Sneath and Sokal, 1973). A clustering method
which builds, by construction, monothetic clusters is then monothetic. In divi-
sive clustering, monothetic clusters are obtained by using, for each division, a
single variable and by separating objects having specific variable values from
those who do not. Monothetic divisive clustering methods are usually variants
of the association analysis method (Williams and Lambert, 1959) and are de-
signed for binary data. We can cite among others Lance and Williams (1968),
Kaufman and Rousseeuw (1990). Unlike the first methods cited above, these
monothetic methods are not based on the optimization of a “polythetic” cri-
terion like the inertia or the diameter of the bipartitions. These methods are
based on the selection, at each stage, of the binary variable which maximizes
a measure of association to the other variables. The objects are then divided
using the values (0 and 1) of the binary variable.

The divisive clustering method proposed in this paper is monothetic but pro-
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ceeds by optimization of a polythetic criterion. The bipartitional algorithm
and the choice of the cluster to be split are based on the minimization of the
within-cluster inertia. The complete enumeration of all possible bipartitions is
avoided by using the same monothetic approach as Breiman et al. (1984) who
proposed, and used, binary questions in a recursive partitional process, CART,
in the context of discrimination and regression. In the context of clustering,
there are no predictors and no response variable. Hence DIVCLUS-T is a DI-
Visive CLUStering method whose output is not a classification nor a regression
tree, but a CLUStering-Tree. Because the dendrogram can be read as a deci-
sion tree, it simultaneously provides partitions into homogeneous clusters and
a simple interpretation of those clusters.

In Chavent (1998) a simplified version of DIVCLUS-T was presented for the
particular case of quantitative data. Chavent et al. (1999) applied it, together
with another monothetic divisive clustering method based on correspondence
analysis, to a categorical data set on healthy human skin. A first comparison
of DIVCLUS-T with Ward and k-means was given in this paper but only for
a single categorical dataset and for the 6-cluster partition. More recently, it
has been applied to accounting disclosure analysis (Chavent et al., 2005) and
a hierarchical divisive monothetic clustering method based on the Poisson
process has been proposed in Pircon (2004).

In this paper we present the method DIVCLUS-T in detail (section 5). This
monothetic Ward-like clustering method can also be applied to categorical
data and the calculation of the inertia criterion for categorical data is in-
troduced in section 4. The numerical and categorical examples (sections 2
and 5.3) show that the main advantage of DIVCLUS-T compared to Ward
or k-means is the simple and natural interpretation of the dendrogram and
the clusters of the hierarchy. Because these monothetic descriptions are also
constraints which may deteriorate the quality of the divisions, in section 6
we study the price paid by DIVCLUS-T, in terms of inertia, for this addi-
tional interpretation. We compare the inertia of the partitions obtained with
DIVCLUS-T, Ward and k-means for the six databases of the UCI Machine
Learning repository Hettich et al. (1998).

2 An example

The agglomerative Ward method and the divisive DIVCLUS-T method have
been applied to the well-known protein consumption data table (Hand et al.,
1994). The dendrogram of the hierarchy obtained with Ward is given in Figure
1. This dendrogram doesn’t give any information about the interpretation of
the clusters such as, for instance, that of {Italy, Greece, Spain, Port}.
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Fig. 1. Ward dendrogram for protein data.
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Fig. 2. DIVCLUS-T dendrogram for protein data.

The dendrogram of the hierarchy obtained with DIVCLUS-T is given in Fig-
ure 2 and differs from the Ward dendrogram in the inclusion of the mono-
thetic description for each level. For instance, we can read that the countries
of the {Italy, Greece, Spain, Port} cluster are characterized by their Nuts and
Fruits/Vegetable consumption (Nuts > 3.5) whereas the European countries of
the {Fin, Nor, Swed, Den} cluster are characterized by their Fish consumption
(Fish > 5.7).

The clusters obtained with DIVCLUS-T have natural interpretation but how
do the inertias of the clusters obtained by the two methods compare ? In the
case of the protein data table, all the countries have the same weight and
the inertia criterion is the classical error sum of squares (SSQ) criterion. We
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see in Table 1 that the proportion of the explained inertia is better for the
partitions of DIVCLUS-T from 2 to 4 clusters and better (or equal) for the
partitions of Ward from 4 to 10 clusters. The disadvantage, in term of inertia,
of being monothetic seems to be counterbalanced by the advantage of being
divisive. Note that few cluster partitions are obtained in the first stages of
divisive hierarchical clustering whereas they are obtained in the last stages of
agglomerative hierarchical clustering.

Table 1
Proportion of the inertia (in %) explained by the k-clusters partitions obtained with
DIVCLUS-T and Ward on the protein data set

k 2 3 4 5 6 7 8 9 10

DIVCLUS-T 37.1 50.6 59.2 65.5 71.2 73.5 79.3 81.6 84

Ward 34.7 48.5 58.5 66.7 72.4 75.5 79 81.6 84

3 The data table

We consider a set Ω = {1, ..., i, ..., n} of n objects which are described by p
variables X1, . . . , Xp in a matrix X of n rows and p columns:

1 · · · j · · · p

X = (xj
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.

xj
i is the value of the jth variable Xj for object i. For a numerical variable,

xj
i ∈ R and for a categorical variable, xj

i ∈ M j , the set of categories of Xj .
We will denfine by qj the number of categories of Xj . Here we do not consider
the case of a mixed data table and so the X entries are either all numerical or
all categorical.

A weight mi is associated to each object i and those weights are organized in a
vector m = (m1 · · ·mi · · ·mn)t. If the data result from random sampling with
uniform probabilities, the weights are also uniform : mi = 1/n for all i. But
it can be useful, for certain applications, to work with non-uniform weights
(reweighted sample, aggregate data).
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4 The inertia criterion

A general approach for splitting a set Ω = {1, ..., i, ..., n} of n objects into k
disjoint clusters involves defining a measure of adequacy of a partition Pk and
seeking a partition which optimizes that measure. Several possible measures
of adequacy exist (Gordon, 1999; Hansen and Jaumard, 1997) and are used in
different clustering methods. Here we have chosen to use the inertia criterion
(which is a generalization of the error sum of squares criterion). Note that a
k-clusters partition Pk is a list (C1, . . . , Ck) of subsets of Ω verifying Cℓ 6= ∅
for all ℓ = 1, . . . , k, C1 ∪ . . . ∪ Ck = Ω and Cℓ ∩ Cℓ′ = ∅ for all ℓ 6= ℓ′.

4.1 Definitions

The inertia criterion is defined on a numerical weighted data table (Z,w)
associated with a set Ω of n objects as described in section 4.2, where,
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In the calculation of the inertia criterion, an object i ∈ Ω will be weighted by
wi and identified with the corresponding row of the matrix Z :

zi = (z1
i · · · z

p
i )

t ∈ R
p .

The inertia of a cluster Cℓ ⊆ Ω is then defined by:

I(Cℓ) =
∑

i∈Cℓ

wi d2
M

(zi, g(Cℓ)), (1)

where wi is the weight of the object i and g(Cℓ) is the cluster centroid defined
by:

g(Cℓ) =
1

∑

i∈Cℓ

wi

∑

i∈Cℓ

wizi .
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The distance dM between the two vectors zi and zi′ of R
p is defined by:

d2
M

(zi, zi′) = (zi − zi′)
tM(zi − zi′), (2)

where M is a p × p positive definite matrix.

If M = I and wi = 1 for all i = 1 · · ·n, then the inertia is the classical error
sum of squares (SSQ) criterion.

The sum of the inertias of all clusters is called the within-cluster inertia:

W (Pk) =
k

∑

ℓ=1

I(Cℓ) . (3)

It is an heterogeneity criterion for the adequacy of a partition Pk = (C1, ..., Ck).
Similarly, the inertia of the centroids g(Cℓ), weighted by µ(Cℓ) =

∑

i∈Cℓ

wi, is

called the between-cluster inertia:

B(Pk) =
k

∑

ℓ=1

µ(Cℓ) d2
M

(g(Cℓ), g), (4)

with g = g(Ω) the centroid of Ω. This is an isolation criterion for the adequacy
of Pk.

Finally, because the total inertia of a set of R
p points can be partitioned into

within and between-cluster inertia, we have

I(Ω) = W (Pk) + B(Pk), (5)

and so minimizing W (the heterogeneity) is equivalent to maximizing B (the
isolation).

4.2 The inertia criterion for numerical or categorical data

For a numerical matrix X, the inertia criterion is calculated from the weighted
data matrix (Z,w) with Z = X and w = m. Moreover, the matrix M used
in the quadratic distance dM defined in (2) is usually the identity matrix I or
the diagonal matrix of the inverse of squared standard deviations:

D1/s2 =




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
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



1/s2
1 0

. . .

0 1/s2
p




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.
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This latter distance is used when the variables are measured on very different
scales.

For a categorical matrix X, the inertia criterion is calculated from a weighted
data matrix (Z,w) defined as follows. First the matrix X = (xj

i )n×p is con-
verted into an indicator matrix Q with n rows and q columns where q =
∑p

j=1 qj is the total number of categories in all variables. In each ith row of
the indicator matrix, an element is 1 if the object belongs to the corresponding
category s of the corresponding categorical variable; otherwise the element is
0. Thus the sum of all the elements in a row is p, the number of variables.
A matrix K = (ks

i )n×q is obtained by multiplying for all i the ith row of this
indicator matrix Q by the weight mi. Because the matrix K can be considered
as a kind of contingency table, the matrix of relative frequencies F = (f s

i )n×q

called the correspondence matrix, can be constructed. The relative frequency
f s

i is obtained by dividing the frequency ks
i by k.. =

∑

i

∑

s ks
i , the overall total

frequency: f s
i =

ks
i

k..
. The second step is to convert the correspondence matrix F

into a row profiles matrix X̃n×q = (x̃1, . . . , x̃n)t. The ith row profile x̃i is then
defined by dividing the ith row of the correspondence table F by its marginal
total fi. =

∑q
s=1 f s

i i.e.:

x̃i = (
f 1

i

fi.

, ...,
f q

i

fi.

) .

The total marginals of the correspondence matrix F are also used to define
the row and the column masses : the vector (f1., ..., fi., ..., fn.) gives the masses
of the rows and the vector (f.1, ..., f.s, ..., f.q) gives the masses of the columns.

Finally the inertia criterion is calculated on the weighted data matrix (Z,w)
with Z = X̃ and w = (f1., ..., fi., ..., fn.)

t. Moreover the matrix M used in the
quadratic distance dM is not the identity matrix I nor the diagonal matrix
D1/s2 as for numerical data, but the diagonal matrix of the inverse of columns
masses:

D1/f = diag(1/f.1, . . . , 1/f.q).

The resulting distance

d2
D1/f

(x̃i, x̃i′) = (x̃i − x̃i′)
tD1/f (x̃i − x̃i′),

is called the chi-squared distance because, when Kn×q is a real contingency
table crossing a set I of n categories with a set J of q categories, the inertia
of the n row profiles weighted by (f1., ..., fi., ..., fn.) is identical to chi-square
contingency coefficient over k...
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5 DIVCLUS-T

In the divisive hierarchical clustering algorithm, one recursively splits a cluster
into two sub-clusters, starting from the set of objects Ω = {1, ..., n}: given the
current partition Pk = (C1, ..., Ck), one cluster Cℓ is split in order to find a
partition Pk+1 which contains k+1 clusters and optimizes the chosen adequacy
measure, based on the inertia criterion. More precisely, at each stage, the
divisive hierarchical clustering method DIVCLUS-T:

• splits a cluster Cℓ into a bipartition (Aℓ, Āℓ) of minimum within-cluster
inertia. This bipartitional method is defined in section 5.1.

• chooses in the partition Pk the cluster Cℓ to be split in such a way that
the new partition Pk+1 has minimum within-cluster inertia. This choice is
explained in section 5.2, and its link to the construction of the dendrogram
is emphasized.

5.1 The problem of how to split a cluster

In order to split optimally a cluster Cℓ one has to choose the bipartition
(Aℓ, Āℓ) amongst the 2nℓ−1−1 possible bipartitions of this cluster of nℓ objects.
It is clear that such complete enumeration (EdWards et al., 1965) provides
a global optimum but is computationally prohibitive. For some adequacy cri-
teria such as the larger of the two sub-clusters diameters, a polynomial-time
algorithm exists for the determination of an optimal division (Guénoche et al.,
1991).

For the inertia criterion, the k-means iterative relocation algorithms, or one
of its several variants (Anderberg, 1973), provides at least one locally opti-
mal division. Here, we have chosen to use a monothetic approach to reduce
the number of admissible bipartitions. Breiman et al. (1984) proposed and
used binary questions in CART a recursive partitioning process in the context
of discrimination and regression. Here we use those binary questions in the
context of clustering to reduce the set of possible bipartitions.

5.1.1 Inertia of a bipartition

Let (Aℓ, Āℓ) be a bipartition of a cluster Cℓ of Ω with Ω described by a nu-
merical weighted data table (Z,w). From (5) we have that minimizing the
within-cluster inertia W (Aℓ, Āℓ) is equivalent to maximizing the between-
cluster inertia B(Aℓ, Āℓ). Moreover we know that B(Aℓ, Āℓ) can be written
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as a weighted distance between the centroids g(Aℓ) and g(Āℓ):

B(Aℓ, Āℓ) =
µ(Aℓ)µ(Āℓ)

µ(Aℓ) + µ(Āℓ)
d2
M

(g(Aℓ), g(Āℓ)). (6)

This latter criterion is also the between-cluster distance used in the Ward
algorithm.

5.1.2 Binary questions

The binary questions are formulated in terms of the initial data matrix X.

(1) A binary question Q on a numerical variable Xj is given by:

Is Xj ≤ c ?

This binary question, also denoted by Q = [Xj ≤ c], splits a cluster Cℓ

into two sub-clusters Aℓ and Āℓ such that Aℓ = {i ∈ Cℓ | xj
i ≤ c} and

Āℓ = {i ∈ Cℓ | xj
i > c}. Because c ∈ R, the number of binary ques-

tions is infinite but these binary questions induce only a finite number of
bipartitions (Aℓ, Āℓ). Let xj

(1), . . . , x
j
(i), . . . , x

j
(nℓ)

be the ordered values of Xj

on the nℓ objects of Cℓ. Obviously the binary questions [Xj ≤ c] induce
the same bipartition ({(1), . . . , (i)}, {(i + 1), . . . , (nℓ)}) for all values of c be-
tween two consecutive and different observations xj

(i) and xj
(i+1). By conven-

tion and in order to associate a unique binary question to each bipartition
({(1), . . . , (i)}, {(i+1), . . . , (nℓ)}) the cut values c are defined as the midpoints
between two consecutive observations:

{c =
xj

(i) + xj
(i+1)

2
, xj

(i) 6= xj
(i+1), i = 1, ..., n − 1}.

Thus there will be a maximum of nℓ − 1 different bipartitions induced by the
binary questions on Xj .

(2) A binary question Q on a categorical variable Xj is given by:

Is Xj ∈ M ?

where M ⊂ M j is a subset of categories of Xj . This binary question, also
denoted by Q = [Xj ∈ M ], splits a cluster Cℓ into two sub-clusters Aℓ and
Āℓ such that Aℓ = {i ∈ Cℓ | xj

i ∈ M} and Āℓ = {i ∈ Cℓ | xj
i ∈ M} where

M is the complement of M in M j . Let qj be the number of categories of
M j . If M j is ordered there are qj − 1 different bipartitions (M, M) of M j .
Otherwise, there are 2qj

−1 − 1 different bipartitions (M, M) of M j . Because
the number of bipartitions (M, M) of M j is equal to the number of binary
questions [Xj ∈ M ], there will be a maximum of 2qj

−1−1 different bipartitions
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(Aℓ, Āℓ) of Cℓ induced by those binary questions. This number of bipartitions
grows exponentially with qj the number of categories.

Up to approximately 13 categories, the totality of bipartitions induced by
the variable Xj may be considered for optimization. Beyond that point, a pre-
treatment has to be applied to these categories. One possibility (among others)
consists of ordering the categories by a preliminary multiple correspondence
analysis of the data table X. If p is the number of variables and q = q1+ ...+qp

the total number of categories, we consider the coordinates of the q categories
in q − p dimensions. Each dimension defines an order for the q categories and
also for the qj categories. There will be q−p different orders of the qj categories
and then at most (qj − 1)(q − p) different bipartitions (M, M) of M j .

Finally, DIVCLUS-T selects the bipartition of maximum between-cluster in-
ertia (defined in (6)) amongst the bipartitions induced by all of the binary
questions on all of the p variables X1, ..., Xp.

5.1.3 Choice of the binary question

We now consider the particular case where two binary questions Q and Q′

induce two bipartitions (Aℓ, Āℓ) and (A′

ℓ, Ā
′
ℓ) of the cluster Cℓ which maxi-

mize the between-cluster inertia. In order to choose amongst these two binary
questions we introduce a supplementary criterion D.

(1) For a numerical binary question Q = [Xj≤c] corresponding to the bipar-
tition (Aℓ, Āℓ) of Cℓ this criterion is defined by:

D(Q) =
Bj(Aℓ, Āℓ)

Ij(Cℓ)
, (7)

where the between-cluster inertia Bj(Aℓ, Āℓ) and the inertia Ij(Cℓ) are cal-
culated only on the jth column of the matrix Z = X (see section 4.2 for the
calculation of the inertia criterion for numerical data). This criterion measures
the part of the inertia of the variable Xj explained by the partition (Aℓ, Āℓ)
of Cℓ.

(2) For a categorical binary question Q = [Xj∈M ] this criterion is defined by:

D(Q) =
∑

s∈Mj

Bs(Aℓ, Āℓ)

Is(Aℓ, Āℓ)
, (8)

where the between-cluster inertia Bs(Aℓ, Āℓ) and the inertia Is(Cℓ) are calcu-
lated on the sth column of the row profile matrix Z = X̃ (see section 4.2 for
the calculation of the inertia criterion for categorical data). For the sake of
simplicity we write s ∈ M j to characterize the column of X̃ corresponding to
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categories of Xj. Hence D(Q) is the sum, for all categories of Xj, of the part
of the inertia of the category explained by the bipartition (Aℓ, Āℓ). D(Q) is
the relative contribution of the variable Xj to the bipartition (Aℓ, Āℓ).

In both cases, D(Q) measures a discrimination power for the variable Xj

with respect to the partition (Aℓ, Āℓ). Finally, when two binary questions Q
and Q′ induce two bipartitions (Aℓ, Āℓ) and (A′

ℓ, Ā
′
ℓ) which both maximize

the between-cluster inertia, DIVCLUS-T selects the most discriminating one
according to this criterion D.

5.2 Selecting the cluster to be split

A hierarchy H of Ω is a set of clusters satisfying the following conditions
(Gordon, 1999):

(a) Ω ∈ H ; (b) ∅ 6∈ H ; (c) the singleton {i} ∈ H for all i ∈ Ω;
(d) if A, B ∈ H , then A ∩ B ∈ {∅, A, B}.

An indexed hierarchy is a couple (H, h) where h is a mapping from H to R
+

satisfying the following conditions:

(i) ∀A ∈ H such that h(A) = 0, A is a singleton,
(ii) ∀A, B ∈ H , if A ⊂ B, then h(A) ≤ h(B).

The common graphical representations of indexed hierarchies are dendro-
grams.

In divisive clustering, the set of clusters obtained after K − 1 divisions is a
hierarchy HK whose singletons are the K clusters of the partition PK obtained
in the last stage of DIVCLUS-T. In DIVCLUS-T the number 2 ≤ K ≤ n is
given as input by the user. Because the resulting hierarchy can be considered
as a partial hierarchy halfway between the top and bottom levels, it is referred
to as an upper hierarchy (Mirkin, 2005). This upper hierarchy is indexed by h
so that in the dendrogram the height of a cluster Cℓ split into two sub-clusters
Aℓ and Āℓ is (as in Wards method):

h(Cℓ) = B(Aℓ, Āℓ) =
µ(Aℓ) µ(Āℓ)

µ(Aℓ) + µ(Āℓ)
d2(g(Aℓ), g(Āℓ)).

When the divisions are continued until giving singleton clusters (or clusters of
objects with identical descriptions), all of the clusters can be systematically
split and the full hierarchy Hn can be indexed by h. When the divisions are
not continued down to Hn, the clusters are not systematically split: in order
to have the dendrogram of the upper hierarchy HK built by the “top” (the
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K − 1 largest) levels of the dendrogram of Hn, a cluster represented higher
in the dendrogram of Hn has to be split before the others. DIVCLUS-T then
chooses to split the cluster Cℓ with the maximum value h(Cℓ). Consequently
because:

W (Pk+1) = W (Pk) − h(Cℓ) ,

maximizing h(Cℓ) ensures that the new partition Pk+1 = Pk ∪{Aℓ, Āℓ}−{Cℓ}
has a minimum within-cluster inertia. DIVCLUS-T then uses the same idea
as Wards agglomerative clustering method.

5.3 An example for categorical data

DIVCLUS-T has been applied to a categorical data set where 27 breeds of
dogs are described by 7 categorical variables (Saporta, 1990). The number
of clusters of the finest partition is fixed to K = 8. The dendrogram of the
hierarchy H8 obtained after 7 divisions and the associated 7 binary questions
are given in Figure 3.
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Fig. 3. DIVCLUS-T dendrogram for dogs data.

At the first stage, the divisive clustering method constructs a bipartition of
the 27 dogs. There are 13 different binary questions and 13 bipartitions to
evaluate: two variables are binary (inducing two bipartitions), four variables
are ordinal with three levels (inducing 4 × 2 bipartitions) and one is nominal
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with 3 categories (inducing 3 bipartitions). The question “Is size large?” gives
the bipartition of smallest within-cluster inertia and is chosen for the first
split. For each sub-cluster the “best” bipartition is then obtained in the same
way. The between cluster inertia obtained by splitting the 15 “large” dogs is
slightly smaller than that obtained by splitting the 12 “small or medium” dogs
and so this latter cluster is divided. This process is repeated until we obtain
the final 8-cluster partition.

5.4 Computational complexity

For numerical data the computational complexity of DIVCLUS-T is o(Kpn(log(n)+
p)) with K the number of clusters of the finest partition, p the number of vari-
ables, and n the number of objects. Let us briefly compare this complexity
with those of Ward and k-means methods. The use of the nearest neighbor
method (Mac Quitty, 1966) in agglomerative hierarchical clustering algorithms
yields an o(n2) implementation of the Ward algorithm, the single-linkage,
complete linkage and average linkage algorithms (Benzecri, 1982; Murtagh,
1983; Hansen an Jaumard, 1997). This implementation uses a distance ma-
trix as input. When the input is not a distance matrix but a data matrix
(objects×variables), the time spent to compute the distance matrix has to be
taken into account. For Ward applied to a quantitative dataset, because the
time spent for the calculation of the n(n− 1)/2 Euclidean distances is o(pn2),
the complexity is o(pn2). DIVCLUS-T is then more efficient than Ward for
small values of K and p < n. That is explained by the fact that divisive al-
gorithms such as DIVCLUS-T need K − 1 iterations to find the partitions
from 2 to K clusters whereas agglomerative algorithms such as Ward need
K − n iterations to find the partitions from n to K clusters. The computa-
tional complexity of the partitioning k-means algorithm is o(KpnT ), where
T is the number of iterations (Duda et al., 2001). DIVCLUS-T is also more
efficient than k-means when log(n) + p < T .

For categorical data, finding the best bipartition induced by the binary ques-
tions can be computationally expensive. In DIVCLUS-T we propose a pre-
liminary treatment which consists of ordering the categories by multiple cor-
respondence analysis of the data table X (see section 5.1.2). By taking this
order into account, the number of binary questions on a qualitative variable
Xj with qj categories decreases from 2qj

−1 − 1 to qj − 1 and consequently the
set of bipartitions evaluated at each stage is also reduced. The combinatorial
problem is then reduced but note that the quality of the best bipartition may
be degraded in terms of inertia if the set of possible bipartitions is too small.
For qualitative variables with less than approximately 13 categories, complete
enumeration is preferred. For ordinal variables there is no combinatorial prob-
lem because of the natural order of the categories, but the problem of the
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quality of the best bipartition in a small set of possible bipartitions remains.

6 Empirical comparison with Ward and k-means

The advantage of DIVCLUS-T in comparison to Ward or k-means clustering
methods is the direct and natural interpretation of the clusters. However, what
is the price paid by DIVCLUS-T, in terms of inertia, for this additional mono-
thetic description of the clusters ? In order to answer this question, we have
applied DIVCLUS-T, Ward and k-means algorithms to three numerical and
three categorical datasets of the UCI Machine Learning repository (Hettich et
al. (1998)). A short description of the six datasets is given Table 2.

Table 2
Datasets descriptions

Name Type # objects # variables (# categories)

Glass numerical 214 8

Pima Indians diabete numerical 768 8

Abalone numerical 4177 7

Zoo categorical 101 15(2) + 1(6 )

Solar Flare categorical 323 2(6) + 1(4) + 1(3) + 6(2)

Contraceptive Method Choice (CMC) categorical 1473 9(4)

6.1 The proportion of inertia explained

The method DIVCLUS-T uses:

- the matrix X to calculate the binary questions and then the set of possible
bipartitions at each stage,

- a weighted data matrix (Z,w) and a distance dM to calculate the inertia
criterion of those bipartitions (see section 4.2):
- for the three numerical datasets, Z = X, w = (1, ..., 1)t and M = D1/s2

the diagonal p × p matrix of the inverse of squared standard deviations ,
- for the three categorical datasets, Z = X̃ the row profiles matrix, w =

(1/n, ..., 1/n)t (because mi = 1 and then fi. = 1/n) and M = D1/f.s the
diagonal q × q matrix of the inverse of column masses.

The Ward and k-means clustering methods use the same weighted data matrix
(Z,w) and distance dM than DIVCLUS-T, but do not use the raw data matrix
X within the clustering algorithm.

The three clustering methods all use the inertia criterion. Hence the quality
of the partitions Pk built by the three methods from the same set of objects
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Ω, described by the weighted data matrix (Z,w), can be ranked using the
proportion E of inertia explained, defined by:

E(Pk) = 100 × (1 −
W (Pk)

I(Ω)
) . (9)

This lies between 0 and 100 (percent) and is equal to 100 for the singleton
partition and to 0 for the single cluster (Ω) partition. Because E increases
with the number of clusters k of the partition, it can be used only to compare
partitions having the same number of clusters. In the following, we assume
that a partition Pk is better than a partition P ′

k if E(Pk) > E(P ′

k).

Tables 3 and 4 give partitions from 2 to 15 clusters for the numerical and cat-
egorical datasets, respectively. For each dataset the two first columns display
the proportion of inertia explained for partitions built with DIVCLUS-T and
Ward. The third column displays the proportion of inertia explained for the
k-means partitions.

Table 3
Numerical datasets: proportion E(Pk) of inertia explained

Glass Pima Abalone

k DIV Ward kmeans DIV Ward kmeans DIV Ward kmeans

2 21.5 22.5 22.8 14.8 13.3 16.5 60.2 57.7 60.9

3 33.6 34.1 35.0 23.2 21.6 29.0 72.6 74.8 76.0

4 45.2 44.3 46.6 29.4 29.4 36.2 81.8 80.0 82.6

5 53.4 53.0 54.7 34.6 34.9 41.0 84.2 85.0 86.1

6 58.2 58.4 60.7 38.2 40.0 45.3 86.3 86.8 87.9

7 63.1 63.5 65.7 40.9 44.4 48.9 88.3 88.4 89.6

8 66.3 66.8 68.2 43.2 47.0 51.2 89.8 89.9 90.9

9 69.2 69.2 70.5 45.2 49.1 53.2 91.0 90.9 91.8

10 71.4 71.5 72.4 47.2 50.7 55.1 91.7 91.6 92.4

11 73.2 73.8 74.7 48.8 52.4 56.7 92.0 92.1 92.8

12 74.7 75.9 76.6 50.4 53.9 58.4 92.3 92.4 93.1

13 76.2 77.6 77.2 52.0 55.2 59.7 92.6 92.7 93.4

14 77.4 79.1 78.2 53.4 56.5 61.1 92.8 93.0 93.7

15 78.5 80.4 79.3 54.6 57.7 62.1 93.0 93.2 93.9

First we compare the results for the three numerical datasets (see Table 3).
For the Glass dataset the partitions obtained with DIVCLUS-T are either
better (for 4 clusters), worse (for 2, 3, and from 12 to 15 clusters) or equiv-
alent (from 5 to 11 clusters). For the Pima dataset the partitions obtained
with DIVCLUS-T are better or equivalent up to 4 clusters, and Ward takes
the lead from 5 clusters onwards. Because DIVCLUS-T is divisive whereas
Ward is agglomerative, it is not really surprising that Ward tends to become
better than DIVCLUS-T as the number of clusters increases. For the Abalone
dataset which is bigger than the two previous ones (4177 objects), DIVCLUS-
T behaves better than Ward until 3 clusters and the results are very close
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afterwards. One reason for having better results with DIVCLUS-T on the
Abalone dataset is probably the larger number of objects in this database.
Indeed the number of bi-partitions considered for optimization at each stage
increases with the number of objects. We can then expect better results with
larger datasets.

For the third column, the k-means algorithm is executed 100 times with dif-
ferent initial seeds and the best solution is retained. Because this algorithm
locally optimizes the within-cluster inertia, it is to be expected that the propor-
tion of inertia explained will generally be greater than for the other methods.
Finally, for these three continuous datasets, DIVCLUS-T seems to perform
better for few cluster partitions and for larger datasets.

Table 4
Categorical datasets: proportion E(Pk) of inertia explained

Zoo Solar Flare CMC

k DIV Ward kmeans DIV Ward kmeans DIV Ward kmeans

2 23.7 22.4 23.7 12.7 12.6 12.7 8.4 7.6 9.1

3 38.2 37.1 38.2 23.8 22.4 23.8 14.0 12.8 15.3

4 50.1 50.3 51.1 32.8 29.3 33.1 18.9 17.3 19.9

5 55.6 55.8 56.5 38.2 35.1 38.6 23.0 21.5 23.9

6 60.9 61.1 61.0 43.0 40.1 43.2 26.3 25.2 27.7

7 65.6 65.5 66.1 47.7 45.0 48.0 28.4 28.5 30.9

8 68.9 68.6 67.1 51.6 49.8 52.1 30.3 30.9 33.7

9 71.8 71.5 69.7 54.3 53.5 55.8 32.1 33.2 36.2

10 74.7 74.4 73.1 57.0 57.1 58.6 33.8 35.5 38.5

11 76.7 76.6 72.9 59.3 60.4 61.4 35.5 37.4 40.3

12 78.4 78.6 77.7 61.3 62.9 64.1 36.9 39.1 42.3

13 80.1 80.1 77.8 63.1 65.2 65.6 38.1 40.6 43.2

14 81.5 81.4 80.1 64.5 67.2 66.6 39.2 42.1 44.4

15 82.7 82.6 81.0 65.8 68.6 68.6 40.3 43.5 46.1

For the three categorical datasets (see Table 4) we obtain the same kind of
results. For the Solar Flare and CMC datasets DIVCLUS-T is better than
Ward until 10 and 8 clusters respectively. For the Zoo dataset, DIVCLUS-T
performs worse than Ward; this may be because all the variables in the Zoo
dataset are binary and, as stated before, the quality of the results (in terms
of inertia) depends upon the number of categories and variables.

These worse results (in terms of inertia) with DIVCLUS-T were to be expected
because of the constraint for the clusters to be monothetic. We can however
conclude from these examples that in spite of this constraint, DIVCLUS-T
performs quite well for few cluster partitions, probably because these arise in
the first steps of DIVCLUS-T whereas they come from the last steps of Ward.

17



6.2 Resampling

We have used a resampling procedure to go further in the comparison of
the three clustering methods. Details on resampling procedures for validation
can be found in Mirkin (2005). In our application, the resampling procedure
includes the following steps:

A. Generation of a number of datasets, copies, by subsampling: a proportion
α, 0 < α < 1, is specified and αn objects are randomly selected without
replacement as a subsample; data consists of rows corresponding to selected
objects. Table 5, gives for each dataset, the size n, the proportion α and
the subsample size N = αn. 100 subsamples have been generated for each
dataset.

Table 5
Subsample descriptions

Dataset Dataset size n Proportion α Subsample size N

Glass 214 0.70 150

Pima 768 0.65 500

Abalone 4177 0.12 500

Zoo 101 0.79 80

Solar 323 0.62 200

CMC 1473 0.27 400

B. Running successively the three clustering algorithms for all 600 copies.
C. Evaluating the results for each individual copy. For this, two indices are

determined for the partitions from 2 to 15 clusters:
- the first index is equal to 1 if the proportion of inertia explained for the

partition obtained with DIVCLUS-T is greater than that obtained with
Ward. It is equal to 0 otherwise.

- the second index is, for each clustering method, the difference between the
largest of the three proportions of inertia explained for partitions obtained
with the three methods, and the proportion of inertia explained for the
partition obtained with the particular method.

D. Aggregating results. For each dataset and for partitions from 2 to 15 clusters,
the 100 evaluations for each individual copy are averaged. The proportion of
subsamples where DIVCLUS-T is better than Ward (in terms of inertia) is
calculated by averaging the first index values, see Table 6. The mean devia-
tion of each clustering method from the best solution is given by averaging
the second index values, see Figure 4.

Table 6 confirms that DIVCLUS-T performs relatively well, despite the mono-
thetic constraint, for few cluster partitions. For the CMC dataset for instance,
the two-clusters partition of DIVCLUS-T is better than two-clusters partitions
of Ward on 98 subsamples out of 100.
Figure 4 shows that the deviation from the best solution is, in the worst
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Table 6
Percentage of subsamples where DIVCLUS-T performs better than Ward

k 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Glass 36 56 59 57 48 41 42 34 25 11 7 5 3 2

Pima 91 36 15 5 1 0 0 0 0 0 0 0 0 0

Abalone 71 21 83 37 22 28 65 50 25 12 7 3 1 1

Zoo 96 88 47 39 43 43 48 63 64 48 47 44 46 43

Solar 91 100 99 100 98 92 71 44 15 2 0 0 0 0

CMC 98 99 100 98 89 61 40 19 9 3 4 1 1 1
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Fig. 4. Deviations from the best solution as proportion of explained inertia.

case, equal to 8% of explained inertia (for the PIMA dataset, 7 clusters and
DIVCLUS-T). Because the k-means algorithm locally optimizes the inertia
criterion, most of the time it gives the best solution. If the k-means partition
is the best of the three partitions for the 100 subsamples, its mean deviation
is equal to 0. This mean deviation is always close to 0 for the Abalone, Pima
and CMC datasets. It is noticeable however that for the other three datasets
(Glass, Zoo, Solar Flame) the k-means solution is not always the best and

19



that its deviation from the best solution increases with the number of clus-
ters. Ward even takes the lead from a certain number of clusters onwards.
DIVCLUS-T and Ward curves evolve the same way for Glass, Pima, Abalone
and Zoo datasets, with Ward above DIVCLUS-T when the number of clusters
increases. The deviations of Ward from the best solution are not so different
from the deviations of DIVCLUS-T from the best solution for the Abalone
and Zoo datasets (except for few cluster partitions). To sum up, it is difficult
to conclude from these results that one clustering method is much better than
the others in terms of inertia. DIVCLUS-T is not systematically clearly worse
than the two other clustering methods. This is, in itself, a reassuring result for
this clustering method which allows, by construction, a simple interpretation
of the clusters.

7 Conclusion

This paper proposes a divisive monothetic hierarchical clustering method de-
signed for either numerical or categorical data. For categorical data, the inertia
criterion is calculated by converting the data table into a numerical correspon-
dence matrix and a row-profiles matrix. The χ2 distance is then used in place
of Euclidean distance. A solution to the computational problem for categorical
binary questions is also proposed. The advantage of DIVCLUS-T, compared
to classical methods like Ward or k-means, is the direct interpretation of the
clusters: the hierarchy can be read as a decision tree. Of course this advantage
has to be balanced with a relative rigidity of the clustering process. Some
specific simulations should be able to show easily that DIVCLUS-T is unable
to find correctly clusters of specific shapes. But what are the shapes of the
clusters in real datasets ? We have also seen, on the six datasets from the
UCI Machine Learning repository, that the price paid, in terms of inertia, by
DIVCLUS-T for the interpretability of the clusters is not systematic, espe-
cially for few cluster partitions. Finally, if the user is interested in rather large
partitions, for example in order to reduce the number of objects, WARD and
k-means are certainly more efficient than DIVCLUS-T. However, if the user
is interested in few cluster partitions with good interpretation, DIVCLUS-T
seems to be an interesting alternative to classical methods.
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